src/share/vm/gc_implementation/g1/concurrentMark.hpp

Thu, 12 Jan 2012 00:06:47 -0800

author
johnc
date
Thu, 12 Jan 2012 00:06:47 -0800
changeset 3463
d30fa85f9994
parent 3455
851b58c26def
child 3464
eff609af17d7
permissions
-rw-r--r--

6484965: G1: piggy-back liveness accounting phase on marking
Summary: Remove the separate counting phase of concurrent marking by tracking the amount of marked bytes and the cards spanned by marked objects in marking task/worker thread local data structures, which are updated as individual objects are marked.
Reviewed-by: brutisso, tonyp

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    28 #include "gc_implementation/g1/heapRegionSets.hpp"
    29 #include "utilities/taskqueue.hpp"
    31 class G1CollectedHeap;
    32 class CMTask;
    33 typedef GenericTaskQueue<oop>            CMTaskQueue;
    34 typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
    36 // Closure used by CM during concurrent reference discovery
    37 // and reference processing (during remarking) to determine
    38 // if a particular object is alive. It is primarily used
    39 // to determine if referents of discovered reference objects
    40 // are alive. An instance is also embedded into the
    41 // reference processor as the _is_alive_non_header field
    42 class G1CMIsAliveClosure: public BoolObjectClosure {
    43   G1CollectedHeap* _g1;
    44  public:
    45   G1CMIsAliveClosure(G1CollectedHeap* g1) :
    46     _g1(g1)
    47   {}
    49   void do_object(oop obj) {
    50     ShouldNotCallThis();
    51   }
    52   bool do_object_b(oop obj);
    53 };
    55 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    56 // class, with one bit per (1<<_shifter) HeapWords.
    58 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    59  protected:
    60   HeapWord* _bmStartWord;      // base address of range covered by map
    61   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    62   const int _shifter;          // map to char or bit
    63   VirtualSpace _virtual_space; // underlying the bit map
    64   BitMap    _bm;               // the bit map itself
    66  public:
    67   // constructor
    68   CMBitMapRO(ReservedSpace rs, int shifter);
    70   enum { do_yield = true };
    72   // inquiries
    73   HeapWord* startWord()   const { return _bmStartWord; }
    74   size_t    sizeInWords() const { return _bmWordSize;  }
    75   // the following is one past the last word in space
    76   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    78   // read marks
    80   bool isMarked(HeapWord* addr) const {
    81     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    82            "outside underlying space?");
    83     return _bm.at(heapWordToOffset(addr));
    84   }
    86   // iteration
    87   inline bool iterate(BitMapClosure* cl, MemRegion mr);
    88   inline bool iterate(BitMapClosure* cl);
    90   // Return the address corresponding to the next marked bit at or after
    91   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    92   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    93   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    94                                      HeapWord* limit = NULL) const;
    95   // Return the address corresponding to the next unmarked bit at or after
    96   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    97   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    98   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    99                                        HeapWord* limit = NULL) const;
   101   // conversion utilities
   102   // XXX Fix these so that offsets are size_t's...
   103   HeapWord* offsetToHeapWord(size_t offset) const {
   104     return _bmStartWord + (offset << _shifter);
   105   }
   106   size_t heapWordToOffset(HeapWord* addr) const {
   107     return pointer_delta(addr, _bmStartWord) >> _shifter;
   108   }
   109   int heapWordDiffToOffsetDiff(size_t diff) const;
   110   HeapWord* nextWord(HeapWord* addr) {
   111     return offsetToHeapWord(heapWordToOffset(addr) + 1);
   112   }
   114   void mostly_disjoint_range_union(BitMap*   from_bitmap,
   115                                    size_t    from_start_index,
   116                                    HeapWord* to_start_word,
   117                                    size_t    word_num);
   119   // debugging
   120   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
   121 };
   123 class CMBitMap : public CMBitMapRO {
   125  public:
   126   // constructor
   127   CMBitMap(ReservedSpace rs, int shifter) :
   128     CMBitMapRO(rs, shifter) {}
   130   // write marks
   131   void mark(HeapWord* addr) {
   132     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   133            "outside underlying space?");
   134     _bm.set_bit(heapWordToOffset(addr));
   135   }
   136   void clear(HeapWord* addr) {
   137     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   138            "outside underlying space?");
   139     _bm.clear_bit(heapWordToOffset(addr));
   140   }
   141   bool parMark(HeapWord* addr) {
   142     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   143            "outside underlying space?");
   144     return _bm.par_set_bit(heapWordToOffset(addr));
   145   }
   146   bool parClear(HeapWord* addr) {
   147     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   148            "outside underlying space?");
   149     return _bm.par_clear_bit(heapWordToOffset(addr));
   150   }
   151   void markRange(MemRegion mr);
   152   void clearAll();
   153   void clearRange(MemRegion mr);
   155   // Starting at the bit corresponding to "addr" (inclusive), find the next
   156   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   157   // the end of this run (stopping at "end_addr").  Return the MemRegion
   158   // covering from the start of the region corresponding to the first bit
   159   // of the run to the end of the region corresponding to the last bit of
   160   // the run.  If there is no "1" bit at or after "addr", return an empty
   161   // MemRegion.
   162   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   163 };
   165 // Represents a marking stack used by the CM collector.
   166 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   167 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   168   ConcurrentMark* _cm;
   169   oop*   _base;        // bottom of stack
   170   jint   _index;       // one more than last occupied index
   171   jint   _capacity;    // max #elements
   172   jint   _saved_index; // value of _index saved at start of GC
   173   NOT_PRODUCT(jint _max_depth;)  // max depth plumbed during run
   175   bool   _overflow;
   176   DEBUG_ONLY(bool _drain_in_progress;)
   177   DEBUG_ONLY(bool _drain_in_progress_yields;)
   179  public:
   180   CMMarkStack(ConcurrentMark* cm);
   181   ~CMMarkStack();
   183   void allocate(size_t size);
   185   oop pop() {
   186     if (!isEmpty()) {
   187       return _base[--_index] ;
   188     }
   189     return NULL;
   190   }
   192   // If overflow happens, don't do the push, and record the overflow.
   193   // *Requires* that "ptr" is already marked.
   194   void push(oop ptr) {
   195     if (isFull()) {
   196       // Record overflow.
