src/share/vm/gc_implementation/g1/concurrentMarkThread.cpp

Thu, 12 Jan 2012 00:06:47 -0800

author
johnc
date
Thu, 12 Jan 2012 00:06:47 -0800
changeset 3463
d30fa85f9994
parent 3295
00dd86e542eb
child 3464
eff609af17d7
permissions
-rw-r--r--

6484965: G1: piggy-back liveness accounting phase on marking
Summary: Remove the separate counting phase of concurrent marking by tracking the amount of marked bytes and the cards spanned by marked objects in marking task/worker thread local data structures, which are updated as individual objects are marked.
Reviewed-by: brutisso, tonyp

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    27 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    28 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    29 #include "gc_implementation/g1/g1MMUTracker.hpp"
    30 #include "gc_implementation/g1/vm_operations_g1.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "runtime/vmThread.hpp"
    34 // ======= Concurrent Mark Thread ========
    36 // The CM thread is created when the G1 garbage collector is used
    38 SurrogateLockerThread*
    39      ConcurrentMarkThread::_slt = NULL;
    41 ConcurrentMarkThread::ConcurrentMarkThread(ConcurrentMark* cm) :
    42   ConcurrentGCThread(),
    43   _cm(cm),
    44   _started(false),
    45   _in_progress(false),
    46   _vtime_accum(0.0),
    47   _vtime_mark_accum(0.0) {
    48   create_and_start();
    49 }
    51 class CMCheckpointRootsFinalClosure: public VoidClosure {
    53   ConcurrentMark* _cm;
    54 public:
    56   CMCheckpointRootsFinalClosure(ConcurrentMark* cm) :
    57     _cm(cm) {}
    59   void do_void(){
    60     _cm->checkpointRootsFinal(false); // !clear_all_soft_refs
    61   }
    62 };
    64 class CMCleanUp: public VoidClosure {
    65   ConcurrentMark* _cm;
    66 public:
    68   CMCleanUp(ConcurrentMark* cm) :
    69     _cm(cm) {}
    71   void do_void(){
    72     _cm->cleanup();
    73   }
    74 };
    78 void ConcurrentMarkThread::run() {
    79   initialize_in_thread();
    80   _vtime_start = os::elapsedVTime();
    81   wait_for_universe_init();
    83   G1CollectedHeap* g1h = G1CollectedHeap::heap();
    84   G1CollectorPolicy* g1_policy = g1h->g1_policy();
    85   G1MMUTracker *mmu_tracker = g1_policy->mmu_tracker();
    86   Thread *current_thread = Thread::current();
    88   while (!_should_terminate) {
    89     // wait until started is set.
    90     sleepBeforeNextCycle();
    91     {
    92       ResourceMark rm;
    93       HandleMark   hm;
    94       double cycle_start = os::elapsedVTime();
    95       double mark_start_sec = os::elapsedTime();
    96       char verbose_str[128];
    98       if (PrintGC) {
    99         gclog_or_tty->date_stamp(PrintGCDateStamps);
   100         gclog_or_tty->stamp(PrintGCTimeStamps);
   101         gclog_or_tty->print_cr("[GC concurrent-mark-start]");
   102       }
   104       int iter = 0;
   105       do {
   106         iter++;
   107         if (!cm()->has_aborted()) {
   108           _cm->markFromRoots();
   109         }
   111         double mark_end_time = os::elapsedVTime();
   112         double mark_end_sec = os::elapsedTime();
   113         _vtime_mark_accum += (mark_end_time - cycle_start);
   114         if (!cm()->has_aborted()) {
   115           if (g1_policy->adaptive_young_list_length()) {
   116             double now = os::elapsedTime();
   117             double remark_prediction_ms = g1_policy->predict_remark_time_ms();
   118             jlong sleep_time_ms = mmu_tracker->when_ms(now, remark_prediction_ms);
   119             os::sleep(current_thread, sleep_time_ms, false);
   120           }
   122           if (PrintGC) {
   123             gclog_or_tty->date_stamp(PrintGCDateStamps);
   124             gclog_or_tty->stamp(PrintGCTimeStamps);
   125             gclog_or_tty->print_cr("[GC concurrent-mark-end, %1.7lf sec]",
   126                                       mark_end_sec - mark_start_sec);
   127           }
   129           CMCheckpointRootsFinalClosure final_cl(_cm);
   130           sprintf(verbose_str, "GC remark");
   131           VM_CGC_Operation op(&final_cl, verbose_str);
   132           VMThread::execute(&op);
   133         }
   134         if (cm()->restart_for_overflow() &&
   135             G1TraceMarkStackOverflow) {
