src/share/vm/memory/cardTableModRefBS.hpp

Wed, 11 Aug 2010 05:51:21 -0700

author
twisti
date
Wed, 11 Aug 2010 05:51:21 -0700
changeset 2047
d2ede61b7a12
parent 1907
c18cbe5936b8
child 2314
f95d63e2154a
permissions
-rw-r--r--

6976186: integrate Shark HotSpot changes
Summary: Shark is a JIT compiler for Zero that uses the LLVM compiler infrastructure.
Reviewed-by: kvn, twisti
Contributed-by: Gary Benson <gbenson@redhat.com>

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
    26 // enumerate ref fields that have been modified (since the last
    27 // enumeration.)
    29 // As it currently stands, this barrier is *imprecise*: when a ref field in
    30 // an object "o" is modified, the card table entry for the card containing
    31 // the head of "o" is dirtied, not necessarily the card containing the
    32 // modified field itself.  For object arrays, however, the barrier *is*
    33 // precise; only the card containing the modified element is dirtied.
    34 // Any MemRegionClosures used to scan dirty cards should take these
    35 // considerations into account.
    37 class Generation;
    38 class OopsInGenClosure;
    39 class DirtyCardToOopClosure;
    41 class CardTableModRefBS: public ModRefBarrierSet {
    42   // Some classes get to look at some private stuff.
    43   friend class BytecodeInterpreter;
    44   friend class VMStructs;
    45   friend class CardTableRS;
    46   friend class CheckForUnmarkedOops; // Needs access to raw card bytes.
    47   friend class SharkBuilder;
    48 #ifndef PRODUCT
    49   // For debugging.
    50   friend class GuaranteeNotModClosure;
    51 #endif
    52  protected:
    54   enum CardValues {
    55     clean_card                  = -1,
    56     // The mask contains zeros in places for all other values.
    57     clean_card_mask             = clean_card - 31,
    59     dirty_card                  =  0,
    60     precleaned_card             =  1,
    61     claimed_card                =  2,
    62     deferred_card               =  4,
    63     last_card                   =  8,
    64     CT_MR_BS_last_reserved      = 16
    65   };
    67   // dirty and precleaned are equivalent wrt younger_refs_iter.
    68   static bool card_is_dirty_wrt_gen_iter(jbyte cv) {
    69     return cv == dirty_card || cv == precleaned_card;
    70   }
    72   // Returns "true" iff the value "cv" will cause the card containing it
    73   // to be scanned in the current traversal.  May be overridden by
    74   // subtypes.
    75   virtual bool card_will_be_scanned(jbyte cv) {
    76     return CardTableModRefBS::card_is_dirty_wrt_gen_iter(cv);
    77   }
    79   // Returns "true" iff the value "cv" may have represented a dirty card at
    80   // some point.
    81   virtual bool card_may_have_been_dirty(jbyte cv) {
    82     return card_is_dirty_wrt_gen_iter(cv);
    83   }
    85   // The declaration order of these const fields is important; see the
    86   // constructor before changing.
    87   const MemRegion _whole_heap;       // the region covered by the card table
    88   const size_t    _guard_index;      // index of very last element in the card
    89                                      // table; it is set to a guard value
    90                                      // (last_card) and should never be modified
    91   const size_t    _last_valid_index; // index of the last valid element
    92   const size_t    _page_size;        // page size used when mapping _byte_map
    93   const size_t    _byte_map_size;    // in bytes
    94   jbyte*          _byte_map;         // the card marking array
    96   int _cur_covered_regions;
    97   // The covered regions should be in address order.
    98   MemRegion* _covered;
    99   // The committed regions correspond one-to-one to the covered regions.
   100   // They represent the card-table memory that has been committed to service
   101   // the corresponding covered region.  It may be that committed region for
   102   // one covered region corresponds to a larger region because of page-size
   103   // roundings.  Thus, a committed region for one covered region may
   104   // actually extend onto the card-table space for the next covered region.
