src/share/vm/opto/callnode.hpp

Mon, 09 Mar 2020 17:41:30 +0100

author
roland
date
Mon, 09 Mar 2020 17:41:30 +0100
changeset 9957
d2ec2776ad0c
parent 8723
9f5da1a1724c
child 10015
eb7ce841ccec
permissions
-rw-r--r--

8214862: assert(proj != __null) at compile.cpp:3251
Reviewed-by: kvn, thartmann

     1 /*
     2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
    26 #define SHARE_VM_OPTO_CALLNODE_HPP
    28 #include "opto/connode.hpp"
    29 #include "opto/mulnode.hpp"
    30 #include "opto/multnode.hpp"
    31 #include "opto/opcodes.hpp"
    32 #include "opto/phaseX.hpp"
    33 #include "opto/replacednodes.hpp"
    34 #include "opto/type.hpp"
    36 // Portions of code courtesy of Clifford Click
    38 // Optimization - Graph Style
    40 class Chaitin;
    41 class NamedCounter;
    42 class MultiNode;
    43 class  SafePointNode;
    44 class   CallNode;
    45 class     CallJavaNode;
    46 class       CallStaticJavaNode;
    47 class       CallDynamicJavaNode;
    48 class     CallRuntimeNode;
    49 class       CallLeafNode;
    50 class         CallLeafNoFPNode;
    51 class     AllocateNode;
    52 class       AllocateArrayNode;
    53 class     BoxLockNode;
    54 class     LockNode;
    55 class     UnlockNode;
    56 class JVMState;
    57 class OopMap;
    58 class State;
    59 class StartNode;
    60 class MachCallNode;
    61 class FastLockNode;
    63 //------------------------------StartNode--------------------------------------
    64 // The method start node
    65 class StartNode : public MultiNode {
    66   virtual uint cmp( const Node &n ) const;
    67   virtual uint size_of() const; // Size is bigger
    68 public:
    69   const TypeTuple *_domain;
    70   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    71     init_class_id(Class_Start);
    72     init_req(0,this);
    73     init_req(1,root);
    74   }
    75   virtual int Opcode() const;
    76   virtual bool pinned() const { return true; };
    77   virtual const Type *bottom_type() const;
    78   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
    79   virtual const Type *Value( PhaseTransform *phase ) const;
    80   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    81   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
    82   virtual const RegMask &in_RegMask(uint) const;
    83   virtual Node *match( const ProjNode *proj, const Matcher *m );
    84   virtual uint ideal_reg() const { return 0; }
    85 #ifndef PRODUCT
    86   virtual void  dump_spec(outputStream *st) const;
    87 #endif
    88 };
    90 //------------------------------StartOSRNode-----------------------------------
    91 // The method start node for on stack replacement code
    92 class StartOSRNode : public StartNode {
    93 public:
    94   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
    95   virtual int   Opcode() const;
    96   static  const TypeTuple *osr_domain();
    97 };
   100 //------------------------------ParmNode---------------------------------------
   101 // Incoming parameters
   102 class ParmNode : public ProjNode {
   103   static const char * const names[TypeFunc::Parms+1];
   104 public:
   105   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
   106     init_class_id(Class_Parm);
   107   }
   108   virtual int Opcode() const;
   109   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
   110   virtual uint ideal_reg() const;
   111 #ifndef PRODUCT
   112   virtual void dump_spec(outputStream *st) const;
   113 #endif
   114 };
   117 //------------------------------ReturnNode-------------------------------------
   118 // Return from subroutine node
   119 class ReturnNode : public Node {
   120 public:
   121   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
   122   virtual int Opcode() const;
   123   virtual bool  is_CFG() const { return true; }
   124   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   125   virtual bool depends_only_on_test() const { return false; }
   126   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   127   virtual const Type *Value( PhaseTransform *phase ) const;
   128   virtual uint ideal_reg() const { return NotAMachineReg; }
   129   virtual uint match_edge(uint idx) const;
   130 #ifndef PRODUCT
   131   virtual void dump_req(outputStream *st = tty) const;
   132 #endif
   133 };
   136 //------------------------------RethrowNode------------------------------------
   137 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
   138 // ends the current basic block like a ReturnNode.  Restores registers and
   139 // unwinds stack.  Rethrow happens in the caller's method.