   136           gclog_or_tty->print_cr("Restarting conc marking because of MS overflow "
   137                                  "in remark (restart #%d).", iter);
   138         }
   140         if (cm()->restart_for_overflow()) {
   141           if (PrintGC) {
   142             gclog_or_tty->date_stamp(PrintGCDateStamps);
   143             gclog_or_tty->stamp(PrintGCTimeStamps);
   144             gclog_or_tty->print_cr("[GC concurrent-mark-restart-for-overflow]");
   145           }
   146         }
   147       } while (cm()->restart_for_overflow());
   149       double end_time = os::elapsedVTime();
   150       // Update the total virtual time before doing this, since it will try
   151       // to measure it to get the vtime for this marking.  We purposely
   152       // neglect the presumably-short "completeCleanup" phase here.
   153       _vtime_accum = (end_time - _vtime_start);
   155       if (!cm()->has_aborted()) {
   156         if (g1_policy->adaptive_young_list_length()) {
   157           double now = os::elapsedTime();
   158           double cleanup_prediction_ms = g1_policy->predict_cleanup_time_ms();
   159           jlong sleep_time_ms = mmu_tracker->when_ms(now, cleanup_prediction_ms);
   160           os::sleep(current_thread, sleep_time_ms, false);
   161         }
   163         CMCleanUp cl_cl(_cm);
   164         sprintf(verbose_str, "GC cleanup");
   165         VM_CGC_Operation op(&cl_cl, verbose_str);
   166         VMThread::execute(&op);
   167       } else {
   168         // We don't want to update the marking status if a GC pause
   169         // is already underway.
   170         _sts.join();
   171         g1h->set_marking_complete();
   172         _sts.leave();
   173       }
   175       // Check if cleanup set the free_regions_coming flag. If it
   176       // hasn't, we can just skip the next step.
   177       if (g1h->free_regions_coming()) {
   178         // The following will finish freeing up any regions that we
   179         // found to be empty during cleanup. We'll do this part
   180         // without joining the suspendible set. If an evacuation pause
   181         // takes place, then we would carry on freeing regions in
   182         // case they are needed by the pause. If a Full GC takes
   183         // place, it would wait for us to process the regions
   184         // reclaimed by cleanup.
   186         double cleanup_start_sec = os::elapsedTime();
   187         if (PrintGC) {
   188           gclog_or_tty->date_stamp(PrintGCDateStamps);
   189           gclog_or_tty->stamp(PrintGCTimeStamps);
   190           gclog_or_tty->print_cr("[GC concurrent-cleanup-start]");
   191         }
   193         // Now do the concurrent cleanup operation.
   194         _cm->completeCleanup();
   196         // Notify anyone who's waiting that there are no more free
   197         // regions coming. We have to do this before we join the STS
   198         // (in fact, we should not attempt to join the STS in the
   199         // interval between finishing the cleanup pause and clearing
   200         // the free_regions_coming flag) otherwise we might deadlock:
   201         // a GC worker could be blocked waiting for the notification
   202         // whereas this thread will be blocked for the pause to finish
   203         // while it's trying to join the STS, which is conditional on
   204         // the GC workers finishing.
   205         g1h->reset_free_regions_coming();
   207         double cleanup_end_sec = os::elapsedTime();
   208         if (PrintGC) {
   209           gclog_or_tty->date_stamp(PrintGCDateStamps);
   210           gclog_or_tty->stamp(PrintGCTimeStamps);
   211           gclog_or_tty->print_cr("[GC concurrent-cleanup-end, %1.7lf]",
   212                                  cleanup_end_sec - cleanup_start_sec);
   213         }
   214       }
   215       guarantee(cm()->cleanup_list_is_empty(),
   216                 "at this point there should be no regions on the cleanup list");
   218       // There is a tricky race before recording that the concurrent
   219       // cleanup has completed and a potential Full GC starting around
   220       // the same time. We want to make sure that the Full GC calls
   221       // abort() on concurrent mark after
   222       // record_concurrent_mark_cleanup_completed(), since abort() is
   223       // the method that will reset the concurrent mark state. If we
   224       // end up calling record_concurrent_mark_cleanup_completed()
   225       // after abort() then we might incorrectly undo some of the work
   226       // abort() did. Checking the has_aborted() flag after joining
   227       // the STS allows the correct ordering of the two methods. There
   228       // are two scenarios:
   229       //
   230       // a) If we reach here before the Full GC, the fact that we have
   231       // joined the STS means that the Full GC cannot start until we
   232       // leave the STS, so record_concurrent_mark_cleanup_completed()
   233       // will complete before abort() is called.
   234       //
   235       // b) If we reach here during the Full GC, we'll be held up from
   236       // joining the STS until the Full GC is done, which means that
   237       // abort() will have completed and has_aborted() will return
   238       // true to prevent us from calling
   239       // record_concurrent_mark_cleanup_completed() (and, in fact, it's
   240       // not needed any more as the concurrent mark state has been
   241       // already reset).
   242       _sts.join();
   243       if (!cm()->has_aborted()) {
   244         g1_policy->record_concurrent_mark_cleanup_completed();
   245       }
   246       _sts.leave();
   248       if (cm()->has_aborted()) {
   249         if (PrintGC) {
   250           gclog_or_tty->date_stamp(PrintGCDateStamps);
   251           gclog_or_tty->stamp(PrintGCTimeStamps);
   252           gclog_or_tty->print_cr("[GC concurrent-mark-abort]");
   253         }
   254       }
   256       // We now want to allow clearing of the marking bitmap to be
   257       // suspended by a collection pause.
   258       _sts.join();
   259       _cm->clearNextBitmap();
   260       _sts.leave();
   261     }
   263     // Update the number of full collections that have been
   264     // completed. This will also notify the FullGCCount_lock in case a
   265     // Java thread is waiting for a full GC to happen (e.g., it
   266     // called System.gc() with +ExplicitGCInvokesConcurrent).
   267     _sts.join();
   268     g1h->increment_full_collections_completed(true /* concurrent */);
   269     _sts.leave();
   270   }
   271   assert(_should_terminate, "just checking");
   273   terminate();
   274 }
   277 void ConcurrentMarkThread::yield() {
   278   _sts.yield("Concurrent Mark");
   279 }
   281 void ConcurrentMarkThread::stop() {
   282   // it is ok to take late safepoints here, if needed
   283   MutexLockerEx mu(Terminator_lock);
   284   _should_terminate = true;
   285   while (!_has_terminated) {
   286     Terminator_lock->wait();
   287   }
   288 }
   290 void ConcurrentMarkThread::print() const {
   291   print_on(tty);
   292 }
   294 void ConcurrentMarkThread::print_on(outputStream* st) const {
   295   st->print("\"G1 Main Concurrent Mark GC Thread\" ");
   296   Thread::print_on(st);
   297   st->cr();
   298 }
   300 void ConcurrentMarkThread::sleepBeforeNextCycle() {
   301   // We join here because we don't want to do the "shouldConcurrentMark()"
   302   // below while the world is otherwise stopped.
   303   assert(!in_progress(), "should have been cleared");
   305   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
   306   while (!started()) {
   307     CGC_lock->wait(Mutex::_no_safepoint_check_flag);
   308   }
   309   set_in_progress();
   310   clear_started();
   311 }
   313 // Note: As is the case with CMS - this method, although exported
   314 // by the ConcurrentMarkThread, which is a non-JavaThread, can only
   315 // be called by a JavaThread. Currently this is done at vm creation
   316 // time (post-vm-init) by the main/Primordial (Java)Thread.
   317 // XXX Consider changing this in the future to allow the CM thread
   318 // itself to create this thread?
   319 void ConcurrentMarkThread::makeSurrogateLockerThread(TRAPS) {
   320   assert(UseG1GC, "SLT thread needed only for concurrent GC");
   321   assert(THREAD->is_Java_thread(), "must be a Java thread");
   322   assert(_slt == NULL, "SLT already created");
   323   _slt = SurrogateLockerThread::make(THREAD);
   324 }

mercurial