src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Thu, 12 Jan 2012 00:06:47 -0800

author
johnc
date
Thu, 12 Jan 2012 00:06:47 -0800
changeset 3463
d30fa85f9994
parent 3456
9509c20bba28
child 3537
caa4652b4414
permissions
-rw-r--r--

6484965: G1: piggy-back liveness accounting phase on marking
Summary: Remove the separate counting phase of concurrent marking by tracking the amount of marked bytes and the cards spanned by marked objects in marking task/worker thread local data structures, which are updated as individual objects are marked.
Reviewed-by: brutisso, tonyp

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1HRPrinter.hpp"
    31 #include "gc_implementation/g1/g1RemSet.hpp"
    32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    33 #include "gc_implementation/g1/heapRegionSeq.hpp"
    34 #include "gc_implementation/g1/heapRegionSets.hpp"
    35 #include "gc_implementation/shared/hSpaceCounters.hpp"
    36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
    37 #include "memory/barrierSet.hpp"
    38 #include "memory/memRegion.hpp"
    39 #include "memory/sharedHeap.hpp"
    41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    42 // It uses the "Garbage First" heap organization and algorithm, which
    43 // may combine concurrent marking with parallel, incremental compaction of
    44 // heap subsets that will yield large amounts of garbage.
    46 class HeapRegion;
    47 class HRRSCleanupTask;
    48 class PermanentGenerationSpec;
    49 class GenerationSpec;
    50 class OopsInHeapRegionClosure;
    51 class G1ScanHeapEvacClosure;
    52 class ObjectClosure;
    53 class SpaceClosure;
    54 class CompactibleSpaceClosure;
    55 class Space;
    56 class G1CollectorPolicy;
    57 class GenRemSet;
    58 class G1RemSet;
    59 class HeapRegionRemSetIterator;
    60 class ConcurrentMark;
    61 class ConcurrentMarkThread;
    62 class ConcurrentG1Refine;
    63 class GenerationCounters;
    65 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
    66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    71 enum GCAllocPurpose {
    72   GCAllocForTenured,
    73   GCAllocForSurvived,
    74   GCAllocPurposeCount
    75 };
    77 class YoungList : public CHeapObj {
    78 private:
    79   G1CollectedHeap* _g1h;
    81   HeapRegion* _head;
    83   HeapRegion* _survivor_head;
    84   HeapRegion* _survivor_tail;
    86   HeapRegion* _curr;
    88   size_t      _length;
    89   size_t      _survivor_length;
    91   size_t      _last_sampled_rs_lengths;
    92   size_t      _sampled_rs_lengths;
    94   void         empty_list(HeapRegion* list);
    96 public:
    97   YoungList(G1CollectedHeap* g1h);
    99   void         push_region(HeapRegion* hr);
   100   void         add_survivor_region(HeapRegion* hr);
   102   void         empty_list();
   103   bool         is_empty() { return _length == 0; }
   104   size_t       length() { return _length; }
   105   size_t       survivor_length() { return _survivor_length; }
   107   // Currently we do not keep track of the used byte sum for the
   108   // young list and the survivors and it'd be quite a lot of work to
   109   // do so. When we'll eventually replace the young list with
   110   // instances of HeapRegionLinkedList we'll get that for free. So,
   111   // we'll report the more accurate information then.
   112   size_t       eden_used_bytes() {
   113     assert(length() >= survivor_length(), "invariant");
   114     return (length() - survivor_length()) * HeapRegion::GrainBytes;
   115   }
   116   size_t       survivor_used_bytes() {
   117     return survivor_length() * HeapRegion::GrainBytes;
   118   }
   120   void rs_length_sampling_init();
   121   bool rs_length_sampling_more();
   122   void rs_length_sampling_next();
   124   void reset_sampled_info() {
   125     _last_sampled_rs_lengths =   0;
   126   }
   127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   129   // for development purposes
   130   void reset_auxilary_lists();
   131   void clear() { _head = NULL; _length = 0; }
   133   void clear_survivors() {
   134     _survivor_head    = NULL;
   135     _survivor_tail    = NULL;
   136     _survivor_length  = 0;
   137   }
   139   HeapRegion* first_region() { return _head; }
   140   HeapRegion* first_survivor_region() { return _survivor_head; }
   141   HeapRegion* last_survivor_region() { return _survivor_tail; }
   143   // debugging
   144   bool          check_list_well_formed();
   145   bool          check_list_empty(bool check_sample = true);
   146   void          print();
   147 };
   149 class MutatorAllocRegion : public G1AllocRegion {
   150 protected:
   151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   153 public:
   154   MutatorAllocRegion()
   155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   156 };
   158 // The G1 STW is alive closure.
   159 // An instance is embedded into the G1CH and used as the
   160 // (optional) _is_alive_non_header closure in the STW
   161 // reference processor. It is also extensively used during
   162 // refence processing during STW evacuation pauses.
   163 class G1STWIsAliveClosure: public BoolObjectClosure {
   164   G1CollectedHeap* _g1;
   165 public:
   166   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
   167   void do_object(oop p) { assert(false, "Do not call."); }
   168   bool do_object_b(oop p);
   169 };
   171 class SurvivorGCAllocRegion : public G1AllocRegion {
   172 protected:
   173   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   174   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   175 public:
   176   SurvivorGCAllocRegion()
   177   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   178 };
   180 class OldGCAllocRegion : public G1AllocRegion {
   181 protected:
   182   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   183   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   184 public:
   185   OldGCAllocRegion()
   186   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   187 };
   189 class RefineCardTableEntryClosure;
   191 class G1CollectedHeap : public SharedHeap {
   192   friend class VM_G1CollectForAllocation;
   193   friend class VM_GenCollectForPermanentAllocation;
   194   friend class VM_G1CollectFull;
   195   friend class VM_G1IncCollectionPause;
   196   friend class VMStructs;
   197   friend class MutatorAllocRegion;
   198   friend class SurvivorGCAllocRegion;
   199   friend class OldGCAllocRegion;
   201   // Closures used in implementation.
   202   friend class G1ParCopyHelper;
   203   friend class G1IsAliveClosure;
   204   friend class G1EvacuateFollowersClosure;
   205   friend class G1ParScanThreadState;
   206   friend class G1ParScanClosureSuper;
   207   friend class G1ParEvacuateFollowersClosure;
   208   friend class G1ParTask;
   209   friend class G1FreeGarbageRegionClosure;
   210   friend class RefineCardTableEntryClosure;
   211   friend class G1PrepareCompactClosure;
   212   friend class RegionSorter;
   213   friend class RegionResetter;
   214   friend class CountRCClosure;
   215   friend class EvacPopObjClosure;
   216   friend class G1ParCleanupCTTask;
   218   // Other related classes.
   219   friend class G1MarkSweep;
   221 private:
   222   // The one and only G1CollectedHeap, so static functions can find it.
   223   static G1CollectedHeap* _g1h;
   225   static size_t _humongous_object_threshold_in_words;
   227   // Storage for the G1 heap (excludes the permanent generation).
   228   VirtualSpace _g1_storage;
   229   MemRegion    _g1_reserved;
   231   // The part of _g1_storage that is currently committed.
   232   MemRegion _g1_committed;
   234   // The master free list. It will satisfy all new region allocations.
   235   MasterFreeRegionList      _free_list;
   237   // The secondary free list which contains regions that have been
   238   // freed up during the cleanup process. This will be appended to the
   239   // master free list when appropriate.
   240   SecondaryFreeRegionList   _secondary_free_list;
   242   // It keeps track of the old regions.
   243   MasterOldRegionSet        _old_set;
   245   // It keeps track of the humongous regions.
   246   MasterHumongousRegionSet  _humongous_set;
   248   // The number of regions we could create by expansion.
   249   size_t _expansion_regions;
   251   // The block offset table for the G1 heap.
   252   G1BlockOffsetSharedArray* _bot_shared;
   254   // Tears down the region sets / lists so that they are empty and the
   255   // regions on the heap do not belong to a region set / list. The
   256   // only exception is the humongous set which we leave unaltered. If
   257   // free_list_only is true, it will only tear down the master free
   258   // list. It is called before a Full GC (free_list_only == false) or
   259   // before heap shrinking (free_list_only == true).
   260   void tear_down_region_sets(bool free_list_only);
   262   // Rebuilds the region sets / lists so that they are repopulated to
   263   // reflect the contents of the heap. The only exception is the
   264   // humongous set which was not torn down in the first place. If
   265   // free_list_only is true, it will only rebuild the master free
   266   // list. It is called after a Full GC (free_list_only == false) or
   267   // after heap shrinking (free_list_only == true).
   268   void rebuild_region_sets(bool free_list_only);
   270   // The sequence of all heap regions in the heap.
   271   HeapRegionSeq _hrs;
   273   // Alloc region used to satisfy mutator allocation requests.
   274   MutatorAllocRegion _mutator_alloc_region;
   276   // Alloc region used to satisfy allocation requests by the GC for
   277   // survivor objects.
   278   SurvivorGCAllocRegion _survivor_gc_alloc_region;
   280   // Alloc region used to satisfy allocation requests by the GC for
   281   // old objects.
   282   OldGCAllocRegion _old_gc_alloc_region;
   284   // The last old region we allocated to during the last GC.