   140 class RethrowNode : public Node {
   141  public:
   142   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
   143   virtual int Opcode() const;
   144   virtual bool  is_CFG() const { return true; }
   145   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   146   virtual bool depends_only_on_test() const { return false; }
   147   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   148   virtual const Type *Value( PhaseTransform *phase ) const;
   149   virtual uint match_edge(uint idx) const;
   150   virtual uint ideal_reg() const { return NotAMachineReg; }
   151 #ifndef PRODUCT
   152   virtual void dump_req(outputStream *st = tty) const;
   153 #endif
   154 };
   157 //------------------------------TailCallNode-----------------------------------
   158 // Pop stack frame and jump indirect
   159 class TailCallNode : public ReturnNode {
   160 public:
   161   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
   162     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
   163     init_req(TypeFunc::Parms, target);
   164     init_req(TypeFunc::Parms+1, moop);
   165   }
   167   virtual int Opcode() const;
   168   virtual uint match_edge(uint idx) const;
   169 };
   171 //------------------------------TailJumpNode-----------------------------------
   172 // Pop stack frame and jump indirect
   173 class TailJumpNode : public ReturnNode {
   174 public:
   175   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
   176     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
   177     init_req(TypeFunc::Parms, target);
   178     init_req(TypeFunc::Parms+1, ex_oop);
   179   }
   181   virtual int Opcode() const;
   182   virtual uint match_edge(uint idx) const;
   183 };
   185 //-------------------------------JVMState-------------------------------------
   186 // A linked list of JVMState nodes captures the whole interpreter state,
   187 // plus GC roots, for all active calls at some call site in this compilation
   188 // unit.  (If there is no inlining, then the list has exactly one link.)
   189 // This provides a way to map the optimized program back into the interpreter,
   190 // or to let the GC mark the stack.
   191 class JVMState : public ResourceObj {
   192   friend class VMStructs;
   193 public:
   194   typedef enum {
   195     Reexecute_Undefined = -1, // not defined -- will be translated into false later
   196     Reexecute_False     =  0, // false       -- do not reexecute
   197     Reexecute_True      =  1  // true        -- reexecute the bytecode
   198   } ReexecuteState; //Reexecute State
   200 private:
   201   JVMState*         _caller;    // List pointer for forming scope chains
   202   uint              _depth;     // One more than caller depth, or one.
   203   uint              _locoff;    // Offset to locals in input edge mapping
   204   uint              _stkoff;    // Offset to stack in input edge mapping
   205   uint              _monoff;    // Offset to monitors in input edge mapping
   206   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
   207   uint              _endoff;    // Offset to end of input edge mapping
   208   uint              _sp;        // Jave Expression Stack Pointer for this state
   209   int               _bci;       // Byte Code Index of this JVM point
   210   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
   211   ciMethod*         _method;    // Method Pointer
   212   SafePointNode*    _map;       // Map node associated with this scope
   213 public:
   214   friend class Compile;
   215   friend class PreserveReexecuteState;
   217   // Because JVMState objects live over the entire lifetime of the
   218   // Compile object, they are allocated into the comp_arena, which
   219   // does not get resource marked or reset during the compile process
   220   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
   221   void operator delete( void * ) { } // fast deallocation
   223   // Create a new JVMState, ready for abstract interpretation.
   224   JVMState(ciMethod* method, JVMState* caller);
   225   JVMState(int stack_size);  // root state; has a null method
   227   // Access functions for the JVM
   228   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
   229   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
   230   uint              locoff() const { return _locoff; }
   231   uint              stkoff() const { return _stkoff; }
   232   uint              argoff() const { return _stkoff + _sp; }
   233   uint              monoff() const { return _monoff; }
   234   uint              scloff() const { return _scloff; }
   235   uint              endoff() const { return _endoff; }
   236   uint              oopoff() const { return debug_end(); }
   238   int            loc_size() const { return stkoff() - locoff(); }
   239   int            stk_size() const { return monoff() - stkoff(); }
   240   int            mon_size() const { return scloff() - monoff(); }
   241   int            scl_size() const { return endoff() - scloff(); }
   243   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
   244   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
   245   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
   246   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
   248   uint                      sp() const { return _sp; }
   249   int                      bci() const { return _bci; }
   250   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
   251   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
   252   bool              has_method() const { return _method != NULL; }
   253   ciMethod*             method() const { assert(has_method(), ""); return _method; }
   254   JVMState*             caller() const { return _caller; }
   255   SafePointNode*           map() const { return _map; }
   256   uint                   depth() const { return _depth; }
   257   uint             debug_start() const; // returns locoff of root caller
   258   uint               debug_end() const; // returns endoff of self
   259   uint              debug_size() const {
   260     return loc_size() + sp() + mon_size() + scl_size();
   261   }
   262   uint        debug_depth()  const; // returns sum of debug_size values at all depths
   264   // Returns the JVM state at the desired depth (1 == root).
