src/share/vm/gc_implementation/g1/ptrQueue.hpp

Thu, 12 Jan 2012 00:06:47 -0800

author
johnc
date
Thu, 12 Jan 2012 00:06:47 -0800
changeset 3463
d30fa85f9994
parent 3416
2ace1c4ee8da
child 5726
69f26e8e09f9
permissions
-rw-r--r--

6484965: G1: piggy-back liveness accounting phase on marking
Summary: Remove the separate counting phase of concurrent marking by tracking the amount of marked bytes and the cards spanned by marked objects in marking task/worker thread local data structures, which are updated as individual objects are marked.
Reviewed-by: brutisso, tonyp

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_PTRQUEUE_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_PTRQUEUE_HPP
    28 #include "memory/allocation.hpp"
    29 #include "utilities/sizes.hpp"
    31 // There are various techniques that require threads to be able to log
    32 // addresses.  For example, a generational write barrier might log
    33 // the addresses of modified old-generation objects.  This type supports
    34 // this operation.
    36 // The definition of placement operator new(size_t, void*) in the <new>.
    37 #include <new>
    39 class PtrQueueSet;
    40 class PtrQueue VALUE_OBJ_CLASS_SPEC {
    42 protected:
    43   // The ptr queue set to which this queue belongs.
    44   PtrQueueSet* _qset;
    46   // Whether updates should be logged.
    47   bool _active;
    49   // The buffer.
    50   void** _buf;
    51   // The index at which an object was last enqueued.  Starts at "_sz"
    52   // (indicating an empty buffer) and goes towards zero.
    53   size_t _index;
    55   // The size of the buffer.
    56   size_t _sz;
    58   // If true, the queue is permanent, and doesn't need to deallocate
    59   // its buffer in the destructor (since that obtains a lock which may not
    60   // be legally locked by then.
    61   bool _perm;
    63   // If there is a lock associated with this buffer, this is that lock.
    64   Mutex* _lock;
    66   PtrQueueSet* qset() { return _qset; }
    68 public:
    69   // Initialize this queue to contain a null buffer, and be part of the
    70   // given PtrQueueSet.
    71   PtrQueue(PtrQueueSet* qset, bool perm = false, bool active = false);
    72   // Release any contained resources.
    73   virtual void flush();
    74   // Calls flush() when destroyed.
    75   ~PtrQueue() { flush(); }
    77   // Associate a lock with a ptr queue.
    78   void set_lock(Mutex* lock) { _lock = lock; }
    80   void reset() { if (_buf != NULL) _index = _sz; }
    82   // Enqueues the given "obj".
    83   void enqueue(void* ptr) {
    84     if (!_active) return;
    85     else enqueue_known_active(ptr);
    86   }
    88   // This method is called when we're doing the zero index handling
    89   // and gives a chance to the queues to do any pre-enqueueing
    90   // processing they might want to do on the buffer. It should return
    91   // true if the buffer should be enqueued, or false if enough
    92   // entries were cleared from it so that it can be re-used. It should
    93   // not return false if the buffer is still full (otherwise we can
    94   // get into an infinite loop).
    95   virtual bool should_enqueue_buffer() { return true; }
    96   void handle_zero_index();
    97   void locking_enqueue_completed_buffer(void** buf);
    99   void enqueue_known_active(void* ptr);
   101   size_t size() {
   102     assert(_sz >= _index, "Invariant.");
   103     return _buf == NULL ? 0 : _sz - _index;
   104   }
   106   bool is_empty() {
   107     return _buf == NULL || _sz == _index;
   108   }
   110   // Set the "active" property of the queue to "b".  An enqueue to an
   111   // inactive thread is a no-op.  Setting a queue to inactive resets its
   112   // log to the empty state.
   113   void set_active(bool b) {
   114     _active = b;
   115     if (!b && _buf != NULL) {
   116       _index = _sz;
   117     } else if (b && _buf != NULL) {
   118       assert(_index == _sz, "invariant: queues are empty when activated.");
   119     }
   120   }
   122   bool is_active() { return _active; }
   124   static int byte_index_to_index(int ind) {
   125     assert((ind % oopSize) == 0, "Invariant.");
   126     return ind / oopSize;
   127   }
   129   static int index_to_byte_index(int byte_ind) {
   130     return byte_ind * oopSize;
   131   }
   133   // To support compiler.
   134   static ByteSize byte_offset_of_index() {
   135     return byte_offset_of(PtrQueue, _index);
   136   }
   137   static ByteSize byte_width_of_index() { return in_ByteSize(sizeof(size_t)); }
   139   static ByteSize byte_offset_of_buf() {
   140     return byte_offset_of(PtrQueue, _buf);
   141   }
   142   static ByteSize byte_width_of_buf() { return in_ByteSize(sizeof(void*)); }
   144   static ByteSize byte_offset_of_active() {
   145     return byte_offset_of(PtrQueue, _active);
   146   }
   147   static ByteSize byte_width_of_active() { return in_ByteSize(sizeof(bool)); }
   149 };
   151 class BufferNode {
   152   size_t _index;
   153   BufferNode* _next;
   154 public:
   155   BufferNode() : _index(0), _next(NULL) { }
   156   BufferNode* next() const     { return _next;  }
   157   void set_next(BufferNode* n) { _next = n;     }
   158   size_t index() const         { return _index; }
   159   void set_index(size_t i)     { _index = i;    }
   161   // Align the size of the structure to the size of the pointer
   162   static size_t aligned_size() {
   163     static const size_t alignment = round_to(sizeof(BufferNode), sizeof(void*));
   164     return alignment;
   165   }
   167   // BufferNode is allocated before the buffer.
   168   // The chunk of memory that holds both of them is a block.
   170   // Produce a new BufferNode given a buffer.