   105   MemRegion* _committed;
   107   // The last card is a guard card, and we commit the page for it so
   108   // we can use the card for verification purposes. We make sure we never
   109   // uncommit the MemRegion for that page.
   110   MemRegion _guard_region;
   112  protected:
   113   // Initialization utilities; covered_words is the size of the covered region
   114   // in, um, words.
   115   inline size_t cards_required(size_t covered_words);
   116   inline size_t compute_byte_map_size();
   118   // Finds and return the index of the region, if any, to which the given
   119   // region would be contiguous.  If none exists, assign a new region and
   120   // returns its index.  Requires that no more than the maximum number of
   121   // covered regions defined in the constructor are ever in use.
   122   int find_covering_region_by_base(HeapWord* base);
   124   // Same as above, but finds the region containing the given address
   125   // instead of starting at a given base address.
   126   int find_covering_region_containing(HeapWord* addr);
   128   // Resize one of the regions covered by the remembered set.
   129   void resize_covered_region(MemRegion new_region);
   131   // Returns the leftmost end of a committed region corresponding to a
   132   // covered region before covered region "ind", or else "NULL" if "ind" is
   133   // the first covered region.
   134   HeapWord* largest_prev_committed_end(int ind) const;
   136   // Returns the part of the region mr that doesn't intersect with
   137   // any committed region other than self.  Used to prevent uncommitting
   138   // regions that are also committed by other regions.  Also protects
   139   // against uncommitting the guard region.
   140   MemRegion committed_unique_to_self(int self, MemRegion mr) const;
   142   // Mapping from address to card marking array entry
   143   jbyte* byte_for(const void* p) const {
   144     assert(_whole_heap.contains(p),
   145            "out of bounds access to card marking array");
   146     jbyte* result = &byte_map_base[uintptr_t(p) >> card_shift];
   147     assert(result >= _byte_map && result < _byte_map + _byte_map_size,
   148            "out of bounds accessor for card marking array");
   149     return result;
   150   }
   152   // The card table byte one after the card marking array
   153   // entry for argument address. Typically used for higher bounds
   154   // for loops iterating through the card table.
   155   jbyte* byte_after(const void* p) const {
   156     return byte_for(p) + 1;
   157   }
   159   // Iterate over the portion of the card-table which covers the given
   160   // region mr in the given space and apply cl to any dirty sub-regions
   161   // of mr. cl and dcto_cl must either be the same closure or cl must
   162   // wrap dcto_cl. Both are required - neither may be NULL. Also, dcto_cl
   163   // may be modified. Note that this function will operate in a parallel
   164   // mode if worker threads are available.
   165   void non_clean_card_iterate(Space* sp, MemRegion mr,
   166                               DirtyCardToOopClosure* dcto_cl,
   167                               MemRegionClosure* cl,
   168                               bool clear);
   170   // Utility function used to implement the other versions below.
   171   void non_clean_card_iterate_work(MemRegion mr, MemRegionClosure* cl,
   172                                    bool clear);
   174   void par_non_clean_card_iterate_work(Space* sp, MemRegion mr,
   175                                        DirtyCardToOopClosure* dcto_cl,
   176                                        MemRegionClosure* cl,
   177                                        bool clear,
   178                                        int n_threads);
   180   // Dirty the bytes corresponding to "mr" (not all of which must be
   181   // covered.)
   182   void dirty_MemRegion(MemRegion mr);
   184   // Clear (to clean_card) the bytes entirely contained within "mr" (not
   185   // all of which must be covered.)
   186   void clear_MemRegion(MemRegion mr);
   188   // *** Support for parallel card scanning.
   190   enum SomeConstantsForParallelism {
   191     StridesPerThread    = 2,
   192     CardsPerStrideChunk = 256
   193   };
   195   // This is an array, one element per covered region of the card table.
   196   // Each entry is itself an array, with one element per chunk in the
   197   // covered region.  Each entry of these arrays is the lowest non-clean
   198   // card of the corresponding chunk containing part of an object from the
   199   // previous chunk, or else NULL.