   265   JVMState* of_depth(int d) const;
   267   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
   268   bool same_calls_as(const JVMState* that) const;
   270   // Monitors (monitors are stored as (boxNode, objNode) pairs
   271   enum { logMonitorEdges = 1 };
   272   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
   273   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
   274   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
   275   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
   276   bool is_monitor_box(uint off)    const {
   277     assert(is_mon(off), "should be called only for monitor edge");
   278     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
   279   }
   280   bool is_monitor_use(uint off)    const { return (is_mon(off)
   281                                                    && is_monitor_box(off))
   282                                              || (caller() && caller()->is_monitor_use(off)); }
   284   // Initialization functions for the JVM
   285   void              set_locoff(uint off) { _locoff = off; }
   286   void              set_stkoff(uint off) { _stkoff = off; }
   287   void              set_monoff(uint off) { _monoff = off; }
   288   void              set_scloff(uint off) { _scloff = off; }
   289   void              set_endoff(uint off) { _endoff = off; }
   290   void              set_offsets(uint off) {
   291     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
   292   }
   293   void              set_map(SafePointNode *map) { _map = map; }
   294   void              set_sp(uint sp) { _sp = sp; }
   295                     // _reexecute is initialized to "undefined" for a new bci
   296   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
   297   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
   299   // Miscellaneous utility functions
   300   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
   301   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
   302   void      set_map_deep(SafePointNode *map);// reset map for all callers
   303   void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
   304   int       interpreter_frame_size() const;
   306 #ifndef PRODUCT
   307   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
   308   void      dump_spec(outputStream *st) const;
   309   void      dump_on(outputStream* st) const;
   310   void      dump() const {
   311     dump_on(tty);
   312   }
   313 #endif
   314 };
   316 //------------------------------SafePointNode----------------------------------
   317 // A SafePointNode is a subclass of a MultiNode for convenience (and
   318 // potential code sharing) only - conceptually it is independent of
   319 // the Node semantics.
   320 class SafePointNode : public MultiNode {
   321   virtual uint           cmp( const Node &n ) const;
   322   virtual uint           size_of() const;       // Size is bigger
   324 public:
   325   SafePointNode(uint edges, JVMState* jvms,
   326                 // A plain safepoint advertises no memory effects (NULL):
   327                 const TypePtr* adr_type = NULL)
   328     : MultiNode( edges ),
   329       _jvms(jvms),
   330       _oop_map(NULL),
   331       _adr_type(adr_type)
   332   {
   333     init_class_id(Class_SafePoint);
   334   }
   336   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
   337   JVMState* const _jvms;      // Pointer to list of JVM State objects
   338   const TypePtr*  _adr_type;  // What type of memory does this node produce?
   339   ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
   341   // Many calls take *all* of memory as input,
   342   // but some produce a limited subset of that memory as output.
   343   // The adr_type reports the call's behavior as a store, not a load.
   345   virtual JVMState* jvms() const { return _jvms; }
   346   void set_jvms(JVMState* s) {
   347     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
   348   }
   349   OopMap *oop_map() const { return _oop_map; }
   350   void set_oop_map(OopMap *om) { _oop_map = om; }
   352  private:
   353   void verify_input(JVMState* jvms, uint idx) const {
   354     assert(verify_jvms(jvms), "jvms must match");
   355     Node* n = in(idx);
   356     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
   357            in(idx + 1)->is_top(), "2nd half of long/double");
   358   }
   360  public:
   361   // Functionality from old debug nodes which has changed
   362   Node *local(JVMState* jvms, uint idx) const {
   363     verify_input(jvms, jvms->locoff() + idx);
   364     return in(jvms->locoff() + idx);
   365   }
   366   Node *stack(JVMState* jvms, uint idx) const {
   367     verify_input(jvms, jvms->stkoff() + idx);
   368     return in(jvms->stkoff() + idx);
   369   }
   370   Node *argument(JVMState* jvms, uint idx) const {
   371     verify_input(jvms, jvms->argoff() + idx);
   372     return in(jvms->argoff() + idx);
   373   }
   374   Node *monitor_box(JVMState* jvms, uint idx) const {
   375     assert(verify_jvms(jvms), "jvms must match");
   376     return in(jvms->monitor_box_offset(idx));
   377   }
   378   Node *monitor_obj(JVMState* jvms, uint idx) const {
   379     assert(verify_jvms(jvms), "jvms must match");
   380     return in(jvms->monitor_obj_offset(idx));
   381   }
   383   void  set_local(JVMState* jvms, uint idx, Node *c);
   385   void  set_stack(JVMState* jvms, uint idx, Node *c) {
   386     assert(verify_jvms(jvms), "jvms must match");
   387     set_req(jvms->stkoff() + idx, c);
   388   }
   389   void  set_argument(JVMState* jvms, uint idx, Node *c) {
   390     assert(verify_jvms(jvms), "jvms must match");
   391     set_req(jvms->argoff() + idx, c);
   392   }
   393   void ensure_stack(JVMState* jvms, uint stk_size) {
   394     assert(verify_jvms(jvms), "jvms must match");
   395     int grow_by = (int)stk_size - (int)jvms->stk_size();
   396     if (grow_by > 0)  grow_stack(jvms, grow_by);
   397   }
   398   void grow_stack(JVMState* jvms, uint grow_by);
   399   // Handle monitor stack
   400   void push_monitor( const FastLockNode *lock );
   401   void pop_monitor ();
   402   Node *peek_monitor_box() const;
   403   Node *peek_monitor_obj() const;
   405   // Access functions for the JVM
   406   Node *control  () const { return in(TypeFunc::Control  ); }
   407   Node *i_o      () const { return in(TypeFunc::I_O      ); }
   408   Node *memory   () const { return in(TypeFunc::Memory   ); }
   409   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
   410   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
   412   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
   413   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
   414   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
   416   MergeMemNode* merged_memory() const {
   417     return in(TypeFunc::Memory)->as_MergeMem();
   418   }
   420   // The parser marks useless maps as dead when it's done with them:
   421   bool is_killed() { return in(TypeFunc::Control) == NULL; }
   423   // Exception states bubbling out of subgraphs such as inlined calls
   424   // are recorded here.  (There might be more than one, hence the "next".)
   425   // This feature is used only for safepoints which serve as "maps"
   426   // for JVM states during parsing, intrinsic expansion, etc.
   427   SafePointNode*         next_exception() const;
   428   void               set_next_exception(SafePointNode* n);
   429   bool                   has_exceptions() const { return next_exception() != NULL; }
   431   // Helper methods to operate on replaced nodes
   432   ReplacedNodes replaced_nodes() const {
   433     return _replaced_nodes;
   434   }
   436   void set_replaced_nodes(ReplacedNodes replaced_nodes) {
   437     _replaced_nodes = replaced_nodes;
   438   }
   440   void clone_replaced_nodes() {
   441     _replaced_nodes.clone();
   442   }
   443   void record_replaced_node(Node* initial, Node* improved) {
   444     _replaced_nodes.record(initial, improved);
   445   }
   446   void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
   447     _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
   448   }
   449   void delete_replaced_nodes() {
   450     _replaced_nodes.reset();
   451   }
   452   void apply_replaced_nodes(uint idx) {
   453     _replaced_nodes.apply(this, idx);
   454   }
   455   void merge_replaced_nodes_with(SafePointNode* sfpt) {
   456     _replaced_nodes.merge_with(sfpt->_replaced_nodes);
   457   }
   458   bool has_replaced_nodes() const {
   459     return !_replaced_nodes.is_empty();
   460   }
   462   void disconnect_from_root(PhaseIterGVN *igvn);
   464   // Standard Node stuff
   465   virtual int            Opcode() const;
   466   virtual bool           pinned() const { return true; }
   467   virtual const Type    *Value( PhaseTransform *phase ) const;
   468   virtual const Type    *bottom_type() const { return Type::CONTROL; }
   469   virtual const TypePtr *adr_type() const { return _adr_type; }
   470   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
   471   virtual Node          *Identity( PhaseTransform *phase );
   472   virtual uint           ideal_reg() const { return 0; }
   473   virtual const RegMask &in_RegMask(uint) const;
   474   virtual const RegMask &out_RegMask() const;
   475   virtual uint           match_edge(uint idx) const;
   477   static  bool           needs_polling_address_input();
   479 #ifndef PRODUCT
   480   virtual void           dump_spec(outputStream *st) const;
   481 #endif
   482 };
   484 //------------------------------SafePointScalarObjectNode----------------------
   485 // A SafePointScalarObjectNode represents the state of a scalarized object
   486 // at a safepoint.
   488 class SafePointScalarObjectNode: public TypeNode {
   489   uint _first_index; // First input edge relative index of a SafePoint node where
   490                      // states of the scalarized object fields are collected.
   491                      // It is relative to the last (youngest) jvms->_scloff.
   492   uint _n_fields;    // Number of non-static fields of the scalarized object.
   493   DEBUG_ONLY(AllocateNode* _alloc;)
   495   virtual uint hash() const ; // { return NO_HASH; }
   496   virtual uint cmp( const Node &n ) const;
   498   uint first_index() const { return _first_index; }
   500 public:
   501   SafePointScalarObjectNode(const TypeOopPtr* tp,
   502 #ifdef ASSERT
   503                             AllocateNode* alloc,
   504 #endif
   505                             uint first_index, uint n_fields);
   506   virtual int Opcode() const;
   507   virtual uint           ideal_reg() const;
   508   virtual const RegMask &in_RegMask(uint) const;
   509   virtual const RegMask &out_RegMask() const;
   510   virtual uint           match_edge(uint idx) const;
   512   uint first_index(JVMState* jvms) const {
   513     assert(jvms != NULL, "missed JVMS");
   514     return jvms->scloff() + _first_index;
   515   }
   516   uint n_fields()    const { return _n_fields; }
   518 #ifdef ASSERT
   519   AllocateNode* alloc() const { return _alloc; }
   520 #endif
   522   virtual uint size_of() const { return sizeof(*this); }
   524   // Assumes that "this" is an argument to a safepoint node "s", and that
   525   // "new_call" is being created to correspond to "s".  But the difference
   526   // between the start index of the jvmstates of "new_call" and "s" is
   527   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
   528   // corresponds appropriately to "this" in "new_call".  Assumes that
   529   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
   530   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
   531   SafePointScalarObjectNode* clone(Dict* sosn_map) const;
   533 #ifndef PRODUCT
   534   virtual void              dump_spec(outputStream *st) const;
   535 #endif
   536 };
   539 // Simple container for the outgoing projections of a call.  Useful
   540 // for serious surgery on calls.