   285   // Typically, it is not full so we should re-use it during the next GC.
   286   HeapRegion* _retained_old_gc_alloc_region;
   288   // It specifies whether we should attempt to expand the heap after a
   289   // region allocation failure. If heap expansion fails we set this to
   290   // false so that we don't re-attempt the heap expansion (it's likely
   291   // that subsequent expansion attempts will also fail if one fails).
   292   // Currently, it is only consulted during GC and it's reset at the
   293   // start of each GC.
   294   bool _expand_heap_after_alloc_failure;
   296   // It resets the mutator alloc region before new allocations can take place.
   297   void init_mutator_alloc_region();
   299   // It releases the mutator alloc region.
   300   void release_mutator_alloc_region();
   302   // It initializes the GC alloc regions at the start of a GC.
   303   void init_gc_alloc_regions();
   305   // It releases the GC alloc regions at the end of a GC.
   306   void release_gc_alloc_regions();
   308   // It does any cleanup that needs to be done on the GC alloc regions
   309   // before a Full GC.
   310   void abandon_gc_alloc_regions();
   312   // Helper for monitoring and management support.
   313   G1MonitoringSupport* _g1mm;
   315   // Determines PLAB size for a particular allocation purpose.
   316   static size_t desired_plab_sz(GCAllocPurpose purpose);
   318   // Outside of GC pauses, the number of bytes used in all regions other
   319   // than the current allocation region.
   320   size_t _summary_bytes_used;
   322   // This is used for a quick test on whether a reference points into
   323   // the collection set or not. Basically, we have an array, with one
   324   // byte per region, and that byte denotes whether the corresponding
   325   // region is in the collection set or not. The entry corresponding
   326   // the bottom of the heap, i.e., region 0, is pointed to by
   327   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   328   // biased so that it actually points to address 0 of the address
   329   // space, to make the test as fast as possible (we can simply shift
   330   // the address to address into it, instead of having to subtract the
   331   // bottom of the heap from the address before shifting it; basically
   332   // it works in the same way the card table works).
   333   bool* _in_cset_fast_test;
   335   // The allocated array used for the fast test on whether a reference
   336   // points into the collection set or not. This field is also used to
   337   // free the array.
   338   bool* _in_cset_fast_test_base;
   340   // The length of the _in_cset_fast_test_base array.
   341   size_t _in_cset_fast_test_length;
   343   volatile unsigned _gc_time_stamp;
   345   size_t* _surviving_young_words;
   347   G1HRPrinter _hr_printer;
   349   void setup_surviving_young_words();
   350   void update_surviving_young_words(size_t* surv_young_words);
   351   void cleanup_surviving_young_words();
   353   // It decides whether an explicit GC should start a concurrent cycle
   354   // instead of doing a STW GC. Currently, a concurrent cycle is
   355   // explicitly started if:
   356   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   357   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   358   // (c) cause == _g1_humongous_allocation
   359   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   361   // Keeps track of how many "full collections" (i.e., Full GCs or
   362   // concurrent cycles) we have completed. The number of them we have
   363   // started is maintained in _total_full_collections in CollectedHeap.
   364   volatile unsigned int _full_collections_completed;
   366   // This is a non-product method that is helpful for testing. It is
   367   // called at the end of a GC and artificially expands the heap by
   368   // allocating a number of dead regions. This way we can induce very
   369   // frequent marking cycles and stress the cleanup / concurrent
   370   // cleanup code more (as all the regions that will be allocated by
   371   // this method will be found dead by the marking cycle).
   372   void allocate_dummy_regions() PRODUCT_RETURN;
   374   // These are macros so that, if the assert fires, we get the correct
   375   // line number, file, etc.
   377 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   378   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   379           (_extra_message_),                                                  \
   380           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   381           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   382           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   384 #define assert_heap_locked()                                                  \
   385   do {                                                                        \
   386     assert(Heap_lock->owned_by_self(),                                        \
   387            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   388   } while (0)
   390 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   391   do {                                                                        \
   392     assert(Heap_lock->owned_by_self() ||                                      \
   393            (SafepointSynchronize::is_at_safepoint() &&                        \
   394              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   395            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   396                                         "should be at a safepoint"));         \
   397   } while (0)
   399 #define assert_heap_locked_and_not_at_safepoint()                             \
   400   do {                                                                        \
   401     assert(Heap_lock->owned_by_self() &&                                      \
   402                                     !SafepointSynchronize::is_at_safepoint(), \
   403           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   404                                        "should not be at a safepoint"));      \
   405   } while (0)
   407 #define assert_heap_not_locked()                                              \
   408   do {                                                                        \
   409     assert(!Heap_lock->owned_by_self(),                                       \
   410         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   411   } while (0)
   413 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   414   do {                                                                        \
   415     assert(!Heap_lock->owned_by_self() &&                                     \
   416                                     !SafepointSynchronize::is_at_safepoint(), \
   417       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   418                                    "should not be at a safepoint"));          \
   419   } while (0)
   421 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   422   do {                                                                        \
   423     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   424               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   425            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   426   } while (0)
   428 #define assert_not_at_safepoint()                                             \
   429   do {                                                                        \
   430     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   431            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   432   } while (0)
   434 protected:
   436   // The young region list.
   437   YoungList*  _young_list;
   439   // The current policy object for the collector.
   440   G1CollectorPolicy* _g1_policy;
   442   // This is the second level of trying to allocate a new region. If
   443   // new_region() didn't find a region on the free_list, this call will
   444   // check whether there's anything available on the
   445   // secondary_free_list and/or wait for more regions to appear on
   446   // that list, if _free_regions_coming is set.
   447   HeapRegion* new_region_try_secondary_free_list();
   449   // Try to allocate a single non-humongous HeapRegion sufficient for
   450   // an allocation of the given word_size. If do_expand is true,
   451   // attempt to expand the heap if necessary to satisfy the allocation
   452   // request.
   453   HeapRegion* new_region(size_t word_size, bool do_expand);
   455   // Attempt to satisfy a humongous allocation request of the given
   456   // size by finding a contiguous set of free regions of num_regions
   457   // length and remove them from the master free list. Return the
   458   // index of the first region or G1_NULL_HRS_INDEX if the search
   459   // was unsuccessful.
   460   size_t humongous_obj_allocate_find_first(size_t num_regions,
   461                                            size_t word_size);
   463   // Initialize a contiguous set of free regions of length num_regions
   464   // and starting at index first so that they appear as a single
   465   // humongous region.
   466   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
   467                                                       size_t num_regions,
   468                                                       size_t word_size);
   470   // Attempt to allocate a humongous object of the given size. Return
   471   // NULL if unsuccessful.
   472   HeapWord* humongous_obj_allocate(size_t word_size);
   474   // The following two methods, allocate_new_tlab() and
   475   // mem_allocate(), are the two main entry points from the runtime
   476   // into the G1's allocation routines. They have the following
   477   // assumptions:
   478   //
   479   // * They should both be called outside safepoints.
   480   //
   481   // * They should both be called without holding the Heap_lock.
   482   //
   483   // * All allocation requests for new TLABs should go to
   484   //   allocate_new_tlab().
   485   //
   486   // * All non-TLAB allocation requests should go to mem_allocate().
   487   //
   488   // * If either call cannot satisfy the allocation request using the
   489   //   current allocating region, they will try to get a new one. If
   490   //   this fails, they will attempt to do an evacuation pause and
   491   //   retry the allocation.
   492   //
   493   // * If all allocation attempts fail, even after trying to schedule
   494   //   an evacuation pause, allocate_new_tlab() will return NULL,
   495   //   whereas mem_allocate() will attempt a heap expansion and/or
   496   //   schedule a Full GC.
   497   //
   498   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   499   //   should never be called with word_size being humongous. All
   500   //   humongous allocation requests should go to mem_allocate() which
   501   //   will satisfy them with a special path.
   503   virtual HeapWord* allocate_new_tlab(size_t word_size);
   505   virtual HeapWord* mem_allocate(size_t word_size,
   506                                  bool*  gc_overhead_limit_was_exceeded);
   508   // The following three methods take a gc_count_before_ret
   509   // parameter which is used to return the GC count if the method
   510   // returns NULL. Given that we are required to read the GC count
   511   // while holding the Heap_lock, and these paths will take the
   512   // Heap_lock at some point, it's easier to get them to read the GC
   513   // count while holding the Heap_lock before they return NULL instead
   514   // of the caller (namely: mem_allocate()) having to also take the
   515   // Heap_lock just to read the GC count.
   517   // First-level mutator allocation attempt: try to allocate out of
   518   // the mutator alloc region without taking the Heap_lock. This
   519   // should only be used for non-humongous allocations.
   520   inline HeapWord* attempt_allocation(size_t word_size,
   521                                       unsigned int* gc_count_before_ret);
   523   // Second-level mutator allocation attempt: take the Heap_lock and
   524   // retry the allocation attempt, potentially scheduling a GC
   525   // pause. This should only be used for non-humongous allocations.
   526   HeapWord* attempt_allocation_slow(size_t word_size,
   527                                     unsigned int* gc_count_before_ret);
   529   // Takes the Heap_lock and attempts a humongous allocation. It can
   530   // potentially schedule a GC pause.