   200   typedef jbyte*  CardPtr;
   201   typedef CardPtr* CardArr;
   202   CardArr* _lowest_non_clean;
   203   size_t*  _lowest_non_clean_chunk_size;
   204   uintptr_t* _lowest_non_clean_base_chunk_index;
   205   int* _last_LNC_resizing_collection;
   207   // Initializes "lowest_non_clean" to point to the array for the region
   208   // covering "sp", and "lowest_non_clean_base_chunk_index" to the chunk
   209   // index of the corresponding to the first element of that array.
   210   // Ensures that these arrays are of sufficient size, allocating if necessary.
   211   // May be called by several threads concurrently.
   212   void get_LNC_array_for_space(Space* sp,
   213                                jbyte**& lowest_non_clean,
   214                                uintptr_t& lowest_non_clean_base_chunk_index,
   215                                size_t& lowest_non_clean_chunk_size);
   217   // Returns the number of chunks necessary to cover "mr".
   218   size_t chunks_to_cover(MemRegion mr) {
   219     return (size_t)(addr_to_chunk_index(mr.last()) -
   220                     addr_to_chunk_index(mr.start()) + 1);
   221   }
   223   // Returns the index of the chunk in a stride which
   224   // covers the given address.
   225   uintptr_t addr_to_chunk_index(const void* addr) {
   226     uintptr_t card = (uintptr_t) byte_for(addr);
   227     return card / CardsPerStrideChunk;
   228   }
   230   // Apply cl, which must either itself apply dcto_cl or be dcto_cl,
   231   // to the cards in the stride (of n_strides) within the given space.
   232   void process_stride(Space* sp,
   233                       MemRegion used,
   234                       jint stride, int n_strides,
   235                       DirtyCardToOopClosure* dcto_cl,
   236                       MemRegionClosure* cl,
   237                       bool clear,
   238                       jbyte** lowest_non_clean,
   239                       uintptr_t lowest_non_clean_base_chunk_index,
   240                       size_t lowest_non_clean_chunk_size);
   242   // Makes sure that chunk boundaries are handled appropriately, by
   243   // adjusting the min_done of dcto_cl, and by using a special card-table
   244   // value to indicate how min_done should be set.
   245   void process_chunk_boundaries(Space* sp,
   246                                 DirtyCardToOopClosure* dcto_cl,
   247                                 MemRegion chunk_mr,
   248                                 MemRegion used,
   249                                 jbyte** lowest_non_clean,
   250                                 uintptr_t lowest_non_clean_base_chunk_index,
   251                                 size_t    lowest_non_clean_chunk_size);
   253 public:
   254   // Constants
   255   enum SomePublicConstants {
   256     card_shift                  = 9,
   257     card_size                   = 1 << card_shift,
   258     card_size_in_words          = card_size / sizeof(HeapWord)
   259   };
   261   static int clean_card_val()      { return clean_card; }
   262   static int clean_card_mask_val() { return clean_card_mask; }
   263   static int dirty_card_val()      { return dirty_card; }
   264   static int claimed_card_val()    { return claimed_card; }
   265   static int precleaned_card_val() { return precleaned_card; }
   266   static int deferred_card_val()   { return deferred_card; }
   268   // For RTTI simulation.
   269   bool is_a(BarrierSet::Name bsn) {
   270     return bsn == BarrierSet::CardTableModRef || ModRefBarrierSet::is_a(bsn);
   271   }
   273   CardTableModRefBS(MemRegion whole_heap, int max_covered_regions);
   275   // *** Barrier set functions.
   277   bool has_write_ref_pre_barrier() { return false; }
   279   inline bool write_ref_needs_barrier(void* field, oop new_val) {
   280     // Note that this assumes the perm gen is the highest generation
   281     // in the address space
   282     return new_val != NULL && !new_val->is_perm();
   283   }
   285   // Record a reference update. Note that these versions are precise!