   197       _overflow = true;
   198       return;
   199     } else {
   200       _base[_index++] = ptr;
   201       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   202     }
   203   }
   204   // Non-block impl.  Note: concurrency is allowed only with other
   205   // "par_push" operations, not with "pop" or "drain".  We would need
   206   // parallel versions of them if such concurrency was desired.
   207   void par_push(oop ptr);
   209   // Pushes the first "n" elements of "ptr_arr" on the stack.
   210   // Non-block impl.  Note: concurrency is allowed only with other
   211   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   212   void par_adjoin_arr(oop* ptr_arr, int n);
   214   // Pushes the first "n" elements of "ptr_arr" on the stack.
   215   // Locking impl: concurrency is allowed only with
   216   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   217   // locking strategy.
   218   void par_push_arr(oop* ptr_arr, int n);
   220   // If returns false, the array was empty.  Otherwise, removes up to "max"
   221   // elements from the stack, and transfers them to "ptr_arr" in an
   222   // unspecified order.  The actual number transferred is given in "n" ("n
   223   // == 0" is deliberately redundant with the return value.)  Locking impl:
   224   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   225   // operations, which use the same locking strategy.
   226   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   228   // Drain the mark stack, applying the given closure to all fields of
   229   // objects on the stack.  (That is, continue until the stack is empty,
   230   // even if closure applications add entries to the stack.)  The "bm"
   231   // argument, if non-null, may be used to verify that only marked objects
   232   // are on the mark stack.  If "yield_after" is "true", then the
   233   // concurrent marker performing the drain offers to yield after
   234   // processing each object.  If a yield occurs, stops the drain operation
   235   // and returns false.  Otherwise, returns true.
   236   template<class OopClosureClass>
   237   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   239   bool isEmpty()    { return _index == 0; }
   240   bool isFull()     { return _index == _capacity; }
   241   int maxElems()    { return _capacity; }
   243   bool overflow() { return _overflow; }
   244   void clear_overflow() { _overflow = false; }
   246   int  size() { return _index; }
   248   void setEmpty()   { _index = 0; clear_overflow(); }
   250   // Record the current index.
   251   void note_start_of_gc();
   253   // Make sure that we have not added any entries to the stack during GC.
   254   void note_end_of_gc();
   256   // iterate over the oops in the mark stack, up to the bound recorded via
   257   // the call above.
   258   void oops_do(OopClosure* f);
   259 };
   261 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
   262   MemRegion* _base;
   263   jint _capacity;
   264   jint _index;
   265   jint _oops_do_bound;
   266   bool _overflow;
   267 public:
   268   CMRegionStack();
   269   ~CMRegionStack();
   270   void allocate(size_t size);
   272   // This is lock-free; assumes that it will only be called in parallel
   273   // with other "push" operations (no pops).
   274   void push_lock_free(MemRegion mr);
   276   // Lock-free; assumes that it will only be called in parallel
   277   // with other "pop" operations (no pushes).
   278   MemRegion pop_lock_free();
   280 #if 0
   281   // The routines that manipulate the region stack with a lock are
   282   // not currently used. They should be retained, however, as a
   283   // diagnostic aid.
   285   // These two are the implementations that use a lock. They can be
   286   // called concurrently with each other but they should not be called
   287   // concurrently with the lock-free versions (push() / pop()).
   288   void push_with_lock(MemRegion mr);
   289   MemRegion pop_with_lock();
   290 #endif
   292   bool isEmpty()    { return _index == 0; }
   293   bool isFull()     { return _index == _capacity; }
   295   bool overflow() { return _overflow; }
   296   void clear_overflow() { _overflow = false; }
   298   int  size() { return _index; }
   300   // It iterates over the entries in the region stack and it
   301   // invalidates (i.e. assigns MemRegion()) the ones that point to
   302   // regions in the collection set.
   303   bool invalidate_entries_into_cset();
   305   // This gives an upper bound up to which the iteration in
   306   // invalidate_entries_into_cset() will reach. This prevents
   307   // newly-added entries to be unnecessarily scanned.
   308   void set_oops_do_bound() {
   309     _oops_do_bound = _index;
   310   }
   312   void setEmpty()   { _index = 0; clear_overflow(); }
   313 };
   315 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
   316 private:
   317 #ifndef PRODUCT
   318   uintx _num_remaining;
   319   bool _force;
   320 #endif // !defined(PRODUCT)
   322 public:
   323   void init() PRODUCT_RETURN;
   324   void update() PRODUCT_RETURN;
   325   bool should_force() PRODUCT_RETURN_( return false; );
   326 };
   328 // this will enable a variety of different statistics per GC task
   329 #define _MARKING_STATS_       0
   330 // this will enable the higher verbose levels
   331 #define _MARKING_VERBOSE_     0
   333 #if _MARKING_STATS_
   334 #define statsOnly(statement)  \
   335 do {                          \
   336   statement ;                 \
   337 } while (0)
   338 #else // _MARKING_STATS_
   339 #define statsOnly(statement)  \
   340 do {                          \
   341 } while (0)
   342 #endif // _MARKING_STATS_
   344 typedef enum {
   345   no_verbose  = 0,   // verbose turned off
   346   stats_verbose,     // only prints stats at the end of marking
   347   low_verbose,       // low verbose, mostly per region and per major event
   348   medium_verbose,    // a bit more detailed than low
   349   high_verbose       // per object verbose
   350 } CMVerboseLevel;
   353 class ConcurrentMarkThread;
   355 class ConcurrentMark: public CHeapObj {
   356   friend class ConcurrentMarkThread;
   357   friend class CMTask;
   358   friend class CMBitMapClosure;
   359   friend class CSetMarkOopClosure;
   360   friend class CMGlobalObjectClosure;
   361   friend class CMRemarkTask;
   362   friend class CMConcurrentMarkingTask;
   363   friend class G1ParNoteEndTask;
   364   friend class CalcLiveObjectsClosure;
   365   friend class G1CMRefProcTaskProxy;
   366   friend class G1CMRefProcTaskExecutor;
   367   friend class G1CMParKeepAliveAndDrainClosure;
   368   friend class G1CMParDrainMarkingStackClosure;
   370 protected:
   371   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   372   G1CollectedHeap*      _g1h;        // the heap.