   171   static BufferNode* new_from_buffer(void** buf) {
   172     return new (make_block_from_buffer(buf)) BufferNode;
   173   }
   175   // The following are the required conversion routines:
   176   static BufferNode* make_node_from_buffer(void** buf) {
   177     return (BufferNode*)make_block_from_buffer(buf);
   178   }
   179   static void** make_buffer_from_node(BufferNode *node) {
   180     return make_buffer_from_block(node);
   181   }
   182   static void* make_block_from_node(BufferNode *node) {
   183     return (void*)node;
   184   }
   185   static void** make_buffer_from_block(void* p) {
   186     return (void**)((char*)p + aligned_size());
   187   }
   188   static void* make_block_from_buffer(void** p) {
   189     return (void*)((char*)p - aligned_size());
   190   }
   191 };
   193 // A PtrQueueSet represents resources common to a set of pointer queues.
   194 // In particular, the individual queues allocate buffers from this shared
   195 // set, and return completed buffers to the set.
   196 // All these variables are are protected by the TLOQ_CBL_mon. XXX ???
   197 class PtrQueueSet VALUE_OBJ_CLASS_SPEC {
   198 protected:
   199   Monitor* _cbl_mon;  // Protects the fields below.
   200   BufferNode* _completed_buffers_head;
   201   BufferNode* _completed_buffers_tail;
   202   int _n_completed_buffers;
   203   int _process_completed_threshold;
   204   volatile bool _process_completed;
   206   // This (and the interpretation of the first element as a "next"
   207   // pointer) are protected by the TLOQ_FL_lock.
   208   Mutex* _fl_lock;
   209   BufferNode* _buf_free_list;
   210   size_t _buf_free_list_sz;
   211   // Queue set can share a freelist. The _fl_owner variable
   212   // specifies the owner. It is set to "this" by default.
   213   PtrQueueSet* _fl_owner;
   215   // The size of all buffers in the set.
   216   size_t _sz;
   218   bool _all_active;
   220   // If true, notify_all on _cbl_mon when the threshold is reached.
   221   bool _notify_when_complete;
   223   // Maximum number of elements allowed on completed queue: after that,
   224   // enqueuer does the work itself.  Zero indicates no maximum.
   225   int _max_completed_queue;
   226   int _completed_queue_padding;
   228   int completed_buffers_list_length();
   229   void assert_completed_buffer_list_len_correct_locked();
   230   void assert_completed_buffer_list_len_correct();
   232 protected:
   233   // A mutator thread does the the work of processing a buffer.
   234   // Returns "true" iff the work is complete (and the buffer may be
   235   // deallocated).
   236   virtual bool mut_process_buffer(void** buf) {
   237     ShouldNotReachHere();
   238     return false;
   239   }
   241 public:
   242   // Create an empty ptr queue set.
   243   PtrQueueSet(bool notify_when_complete = false);
   245   // Because of init-order concerns, we can't pass these as constructor
   246   // arguments.
   247   void initialize(Monitor* cbl_mon, Mutex* fl_lock,
   248                   int process_completed_threshold,
   249                   int max_completed_queue,
   250                   PtrQueueSet *fl_owner = NULL) {
   251     _max_completed_queue = max_completed_queue;
   252     _process_completed_threshold = process_completed_threshold;
   253     _completed_queue_padding = 0;
   254     assert(cbl_mon != NULL && fl_lock != NULL, "Init order issue?");
   255     _cbl_mon = cbl_mon;
   256     _fl_lock = fl_lock;
   257     _fl_owner = (fl_owner != NULL) ? fl_owner : this;
   258   }
   260   // Return an empty oop array of size _sz (required to be non-zero).
   261   void** allocate_buffer();
   263   // Return an empty buffer to the free list.  The "buf" argument is
   264   // required to be a pointer to the head of an array of length "_sz".
   265   void deallocate_buffer(void** buf);
   267   // Declares that "buf" is a complete buffer.
   268   void enqueue_complete_buffer(void** buf, size_t index = 0);
   270   // To be invoked by the mutator.
   271   bool process_or_enqueue_complete_buffer(void** buf);
   273   bool completed_buffers_exist_dirty() {
   274     return _n_completed_buffers > 0;
   275   }
   277   bool process_completed_buffers() { return _process_completed; }
   278   void set_process_completed(bool x) { _process_completed = x; }
   280   bool is_active() { return _all_active; }
   282   // Set the buffer size.  Should be called before any "enqueue" operation
   283   // can be called.  And should only be called once.
   284   void set_buffer_size(size_t sz);
   286   // Get the buffer size.
   287   size_t buffer_size() { return _sz; }
   289   // Get/Set the number of completed buffers that triggers log processing.
   290   void set_process_completed_threshold(int sz) { _process_completed_threshold = sz; }
   291   int process_completed_threshold() const { return _process_completed_threshold; }
   293   // Must only be called at a safe point.  Indicates that the buffer free
   294   // list size may be reduced, if that is deemed desirable.
   295   void reduce_free_list();
   297   int completed_buffers_num() { return _n_completed_buffers; }
   299   void merge_bufferlists(PtrQueueSet* src);
   301   void set_max_completed_queue(int m) { _max_completed_queue = m; }
   302   int max_completed_queue() { return _max_completed_queue; }
   304   void set_completed_queue_padding(int padding) { _completed_queue_padding = padding; }
   305   int completed_queue_padding() { return _completed_queue_padding; }
   307   // Notify the consumer if the number of buffers crossed the threshold
   308   void notify_if_necessary();
   309 };
   311 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_PTRQUEUE_HPP

mercurial