   286   // The scanning code has to handle the fact that the write barrier may be
   287   // either precise or imprecise. We make non-virtual inline variants of
   288   // these functions here for performance.
   289 protected:
   290   void write_ref_field_work(oop obj, size_t offset, oop newVal);
   291   virtual void write_ref_field_work(void* field, oop newVal);
   292 public:
   294   bool has_write_ref_array_opt() { return true; }
   295   bool has_write_region_opt() { return true; }
   297   inline void inline_write_region(MemRegion mr) {
   298     dirty_MemRegion(mr);
   299   }
   300 protected:
   301   void write_region_work(MemRegion mr) {
   302     inline_write_region(mr);
   303   }
   304 public:
   306   inline void inline_write_ref_array(MemRegion mr) {
   307     dirty_MemRegion(mr);
   308   }
   309 protected:
   310   void write_ref_array_work(MemRegion mr) {
   311     inline_write_ref_array(mr);
   312   }
   313 public:
   315   bool is_aligned(HeapWord* addr) {
   316     return is_card_aligned(addr);
   317   }
   319   // *** Card-table-barrier-specific things.
   321   template <class T> inline void inline_write_ref_field_pre(T* field, oop newVal) {}
   323   template <class T> inline void inline_write_ref_field(T* field, oop newVal) {
   324     jbyte* byte = byte_for((void*)field);
   325     *byte = dirty_card;
   326   }
   328   // These are used by G1, when it uses the card table as a temporary data
   329   // structure for card claiming.
   330   bool is_card_dirty(size_t card_index) {
   331     return _byte_map[card_index] == dirty_card_val();
   332   }
   334   void mark_card_dirty(size_t card_index) {
   335     _byte_map[card_index] = dirty_card_val();
   336   }
   338   bool is_card_claimed(size_t card_index) {
   339     jbyte val = _byte_map[card_index];
   340     return (val & (clean_card_mask_val() | claimed_card_val())) == claimed_card_val();
   341   }
   343   void set_card_claimed(size_t card_index) {
   344       jbyte val = _byte_map[card_index];
   345       if (val == clean_card_val()) {
   346         val = (jbyte)claimed_card_val();
   347       } else {
   348         val |= (jbyte)claimed_card_val();
   349       }
   350       _byte_map[card_index] = val;
   351   }
   353   bool claim_card(size_t card_index);
   355   bool is_card_clean(size_t card_index) {
   356     return _byte_map[card_index] == clean_card_val();
   357   }
   359   bool is_card_deferred(size_t card_index) {
   360     jbyte val = _byte_map[card_index];
   361     return (val & (clean_card_mask_val() | deferred_card_val())) == deferred_card_val();
   362   }
   364   bool mark_card_deferred(size_t card_index);
   366   // Card marking array base (adjusted for heap low boundary)
   367   // This would be the 0th element of _byte_map, if the heap started at 0x0.
   368   // But since the heap starts at some higher address, this points to somewhere
   369   // before the beginning of the actual _byte_map.
   370   jbyte* byte_map_base;
   372   // Return true if "p" is at the start of a card.
   373   bool is_card_aligned(HeapWord* p) {
   374     jbyte* pcard = byte_for(p);
   375     return (addr_for(pcard) == p);
   376   }
   378   // The kinds of precision a CardTableModRefBS may offer.
   379   enum PrecisionStyle {
   380     Precise,
   381     ObjHeadPreciseArray
   382   };
   384   // Tells what style of precision this card table offers.
   385   PrecisionStyle precision() {
   386     return ObjHeadPreciseArray; // Only one supported for now.
   387   }
   389   // ModRefBS functions.
   390   virtual void invalidate(MemRegion mr, bool whole_heap = false);
   391   void clear(MemRegion mr);
   392   void dirty(MemRegion mr);
   393   void mod_oop_in_space_iterate(Space* sp, OopClosure* cl,
   394                                 bool clear = false,
   395                                 bool before_save_marks = false);
   397   // *** Card-table-RemSet-specific things.