   373   uint                  _parallel_marking_threads; // the number of marking
   374                                                    // threads we're use
   375   uint                  _max_parallel_marking_threads; // max number of marking
   376                                                    // threads we'll ever use
   377   double                _sleep_factor; // how much we have to sleep, with
   378                                        // respect to the work we just did, to
   379                                        // meet the marking overhead goal
   380   double                _marking_task_overhead; // marking target overhead for
   381                                                 // a single task
   383   // same as the two above, but for the cleanup task
   384   double                _cleanup_sleep_factor;
   385   double                _cleanup_task_overhead;
   387   FreeRegionList        _cleanup_list;
   389   // Concurrent marking support structures
   390   CMBitMap                _markBitMap1;
   391   CMBitMap                _markBitMap2;
   392   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   393   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   394   bool                    _at_least_one_mark_complete;
   396   BitMap                  _region_bm;
   397   BitMap                  _card_bm;
   399   // Heap bounds
   400   HeapWord*               _heap_start;
   401   HeapWord*               _heap_end;
   403   // For gray objects
   404   CMMarkStack             _markStack; // Grey objects behind global finger.
   405   CMRegionStack           _regionStack; // Grey regions behind global finger.
   406   HeapWord* volatile      _finger;  // the global finger, region aligned,
   407                                     // always points to the end of the
   408                                     // last claimed region
   410   // marking tasks
   411   uint                    _max_task_num; // maximum task number
   412   uint                    _active_tasks; // task num currently active
   413   CMTask**                _tasks;        // task queue array (max_task_num len)
   414   CMTaskQueueSet*         _task_queues;  // task queue set
   415   ParallelTaskTerminator  _terminator;   // for termination
   417   // Two sync barriers that are used to synchronise tasks when an
   418   // overflow occurs. The algorithm is the following. All tasks enter
   419   // the first one to ensure that they have all stopped manipulating
   420   // the global data structures. After they exit it, they re-initialise
   421   // their data structures and task 0 re-initialises the global data
   422   // structures. Then, they enter the second sync barrier. This
   423   // ensure, that no task starts doing work before all data
   424   // structures (local and global) have been re-initialised. When they
   425   // exit it, they are free to start working again.
   426   WorkGangBarrierSync     _first_overflow_barrier_sync;
   427   WorkGangBarrierSync     _second_overflow_barrier_sync;
   429   // this is set by any task, when an overflow on the global data
   430   // structures is detected.
   431   volatile bool           _has_overflown;
   432   // true: marking is concurrent, false: we're in remark
   433   volatile bool           _concurrent;
   434   // set at the end of a Full GC so that marking aborts
   435   volatile bool           _has_aborted;
   437   // used when remark aborts due to an overflow to indicate that
   438   // another concurrent marking phase should start
   439   volatile bool           _restart_for_overflow;
   441   // This is true from the very start of concurrent marking until the
   442   // point when all the tasks complete their work. It is really used
   443   // to determine the points between the end of concurrent marking and
   444   // time of remark.
   445   volatile bool           _concurrent_marking_in_progress;
   447   // verbose level
   448   CMVerboseLevel          _verbose_level;
   450   // These two fields are used to implement the optimisation that
   451   // avoids pushing objects on the global/region stack if there are
   452   // no collection set regions above the lowest finger.
   454   // This is the lowest finger (among the global and local fingers),
   455   // which is calculated before a new collection set is chosen.
   456   HeapWord* _min_finger;
   457   // If this flag is true, objects/regions that are marked below the
   458   // finger should be pushed on the stack(s). If this is flag is
   459   // false, it is safe not to push them on the stack(s).
   460   bool      _should_gray_objects;
   462   // All of these times are in ms.
   463   NumberSeq _init_times;
   464   NumberSeq _remark_times;
   465   NumberSeq   _remark_mark_times;
   466   NumberSeq   _remark_weak_ref_times;
   467   NumberSeq _cleanup_times;
   468   double    _total_counting_time;
   469   double    _total_rs_scrub_time;
   471   double*   _accum_task_vtime;   // accumulated task vtime
   473   FlexibleWorkGang* _parallel_workers;
   475   ForceOverflowSettings _force_overflow_conc;
   476   ForceOverflowSettings _force_overflow_stw;
   478   void weakRefsWork(bool clear_all_soft_refs);
   480   void swapMarkBitMaps();
   482   // It resets the global marking data structures, as well as the
   483   // task local ones; should be called during initial mark.
   484   void reset();
   485   // It resets all the marking data structures.
   486   void clear_marking_state(bool clear_overflow = true);
   488   // It should be called to indicate which phase we're in (concurrent
   489   // mark or remark) and how many threads are currently active.
   490   void set_phase(uint active_tasks, bool concurrent);
   491   // We do this after we're done with marking so that the marking data
   492   // structures are initialised to a sensible and predictable state.
   493   void set_non_marking_state();
   495   // prints all gathered CM-related statistics
   496   void print_stats();
   498   bool cleanup_list_is_empty() {
   499     return _cleanup_list.is_empty();
   500   }
   502   // accessor methods
   503   uint parallel_marking_threads() { return _parallel_marking_threads; }
   504   uint max_parallel_marking_threads() { return _max_parallel_marking_threads;}
   505   double sleep_factor()             { return _sleep_factor; }
   506   double marking_task_overhead()    { return _marking_task_overhead;}
   507   double cleanup_sleep_factor()     { return _cleanup_sleep_factor; }
   508   double cleanup_task_overhead()    { return _cleanup_task_overhead;}
   510   HeapWord*               finger()        { return _finger;   }
   511   bool                    concurrent()    { return _concurrent; }
   512   uint                    active_tasks()  { return _active_tasks; }
   513   ParallelTaskTerminator* terminator()    { return &_terminator; }
   515   // It claims the next available region to be scanned by a marking
   516   // task. It might return NULL if the next region is empty or we have
   517   // run out of regions. In the latter case, out_of_regions()
   518   // determines whether we've really run out of regions or the task
   519   // should call claim_region() again.  This might seem a bit
   520   // awkward. Originally, the code was written so that claim_region()
   521   // either successfully returned with a non-empty region or there
   522   // were no more regions to be claimed. The problem with this was
   523   // that, in certain circumstances, it iterated over large chunks of
   524   // the heap finding only empty regions and, while it was working, it
   525   // was preventing the calling task to call its regular clock
   526   // method. So, this way, each task will spend very little time in
   527   // claim_region() and is allowed to call the regular clock method
   528   // frequently.
   529   HeapRegion* claim_region(int task);
   531   // It determines whether we've run out of regions to scan.