   541 class CallProjections : public StackObj {
   542 public:
   543   Node* fallthrough_proj;
   544   Node* fallthrough_catchproj;
   545   Node* fallthrough_memproj;
   546   Node* fallthrough_ioproj;
   547   Node* catchall_catchproj;
   548   Node* catchall_memproj;
   549   Node* catchall_ioproj;
   550   Node* resproj;
   551   Node* exobj;
   552 };
   554 class CallGenerator;
   556 //------------------------------CallNode---------------------------------------
   557 // Call nodes now subsume the function of debug nodes at callsites, so they
   558 // contain the functionality of a full scope chain of debug nodes.
   559 class CallNode : public SafePointNode {
   560   friend class VMStructs;
   561 public:
   562   const TypeFunc *_tf;        // Function type
   563   address      _entry_point;  // Address of method being called
   564   float        _cnt;          // Estimate of number of times called
   565   CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
   567   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
   568     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
   569       _tf(tf),
   570       _entry_point(addr),
   571       _cnt(COUNT_UNKNOWN),
   572       _generator(NULL)
   573   {
   574     init_class_id(Class_Call);
   575   }
   577   const TypeFunc* tf()         const { return _tf; }
   578   const address  entry_point() const { return _entry_point; }
   579   const float    cnt()         const { return _cnt; }
   580   CallGenerator* generator()   const { return _generator; }
   582   void set_tf(const TypeFunc* tf)       { _tf = tf; }
   583   void set_entry_point(address p)       { _entry_point = p; }
   584   void set_cnt(float c)                 { _cnt = c; }
   585   void set_generator(CallGenerator* cg) { _generator = cg; }
   587   virtual const Type *bottom_type() const;
   588   virtual const Type *Value( PhaseTransform *phase ) const;
   589   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   590   virtual Node *Identity( PhaseTransform *phase ) { return this; }
   591   virtual uint        cmp( const Node &n ) const;
   592   virtual uint        size_of() const = 0;
   593   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   594   virtual Node       *match( const ProjNode *proj, const Matcher *m );
   595   virtual uint        ideal_reg() const { return NotAMachineReg; }
   596   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
   597   // for some macro nodes whose expansion does not have a safepoint on the fast path.
   598   virtual bool        guaranteed_safepoint()  { return true; }
   599   // For macro nodes, the JVMState gets modified during expansion. If calls
   600   // use MachConstantBase, it gets modified during matching. So when cloning
   601   // the node the JVMState must be cloned. Default is not to clone.
   602   virtual void clone_jvms(Compile* C) {
   603     if (C->needs_clone_jvms() && jvms() != NULL) {
   604       set_jvms(jvms()->clone_deep(C));
   605       jvms()->set_map_deep(this);
   606     }
   607   }
   609   // Returns true if the call may modify n
   610   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
   611   // Does this node have a use of n other than in debug information?
   612   bool                has_non_debug_use(Node *n);
   613   // Returns the unique CheckCastPP of a call
   614   // or result projection is there are several CheckCastPP
   615   // or returns NULL if there is no one.
   616   Node *result_cast();
   617   // Does this node returns pointer?
   618   bool returns_pointer() const {
   619     const TypeTuple *r = tf()->range();
   620     return (r->cnt() > TypeFunc::Parms &&
   621             r->field_at(TypeFunc::Parms)->isa_ptr());
   622   }
   624   // Collect all the interesting edges from a call for use in
   625   // replacing the call by something else.  Used by macro expansion
   626   // and the late inlining support.
   627   void extract_projections(CallProjections* projs, bool separate_io_proj);
   629   virtual uint match_edge(uint idx) const;
   631 #ifndef PRODUCT
   632   virtual void        dump_req(outputStream *st = tty) const;
   633   virtual void        dump_spec(outputStream *st) const;
   634 #endif
   635 };
   638 //------------------------------CallJavaNode-----------------------------------
   639 // Make a static or dynamic subroutine call node using Java calling
   640 // convention.  (The "Java" calling convention is the compiler's calling
   641 // convention, as opposed to the interpreter's or that of native C.)