   399   // Invoke "cl.do_MemRegion" on a set of MemRegions that collectively
   400   // includes all the modified cards (expressing each card as a
   401   // MemRegion).  Thus, several modified cards may be lumped into one
   402   // region.  The regions are non-overlapping, and are visited in
   403   // *decreasing* address order.  (This order aids with imprecise card
   404   // marking, where a dirty card may cause scanning, and summarization
   405   // marking, of objects that extend onto subsequent cards.)
   406   // If "clear" is true, the card is (conceptually) marked unmodified before
   407   // applying the closure.
   408   void mod_card_iterate(MemRegionClosure* cl, bool clear = false) {
   409     non_clean_card_iterate_work(_whole_heap, cl, clear);
   410   }
   412   // Like the "mod_cards_iterate" above, except only invokes the closure
   413   // for cards within the MemRegion "mr" (which is required to be
   414   // card-aligned and sized.)
   415   void mod_card_iterate(MemRegion mr, MemRegionClosure* cl,
   416                         bool clear = false) {
   417     non_clean_card_iterate_work(mr, cl, clear);
   418   }
   420   static uintx ct_max_alignment_constraint();
   422   // Apply closure "cl" to the dirty cards containing some part of
   423   // MemRegion "mr".
   424   void dirty_card_iterate(MemRegion mr, MemRegionClosure* cl);
   426   // Return the MemRegion corresponding to the first maximal run
   427   // of dirty cards lying completely within MemRegion mr.
   428   // If reset is "true", then sets those card table entries to the given
   429   // value.
   430   MemRegion dirty_card_range_after_reset(MemRegion mr, bool reset,
   431                                          int reset_val);
   433   // Set all the dirty cards in the given region to precleaned state.
   434   void preclean_dirty_cards(MemRegion mr);
   436   // Provide read-only access to the card table array.
   437   const jbyte* byte_for_const(const void* p) const {
   438     return byte_for(p);
   439   }
   440   const jbyte* byte_after_const(const void* p) const {
   441     return byte_after(p);
   442   }
   444   // Mapping from card marking array entry to address of first word
   445   HeapWord* addr_for(const jbyte* p) const {
   446     assert(p >= _byte_map && p < _byte_map + _byte_map_size,
   447            "out of bounds access to card marking array");
   448     size_t delta = pointer_delta(p, byte_map_base, sizeof(jbyte));
   449     HeapWord* result = (HeapWord*) (delta << card_shift);
   450     assert(_whole_heap.contains(result),
   451            "out of bounds accessor from card marking array");
   452     return result;
   453   }
   455   // Mapping from address to card marking array index.
   456   size_t index_for(void* p) {
   457     assert(_whole_heap.contains(p),
   458            "out of bounds access to card marking array");
   459     return byte_for(p) - _byte_map;
   460   }
   462   const jbyte* byte_for_index(const size_t card_index) const {
   463     return _byte_map + card_index;
   464   }
   466   void verify();
   467   void verify_guard();
   469   void verify_clean_region(MemRegion mr) PRODUCT_RETURN;
   470   void verify_dirty_region(MemRegion mr) PRODUCT_RETURN;
   472   static size_t par_chunk_heapword_alignment() {
   473     return CardsPerStrideChunk * card_size_in_words;
   474   }
   476 };
   478 class CardTableRS;
   480 // A specialization for the CardTableRS gen rem set.
   481 class CardTableModRefBSForCTRS: public CardTableModRefBS {
   482   CardTableRS* _rs;
   483 protected:
   484   bool card_will_be_scanned(jbyte cv);
   485   bool card_may_have_been_dirty(jbyte cv);
   486 public:
   487   CardTableModRefBSForCTRS(MemRegion whole_heap,
   488                            int max_covered_regions) :
   489     CardTableModRefBS(whole_heap, max_covered_regions) {}
   491   void set_CTRS(CardTableRS* rs) { _rs = rs; }
   492 };

mercurial