   532   bool        out_of_regions() { return _finger == _heap_end; }
   534   // Returns the task with the given id
   535   CMTask* task(int id) {
   536     assert(0 <= id && id < (int) _active_tasks,
   537            "task id not within active bounds");
   538     return _tasks[id];
   539   }
   541   // Returns the task queue with the given id
   542   CMTaskQueue* task_queue(int id) {
   543     assert(0 <= id && id < (int) _active_tasks,
   544            "task queue id not within active bounds");
   545     return (CMTaskQueue*) _task_queues->queue(id);
   546   }
   548   // Returns the task queue set
   549   CMTaskQueueSet* task_queues()  { return _task_queues; }
   551   // Access / manipulation of the overflow flag which is set to
   552   // indicate that the global stack or region stack has overflown
   553   bool has_overflown()           { return _has_overflown; }
   554   void set_has_overflown()       { _has_overflown = true; }
   555   void clear_has_overflown()     { _has_overflown = false; }
   557   bool has_aborted()             { return _has_aborted; }
   558   bool restart_for_overflow()    { return _restart_for_overflow; }
   560   // Methods to enter the two overflow sync barriers
   561   void enter_first_sync_barrier(int task_num);
   562   void enter_second_sync_barrier(int task_num);
   564   ForceOverflowSettings* force_overflow_conc() {
   565     return &_force_overflow_conc;
   566   }
   568   ForceOverflowSettings* force_overflow_stw() {
   569     return &_force_overflow_stw;
   570   }
   572   ForceOverflowSettings* force_overflow() {
   573     if (concurrent()) {
   574       return force_overflow_conc();
   575     } else {
   576       return force_overflow_stw();
   577     }
   578   }
   580   // Live Data Counting data structures...
   581   // These data structures are initialized at the start of
   582   // marking. They are written to while marking is active.
   583   // They are aggregated during remark; the aggregated values
   584   // are then used to populate the _region_bm, _card_bm, and
   585   // the total live bytes, which are then subsequently updated
   586   // during cleanup.
   588   // An array of bitmaps (one bit map per task). Each bitmap
   589   // is used to record the cards spanned by the live objects
   590   // marked by that task/worker.
   591   BitMap*  _count_card_bitmaps;
   593   // Used to record the number of marked live bytes
   594   // (for each region, by worker thread).
   595   size_t** _count_marked_bytes;
   597   // Card index of the bottom of the G1 heap. Used for biasing indices into
   598   // the card bitmaps.
   599   intptr_t _heap_bottom_card_num;
   601 public:
   602   // Manipulation of the global mark stack.
   603   // Notice that the first mark_stack_push is CAS-based, whereas the
   604   // two below are Mutex-based. This is OK since the first one is only
   605   // called during evacuation pauses and doesn't compete with the
   606   // other two (which are called by the marking tasks during
   607   // concurrent marking or remark).
   608   bool mark_stack_push(oop p) {
   609     _markStack.par_push(p);
   610     if (_markStack.overflow()) {
   611       set_has_overflown();
   612       return false;
   613     }
   614     return true;
   615   }
   616   bool mark_stack_push(oop* arr, int n) {
   617     _markStack.par_push_arr(arr, n);
   618     if (_markStack.overflow()) {
   619       set_has_overflown();
   620       return false;
   621     }
   622     return true;
   623   }
   624   void mark_stack_pop(oop* arr, int max, int* n) {
   625     _markStack.par_pop_arr(arr, max, n);
   626   }
   627   size_t mark_stack_size()                { return _markStack.size(); }
   628   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   629   bool mark_stack_overflow()              { return _markStack.overflow(); }
   630   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
   632   // (Lock-free) Manipulation of the region stack
   633   bool region_stack_push_lock_free(MemRegion mr) {
   634     // Currently we only call the lock-free version during evacuation
   635     // pauses.
   636     assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
   638     _regionStack.push_lock_free(mr);
   639     if (_regionStack.overflow()) {
   640       set_has_overflown();
   641       return false;
   642     }
   643     return true;
   644   }
   646   // Lock-free version of region-stack pop. Should only be
   647   // called in tandem with other lock-free pops.
   648   MemRegion region_stack_pop_lock_free() {
   649     return _regionStack.pop_lock_free();
   650   }
   652 #if 0
   653   // The routines that manipulate the region stack with a lock are
   654   // not currently used. They should be retained, however, as a
   655   // diagnostic aid.
   657   bool region_stack_push_with_lock(MemRegion mr) {
   658     // Currently we only call the lock-based version during either
   659     // concurrent marking or remark.
   660     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
   661            "if we are at a safepoint it should be the remark safepoint");
   663     _regionStack.push_with_lock(mr);
   664     if (_regionStack.overflow()) {
   665       set_has_overflown();
   666       return false;
   667     }
   668     return true;
   669   }
   671   MemRegion region_stack_pop_with_lock() {
   672     // Currently we only call the lock-based version during either
   673     // concurrent marking or remark.
   674     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
   675            "if we are at a safepoint it should be the remark safepoint");
   677     return _regionStack.pop_with_lock();
   678   }
   679 #endif
   681   int region_stack_size()               { return _regionStack.size(); }
   682   bool region_stack_overflow()          { return _regionStack.overflow(); }
   683   bool region_stack_empty()             { return _regionStack.isEmpty(); }
   685   // Iterate over any regions that were aborted while draining the
   686   // region stack (any such regions are saved in the corresponding
   687   // CMTask) and invalidate (i.e. assign to the empty MemRegion())
   688   // any regions that point into the collection set.
   689   bool invalidate_aborted_regions_in_cset();
   691   // Returns true if there are any aborted memory regions.
   692   bool has_aborted_regions();
   694   bool concurrent_marking_in_progress() {
   695     return _concurrent_marking_in_progress;
   696   }
   697   void set_concurrent_marking_in_progress() {
   698     _concurrent_marking_in_progress = true;
   699   }
   700   void clear_concurrent_marking_in_progress() {
   701     _concurrent_marking_in_progress = false;
   702   }
   704   void update_accum_task_vtime(int i, double vtime) {
   705     _accum_task_vtime[i] += vtime;
   706   }
   708   double all_task_accum_vtime() {
   709     double ret = 0.0;
   710     for (int i = 0; i < (int)_max_task_num; ++i)
   711       ret += _accum_task_vtime[i];
   712     return ret;
   713   }
   715   // Attempts to steal an object from the task queues of other tasks
   716   bool try_stealing(int task_num, int* hash_seed, oop& obj) {
   717     return _task_queues->steal(task_num, hash_seed, obj);
   718   }
   720   // It grays an object by first marking it. Then, if it's behind the
   721   // global finger, it also pushes it on the global stack.