   531   HeapWord* attempt_allocation_humongous(size_t word_size,
   532                                          unsigned int* gc_count_before_ret);
   534   // Allocation attempt that should be called during safepoints (e.g.,
   535   // at the end of a successful GC). expect_null_mutator_alloc_region
   536   // specifies whether the mutator alloc region is expected to be NULL
   537   // or not.
   538   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   539                                        bool expect_null_mutator_alloc_region);
   541   // It dirties the cards that cover the block so that so that the post
   542   // write barrier never queues anything when updating objects on this
   543   // block. It is assumed (and in fact we assert) that the block
   544   // belongs to a young region.
   545   inline void dirty_young_block(HeapWord* start, size_t word_size);
   547   // Allocate blocks during garbage collection. Will ensure an
   548   // allocation region, either by picking one or expanding the
   549   // heap, and then allocate a block of the given size. The block
   550   // may not be a humongous - it must fit into a single heap region.
   551   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   553   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   554                                     HeapRegion*    alloc_region,
   555                                     bool           par,
   556                                     size_t         word_size);
   558   // Ensure that no further allocations can happen in "r", bearing in mind
   559   // that parallel threads might be attempting allocations.
   560   void par_allocate_remaining_space(HeapRegion* r);
   562   // Allocation attempt during GC for a survivor object / PLAB.
   563   inline HeapWord* survivor_attempt_allocation(size_t word_size);
   565   // Allocation attempt during GC for an old object / PLAB.
   566   inline HeapWord* old_attempt_allocation(size_t word_size);
   568   // These methods are the "callbacks" from the G1AllocRegion class.
   570   // For mutator alloc regions.
   571   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   572   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   573                                    size_t allocated_bytes);
   575   // For GC alloc regions.
   576   HeapRegion* new_gc_alloc_region(size_t word_size, size_t count,
   577                                   GCAllocPurpose ap);
   578   void retire_gc_alloc_region(HeapRegion* alloc_region,
   579                               size_t allocated_bytes, GCAllocPurpose ap);
   581   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   582   //   inspection request and should collect the entire heap
   583   // - if clear_all_soft_refs is true, all soft references should be
   584   //   cleared during the GC
   585   // - if explicit_gc is false, word_size describes the allocation that
   586   //   the GC should attempt (at least) to satisfy
   587   // - it returns false if it is unable to do the collection due to the
   588   //   GC locker being active, true otherwise
   589   bool do_collection(bool explicit_gc,
   590                      bool clear_all_soft_refs,
   591                      size_t word_size);
   593   // Callback from VM_G1CollectFull operation.
   594   // Perform a full collection.
   595   void do_full_collection(bool clear_all_soft_refs);
   597   // Resize the heap if necessary after a full collection.  If this is
   598   // after a collect-for allocation, "word_size" is the allocation size,
   599   // and will be considered part of the used portion of the heap.
   600   void resize_if_necessary_after_full_collection(size_t word_size);
   602   // Callback from VM_G1CollectForAllocation operation.
   603   // This function does everything necessary/possible to satisfy a
   604   // failed allocation request (including collection, expansion, etc.)
   605   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   607   // Attempting to expand the heap sufficiently
   608   // to support an allocation of the given "word_size".  If
   609   // successful, perform the allocation and return the address of the
   610   // allocated block, or else "NULL".
   611   HeapWord* expand_and_allocate(size_t word_size);
   613   // Process any reference objects discovered during
   614   // an incremental evacuation pause.
   615   void process_discovered_references();
   617   // Enqueue any remaining discovered references
   618   // after processing.
   619   void enqueue_discovered_references();
   621 public:
   623   G1MonitoringSupport* g1mm() {
   624     assert(_g1mm != NULL, "should have been initialized");
   625     return _g1mm;
   626   }
   628   // Expand the garbage-first heap by at least the given size (in bytes!).
   629   // Returns true if the heap was expanded by the requested amount;
   630   // false otherwise.
   631   // (Rounds up to a HeapRegion boundary.)
   632   bool expand(size_t expand_bytes);
   634   // Do anything common to GC's.
   635   virtual void gc_prologue(bool full);
   636   virtual void gc_epilogue(bool full);
   638   // We register a region with the fast "in collection set" test. We
   639   // simply set to true the array slot corresponding to this region.
   640   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   641     assert(_in_cset_fast_test_base != NULL, "sanity");
   642     assert(r->in_collection_set(), "invariant");
   643     size_t index = r->hrs_index();
   644     assert(index < _in_cset_fast_test_length, "invariant");
   645     assert(!_in_cset_fast_test_base[index], "invariant");
   646     _in_cset_fast_test_base[index] = true;
   647   }
   649   // This is a fast test on whether a reference points into the
   650   // collection set or not. It does not assume that the reference
   651   // points into the heap; if it doesn't, it will return false.
   652   bool in_cset_fast_test(oop obj) {
   653     assert(_in_cset_fast_test != NULL, "sanity");
   654     if (_g1_committed.contains((HeapWord*) obj)) {
   655       // no need to subtract the bottom of the heap from obj,
   656       // _in_cset_fast_test is biased
   657       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   658       bool ret = _in_cset_fast_test[index];
   659       // let's make sure the result is consistent with what the slower
   660       // test returns
   661       assert( ret || !obj_in_cs(obj), "sanity");
   662       assert(!ret ||  obj_in_cs(obj), "sanity");
   663       return ret;
   664     } else {
   665       return false;
   666     }
   667   }
   669   void clear_cset_fast_test() {
   670     assert(_in_cset_fast_test_base != NULL, "sanity");
   671     memset(_in_cset_fast_test_base, false,
   672         _in_cset_fast_test_length * sizeof(bool));
   673   }
   675   // This is called at the end of either a concurrent cycle or a Full
   676   // GC to update the number of full collections completed. Those two
   677   // can happen in a nested fashion, i.e., we start a concurrent
   678   // cycle, a Full GC happens half-way through it which ends first,
   679   // and then the cycle notices that a Full GC happened and ends
   680   // too. The concurrent parameter is a boolean to help us do a bit
   681   // tighter consistency checking in the method. If concurrent is
   682   // false, the caller is the inner caller in the nesting (i.e., the
   683   // Full GC). If concurrent is true, the caller is the outer caller
   684   // in this nesting (i.e., the concurrent cycle). Further nesting is
   685   // not currently supported. The end of the this call also notifies
   686   // the FullGCCount_lock in case a Java thread is waiting for a full
   687   // GC to happen (e.g., it called System.gc() with
   688   // +ExplicitGCInvokesConcurrent).
   689   void increment_full_collections_completed(bool concurrent);
   691   unsigned int full_collections_completed() {
   692     return _full_collections_completed;
   693   }
   695   G1HRPrinter* hr_printer() { return &_hr_printer; }
   697 protected:
   699   // Shrink the garbage-first heap by at most the given size (in bytes!).
   700   // (Rounds down to a HeapRegion boundary.)
   701   virtual void shrink(size_t expand_bytes);
   702   void shrink_helper(size_t expand_bytes);
   704   #if TASKQUEUE_STATS
   705   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   706   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   707   void reset_taskqueue_stats();
   708   #endif // TASKQUEUE_STATS
   710   // Schedule the VM operation that will do an evacuation pause to
   711   // satisfy an allocation request of word_size. *succeeded will
   712   // return whether the VM operation was successful (it did do an
   713   // evacuation pause) or not (another thread beat us to it or the GC
   714   // locker was active). Given that we should not be holding the
   715   // Heap_lock when we enter this method, we will pass the
   716   // gc_count_before (i.e., total_collections()) as a parameter since
   717   // it has to be read while holding the Heap_lock. Currently, both
   718   // methods that call do_collection_pause() release the Heap_lock
   719   // before the call, so it's easy to read gc_count_before just before.
   720   HeapWord* do_collection_pause(size_t       word_size,
   721                                 unsigned int gc_count_before,
   722                                 bool*        succeeded);
   724   // The guts of the incremental collection pause, executed by the vm
   725   // thread. It returns false if it is unable to do the collection due
   726   // to the GC locker being active, true otherwise
   727   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   729   // Actually do the work of evacuating the collection set.
   730   void evacuate_collection_set();
   732   // The g1 remembered set of the heap.
   733   G1RemSet* _g1_rem_set;
   734   // And it's mod ref barrier set, used to track updates for the above.
   735   ModRefBarrierSet* _mr_bs;
   737   // A set of cards that cover the objects for which the Rsets should be updated
   738   // concurrently after the collection.
   739   DirtyCardQueueSet _dirty_card_queue_set;
   741   // The Heap Region Rem Set Iterator.
   742   HeapRegionRemSetIterator** _rem_set_iterator;
   744   // The closure used to refine a single card.
   745   RefineCardTableEntryClosure* _refine_cte_cl;
   747   // A function to check the consistency of dirty card logs.
   748   void check_ct_logs_at_safepoint();
   750   // A DirtyCardQueueSet that is used to hold cards that contain
   751   // references into the current collection set. This is used to
   752   // update the remembered sets of the regions in the collection
   753   // set in the event of an evacuation failure.
   754   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   756   // After a collection pause, make the regions in the CS into free
   757   // regions.
   758   void free_collection_set(HeapRegion* cs_head);
   760   // Abandon the current collection set without recording policy
   761   // statistics or updating free lists.