   642 class CallJavaNode : public CallNode {
   643   friend class VMStructs;
   644 protected:
   645   virtual uint cmp( const Node &n ) const;
   646   virtual uint size_of() const; // Size is bigger
   648   bool    _optimized_virtual;
   649   bool    _method_handle_invoke;
   650   ciMethod* _method;            // Method being direct called
   651 public:
   652   const int       _bci;         // Byte Code Index of call byte code
   653   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
   654     : CallNode(tf, addr, TypePtr::BOTTOM),
   655       _method(method), _bci(bci),
   656       _optimized_virtual(false),
   657       _method_handle_invoke(false)
   658   {
   659     init_class_id(Class_CallJava);
   660   }
   662   virtual int   Opcode() const;
   663   ciMethod* method() const                { return _method; }
   664   void  set_method(ciMethod *m)           { _method = m; }
   665   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
   666   bool  is_optimized_virtual() const      { return _optimized_virtual; }
   667   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
   668   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
   670 #ifndef PRODUCT
   671   virtual void  dump_spec(outputStream *st) const;
   672 #endif
   673 };
   675 //------------------------------CallStaticJavaNode-----------------------------
   676 // Make a direct subroutine call using Java calling convention (for static
   677 // calls and optimized virtual calls, plus calls to wrappers for run-time
   678 // routines); generates static stub.
   679 class CallStaticJavaNode : public CallJavaNode {
   680   virtual uint cmp( const Node &n ) const;
   681   virtual uint size_of() const; // Size is bigger
   682 public:
   683   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
   684     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
   685     init_class_id(Class_CallStaticJava);
   686     if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
   687       init_flags(Flag_is_macro);
   688       C->add_macro_node(this);
   689     }
   690     _is_scalar_replaceable = false;
   691     _is_non_escaping = false;
   692   }
   693   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
   694                      const TypePtr* adr_type)
   695     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
   696     init_class_id(Class_CallStaticJava);
   697     // This node calls a runtime stub, which often has narrow memory effects.
   698     _adr_type = adr_type;
   699     _is_scalar_replaceable = false;
   700     _is_non_escaping = false;
   701   }
   702   const char *_name;      // Runtime wrapper name
   704   // Result of Escape Analysis
   705   bool _is_scalar_replaceable;
   706   bool _is_non_escaping;
   708   // If this is an uncommon trap, return the request code, else zero.
   709   int uncommon_trap_request() const;
   710   static int extract_uncommon_trap_request(const Node* call);
   712   bool is_boxing_method() const {
   713     return is_macro() && (method() != NULL) && method()->is_boxing_method();
   714   }
   715   // Later inlining modifies the JVMState, so we need to clone it
   716   // when the call node is cloned (because it is macro node).
   717   virtual void  clone_jvms(Compile* C) {
   718     if ((jvms() != NULL) && is_boxing_method()) {
   719       set_jvms(jvms()->clone_deep(C));
   720       jvms()->set_map_deep(this);
   721     }
   722   }
   724   virtual int         Opcode() const;
   725 #ifndef PRODUCT
   726   virtual void        dump_spec(outputStream *st) const;
   727 #endif
   728 };
   730 //------------------------------CallDynamicJavaNode----------------------------
   731 // Make a dispatched call using Java calling convention.
   732 class CallDynamicJavaNode : public CallJavaNode {
   733   virtual uint cmp( const Node &n ) const;
   734   virtual uint size_of() const; // Size is bigger
   735 public:
   736   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
   737     init_class_id(Class_CallDynamicJava);
   738   }
   740   int _vtable_index;
   741   virtual int   Opcode() const;
   742 #ifndef PRODUCT
   743   virtual void  dump_spec(outputStream *st) const;
   744 #endif
   745 };
   747 //------------------------------CallRuntimeNode--------------------------------
   748 // Make a direct subroutine call node into compiled C++ code.
   749 class CallRuntimeNode : public CallNode {
   750   virtual uint cmp( const Node &n ) const;
   751   virtual uint size_of() const; // Size is bigger
   752 public:
   753   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
   754                   const TypePtr* adr_type)
   755     : CallNode(tf, addr, adr_type),
   756       _name(name)
   757   {
   758     init_class_id(Class_CallRuntime);
   759   }
   761   const char *_name;            // Printable name, if _method is NULL
   762   virtual int   Opcode() const;
   763   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   765 #ifndef PRODUCT
   766   virtual void  dump_spec(outputStream *st) const;
   767 #endif
   768 };
   770 //------------------------------CallLeafNode-----------------------------------
   771 // Make a direct subroutine call node into compiled C++ code, without
   772 // safepoints
   773 class CallLeafNode : public CallRuntimeNode {
   774 public:
   775   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
   776                const TypePtr* adr_type)
   777     : CallRuntimeNode(tf, addr, name, adr_type)
   778   {
   779     init_class_id(Class_CallLeaf);
   780   }
   781   virtual int   Opcode() const;
   782   virtual bool        guaranteed_safepoint()  { return false; }
   783 #ifndef PRODUCT
   784   virtual void  dump_spec(outputStream *st) const;
   785 #endif
   786 };
   788 //------------------------------CallLeafNoFPNode-------------------------------
   789 // CallLeafNode, not using floating point or using it in the same manner as
   790 // the generated code
   791 class CallLeafNoFPNode : public CallLeafNode {
   792 public:
   793   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
   794                    const TypePtr* adr_type)
   795     : CallLeafNode(tf, addr, name, adr_type)
   796   {
   797   }
   798   virtual int   Opcode() const;
   799 };
   802 //------------------------------Allocate---------------------------------------
   803 // High-level memory allocation
   804 //
   805 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
   806 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
   807 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
   808 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
   809 //  order to differentiate the uses of the projection on the normal control path from
   810 //  those on the exception return path.
   811 //
   812 class AllocateNode : public CallNode {
   813 public:
   814   enum {
   815     // Output:
   816     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
   817     // Inputs:
   818     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
   819     KlassNode,                        // type (maybe dynamic) of the obj.
   820     InitialTest,                      // slow-path test (may be constant)
   821     ALength,                          // array length (or TOP if none)
   822     ParmLimit
   823   };
   825   static const TypeFunc* alloc_type(const Type* t) {
   826     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
   827     fields[AllocSize]   = TypeInt::POS;
   828     fields[KlassNode]   = TypeInstPtr::NOTNULL;
   829     fields[InitialTest] = TypeInt::BOOL;
   830     fields[ALength]     = t;  // length (can be a bad length)
   832     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
   834     // create result type (range)
   835     fields = TypeTuple::fields(1);
   836     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   838     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   840     return TypeFunc::make(domain, range);
   841   }
   843   // Result of Escape Analysis
   844   bool _is_scalar_replaceable;
   845   bool _is_non_escaping;
   847   virtual uint size_of() const; // Size is bigger
   848   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   849                Node *size, Node *klass_node, Node *initial_test);
   850   // Expansion modifies the JVMState, so we need to clone it
   851   virtual void  clone_jvms(Compile* C) {
   852     if (jvms() != NULL) {
   853       set_jvms(jvms()->clone_deep(C));
   854       jvms()->set_map_deep(this);
   855     }
   856   }
   857   virtual int Opcode() const;
   858   virtual uint ideal_reg() const { return Op_RegP; }
   859   virtual bool        guaranteed_safepoint()  { return false; }
   861   // allocations do not modify their arguments
   862   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
   864   // Pattern-match a possible usage of AllocateNode.
   865   // Return null if no allocation is recognized.
   866   // The operand is the pointer produced by the (possible) allocation.
   867   // It must be a projection of the Allocate or its subsequent CastPP.
   868   // (Note:  This function is defined in file graphKit.cpp, near
   869   // GraphKit::new_instance/new_array, whose output it recognizes.)
   870   // The 'ptr' may not have an offset unless the 'offset' argument is given.
   871   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
   873   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
   874   // an offset, which is reported back to the caller.
   875   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
   876   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
   877                                         intptr_t& offset);
   879   // Dig the klass operand out of a (possible) allocation site.
   880   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
   881     AllocateNode* allo = Ideal_allocation(ptr, phase);
   882     return (allo == NULL) ? NULL : allo->in(KlassNode);
   883   }
   885   // Conservatively small estimate of offset of first non-header byte.
   886   int minimum_header_size() {
   887     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
   888                                 instanceOopDesc::base_offset_in_bytes();
   889   }
   891   // Return the corresponding initialization barrier (or null if none).
   892   // Walks out edges to find it...
   893   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   894   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   895   InitializeNode* initialization();
   897   // Convenience for initialization->maybe_set_complete(phase)
   898   bool maybe_set_complete(PhaseGVN* phase);
   899 };
   901 //------------------------------AllocateArray---------------------------------
   902 //
   903 // High-level array allocation
   904 //
   905 class AllocateArrayNode : public AllocateNode {
   906 public:
   907   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   908                     Node* size, Node* klass_node, Node* initial_test,
   909                     Node* count_val
   910                     )
   911     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
   912                    initial_test)
   913   {
   914     init_class_id(Class_AllocateArray);
   915     set_req(AllocateNode::ALength,        count_val);
   916   }
   917   virtual int Opcode() const;
   918   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   920   // Dig the length operand out of a array allocation site.
   921   Node* Ideal_length() {
   922     return in(AllocateNode::ALength);
   923   }
   925   // Dig the length operand out of a array allocation site and narrow the
   926   // type with a CastII, if necesssary
   927   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
   929   // Pattern-match a possible usage of AllocateArrayNode.
   930   // Return null if no allocation is recognized.
   931   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
   932     AllocateNode* allo = Ideal_allocation(ptr, phase);
   933     return (allo == NULL || !allo->is_AllocateArray())
   934            ? NULL : allo->as_AllocateArray();
   935   }
   936 };
   938 //------------------------------AbstractLockNode-----------------------------------
   939 class AbstractLockNode: public CallNode {
   940 private:
   941   enum {
   942     Regular = 0,  // Normal lock
   943     NonEscObj,    // Lock is used for non escaping object
   944     Coarsened,    // Lock was coarsened
   945     Nested        // Nested lock
   946   } _kind;
   947 #ifndef PRODUCT
   948   NamedCounter* _counter;
   949 #endif
   951 protected:
   952   // helper functions for lock elimination
   953   //
   955   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
   956                             GrowableArray<AbstractLockNode*> &lock_ops);
   957   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
   958                                        GrowableArray<AbstractLockNode*> &lock_ops);
   959   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
   960                                GrowableArray<AbstractLockNode*> &lock_ops);
   961   LockNode *find_matching_lock(UnlockNode* unlock);
   963   // Update the counter to indicate that this lock was eliminated.
   964   void set_eliminated_lock_counter() PRODUCT_RETURN;
   966 public:
   967   AbstractLockNode(const TypeFunc *tf)
   968     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
   969       _kind(Regular)
   970   {
   971 #ifndef PRODUCT
   972     _counter = NULL;
   973 #endif
   974   }
   975   virtual int Opcode() const = 0;
   976   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
   977   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
   978   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
   979   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
   981   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
   983   virtual uint size_of() const { return sizeof(*this); }
   985   bool is_eliminated()  const { return (_kind != Regular); }
   986   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
   987   bool is_coarsened()   const { return (_kind == Coarsened); }
   988   bool is_nested()      const { return (_kind == Nested); }
   990   const char * kind_as_string() const;
   991   void log_lock_optimization(Compile* c, const char * tag) const;
   993   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
   994   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
   995   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
   997   // locking does not modify its arguments
   998   virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
  1000 #ifndef PRODUCT
  1001   void create_lock_counter(JVMState* s);
  1002   NamedCounter* counter() const { return _counter; }
  1003 #endif
  1004 };
  1006 //------------------------------Lock---------------------------------------
  1007 // High-level lock operation
  1008 //
  1009 // This is a subclass of CallNode because it is a macro node which gets expanded
  1010 // into a code sequence containing a call.  This node takes 3 "parameters":
  1011 //    0  -  object to lock
  1012 //    1 -   a BoxLockNode
  1013 //    2 -   a FastLockNode
  1014 //
  1015 class LockNode : public AbstractLockNode {
  1016 public:
  1018   static const TypeFunc *lock_type() {
  1019     // create input type (domain)
  1020     const Type **fields = TypeTuple::fields(3);
  1021     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
  1022     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
  1023     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
  1024     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
  1026     // create result type (range)
  1027     fields = TypeTuple::fields(0);
  1029     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1031     return TypeFunc::make(domain,range);
  1034   virtual int Opcode() const;
  1035   virtual uint size_of() const; // Size is bigger
  1036   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
  1037     init_class_id(Class_Lock);
  1038     init_flags(Flag_is_macro);
  1039     C->add_macro_node(this);
  1041   virtual bool        guaranteed_safepoint()  { return false; }
  1043   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1044   // Expansion modifies the JVMState, so we need to clone it
  1045   virtual void  clone_jvms(Compile* C) {
  1046     if (jvms() != NULL) {
  1047       set_jvms(jvms()->clone_deep(C));
  1048       jvms()->set_map_deep(this);
  1052   bool is_nested_lock_region(); // Is this Lock nested?
  1053   bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested?
  1054 };
  1056 //------------------------------Unlock---------------------------------------
  1057 // High-level unlock operation
  1058 class UnlockNode : public AbstractLockNode {
  1059 private:
  1060 #ifdef ASSERT
  1061   JVMState* const _dbg_jvms;      // Pointer to list of JVM State objects
  1062 #endif
  1063 public:
  1064   virtual int Opcode() const;
  1065   virtual uint size_of() const; // Size is bigger
  1066   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf )
  1067 #ifdef ASSERT
  1068     , _dbg_jvms(NULL)
  1069 #endif
  1071     init_class_id(Class_Unlock);
  1072     init_flags(Flag_is_macro);
  1073     C->add_macro_node(this);
  1075   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1076   // unlock is never a safepoint
  1077   virtual bool        guaranteed_safepoint()  { return false; }
  1078 #ifdef ASSERT
  1079   void set_dbg_jvms(JVMState* s) {
  1080     *(JVMState**)&_dbg_jvms = s;  // override const attribute in the accessor
  1082   JVMState* dbg_jvms() const { return _dbg_jvms; }
  1083 #else
  1084   JVMState* dbg_jvms() const { return NULL; }
  1085 #endif
  1086 };
  1088 #endif // SHARE_VM_OPTO_CALLNODE_HPP

mercurial