   722   void deal_with_reference(oop obj);
   724   ConcurrentMark(ReservedSpace rs, int max_regions);
   725   ~ConcurrentMark();
   727   ConcurrentMarkThread* cmThread() { return _cmThread; }
   729   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   730   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   732   // Returns the number of GC threads to be used in a concurrent
   733   // phase based on the number of GC threads being used in a STW
   734   // phase.
   735   uint scale_parallel_threads(uint n_par_threads);
   737   // Calculates the number of GC threads to be used in a concurrent phase.
   738   uint calc_parallel_marking_threads();
   740   // The following three are interaction between CM and
   741   // G1CollectedHeap
   743   // This notifies CM that a root during initial-mark needs to be
   744   // grayed. It is MT-safe.
   745   inline void grayRoot(oop obj, size_t word_size, uint worker_id);
   747   // It's used during evacuation pauses to gray a region, if
   748   // necessary, and it's MT-safe. It assumes that the caller has
   749   // marked any objects on that region. If _should_gray_objects is
   750   // true and we're still doing concurrent marking, the region is
   751   // pushed on the region stack, if it is located below the global
   752   // finger, otherwise we do nothing.
   753   void grayRegionIfNecessary(MemRegion mr);
   755   // It's used during evacuation pauses to mark and, if necessary,
   756   // gray a single object and it's MT-safe. It assumes the caller did
   757   // not mark the object. If _should_gray_objects is true and we're
   758   // still doing concurrent marking, the objects is pushed on the
   759   // global stack, if it is located below the global finger, otherwise
   760   // we do nothing.
   761   void markAndGrayObjectIfNecessary(oop p);
   763   // It iterates over the heap and for each object it comes across it
   764   // will dump the contents of its reference fields, as well as
   765   // liveness information for the object and its referents. The dump
   766   // will be written to a file with the following name:
   767   // G1PrintReachableBaseFile + "." + str.
   768   // vo decides whether the prev (vo == UsePrevMarking), the next
   769   // (vo == UseNextMarking) marking information, or the mark word
   770   // (vo == UseMarkWord) will be used to determine the liveness of
   771   // each object / referent.
   772   // If all is true, all objects in the heap will be dumped, otherwise
   773   // only the live ones. In the dump the following symbols / breviations
   774   // are used:
   775   //   M : an explicitly live object (its bitmap bit is set)
   776   //   > : an implicitly live object (over tams)
   777   //   O : an object outside the G1 heap (typically: in the perm gen)
   778   //   NOT : a reference field whose referent is not live
   779   //   AND MARKED : indicates that an object is both explicitly and
   780   //   implicitly live (it should be one or the other, not both)
   781   void print_reachable(const char* str,
   782                        VerifyOption vo, bool all) PRODUCT_RETURN;
   784   // Clear the next marking bitmap (will be called concurrently).
   785   void clearNextBitmap();
   787   // These two do the work that needs to be done before and after the
   788   // initial root checkpoint. Since this checkpoint can be done at two
   789   // different points (i.e. an explicit pause or piggy-backed on a
   790   // young collection), then it's nice to be able to easily share the
   791   // pre/post code. It might be the case that we can put everything in
   792   // the post method. TP
   793   void checkpointRootsInitialPre();
   794   void checkpointRootsInitialPost();
   796   // Do concurrent phase of marking, to a tentative transitive closure.
   797   void markFromRoots();
   799   // Process all unprocessed SATB buffers. It is called at the
   800   // beginning of an evacuation pause.
   801   void drainAllSATBBuffers();
   803   void checkpointRootsFinal(bool clear_all_soft_refs);
   804   void checkpointRootsFinalWork();
   805   void cleanup();
   806   void completeCleanup();
   808   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   809   // this carefully!
   810   inline void markPrev(oop p);
   812   // Clears marks for all objects in the given range, for the prev,
   813   // next, or both bitmaps.  NB: the previous bitmap is usually
   814   // read-only, so use this carefully!
   815   void clearRangePrevBitmap(MemRegion mr);
   816   void clearRangeNextBitmap(MemRegion mr);
   817   void clearRangeBothBitmaps(MemRegion mr);
   819   // Notify data structures that a GC has started.
   820   void note_start_of_gc() {
   821     _markStack.note_start_of_gc();
   822   }
   824   // Notify data structures that a GC is finished.
   825   void note_end_of_gc() {
   826     _markStack.note_end_of_gc();
   827   }
   829   // Iterate over the oops in the mark stack and all local queues. It
   830   // also calls invalidate_entries_into_cset() on the region stack.
   831   void oops_do(OopClosure* f);
   833   // Verify that there are no CSet oops on the stacks (taskqueues /
   834   // global mark stack), enqueued SATB buffers, per-thread SATB
   835   // buffers, and fingers (global / per-task). The boolean parameters
   836   // decide which of the above data structures to verify. If marking
   837   // is not in progress, it's a no-op.
   838   void verify_no_cset_oops(bool verify_stacks,
   839                            bool verify_enqueued_buffers,
   840                            bool verify_thread_buffers,
   841                            bool verify_fingers) PRODUCT_RETURN;
   843   // It is called at the end of an evacuation pause during marking so
   844   // that CM is notified of where the new end of the heap is. It
   845   // doesn't do anything if concurrent_marking_in_progress() is false,
   846   // unless the force parameter is true.
   847   void update_g1_committed(bool force = false);
   849   void complete_marking_in_collection_set();
   851   // It indicates that a new collection set is being chosen.
   852   void newCSet();
   854   // It registers a collection set heap region with CM. This is used
   855   // to determine whether any heap regions are located above the finger.
   856   void registerCSetRegion(HeapRegion* hr);
   858   // Resets the region fields of any active CMTask whose region fields
   859   // are in the collection set (i.e. the region currently claimed by
   860   // the CMTask will be evacuated and may be used, subsequently, as
   861   // an alloc region). When this happens the region fields in the CMTask
   862   // are stale and, hence, should be cleared causing the worker thread
   863   // to claim a new region.