   762   void abandon_collection_set(HeapRegion* cs_head);
   764   // Applies "scan_non_heap_roots" to roots outside the heap,
   765   // "scan_rs" to roots inside the heap (having done "set_region" to
   766   // indicate the region in which the root resides), and does "scan_perm"
   767   // (setting the generation to the perm generation.)  If "scan_rs" is
   768   // NULL, then this step is skipped.  The "worker_i"
   769   // param is for use with parallel roots processing, and should be
   770   // the "i" of the calling parallel worker thread's work(i) function.
   771   // In the sequential case this param will be ignored.
   772   void g1_process_strong_roots(bool collecting_perm_gen,
   773                                SharedHeap::ScanningOption so,
   774                                OopClosure* scan_non_heap_roots,
   775                                OopsInHeapRegionClosure* scan_rs,
   776                                OopsInGenClosure* scan_perm,
   777                                int worker_i);
   779   // Apply "blk" to all the weak roots of the system.  These include
   780   // JNI weak roots, the code cache, system dictionary, symbol table,
   781   // string table, and referents of reachable weak refs.
   782   void g1_process_weak_roots(OopClosure* root_closure,
   783                              OopClosure* non_root_closure);
   785   // Frees a non-humongous region by initializing its contents and
   786   // adding it to the free list that's passed as a parameter (this is
   787   // usually a local list which will be appended to the master free
   788   // list later). The used bytes of freed regions are accumulated in
   789   // pre_used. If par is true, the region's RSet will not be freed
   790   // up. The assumption is that this will be done later.
   791   void free_region(HeapRegion* hr,
   792                    size_t* pre_used,
   793                    FreeRegionList* free_list,
   794                    bool par);
   796   // Frees a humongous region by collapsing it into individual regions
   797   // and calling free_region() for each of them. The freed regions
   798   // will be added to the free list that's passed as a parameter (this
   799   // is usually a local list which will be appended to the master free
   800   // list later). The used bytes of freed regions are accumulated in
   801   // pre_used. If par is true, the region's RSet will not be freed
   802   // up. The assumption is that this will be done later.
   803   void free_humongous_region(HeapRegion* hr,
   804                              size_t* pre_used,
   805                              FreeRegionList* free_list,
   806                              HumongousRegionSet* humongous_proxy_set,
   807                              bool par);
   809   // Notifies all the necessary spaces that the committed space has
   810   // been updated (either expanded or shrunk). It should be called
   811   // after _g1_storage is updated.
   812   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   814   // The concurrent marker (and the thread it runs in.)
   815   ConcurrentMark* _cm;
   816   ConcurrentMarkThread* _cmThread;
   817   bool _mark_in_progress;
   819   // The concurrent refiner.
   820   ConcurrentG1Refine* _cg1r;
   822   // The parallel task queues
   823   RefToScanQueueSet *_task_queues;
   825   // True iff a evacuation has failed in the current collection.
   826   bool _evacuation_failed;
   828   // Set the attribute indicating whether evacuation has failed in the
   829   // current collection.
   830   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   832   // Failed evacuations cause some logical from-space objects to have
   833   // forwarding pointers to themselves.  Reset them.
   834   void remove_self_forwarding_pointers();
   836   // When one is non-null, so is the other.  Together, they each pair is
   837   // an object with a preserved mark, and its mark value.
   838   GrowableArray<oop>*     _objs_with_preserved_marks;
   839   GrowableArray<markOop>* _preserved_marks_of_objs;
   841   // Preserve the mark of "obj", if necessary, in preparation for its mark
   842   // word being overwritten with a self-forwarding-pointer.
   843   void preserve_mark_if_necessary(oop obj, markOop m);
   845   // The stack of evac-failure objects left to be scanned.
   846   GrowableArray<oop>*    _evac_failure_scan_stack;
   847   // The closure to apply to evac-failure objects.
   849   OopsInHeapRegionClosure* _evac_failure_closure;
   850   // Set the field above.
   851   void
   852   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   853     _evac_failure_closure = evac_failure_closure;
   854   }
   856   // Push "obj" on the scan stack.
   857   void push_on_evac_failure_scan_stack(oop obj);
   858   // Process scan stack entries until the stack is empty.
   859   void drain_evac_failure_scan_stack();
   860   // True iff an invocation of "drain_scan_stack" is in progress; to
   861   // prevent unnecessary recursion.
   862   bool _drain_in_progress;
   864   // Do any necessary initialization for evacuation-failure handling.
   865   // "cl" is the closure that will be used to process evac-failure
   866   // objects.
   867   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   868   // Do any necessary cleanup for evacuation-failure handling data
   869   // structures.
   870   void finalize_for_evac_failure();
   872   // An attempt to evacuate "obj" has failed; take necessary steps.
   873   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   874   void handle_evacuation_failure_common(oop obj, markOop m);
   876   // ("Weak") Reference processing support.
   877   //
   878   // G1 has 2 instances of the referece processor class. One
   879   // (_ref_processor_cm) handles reference object discovery
   880   // and subsequent processing during concurrent marking cycles.
   881   //
   882   // The other (_ref_processor_stw) handles reference object
   883   // discovery and processing during full GCs and incremental
   884   // evacuation pauses.
   885   //
   886   // During an incremental pause, reference discovery will be
   887   // temporarily disabled for _ref_processor_cm and will be
   888   // enabled for _ref_processor_stw. At the end of the evacuation
   889   // pause references discovered by _ref_processor_stw will be
   890   // processed and discovery will be disabled. The previous
   891   // setting for reference object discovery for _ref_processor_cm
   892   // will be re-instated.
   893   //
   894   // At the start of marking:
   895   //  * Discovery by the CM ref processor is verified to be inactive
   896   //    and it's discovered lists are empty.
   897   //  * Discovery by the CM ref processor is then enabled.
   898   //
   899   // At the end of marking:
   900   //  * Any references on the CM ref processor's discovered
   901   //    lists are processed (possibly MT).
   902   //
   903   // At the start of full GC we:
   904   //  * Disable discovery by the CM ref processor and
   905   //    empty CM ref processor's discovered lists
   906   //    (without processing any entries).
   907   //  * Verify that the STW ref processor is inactive and it's
   908   //    discovered lists are empty.
   909   //  * Temporarily set STW ref processor discovery as single threaded.
   910   //  * Temporarily clear the STW ref processor's _is_alive_non_header
   911   //    field.
   912   //  * Finally enable discovery by the STW ref processor.
   913   //
   914   // The STW ref processor is used to record any discovered
   915   // references during the full GC.
   916   //
   917   // At the end of a full GC we:
   918   //  * Enqueue any reference objects discovered by the STW ref processor
   919   //    that have non-live referents. This has the side-effect of
   920   //    making the STW ref processor inactive by disabling discovery.
   921   //  * Verify that the CM ref processor is still inactive
   922   //    and no references have been placed on it's discovered
   923   //    lists (also checked as a precondition during initial marking).
   925   // The (stw) reference processor...
   926   ReferenceProcessor* _ref_processor_stw;
   928   // During reference object discovery, the _is_alive_non_header
   929   // closure (if non-null) is applied to the referent object to
   930   // determine whether the referent is live. If so then the
   931   // reference object does not need to be 'discovered' and can
   932   // be treated as a regular oop. This has the benefit of reducing
   933   // the number of 'discovered' reference objects that need to
   934   // be processed.
   935   //
   936   // Instance of the is_alive closure for embedding into the
   937   // STW reference processor as the _is_alive_non_header field.
   938   // Supplying a value for the _is_alive_non_header field is
   939   // optional but doing so prevents unnecessary additions to
   940   // the discovered lists during reference discovery.
   941   G1STWIsAliveClosure _is_alive_closure_stw;
   943   // The (concurrent marking) reference processor...
   944   ReferenceProcessor* _ref_processor_cm;
   946   // Instance of the concurrent mark is_alive closure for embedding
   947   // into the Concurrent Marking reference processor as the
   948   // _is_alive_non_header field. Supplying a value for the
   949   // _is_alive_non_header field is optional but doing so prevents
   950   // unnecessary additions to the discovered lists during reference
   951   // discovery.
   952   G1CMIsAliveClosure _is_alive_closure_cm;
   954   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
   955   HeapRegion** _worker_cset_start_region;
   957   // Time stamp to validate the regions recorded in the cache
   958   // used by G1CollectedHeap::start_cset_region_for_worker().
   959   // The heap region entry for a given worker is valid iff
   960   // the associated time stamp value matches the current value
   961   // of G1CollectedHeap::_gc_time_stamp.
   962   unsigned int* _worker_cset_start_region_time_stamp;
   964   enum G1H_process_strong_roots_tasks {
   965     G1H_PS_filter_satb_buffers,
   966     G1H_PS_refProcessor_oops_do,
   967     // Leave this one last.
   968     G1H_PS_NumElements
   969   };
   971   SubTasksDone* _process_strong_tasks;
   973   volatile bool _free_regions_coming;
   975 public:
   977   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
   979   void set_refine_cte_cl_concurrency(bool concurrent);
   981   RefToScanQueue *task_queue(int i) const;
   983   // A set of cards where updates happened during the GC
   984   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   986   // A DirtyCardQueueSet that is used to hold cards that contain
   987   // references into the current collection set. This is used to
   988   // update the remembered sets of the regions in the collection
   989   // set in the event of an evacuation failure.
   990   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
   991         { return _into_cset_dirty_card_queue_set; }
   993   // Create a G1CollectedHeap with the specified policy.
   994   // Must call the initialize method afterwards.
   995   // May not return if something goes wrong.
   996   G1CollectedHeap(G1CollectorPolicy* policy);
   998   // Initialize the G1CollectedHeap to have the initial and
   999   // maximum sizes, permanent generation, and remembered and barrier sets
  1000   // specified by the policy object.
  1001   jint initialize();
  1003   // Initialize weak reference processing.
  1004   virtual void ref_processing_init();
  1006   void set_par_threads(uint t) {
  1007     SharedHeap::set_par_threads(t);
  1008     // Done in SharedHeap but oddly there are
  1009     // two _process_strong_tasks's in a G1CollectedHeap
  1010     // so do it here too.
  1011     _process_strong_tasks->set_n_threads(t);
  1014   // Set _n_par_threads according to a policy TBD.
  1015   void set_par_threads();
  1017   void set_n_termination(int t) {
  1018     _process_strong_tasks->set_n_threads(t);
  1021   virtual CollectedHeap::Name kind() const {
  1022     return CollectedHeap::G1CollectedHeap;
  1025   // The current policy object for the collector.
  1026   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
  1028   // Adaptive size policy.  No such thing for g1.
  1029   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
  1031   // The rem set and barrier set.
  1032   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  1033   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
  1035   // The rem set iterator.
  1036   HeapRegionRemSetIterator* rem_set_iterator(int i) {
  1037     return _rem_set_iterator[i];
  1040   HeapRegionRemSetIterator* rem_set_iterator() {
  1041     return _rem_set_iterator[0];
  1044   unsigned get_gc_time_stamp() {
  1045     return _gc_time_stamp;
  1048   void reset_gc_time_stamp() {
  1049     _gc_time_stamp = 0;
  1050     OrderAccess::fence();
  1051     // Clear the cached CSet starting regions and time stamps.
  1052     // Their validity is dependent on the GC timestamp.
  1053     clear_cset_start_regions();
  1056   void increment_gc_time_stamp() {
  1057     ++_gc_time_stamp;
  1058     OrderAccess::fence();
  1061   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1062                                   DirtyCardQueue* into_cset_dcq,
  1063                                   bool concurrent, int worker_i);
  1065   // The shared block offset table array.
  1066   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
  1068   // Reference Processing accessors
  1070   // The STW reference processor....
  1071   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
  1073   // The Concurent Marking reference processor...
  1074   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
  1076   virtual size_t capacity() const;
  1077   virtual size_t used() const;
  1078   // This should be called when we're not holding the heap lock. The
  1079   // result might be a bit inaccurate.
  1080   size_t used_unlocked() const;
  1081   size_t recalculate_used() const;
  1083   // These virtual functions do the actual allocation.
  1084   // Some heaps may offer a contiguous region for shared non-blocking
  1085   // allocation, via inlined code (by exporting the address of the top and
  1086   // end fields defining the extent of the contiguous allocation region.)
  1087   // But G1CollectedHeap doesn't yet support this.
  1089   // Return an estimate of the maximum allocation that could be performed
  1090   // without triggering any collection or expansion activity.  In a
  1091   // generational collector, for example, this is probably the largest
  1092   // allocation that could be supported (without expansion) in the youngest
  1093   // generation.  It is "unsafe" because no locks are taken; the result
  1094   // should be treated as an approximation, not a guarantee, for use in
  1095   // heuristic resizing decisions.
  1096   virtual size_t unsafe_max_alloc();
  1098   virtual bool is_maximal_no_gc() const {
  1099     return _g1_storage.uncommitted_size() == 0;
  1102   // The total number of regions in the heap.
  1103   size_t n_regions() { return _hrs.length(); }
  1105   // The max number of regions in the heap.
  1106   size_t max_regions() { return _hrs.max_length(); }
  1108   // The number of regions that are completely free.
  1109   size_t free_regions() { return _free_list.length(); }
  1111   // The number of regions that are not completely free.
  1112   size_t used_regions() { return n_regions() - free_regions(); }
  1114   // The number of regions available for "regular" expansion.
  1115   size_t expansion_regions() { return _expansion_regions; }
  1117   // Factory method for HeapRegion instances. It will return NULL if
  1118   // the allocation fails.
  1119   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
  1121   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1122   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1123   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  1124   void verify_dirty_young_regions() PRODUCT_RETURN;
  1126   // verify_region_sets() performs verification over the region
  1127   // lists. It will be compiled in the product code to be used when
  1128   // necessary (i.e., during heap verification).
  1129   void verify_region_sets();
  1131   // verify_region_sets_optional() is planted in the code for
  1132   // list verification in non-product builds (and it can be enabled in
  1133   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1134 #if HEAP_REGION_SET_FORCE_VERIFY
  1135   void verify_region_sets_optional() {
  1136     verify_region_sets();
  1138 #else // HEAP_REGION_SET_FORCE_VERIFY
  1139   void verify_region_sets_optional() { }
  1140 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1142 #ifdef ASSERT
  1143   bool is_on_master_free_list(HeapRegion* hr) {
  1144     return hr->containing_set() == &_free_list;
  1147   bool is_in_humongous_set(HeapRegion* hr) {
  1148     return hr->containing_set() == &_humongous_set;
  1150 #endif // ASSERT
  1152   // Wrapper for the region list operations that can be called from
  1153   // methods outside this class.
  1155   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1156     _secondary_free_list.add_as_tail(list);
  1159   void append_secondary_free_list() {
  1160     _free_list.add_as_head(&_secondary_free_list);
  1163   void append_secondary_free_list_if_not_empty_with_lock() {
  1164     // If the secondary free list looks empty there's no reason to
  1165     // take the lock and then try to append it.
  1166     if (!_secondary_free_list.is_empty()) {
  1167       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1168       append_secondary_free_list();
  1172   void old_set_remove(HeapRegion* hr) {
  1173     _old_set.remove(hr);
  1176   size_t non_young_capacity_bytes() {
  1177     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  1180   void set_free_regions_coming();
  1181   void reset_free_regions_coming();
  1182   bool free_regions_coming() { return _free_regions_coming; }
  1183   void wait_while_free_regions_coming();
  1185   // Perform a collection of the heap; intended for use in implementing
  1186   // "System.gc".  This probably implies as full a collection as the
  1187   // "CollectedHeap" supports.
  1188   virtual void collect(GCCause::Cause cause);
  1190   // The same as above but assume that the caller holds the Heap_lock.
  1191   void collect_locked(GCCause::Cause cause);
  1193   // This interface assumes that it's being called by the
  1194   // vm thread. It collects the heap assuming that the
  1195   // heap lock is already held and that we are executing in
  1196   // the context of the vm thread.
  1197   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1199   // True iff a evacuation has failed in the most-recent collection.
  1200   bool evacuation_failed() { return _evacuation_failed; }
  1202   // It will free a region if it has allocated objects in it that are
  1203   // all dead. It calls either free_region() or
  1204   // free_humongous_region() depending on the type of the region that
  1205   // is passed to it.
  1206   void free_region_if_empty(HeapRegion* hr,
  1207                             size_t* pre_used,
  1208                             FreeRegionList* free_list,
  1209                             OldRegionSet* old_proxy_set,
  1210                             HumongousRegionSet* humongous_proxy_set,
  1211                             HRRSCleanupTask* hrrs_cleanup_task,
  1212                             bool par);
  1214   // It appends the free list to the master free list and updates the
  1215   // master humongous list according to the contents of the proxy
  1216   // list. It also adjusts the total used bytes according to pre_used
  1217   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1218   void update_sets_after_freeing_regions(size_t pre_used,
  1219                                        FreeRegionList* free_list,
  1220                                        OldRegionSet* old_proxy_set,
  1221                                        HumongousRegionSet* humongous_proxy_set,
  1222                                        bool par);
  1224   // Returns "TRUE" iff "p" points into the committed areas of the heap.
  1225   virtual bool is_in(const void* p) const;
  1227   // Return "TRUE" iff the given object address is within the collection
  1228   // set.
  1229   inline bool obj_in_cs(oop obj);
  1231   // Return "TRUE" iff the given object address is in the reserved
  1232   // region of g1 (excluding the permanent generation).
  1233   bool is_in_g1_reserved(const void* p) const {
  1234     return _g1_reserved.contains(p);
  1237   // Returns a MemRegion that corresponds to the space that has been
  1238   // reserved for the heap
  1239   MemRegion g1_reserved() {
  1240     return _g1_reserved;
  1243   // Returns a MemRegion that corresponds to the space that has been
  1244   // committed in the heap
  1245   MemRegion g1_committed() {
  1246     return _g1_committed;
  1249   virtual bool is_in_closed_subset(const void* p) const;
  1251   // This resets the card table to all zeros.  It is used after
  1252   // a collection pause which used the card table to claim cards.
  1253   void cleanUpCardTable();
  1255   // Iteration functions.
  1257   // Iterate over all the ref-containing fields of all objects, calling
  1258   // "cl.do_oop" on each.
  1259   virtual void oop_iterate(OopClosure* cl) {
  1260     oop_iterate(cl, true);
  1262   void oop_iterate(OopClosure* cl, bool do_perm);
  1264   // Same as above, restricted to a memory region.
  1265   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1266     oop_iterate(mr, cl, true);
  1268   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1270   // Iterate over all objects, calling "cl.do_object" on each.
  1271   virtual void object_iterate(ObjectClosure* cl) {
  1272     object_iterate(cl, true);
  1274   virtual void safe_object_iterate(ObjectClosure* cl) {
  1275     object_iterate(cl, true);
  1277   void object_iterate(ObjectClosure* cl, bool do_perm);
  1279   // Iterate over all objects allocated since the last collection, calling
  1280   // "cl.do_object" on each.  The heap must have been initialized properly
  1281   // to support this function, or else this call will fail.
  1282   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1284   // Iterate over all spaces in use in the heap, in ascending address order.
  1285   virtual void space_iterate(SpaceClosure* cl);
  1287   // Iterate over heap regions, in address order, terminating the
  1288   // iteration early if the "doHeapRegion" method returns "true".
  1289   void heap_region_iterate(HeapRegionClosure* blk) const;
  1291   // Iterate over heap regions starting with r (or the first region if "r"
  1292   // is NULL), in address order, terminating early if the "doHeapRegion"
  1293   // method returns "true".
  1294   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
  1296   // Return the region with the given index. It assumes the index is valid.
  1297   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
  1299   // Divide the heap region sequence into "chunks" of some size (the number
  1300   // of regions divided by the number of parallel threads times some
  1301   // overpartition factor, currently 4).  Assumes that this will be called
  1302   // in parallel by ParallelGCThreads worker threads with discinct worker
  1303   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1304   // calls will use the same "claim_value", and that that claim value is
  1305   // different from the claim_value of any heap region before the start of
  1306   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1307   // attempting to claim the first region in each chunk, and, if
  1308   // successful, applying the closure to each region in the chunk (and
  1309   // setting the claim value of the second and subsequent regions of the
  1310   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1311   // i.e., that a closure never attempt to abort a traversal.
  1312   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1313                                        uint worker,
  1314                                        uint no_of_par_workers,
  1315                                        jint claim_value);
  1317   // It resets all the region claim values to the default.
  1318   void reset_heap_region_claim_values();
  1320   // Resets the claim values of regions in the current
  1321   // collection set to the default.
  1322   void reset_cset_heap_region_claim_values();
  1324 #ifdef ASSERT
  1325   bool check_heap_region_claim_values(jint claim_value);
  1327   // Same as the routine above but only checks regions in the
  1328   // current collection set.
  1329   bool check_cset_heap_region_claim_values(jint claim_value);
  1330 #endif // ASSERT
  1332   // Clear the cached cset start regions and (more importantly)
  1333   // the time stamps. Called when we reset the GC time stamp.
  1334   void clear_cset_start_regions();
  1336   // Given the id of a worker, obtain or calculate a suitable
  1337   // starting region for iterating over the current collection set.
  1338   HeapRegion* start_cset_region_for_worker(int worker_i);
  1340   // Iterate over the regions (if any) in the current collection set.
  1341   void collection_set_iterate(HeapRegionClosure* blk);
  1343   // As above but starting from region r
  1344   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1346   // Returns the first (lowest address) compactible space in the heap.
  1347   virtual CompactibleSpace* first_compactible_space();
  1349   // A CollectedHeap will contain some number of spaces.  This finds the
  1350   // space containing a given address, or else returns NULL.
  1351   virtual Space* space_containing(const void* addr) const;
  1353   // A G1CollectedHeap will contain some number of heap regions.  This
  1354   // finds the region containing a given address, or else returns NULL.
  1355   template <class T>
  1356   inline HeapRegion* heap_region_containing(const T addr) const;
  1358   // Like the above, but requires "addr" to be in the heap (to avoid a
  1359   // null-check), and unlike the above, may return an continuing humongous
  1360   // region.
  1361   template <class T>
  1362   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1364   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1365   // each address in the (reserved) heap is a member of exactly
  1366   // one block.  The defining characteristic of a block is that it is
  1367   // possible to find its size, and thus to progress forward to the next
  1368   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1369   // represent Java objects, or they might be free blocks in a
  1370   // free-list-based heap (or subheap), as long as the two kinds are
  1371   // distinguishable and the size of each is determinable.
  1373   // Returns the address of the start of the "block" that contains the
  1374   // address "addr".  We say "blocks" instead of "object" since some heaps
  1375   // may not pack objects densely; a chunk may either be an object or a
  1376   // non-object.
  1377   virtual HeapWord* block_start(const void* addr) const;
  1379   // Requires "addr" to be the start of a chunk, and returns its size.
  1380   // "addr + size" is required to be the start of a new chunk, or the end
  1381   // of the active area of the heap.
  1382   virtual size_t block_size(const HeapWord* addr) const;
  1384   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1385   // the block is an object.
  1386   virtual bool block_is_obj(const HeapWord* addr) const;
  1388   // Does this heap support heap inspection? (+PrintClassHistogram)
  1389   virtual bool supports_heap_inspection() const { return true; }
  1391   // Section on thread-local allocation buffers (TLABs)
  1392   // See CollectedHeap for semantics.
  1394   virtual bool supports_tlab_allocation() const;
  1395   virtual size_t tlab_capacity(Thread* thr) const;
  1396   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1398   // Can a compiler initialize a new object without store barriers?
  1399   // This permission only extends from the creation of a new object
  1400   // via a TLAB up to the first subsequent safepoint. If such permission
  1401   // is granted for this heap type, the compiler promises to call
  1402   // defer_store_barrier() below on any slow path allocation of
  1403   // a new object for which such initializing store barriers will
  1404   // have been elided. G1, like CMS, allows this, but should be
  1405   // ready to provide a compensating write barrier as necessary
  1406   // if that storage came out of a non-young region. The efficiency
  1407   // of this implementation depends crucially on being able to
  1408   // answer very efficiently in constant time whether a piece of
  1409   // storage in the heap comes from a young region or not.
  1410   // See ReduceInitialCardMarks.
  1411   virtual bool can_elide_tlab_store_barriers() const {
  1412     return true;
  1415   virtual bool card_mark_must_follow_store() const {
  1416     return true;
  1419   bool is_in_young(const oop obj) {
  1420     HeapRegion* hr = heap_region_containing(obj);
  1421     return hr != NULL && hr->is_young();
  1424 #ifdef ASSERT
  1425   virtual bool is_in_partial_collection(const void* p);
  1426 #endif
  1428   virtual bool is_scavengable(const void* addr);
  1430   // We don't need barriers for initializing stores to objects
  1431   // in the young gen: for the SATB pre-barrier, there is no
  1432   // pre-value that needs to be remembered; for the remembered-set
  1433   // update logging post-barrier, we don't maintain remembered set
  1434   // information for young gen objects.
  1435   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1436     return is_in_young(new_obj);
  1439   // Can a compiler elide a store barrier when it writes
  1440   // a permanent oop into the heap?  Applies when the compiler
  1441   // is storing x to the heap, where x->is_perm() is true.
  1442   virtual bool can_elide_permanent_oop_store_barriers() const {
  1443     // At least until perm gen collection is also G1-ified, at
  1444     // which point this should return false.
  1445     return true;
  1448   // Returns "true" iff the given word_size is "very large".
  1449   static bool isHumongous(size_t word_size) {
  1450     // Note this has to be strictly greater-than as the TLABs
  1451     // are capped at the humongous thresold and we want to
  1452     // ensure that we don't try to allocate a TLAB as
  1453     // humongous and that we don't allocate a humongous
  1454     // object in a TLAB.
  1455     return word_size > _humongous_object_threshold_in_words;
  1458   // Update mod union table with the set of dirty cards.
  1459   void updateModUnion();
  1461   // Set the mod union bits corresponding to the given memRegion.  Note
  1462   // that this is always a safe operation, since it doesn't clear any
  1463   // bits.
  1464   void markModUnionRange(MemRegion mr);
  1466   // Records the fact that a marking phase is no longer in progress.
  1467   void set_marking_complete() {
  1468     _mark_in_progress = false;
  1470   void set_marking_started() {
  1471     _mark_in_progress = true;
  1473   bool mark_in_progress() {
  1474     return _mark_in_progress;
  1477   // Print the maximum heap capacity.
  1478   virtual size_t max_capacity() const;
  1480   virtual jlong millis_since_last_gc();
  1482   // Perform any cleanup actions necessary before allowing a verification.
  1483   virtual void prepare_for_verify();
  1485   // Perform verification.
  1487   // vo == UsePrevMarking  -> use "prev" marking information,
  1488   // vo == UseNextMarking -> use "next" marking information
  1489   // vo == UseMarkWord    -> use the mark word in the object header
  1490   //
  1491   // NOTE: Only the "prev" marking information is guaranteed to be
  1492   // consistent most of the time, so most calls to this should use
  1493   // vo == UsePrevMarking.
  1494   // Currently, there is only one case where this is called with
  1495   // vo == UseNextMarking, which is to verify the "next" marking
  1496   // information at the end of remark.
  1497   // Currently there is only one place where this is called with
  1498   // vo == UseMarkWord, which is to verify the marking during a
  1499   // full GC.
  1500   void verify(bool allow_dirty, bool silent, VerifyOption vo);
  1502   // Override; it uses the "prev" marking information
  1503   virtual void verify(bool allow_dirty, bool silent);
  1504   virtual void print_on(outputStream* st) const;
  1505   virtual void print_extended_on(outputStream* st) const;
  1507   virtual void print_gc_threads_on(outputStream* st) const;
  1508   virtual void gc_threads_do(ThreadClosure* tc) const;
  1510   // Override
  1511   void print_tracing_info() const;
  1513   // The following two methods are helpful for debugging RSet issues.
  1514   void print_cset_rsets() PRODUCT_RETURN;
  1515   void print_all_rsets() PRODUCT_RETURN;
  1517   // Convenience function to be used in situations where the heap type can be
  1518   // asserted to be this type.
  1519   static G1CollectedHeap* heap();
  1521   void set_region_short_lived_locked(HeapRegion* hr);
  1522   // add appropriate methods for any other surv rate groups
  1524   YoungList* young_list() { return _young_list; }
  1526   // debugging
  1527   bool check_young_list_well_formed() {
  1528     return _young_list->check_list_well_formed();
  1531   bool check_young_list_empty(bool check_heap,
  1532                               bool check_sample = true);
  1534   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1535   // many of these need to be public.
  1537   // The functions below are helper functions that a subclass of
  1538   // "CollectedHeap" can use in the implementation of its virtual
  1539   // functions.
  1540   // This performs a concurrent marking of the live objects in a
  1541   // bitmap off to the side.
  1542   void doConcurrentMark();
  1544   bool isMarkedPrev(oop obj) const;
  1545   bool isMarkedNext(oop obj) const;
  1547   // vo == UsePrevMarking -> use "prev" marking information,
  1548   // vo == UseNextMarking -> use "next" marking information,
  1549   // vo == UseMarkWord    -> use mark word from object header
  1550   bool is_obj_dead_cond(const oop obj,
  1551                         const HeapRegion* hr,
  1552                         const VerifyOption vo) const {
  1554     switch (vo) {
  1555       case VerifyOption_G1UsePrevMarking:
  1556         return is_obj_dead(obj, hr);
  1557       case VerifyOption_G1UseNextMarking:
  1558         return is_obj_ill(obj, hr);
  1559       default:
  1560         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1561         return !obj->is_gc_marked();
  1565   // Determine if an object is dead, given the object and also
  1566   // the region to which the object belongs. An object is dead
  1567   // iff a) it was not allocated since the last mark and b) it
  1568   // is not marked.
  1570   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1571     return
  1572       !hr->obj_allocated_since_prev_marking(obj) &&
  1573       !isMarkedPrev(obj);
  1576   // This is used when copying an object to survivor space.
  1577   // If the object is marked live, then we mark the copy live.
  1578   // If the object is allocated since the start of this mark
  1579   // cycle, then we mark the copy live.
  1580   // If the object has been around since the previous mark
  1581   // phase, and hasn't been marked yet during this phase,
  1582   // then we don't mark it, we just wait for the
  1583   // current marking cycle to get to it.
  1585   // This function returns true when an object has been
  1586   // around since the previous marking and hasn't yet
  1587   // been marked during this marking.
  1589   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1590     return
  1591       !hr->obj_allocated_since_next_marking(obj) &&
  1592       !isMarkedNext(obj);
  1595   // Determine if an object is dead, given only the object itself.
  1596   // This will find the region to which the object belongs and
  1597   // then call the region version of the same function.
  1599   // Added if it is in permanent gen it isn't dead.
  1600   // Added if it is NULL it isn't dead.
  1602   // vo == UsePrevMarking -> use "prev" marking information,
  1603   // vo == UseNextMarking -> use "next" marking information,
  1604   // vo == UseMarkWord    -> use mark word from object header
  1605   bool is_obj_dead_cond(const oop obj,
  1606                         const VerifyOption vo) const {
  1608     switch (vo) {
  1609       case VerifyOption_G1UsePrevMarking:
  1610         return is_obj_dead(obj);
  1611       case VerifyOption_G1UseNextMarking:
  1612         return is_obj_ill(obj);
  1613       default:
  1614         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1615         return !obj->is_gc_marked();
  1619   bool is_obj_dead(const oop obj) const {
  1620     const HeapRegion* hr = heap_region_containing(obj);
  1621     if (hr == NULL) {
  1622       if (Universe::heap()->is_in_permanent(obj))
  1623         return false;
  1624       else if (obj == NULL) return false;
  1625       else return true;
  1627     else return is_obj_dead(obj, hr);
  1630   bool is_obj_ill(const oop obj) const {
  1631     const HeapRegion* hr = heap_region_containing(obj);
  1632     if (hr == NULL) {
  1633       if (Universe::heap()->is_in_permanent(obj))
  1634         return false;
  1635       else if (obj == NULL) return false;
  1636       else return true;
  1638     else return is_obj_ill(obj, hr);
  1641   // The following is just to alert the verification code
  1642   // that a full collection has occurred and that the
  1643   // remembered sets are no longer up to date.
  1644   bool _full_collection;
  1645   void set_full_collection() { _full_collection = true;}
  1646   void clear_full_collection() {_full_collection = false;}
  1647   bool full_collection() {return _full_collection;}
  1649   ConcurrentMark* concurrent_mark() const { return _cm; }
  1650   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1652   // The dirty cards region list is used to record a subset of regions
  1653   // whose cards need clearing. The list if populated during the
  1654   // remembered set scanning and drained during the card table
  1655   // cleanup. Although the methods are reentrant, population/draining
  1656   // phases must not overlap. For synchronization purposes the last
  1657   // element on the list points to itself.
  1658   HeapRegion* _dirty_cards_region_list;
  1659   void push_dirty_cards_region(HeapRegion* hr);
  1660   HeapRegion* pop_dirty_cards_region();
  1662 public:
  1663   void stop_conc_gc_threads();
  1665   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1666   void check_if_region_is_too_expensive(double predicted_time_ms);
  1667   size_t pending_card_num();
  1668   size_t max_pending_card_num();
  1669   size_t cards_scanned();
  1671 protected:
  1672   size_t _max_heap_capacity;
  1673 };
  1675 #define use_local_bitmaps         1
  1676 #define verify_local_bitmaps      0
  1677 #define oop_buffer_length       256
  1679 #ifndef PRODUCT
  1680 class GCLabBitMap;
  1681 class GCLabBitMapClosure: public BitMapClosure {
  1682 private:
  1683   ConcurrentMark* _cm;
  1684   GCLabBitMap*    _bitmap;
  1686 public:
  1687   GCLabBitMapClosure(ConcurrentMark* cm,
  1688                      GCLabBitMap* bitmap) {
  1689     _cm     = cm;
  1690     _bitmap = bitmap;
  1693   virtual bool do_bit(size_t offset);
  1694 };
  1695 #endif // !PRODUCT
  1697 class GCLabBitMap: public BitMap {
  1698 private:
  1699   ConcurrentMark* _cm;
  1701   int       _shifter;
  1702   size_t    _bitmap_word_covers_words;
  1704   // beginning of the heap
  1705   HeapWord* _heap_start;
  1707   // this is the actual start of the GCLab
  1708   HeapWord* _real_start_word;
  1710   // this is the actual end of the GCLab
  1711   HeapWord* _real_end_word;
  1713   // this is the first word, possibly located before the actual start
  1714   // of the GCLab, that corresponds to the first bit of the bitmap
  1715   HeapWord* _start_word;
  1717   // size of a GCLab in words
  1718   size_t _gclab_word_size;
  1720   static int shifter() {
  1721     return MinObjAlignment - 1;
  1724   // how many heap words does a single bitmap word corresponds to?
  1725   static size_t bitmap_word_covers_words() {
  1726     return BitsPerWord << shifter();
  1729   size_t gclab_word_size() const {
  1730     return _gclab_word_size;
  1733   // Calculates actual GCLab size in words
  1734   size_t gclab_real_word_size() const {
  1735     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1736            / BitsPerWord;
  1739   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1740     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1741     // We are going to ensure that the beginning of a word in this
  1742     // bitmap also corresponds to the beginning of a word in the
  1743     // global marking bitmap. To handle the case where a GCLab
  1744     // starts from the middle of the bitmap, we need to add enough
  1745     // space (i.e. up to a bitmap word) to ensure that we have
  1746     // enough bits in the bitmap.
  1747     return bits_in_bitmap + BitsPerWord - 1;
  1749 public:
  1750   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1751     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1752       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1753       _shifter(shifter()),
  1754       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1755       _heap_start(heap_start),
  1756       _gclab_word_size(gclab_word_size),
  1757       _real_start_word(NULL),
  1758       _real_end_word(NULL),
  1759       _start_word(NULL) {
  1760     guarantee(false, "GCLabBitMap::GCLabBitmap(): don't call this any more");
  1763   inline unsigned heapWordToOffset(HeapWord* addr) {
  1764     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1765     assert(offset < size(), "offset should be within bounds");
  1766     return offset;
  1769   inline HeapWord* offsetToHeapWord(size_t offset) {
  1770     HeapWord* addr =  _start_word + (offset << _shifter);
  1771     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1772     return addr;
  1775   bool fields_well_formed() {
  1776     bool ret1 = (_real_start_word == NULL) &&
  1777                 (_real_end_word == NULL) &&
  1778                 (_start_word == NULL);
  1779     if (ret1)
  1780       return true;
  1782     bool ret2 = _real_start_word >= _start_word &&
  1783       _start_word < _real_end_word &&
  1784       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1785       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1786                                                               > _real_end_word;
  1787     return ret2;
  1790   inline bool mark(HeapWord* addr) {
  1791     guarantee(use_local_bitmaps, "invariant");
  1792     assert(fields_well_formed(), "invariant");
  1794     if (addr >= _real_start_word && addr < _real_end_word) {
  1795       assert(!isMarked(addr), "should not have already been marked");
  1797       // first mark it on the bitmap
  1798       at_put(heapWordToOffset(addr), true);
  1800       return true;
  1801     } else {
  1802       return false;
  1806   inline bool isMarked(HeapWord* addr) {
  1807     guarantee(use_local_bitmaps, "invariant");
  1808     assert(fields_well_formed(), "invariant");
  1810     return at(heapWordToOffset(addr));
  1813   void set_buffer(HeapWord* start) {
  1814     guarantee(false, "set_buffer(): don't call this any more");
  1816     guarantee(use_local_bitmaps, "invariant");
  1817     clear();
  1819     assert(start != NULL, "invariant");
  1820     _real_start_word = start;
  1821     _real_end_word   = start + _gclab_word_size;
  1823     size_t diff =
  1824       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1825     _start_word = start - diff;
  1827     assert(fields_well_formed(), "invariant");
  1830 #ifndef PRODUCT
  1831   void verify() {
  1832     // verify that the marks have been propagated
  1833     GCLabBitMapClosure cl(_cm, this);
  1834     iterate(&cl);
  1836 #endif // PRODUCT
  1838   void retire() {
  1839     guarantee(false, "retire(): don't call this any more");
  1841     guarantee(use_local_bitmaps, "invariant");
  1842     assert(fields_well_formed(), "invariant");
  1844     if (_start_word != NULL) {
  1845       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1847       // this means that the bitmap was set up for the GCLab
  1848       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1850       mark_bitmap->mostly_disjoint_range_union(this,
  1851                                 0, // always start from the start of the bitmap
  1852                                 _start_word,
  1853                                 gclab_real_word_size());
  1854       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1856 #ifndef PRODUCT
  1857       if (use_local_bitmaps && verify_local_bitmaps)
  1858         verify();
  1859 #endif // PRODUCT
  1860     } else {
  1861       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1865   size_t bitmap_size_in_words() const {
  1866     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1869 };
  1871 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1872 private:
  1873   bool        _retired;
  1875 public:
  1876   G1ParGCAllocBuffer(size_t gclab_word_size);
  1878   void set_buf(HeapWord* buf) {
  1879     ParGCAllocBuffer::set_buf(buf);
  1880     _retired = false;
  1883   void retire(bool end_of_gc, bool retain) {
  1884     if (_retired)
  1885       return;
  1886     ParGCAllocBuffer::retire(end_of_gc, retain);
  1887     _retired = true;
  1889 };
  1891 class G1ParScanThreadState : public StackObj {
  1892 protected:
  1893   G1CollectedHeap* _g1h;
  1894   RefToScanQueue*  _refs;
  1895   DirtyCardQueue   _dcq;
  1896   CardTableModRefBS* _ct_bs;
  1897   G1RemSet* _g1_rem;
  1899   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1900   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1901   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1902   ageTable            _age_table;
  1904   size_t           _alloc_buffer_waste;
  1905   size_t           _undo_waste;
  1907   OopsInHeapRegionClosure*      _evac_failure_cl;
  1908   G1ParScanHeapEvacClosure*     _evac_cl;
  1909   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1911   int _hash_seed;
  1912   uint _queue_num;
  1914   size_t _term_attempts;
  1916   double _start;
  1917   double _start_strong_roots;
  1918   double _strong_roots_time;
  1919   double _start_term;
  1920   double _term_time;
  1922   // Map from young-age-index (0 == not young, 1 is youngest) to
  1923   // surviving words. base is what we get back from the malloc call
  1924   size_t* _surviving_young_words_base;
  1925   // this points into the array, as we use the first few entries for padding
  1926   size_t* _surviving_young_words;
  1928 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1930   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1932   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1934   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1935   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1937   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1938     if (!from->is_survivor()) {
  1939       _g1_rem->par_write_ref(from, p, tid);
  1943   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1944     // If the new value of the field points to the same region or
  1945     // is the to-space, we don't need to include it in the Rset updates.
  1946     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1947       size_t card_index = ctbs()->index_for(p);
  1948       // If the card hasn't been added to the buffer, do it.
  1949       if (ctbs()->mark_card_deferred(card_index)) {
  1950         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1955 public:
  1956   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
  1958   ~G1ParScanThreadState() {
  1959     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1962   RefToScanQueue*   refs()            { return _refs;             }
  1963   ageTable*         age_table()       { return &_age_table;       }
  1965   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1966     return _alloc_buffers[purpose];
  1969   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1970   size_t undo_waste() const                      { return _undo_waste; }
  1972 #ifdef ASSERT
  1973   bool verify_ref(narrowOop* ref) const;
  1974   bool verify_ref(oop* ref) const;
  1975   bool verify_task(StarTask ref) const;
  1976 #endif // ASSERT
  1978   template <class T> void push_on_queue(T* ref) {
  1979     assert(verify_ref(ref), "sanity");
  1980     refs()->push(ref);
  1983   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1984     if (G1DeferredRSUpdate) {
  1985       deferred_rs_update(from, p, tid);
  1986     } else {
  1987       immediate_rs_update(from, p, tid);
  1991   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1993     HeapWord* obj = NULL;
  1994     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1995     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1996       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1997       assert(gclab_word_size == alloc_buf->word_sz(),
  1998              "dynamic resizing is not supported");
  1999       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  2000       alloc_buf->retire(false, false);
  2002       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  2003       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  2004       // Otherwise.
  2005       alloc_buf->set_buf(buf);
  2007       obj = alloc_buf->allocate(word_sz);
  2008       assert(obj != NULL, "buffer was definitely big enough...");
  2009     } else {
  2010       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  2012     return obj;
  2015   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  2016     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  2017     if (obj != NULL) return obj;
  2018     return allocate_slow(purpose, word_sz);
  2021   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  2022     if (alloc_buffer(purpose)->contains(obj)) {
  2023       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  2024              "should contain whole object");
  2025       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  2026     } else {
  2027       CollectedHeap::fill_with_object(obj, word_sz);
  2028       add_to_undo_waste(word_sz);
  2032   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  2033     _evac_failure_cl = evac_failure_cl;
  2035   OopsInHeapRegionClosure* evac_failure_closure() {
  2036     return _evac_failure_cl;
  2039   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  2040     _evac_cl = evac_cl;
  2043   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  2044     _partial_scan_cl = partial_scan_cl;
  2047   int* hash_seed() { return &_hash_seed; }
  2048   uint queue_num() { return _queue_num; }
  2050   size_t term_attempts() const  { return _term_attempts; }
  2051   void note_term_attempt() { _term_attempts++; }
  2053   void start_strong_roots() {
  2054     _start_strong_roots = os::elapsedTime();
  2056   void end_strong_roots() {
  2057     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  2059   double strong_roots_time() const { return _strong_roots_time; }
  2061   void start_term_time() {
  2062     note_term_attempt();
  2063     _start_term = os::elapsedTime();
  2065   void end_term_time() {
  2066     _term_time += (os::elapsedTime() - _start_term);
  2068   double term_time() const { return _term_time; }
  2070   double elapsed_time() const {
  2071     return os::elapsedTime() - _start;
  2074   static void
  2075     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  2076   void
  2077     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  2079   size_t* surviving_young_words() {
  2080     // We add on to hide entry 0 which accumulates surviving words for
  2081     // age -1 regions (i.e. non-young ones)
  2082     return _surviving_young_words;
  2085   void retire_alloc_buffers() {
  2086     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2087       size_t waste = _alloc_buffers[ap]->words_remaining();
  2088       add_to_alloc_buffer_waste(waste);
  2089       _alloc_buffers[ap]->retire(true, false);
  2093   template <class T> void deal_with_reference(T* ref_to_scan) {
  2094     if (has_partial_array_mask(ref_to_scan)) {
  2095       _partial_scan_cl->do_oop_nv(ref_to_scan);
  2096     } else {
  2097       // Note: we can use "raw" versions of "region_containing" because
  2098       // "obj_to_scan" is definitely in the heap, and is not in a
  2099       // humongous region.
  2100       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  2101       _evac_cl->set_region(r);
  2102       _evac_cl->do_oop_nv(ref_to_scan);
  2106   void deal_with_reference(StarTask ref) {
  2107     assert(verify_task(ref), "sanity");
  2108     if (ref.is_narrow()) {
  2109       deal_with_reference((narrowOop*)ref);
  2110     } else {
  2111       deal_with_reference((oop*)ref);
  2115 public:
  2116   void trim_queue();
  2117 };
  2119 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial