src/share/vm/utilities/stack.hpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 2314
f95d63e2154a
child 4153
b9a9ed0f8eeb
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_STACK_HPP
    26 #define SHARE_VM_UTILITIES_STACK_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/allocation.inline.hpp"
    31 // Class Stack (below) grows and shrinks by linking together "segments" which
    32 // are allocated on demand.  Segments are arrays of the element type (E) plus an
    33 // extra pointer-sized field to store the segment link.  Recently emptied
    34 // segments are kept in a cache and reused.
    35 //
    36 // Notes/caveats:
    37 //
    38 // The size of an element must either evenly divide the size of a pointer or be
    39 // a multiple of the size of a pointer.
    40 //
    41 // Destructors are not called for elements popped off the stack, so element
    42 // types which rely on destructors for things like reference counting will not
    43 // work properly.
    44 //
    45 // Class Stack allocates segments from the C heap.  However, two protected
    46 // virtual methods are used to alloc/free memory which subclasses can override:
    47 //
    48 //      virtual void* alloc(size_t bytes);
    49 //      virtual void  free(void* addr, size_t bytes);
    50 //
    51 // The alloc() method must return storage aligned for any use.  The
    52 // implementation in class Stack assumes that alloc() will terminate the process
    53 // if the allocation fails.
    55 template <class E, MEMFLAGS F> class StackIterator;
    57 // StackBase holds common data/methods that don't depend on the element type,
    58 // factored out to reduce template code duplication.
    59 template <MEMFLAGS F> class StackBase
    60 {
    61 public:
    62   size_t segment_size()   const { return _seg_size; } // Elements per segment.
    63   size_t max_size()       const { return _max_size; } // Max elements allowed.
    64   size_t max_cache_size() const { return _max_cache_size; } // Max segments
    65                                                             // allowed in cache.
    67   size_t cache_size() const { return _cache_size; }   // Segments in the cache.
    69 protected:
    70   // The ctor arguments correspond to the like-named functions above.
    71   // segment_size:    number of items per segment
    72   // max_cache_size:  maxmium number of *segments* to cache
    73   // max_size:        maximum number of items allowed, rounded to a multiple of
    74   //                  the segment size (0 == unlimited)
    75   inline StackBase(size_t segment_size, size_t max_cache_size, size_t max_size);
    77   // Round max_size to a multiple of the segment size.  Treat 0 as unlimited.
    78   static inline size_t adjust_max_size(size_t max_size, size_t seg_size);
    80 protected:
    81   const size_t _seg_size;       // Number of items per segment.
    82   const size_t _max_size;       // Maximum number of items allowed in the stack.
    83   const size_t _max_cache_size; // Maximum number of segments to cache.
    84   size_t       _cur_seg_size;   // Number of items in the current segment.
    85   size_t       _full_seg_size;  // Number of items in already-filled segments.
    86   size_t       _cache_size;     // Number of segments in the cache.
    87 };
    89 #ifdef __GNUC__
    90 #define inline
    91 #endif // __GNUC__
    93 template <class E, MEMFLAGS F>
    94 class Stack:  public StackBase<F>
    95 {
    96 public:
    97   friend class StackIterator<E, F>;
    99   // segment_size:    number of items per segment
   100   // max_cache_size:  maxmium number of *segments* to cache
   101   // max_size:        maximum number of items allowed, rounded to a multiple of
   102   //                  the segment size (0 == unlimited)
   103   inline Stack(size_t segment_size = default_segment_size(),
   104                size_t max_cache_size = 4, size_t max_size = 0);
   105   inline ~Stack() { clear(true); }
   107   inline bool is_empty() const { return this->_cur_seg == NULL; }
   108   inline bool is_full()  const { return this->_full_seg_size >= this->max_size(); }
   110   // Performance sensitive code should use is_empty() instead of size() == 0 and
   111   // is_full() instead of size() == max_size().  Using a conditional here allows
   112   // just one var to be updated when pushing/popping elements instead of two;
   113   // _full_seg_size is updated only when pushing/popping segments.
   114   inline size_t size() const {
   115     return is_empty() ? 0 : this->_full_seg_size + this->_cur_seg_size;
   116   }
   118   inline void push(E elem);
   119   inline E    pop();
   121   // Clear everything from the stack, releasing the associated memory.  If
   122   // clear_cache is true, also release any cached segments.
   123   void clear(bool clear_cache = false);
   125   static inline size_t default_segment_size();
   127 protected:
   128   // Each segment includes space for _seg_size elements followed by a link
   129   // (pointer) to the previous segment; the space is allocated as a single block
   130   // of size segment_bytes().  _seg_size is rounded up if necessary so the link
   131   // is properly aligned.  The C struct for the layout would be:
   132   //
   133   // struct segment {
   134   //   E     elements[_seg_size];
   135   //   E*    link;
   136   // };
   138   // Round up seg_size to keep the link field aligned.
   139   static inline size_t adjust_segment_size(size_t seg_size);
   141   // Methods for allocation size and getting/setting the link.
   142   inline size_t link_offset() const;              // Byte offset of link field.
   143   inline size_t segment_bytes() const;            // Segment size in bytes.
   144   inline E**    link_addr(E* seg) const;          // Address of the link field.
   145   inline E*     get_link(E* seg) const;           // Extract the link from seg.
   146   inline E*     set_link(E* new_seg, E* old_seg); // new_seg.link = old_seg.
   148   virtual E*    alloc(size_t bytes);
   149   virtual void  free(E* addr, size_t bytes);
   151   void push_segment();
   152   void pop_segment();
   154   void free_segments(E* seg);          // Free all segments in the list.
   155   inline void reset(bool reset_cache); // Reset all data fields.
   157   DEBUG_ONLY(void verify(bool at_empty_transition) const;)
   158   DEBUG_ONLY(void zap_segment(E* seg, bool zap_link_field) const;)
   160 private:
   161   E* _cur_seg;    // Current segment.
   162   E* _cache;      // Segment cache to avoid ping-ponging.
   163 };
   165 template <class E, MEMFLAGS F> class ResourceStack:  public Stack<E, F>, public ResourceObj
   166 {
   167 public:
   168   // If this class becomes widely used, it may make sense to save the Thread
   169   // and use it when allocating segments.
   170 //  ResourceStack(size_t segment_size = Stack<E, F>::default_segment_size()):
   171   ResourceStack(size_t segment_size): Stack<E, F>(segment_size, max_uintx)
   172     { }
   174   // Set the segment pointers to NULL so the parent dtor does not free them;
   175   // that must be done by the ResourceMark code.
   176   ~ResourceStack() { Stack<E, F>::reset(true); }
   178 protected:
   179   virtual E*   alloc(size_t bytes);
   180   virtual void free(E* addr, size_t bytes);
   182 private:
   183   void clear(bool clear_cache = false);
   184 };
   186 template <class E, MEMFLAGS F>
   187 class StackIterator: public StackObj
   188 {
   189 public:
   190   StackIterator(Stack<E, F>& stack): _stack(stack) { sync(); }
   192   Stack<E, F>& stack() const { return _stack; }
   194   bool is_empty() const { return _cur_seg == NULL; }
   196   E  next() { return *next_addr(); }
   197   E* next_addr();
   199   void sync(); // Sync the iterator's state to the stack's current state.
   201 private:
   202   Stack<E, F>& _stack;
   203   size_t    _cur_seg_size;
   204   E*        _cur_seg;
   205   size_t    _full_seg_size;
   206 };
   208 #ifdef __GNUC__
   209 #undef inline
   210 #endif // __GNUC__
   212 #endif // SHARE_VM_UTILITIES_STACK_HPP

mercurial