   864   void reset_active_task_region_fields_in_cset();
   866   // Registers the maximum region-end associated with a set of
   867   // regions with CM. Again this is used to determine whether any
   868   // heap regions are located above the finger.
   869   void register_collection_set_finger(HeapWord* max_finger) {
   870     // max_finger is the highest heap region end of the regions currently
   871     // contained in the collection set. If this value is larger than
   872     // _min_finger then we need to gray objects.
   873     // This routine is like registerCSetRegion but for an entire
   874     // collection of regions.
   875     if (max_finger > _min_finger) {
   876       _should_gray_objects = true;
   877     }
   878   }
   880   // Returns "true" if at least one mark has been completed.
   881   bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
   883   bool isMarked(oop p) const {
   884     assert(p != NULL && p->is_oop(), "expected an oop");
   885     HeapWord* addr = (HeapWord*)p;
   886     assert(addr >= _nextMarkBitMap->startWord() ||
   887            addr < _nextMarkBitMap->endWord(), "in a region");
   889     return _nextMarkBitMap->isMarked(addr);
   890   }
   892   inline bool not_yet_marked(oop p) const;
   894   // XXX Debug code
   895   bool containing_card_is_marked(void* p);
   896   bool containing_cards_are_marked(void* start, void* last);
   898   bool isPrevMarked(oop p) const {
   899     assert(p != NULL && p->is_oop(), "expected an oop");
   900     HeapWord* addr = (HeapWord*)p;
   901     assert(addr >= _prevMarkBitMap->startWord() ||
   902            addr < _prevMarkBitMap->endWord(), "in a region");
   904     return _prevMarkBitMap->isMarked(addr);
   905   }
   907   inline bool do_yield_check(uint worker_i = 0);
   908   inline bool should_yield();
   910   // Called to abort the marking cycle after a Full GC takes palce.
   911   void abort();
   913   // This prints the global/local fingers. It is used for debugging.
   914   NOT_PRODUCT(void print_finger();)
   916   void print_summary_info();
   918   void print_worker_threads_on(outputStream* st) const;
   920   // The following indicate whether a given verbose level has been
   921   // set. Notice that anything above stats is conditional to
   922   // _MARKING_VERBOSE_ having been set to 1
   923   bool verbose_stats() {
   924     return _verbose_level >= stats_verbose;
   925   }
   926   bool verbose_low() {
   927     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
   928   }
   929   bool verbose_medium() {
   930     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
   931   }
   932   bool verbose_high() {
   933     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
   934   }
   936   // Counting data structure accessors
   938   // Returns the card number of the bottom of the G1 heap.
   939   // Used in biasing indices into accounting card bitmaps.
   940   intptr_t heap_bottom_card_num() const {
   941     return _heap_bottom_card_num;
   942   }
   944   // Returns the card bitmap for a given task or worker id.
   945   BitMap* count_card_bitmap_for(uint worker_id) {
   946     assert(0 <= worker_id && worker_id < _max_task_num, "oob");
   947     assert(_count_card_bitmaps != NULL, "uninitialized");
   948     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
   949     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
   950     return task_card_bm;
   951   }
   953   // Returns the array containing the marked bytes for each region,
   954   // for the given worker or task id.
   955   size_t* count_marked_bytes_array_for(uint worker_id) {
   956     assert(0 <= worker_id && worker_id < _max_task_num, "oob");
   957     assert(_count_marked_bytes != NULL, "uninitialized");
   958     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
   959     assert(marked_bytes_array != NULL, "uninitialized");
   960     return marked_bytes_array;
   961   }
   963   // Returns the index in the liveness accounting card table bitmap
   964   // for the given address
   965   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
   967   // Counts the size of the given memory region in the the given
   968   // marked_bytes array slot for the given HeapRegion.
   969   // Sets the bits in the given card bitmap that are associated with the
   970   // cards that are spanned by the memory region.
   971   inline void count_region(MemRegion mr, HeapRegion* hr,
   972                            size_t* marked_bytes_array,
   973                            BitMap* task_card_bm);
   975   // Counts the given memory region in the task/worker counting
   976   // data structures for the given worker id.
   977   inline void count_region(MemRegion mr, uint worker_id);
   979   // Counts the given object in the given task/worker counting
   980   // data structures.
   981   inline void count_object(oop obj, HeapRegion* hr,
   982                            size_t* marked_bytes_array,
   983                            BitMap* task_card_bm);
   985   // Counts the given object in the task/worker counting data
   986   // structures for the given worker id.
   987   inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
   989   // Attempts to mark the given object and, if successful, counts
   990   // the object in the given task/worker counting structures.
   991   inline bool par_mark_and_count(oop obj, HeapRegion* hr,
   992                                  size_t* marked_bytes_array,
   993                                  BitMap* task_card_bm);
   995   // Attempts to mark the given object and, if successful, counts
   996   // the object in the task/worker counting structures for the
   997   // given worker id.
   998   inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
  1000   // Similar to the above routine but we don't know the heap region that
  1001   // contains the object to be marked/counted, which this routine looks up.
  1002   inline bool par_mark_and_count(oop obj, uint worker_id);
  1004   // Similar to the above routine but there are times when we cannot
  1005   // safely calculate the size of obj due to races and we, therefore,
  1006   // pass the size in as a parameter. It is the caller's reponsibility
  1007   // to ensure that the size passed in for obj is valid.
  1008   inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
  1010   // Unconditionally mark the given object, and unconditinally count
  1011   // the object in the counting structures for worker id 0.
  1012   // Should *not* be called from parallel code.
  1013   inline bool mark_and_count(oop obj, HeapRegion* hr);
  1015   // Similar to the above routine but we don't know the heap region that
  1016   // contains the object to be marked/counted, which this routine looks up.
  1017   // Should *not* be called from parallel code.
  1018   inline bool mark_and_count(oop obj);
  1020 protected:
  1021   // Clear all the per-task bitmaps and arrays used to store the
  1022   // counting data.
  1023   void clear_all_count_data();
  1025   // Aggregates the counting data for each worker/task
  1026   // that was constructed while marking. Also sets
  1027   // the amount of marked bytes for each region and
  1028   // the top at concurrent mark count.
  1029   void aggregate_count_data();
  1031   // Verification routine
  1032   void verify_count_data();
  1033 };
  1035 // A class representing a marking task.
  1036 class CMTask : public TerminatorTerminator {
  1037 private:
  1038   enum PrivateConstants {
  1039     // the regular clock call is called once the scanned words reaches
  1040     // this limit
  1041     words_scanned_period          = 12*1024,
  1042     // the regular clock call is called once the number of visited
  1043     // references reaches this limit
  1044     refs_reached_period           = 384,
  1045     // initial value for the hash seed, used in the work stealing code
  1046     init_hash_seed                = 17,
  1047     // how many entries will be transferred between global stack and
  1048     // local queues
  1049     global_stack_transfer_size    = 16
  1050   };
  1052   int                         _task_id;
  1053   G1CollectedHeap*            _g1h;
  1054   ConcurrentMark*             _cm;
  1055   CMBitMap*                   _nextMarkBitMap;
  1056   // the task queue of this task
  1057   CMTaskQueue*                _task_queue;
  1058 private:
  1059   // the task queue set---needed for stealing
  1060   CMTaskQueueSet*             _task_queues;
  1061   // indicates whether the task has been claimed---this is only  for
  1062   // debugging purposes
  1063   bool                        _claimed;
  1065   // number of calls to this task
  1066   int                         _calls;
  1068   // when the virtual timer reaches this time, the marking step should
  1069   // exit
  1070   double                      _time_target_ms;
  1071   // the start time of the current marking step
  1072   double                      _start_time_ms;
  1074   // the oop closure used for iterations over oops
  1075   G1CMOopClosure*             _cm_oop_closure;
  1077   // the region this task is scanning, NULL if we're not scanning any
  1078   HeapRegion*                 _curr_region;
  1079   // the local finger of this task, NULL if we're not scanning a region
  1080   HeapWord*                   _finger;
  1081   // limit of the region this task is scanning, NULL if we're not scanning one
  1082   HeapWord*                   _region_limit;
  1084   // This is used only when we scan regions popped from the region
  1085   // stack. It records what the last object on such a region we
  1086   // scanned was. It is used to ensure that, if we abort region
  1087   // iteration, we do not rescan the first part of the region. This
  1088   // should be NULL when we're not scanning a region from the region
  1089   // stack.
  1090   HeapWord*                   _region_finger;
  1092   // If we abort while scanning a region we record the remaining
  1093   // unscanned portion and check this field when marking restarts.
  1094   // This avoids having to push on the region stack while other
  1095   // marking threads may still be popping regions.
  1096   // If we were to push the unscanned portion directly to the
  1097   // region stack then we would need to using locking versions
  1098   // of the push and pop operations.
  1099   MemRegion                   _aborted_region;
  1101   // the number of words this task has scanned
  1102   size_t                      _words_scanned;
  1103   // When _words_scanned reaches this limit, the regular clock is
  1104   // called. Notice that this might be decreased under certain
  1105   // circumstances (i.e. when we believe that we did an expensive
  1106   // operation).
  1107   size_t                      _words_scanned_limit;
  1108   // the initial value of _words_scanned_limit (i.e. what it was
  1109   // before it was decreased).
  1110   size_t                      _real_words_scanned_limit;
  1112   // the number of references this task has visited
  1113   size_t                      _refs_reached;
  1114   // When _refs_reached reaches this limit, the regular clock is
  1115   // called. Notice this this might be decreased under certain
  1116   // circumstances (i.e. when we believe that we did an expensive
  1117   // operation).
  1118   size_t                      _refs_reached_limit;
  1119   // the initial value of _refs_reached_limit (i.e. what it was before
  1120   // it was decreased).
  1121   size_t                      _real_refs_reached_limit;
  1123   // used by the work stealing stuff
  1124   int                         _hash_seed;
  1125   // if this is true, then the task has aborted for some reason
  1126   bool                        _has_aborted;
  1127   // set when the task aborts because it has met its time quota
  1128   bool                        _has_timed_out;
  1129   // true when we're draining SATB buffers; this avoids the task
  1130   // aborting due to SATB buffers being available (as we're already
  1131   // dealing with them)
  1132   bool                        _draining_satb_buffers;
  1134   // number sequence of past step times
  1135   NumberSeq                   _step_times_ms;
  1136   // elapsed time of this task
  1137   double                      _elapsed_time_ms;
  1138   // termination time of this task
  1139   double                      _termination_time_ms;
  1140   // when this task got into the termination protocol
  1141   double                      _termination_start_time_ms;
  1143   // true when the task is during a concurrent phase, false when it is
  1144   // in the remark phase (so, in the latter case, we do not have to
  1145   // check all the things that we have to check during the concurrent
  1146   // phase, i.e. SATB buffer availability...)
  1147   bool                        _concurrent;
  1149   TruncatedSeq                _marking_step_diffs_ms;
  1151   // Counting data structures. Embedding the task's marked_bytes_array
  1152   // and card bitmap into the actual task saves having to go through
  1153   // the ConcurrentMark object.
  1154   size_t*                     _marked_bytes_array;
  1155   BitMap*                     _card_bm;
  1157   // LOTS of statistics related with this task
  1158 #if _MARKING_STATS_
  1159   NumberSeq                   _all_clock_intervals_ms;
  1160   double                      _interval_start_time_ms;
  1162   int                         _aborted;
  1163   int                         _aborted_overflow;
  1164   int                         _aborted_cm_aborted;
  1165   int                         _aborted_yield;
  1166   int                         _aborted_timed_out;
  1167   int                         _aborted_satb;
  1168   int                         _aborted_termination;
  1170   int                         _steal_attempts;
  1171   int                         _steals;
  1173   int                         _clock_due_to_marking;
  1174   int                         _clock_due_to_scanning;
  1176   int                         _local_pushes;
  1177   int                         _local_pops;
  1178   int                         _local_max_size;
  1179   int                         _objs_scanned;
  1181   int                         _global_pushes;
  1182   int                         _global_pops;
  1183   int                         _global_max_size;
  1185   int                         _global_transfers_to;
  1186   int                         _global_transfers_from;
  1188   int                         _region_stack_pops;
  1190   int                         _regions_claimed;
  1191   int                         _objs_found_on_bitmap;
  1193   int                         _satb_buffers_processed;
  1194 #endif // _MARKING_STATS_
  1196   // it updates the local fields after this task has claimed
  1197   // a new region to scan
  1198   void setup_for_region(HeapRegion* hr);
  1199   // it brings up-to-date the limit of the region
  1200   void update_region_limit();
  1202   // called when either the words scanned or the refs visited limit
  1203   // has been reached
  1204   void reached_limit();
  1205   // recalculates the words scanned and refs visited limits
  1206   void recalculate_limits();
  1207   // decreases the words scanned and refs visited limits when we reach
  1208   // an expensive operation
  1209   void decrease_limits();
  1210   // it checks whether the words scanned or refs visited reached their
  1211   // respective limit and calls reached_limit() if they have
  1212   void check_limits() {
  1213     if (_words_scanned >= _words_scanned_limit ||
  1214         _refs_reached >= _refs_reached_limit) {
  1215       reached_limit();
  1218   // this is supposed to be called regularly during a marking step as
  1219   // it checks a bunch of conditions that might cause the marking step
  1220   // to abort
  1221   void regular_clock_call();
  1222   bool concurrent() { return _concurrent; }
  1224 public:
  1225   // It resets the task; it should be called right at the beginning of
  1226   // a marking phase.
  1227   void reset(CMBitMap* _nextMarkBitMap);
  1228   // it clears all the fields that correspond to a claimed region.
  1229   void clear_region_fields();
  1231   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
  1233   // The main method of this class which performs a marking step
  1234   // trying not to exceed the given duration. However, it might exit
  1235   // prematurely, according to some conditions (i.e. SATB buffers are
  1236   // available for processing).
  1237   void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
  1239   // These two calls start and stop the timer
  1240   void record_start_time() {
  1241     _elapsed_time_ms = os::elapsedTime() * 1000.0;
  1243   void record_end_time() {
  1244     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
  1247   // returns the task ID
  1248   int task_id() { return _task_id; }
  1250   // From TerminatorTerminator. It determines whether this task should
  1251   // exit the termination protocol after it's entered it.
  1252   virtual bool should_exit_termination();
  1254   // Resets the local region fields after a task has finished scanning a
  1255   // region; or when they have become stale as a result of the region
  1256   // being evacuated.
  1257   void giveup_current_region();
  1259   HeapWord* finger()            { return _finger; }
  1261   bool has_aborted()            { return _has_aborted; }
  1262   void set_has_aborted()        { _has_aborted = true; }
  1263   void clear_has_aborted()      { _has_aborted = false; }
  1264   bool has_timed_out()          { return _has_timed_out; }
  1265   bool claimed()                { return _claimed; }
  1267   // Support routines for the partially scanned region that may be
  1268   // recorded as a result of aborting while draining the CMRegionStack
  1269   MemRegion aborted_region()    { return _aborted_region; }
  1270   void set_aborted_region(MemRegion mr)
  1271                                 { _aborted_region = mr; }
  1273   // Clears any recorded partially scanned region
  1274   void clear_aborted_region()   { set_aborted_region(MemRegion()); }
  1276   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
  1278   // It grays the object by marking it and, if necessary, pushing it
  1279   // on the local queue
  1280   inline void deal_with_reference(oop obj);
  1282   // It scans an object and visits its children.
  1283   void scan_object(oop obj);
  1285   // It pushes an object on the local queue.
  1286   inline void push(oop obj);
  1288   // These two move entries to/from the global stack.
  1289   void move_entries_to_global_stack();
  1290   void get_entries_from_global_stack();
  1292   // It pops and scans objects from the local queue. If partially is
  1293   // true, then it stops when the queue size is of a given limit. If
  1294   // partially is false, then it stops when the queue is empty.
  1295   void drain_local_queue(bool partially);
  1296   // It moves entries from the global stack to the local queue and
  1297   // drains the local queue. If partially is true, then it stops when
  1298   // both the global stack and the local queue reach a given size. If
  1299   // partially if false, it tries to empty them totally.
  1300   void drain_global_stack(bool partially);
  1301   // It keeps picking SATB buffers and processing them until no SATB
  1302   // buffers are available.
  1303   void drain_satb_buffers();
  1305   // It keeps popping regions from the region stack and processing
  1306   // them until the region stack is empty.
  1307   void drain_region_stack(BitMapClosure* closure);
  1309   // moves the local finger to a new location
  1310   inline void move_finger_to(HeapWord* new_finger) {
  1311     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1312     _finger = new_finger;
  1315   // moves the region finger to a new location
  1316   inline void move_region_finger_to(HeapWord* new_finger) {
  1317     assert(new_finger < _cm->finger(), "invariant");
  1318     _region_finger = new_finger;
  1321   CMTask(int task_num, ConcurrentMark *cm,
  1322          size_t* marked_bytes, BitMap* card_bm,
  1323          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1325   // it prints statistics associated with this task
  1326   void print_stats();
  1328 #if _MARKING_STATS_
  1329   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1330 #endif // _MARKING_STATS_
  1331 };
  1333 // Class that's used to to print out per-region liveness
  1334 // information. It's currently used at the end of marking and also
  1335 // after we sort the old regions at the end of the cleanup operation.
  1336 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
  1337 private:
  1338   outputStream* _out;
  1340   // Accumulators for these values.
  1341   size_t _total_used_bytes;
  1342   size_t _total_capacity_bytes;
  1343   size_t _total_prev_live_bytes;
  1344   size_t _total_next_live_bytes;
  1346   // These are set up when we come across a "stars humongous" region
  1347   // (as this is where most of this information is stored, not in the
  1348   // subsequent "continues humongous" regions). After that, for every
  1349   // region in a given humongous region series we deduce the right
  1350   // values for it by simply subtracting the appropriate amount from
  1351   // these fields. All these values should reach 0 after we've visited
  1352   // the last region in the series.
  1353   size_t _hum_used_bytes;
  1354   size_t _hum_capacity_bytes;
  1355   size_t _hum_prev_live_bytes;
  1356   size_t _hum_next_live_bytes;
  1358   static double perc(size_t val, size_t total) {
  1359     if (total == 0) {
  1360       return 0.0;
  1361     } else {
  1362       return 100.0 * ((double) val / (double) total);
  1366   static double bytes_to_mb(size_t val) {
  1367     return (double) val / (double) M;
  1370   // See the .cpp file.
  1371   size_t get_hum_bytes(size_t* hum_bytes);
  1372   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
  1373                      size_t* prev_live_bytes, size_t* next_live_bytes);
  1375 public:
  1376   // The header and footer are printed in the constructor and
  1377   // destructor respectively.
  1378   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
  1379   virtual bool doHeapRegion(HeapRegion* r);
  1380   ~G1PrintRegionLivenessInfoClosure();
  1381 };
  1383 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial