src/share/vm/runtime/os.cpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3427
94ec88ca68e2
child 3969
1d7922586cf6
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "gc_implementation/shared/vmGCOperations.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvm.h"
    37 #include "prims/jvm_misc.hpp"
    38 #include "prims/privilegedStack.hpp"
    39 #include "runtime/arguments.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/interfaceSupport.hpp"
    42 #include "runtime/java.hpp"
    43 #include "runtime/javaCalls.hpp"
    44 #include "runtime/mutexLocker.hpp"
    45 #include "runtime/os.hpp"
    46 #include "runtime/stubRoutines.hpp"
    47 #include "services/attachListener.hpp"
    48 #include "services/memTracker.hpp"
    49 #include "services/threadService.hpp"
    50 #include "utilities/defaultStream.hpp"
    51 #include "utilities/events.hpp"
    52 #ifdef TARGET_OS_FAMILY_linux
    53 # include "os_linux.inline.hpp"
    54 # include "thread_linux.inline.hpp"
    55 #endif
    56 #ifdef TARGET_OS_FAMILY_solaris
    57 # include "os_solaris.inline.hpp"
    58 # include "thread_solaris.inline.hpp"
    59 #endif
    60 #ifdef TARGET_OS_FAMILY_windows
    61 # include "os_windows.inline.hpp"
    62 # include "thread_windows.inline.hpp"
    63 #endif
    64 #ifdef TARGET_OS_FAMILY_bsd
    65 # include "os_bsd.inline.hpp"
    66 # include "thread_bsd.inline.hpp"
    67 #endif
    69 # include <signal.h>
    71 OSThread*         os::_starting_thread    = NULL;
    72 address           os::_polling_page       = NULL;
    73 volatile int32_t* os::_mem_serialize_page = NULL;
    74 uintptr_t         os::_serialize_page_mask = 0;
    75 long              os::_rand_seed          = 1;
    76 int               os::_processor_count    = 0;
    77 size_t            os::_page_sizes[os::page_sizes_max];
    79 #ifndef PRODUCT
    80 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
    81 julong os::alloc_bytes = 0;         // # of bytes allocated
    82 julong os::num_frees = 0;           // # of calls to free
    83 julong os::free_bytes = 0;          // # of bytes freed
    84 #endif
    86 void os_init_globals() {
    87   // Called from init_globals().
    88   // See Threads::create_vm() in thread.cpp, and init.cpp.
    89   os::init_globals();
    90 }
    92 // Fill in buffer with current local time as an ISO-8601 string.
    93 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
    94 // Returns buffer, or NULL if it failed.
    95 // This would mostly be a call to
    96 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
    97 // except that on Windows the %z behaves badly, so we do it ourselves.
    98 // Also, people wanted milliseconds on there,
    99 // and strftime doesn't do milliseconds.
   100 char* os::iso8601_time(char* buffer, size_t buffer_length) {
   101   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
   102   //                                      1         2
   103   //                             12345678901234567890123456789
   104   static const char* iso8601_format =
   105     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
   106   static const size_t needed_buffer = 29;
   108   // Sanity check the arguments
   109   if (buffer == NULL) {
   110     assert(false, "NULL buffer");
   111     return NULL;
   112   }
   113   if (buffer_length < needed_buffer) {
   114     assert(false, "buffer_length too small");
   115     return NULL;
   116   }
   117   // Get the current time
   118   jlong milliseconds_since_19700101 = javaTimeMillis();
   119   const int milliseconds_per_microsecond = 1000;
   120   const time_t seconds_since_19700101 =
   121     milliseconds_since_19700101 / milliseconds_per_microsecond;
   122   const int milliseconds_after_second =
   123     milliseconds_since_19700101 % milliseconds_per_microsecond;
   124   // Convert the time value to a tm and timezone variable
   125   struct tm time_struct;
   126   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
   127     assert(false, "Failed localtime_pd");
   128     return NULL;
   129   }
   130 #if defined(_ALLBSD_SOURCE)
   131   const time_t zone = (time_t) time_struct.tm_gmtoff;
   132 #else
   133   const time_t zone = timezone;
   134 #endif
   136   // If daylight savings time is in effect,
   137   // we are 1 hour East of our time zone
   138   const time_t seconds_per_minute = 60;
   139   const time_t minutes_per_hour = 60;
   140   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
   141   time_t UTC_to_local = zone;
   142   if (time_struct.tm_isdst > 0) {
   143     UTC_to_local = UTC_to_local - seconds_per_hour;
   144   }
   145   // Compute the time zone offset.
   146   //    localtime_pd() sets timezone to the difference (in seconds)
   147   //    between UTC and and local time.
   148   //    ISO 8601 says we need the difference between local time and UTC,
   149   //    we change the sign of the localtime_pd() result.
   150   const time_t local_to_UTC = -(UTC_to_local);
   151   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
   152   char sign_local_to_UTC = '+';
   153   time_t abs_local_to_UTC = local_to_UTC;
   154   if (local_to_UTC < 0) {
   155     sign_local_to_UTC = '-';
   156     abs_local_to_UTC = -(abs_local_to_UTC);
   157   }
   158   // Convert time zone offset seconds to hours and minutes.
   159   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
   160   const time_t zone_min =
   161     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
   163   // Print an ISO 8601 date and time stamp into the buffer
   164   const int year = 1900 + time_struct.tm_year;
   165   const int month = 1 + time_struct.tm_mon;
   166   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
   167                                    year,
   168                                    month,
   169                                    time_struct.tm_mday,
   170                                    time_struct.tm_hour,
   171                                    time_struct.tm_min,
   172                                    time_struct.tm_sec,
   173                                    milliseconds_after_second,
   174                                    sign_local_to_UTC,
   175                                    zone_hours,
   176                                    zone_min);
   177   if (printed == 0) {
   178     assert(false, "Failed jio_printf");
   179     return NULL;
   180   }
   181   return buffer;
   182 }
   184 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
   185 #ifdef ASSERT
   186   if (!(!thread->is_Java_thread() ||
   187          Thread::current() == thread  ||
   188          Threads_lock->owned_by_self()
   189          || thread->is_Compiler_thread()
   190         )) {
   191     assert(false, "possibility of dangling Thread pointer");
   192   }
   193 #endif
   195   if (p >= MinPriority && p <= MaxPriority) {
   196     int priority = java_to_os_priority[p];
   197     return set_native_priority(thread, priority);
   198   } else {
   199     assert(false, "Should not happen");
   200     return OS_ERR;
   201   }
   202 }
   205 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
   206   int p;
   207   int os_prio;
   208   OSReturn ret = get_native_priority(thread, &os_prio);
   209   if (ret != OS_OK) return ret;
   211   for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
   212   priority = (ThreadPriority)p;
   213   return OS_OK;
   214 }
   217 // --------------------- sun.misc.Signal (optional) ---------------------
   220 // SIGBREAK is sent by the keyboard to query the VM state
   221 #ifndef SIGBREAK
   222 #define SIGBREAK SIGQUIT
   223 #endif
   225 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
   228 static void signal_thread_entry(JavaThread* thread, TRAPS) {
   229   os::set_priority(thread, NearMaxPriority);
   230   while (true) {
   231     int sig;
   232     {
   233       // FIXME : Currently we have not decieded what should be the status
   234       //         for this java thread blocked here. Once we decide about
   235       //         that we should fix this.
   236       sig = os::signal_wait();
   237     }
   238     if (sig == os::sigexitnum_pd()) {
   239        // Terminate the signal thread
   240        return;
   241     }
   243     switch (sig) {
   244       case SIGBREAK: {
   245         // Check if the signal is a trigger to start the Attach Listener - in that
   246         // case don't print stack traces.
   247         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
   248           continue;
   249         }
   250         // Print stack traces
   251         // Any SIGBREAK operations added here should make sure to flush
   252         // the output stream (e.g. tty->flush()) after output.  See 4803766.
   253         // Each module also prints an extra carriage return after its output.
   254         VM_PrintThreads op;
   255         VMThread::execute(&op);
   256         VM_PrintJNI jni_op;
   257         VMThread::execute(&jni_op);
   258         VM_FindDeadlocks op1(tty);
   259         VMThread::execute(&op1);
   260         Universe::print_heap_at_SIGBREAK();
   261         if (PrintClassHistogram) {
   262           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */,
   263                                    true /* need_prologue */);
   264           VMThread::execute(&op1);
   265         }
   266         if (JvmtiExport::should_post_data_dump()) {
   267           JvmtiExport::post_data_dump();
   268         }
   269         break;
   270       }
   271       default: {
   272         // Dispatch the signal to java
   273         HandleMark hm(THREAD);
   274         klassOop k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
   275         KlassHandle klass (THREAD, k);
   276         if (klass.not_null()) {
   277           JavaValue result(T_VOID);
   278           JavaCallArguments args;
   279           args.push_int(sig);
   280           JavaCalls::call_static(
   281             &result,
   282             klass,
   283             vmSymbols::dispatch_name(),
   284             vmSymbols::int_void_signature(),
   285             &args,
   286             THREAD
   287           );
   288         }
   289         if (HAS_PENDING_EXCEPTION) {
   290           // tty is initialized early so we don't expect it to be null, but
   291           // if it is we can't risk doing an initialization that might
   292           // trigger additional out-of-memory conditions
   293           if (tty != NULL) {
   294             char klass_name[256];
   295             char tmp_sig_name[16];
   296             const char* sig_name = "UNKNOWN";
   297             instanceKlass::cast(PENDING_EXCEPTION->klass())->
   298               name()->as_klass_external_name(klass_name, 256);
   299             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
   300               sig_name = tmp_sig_name;
   301             warning("Exception %s occurred dispatching signal %s to handler"
   302                     "- the VM may need to be forcibly terminated",
   303                     klass_name, sig_name );
   304           }
   305           CLEAR_PENDING_EXCEPTION;
   306         }
   307       }
   308     }
   309   }
   310 }
   313 void os::signal_init() {
   314   if (!ReduceSignalUsage) {
   315     // Setup JavaThread for processing signals
   316     EXCEPTION_MARK;
   317     klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
   318     instanceKlassHandle klass (THREAD, k);
   319     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
   321     const char thread_name[] = "Signal Dispatcher";
   322     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
   324     // Initialize thread_oop to put it into the system threadGroup
   325     Handle thread_group (THREAD, Universe::system_thread_group());
   326     JavaValue result(T_VOID);
   327     JavaCalls::call_special(&result, thread_oop,
   328                            klass,
   329                            vmSymbols::object_initializer_name(),
   330                            vmSymbols::threadgroup_string_void_signature(),
   331                            thread_group,
   332                            string,
   333                            CHECK);
   335     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
   336     JavaCalls::call_special(&result,
   337                             thread_group,
   338                             group,
   339                             vmSymbols::add_method_name(),
   340                             vmSymbols::thread_void_signature(),
   341                             thread_oop,         // ARG 1
   342                             CHECK);
   344     os::signal_init_pd();
   346     { MutexLocker mu(Threads_lock);
   347       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
   349       // At this point it may be possible that no osthread was created for the
   350       // JavaThread due to lack of memory. We would have to throw an exception
   351       // in that case. However, since this must work and we do not allow
   352       // exceptions anyway, check and abort if this fails.
   353       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
   354         vm_exit_during_initialization("java.lang.OutOfMemoryError",
   355                                       "unable to create new native thread");
   356       }
   358       java_lang_Thread::set_thread(thread_oop(), signal_thread);
   359       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
   360       java_lang_Thread::set_daemon(thread_oop());
   362       signal_thread->set_threadObj(thread_oop());
   363       Threads::add(signal_thread);
   364       Thread::start(signal_thread);
   365     }
   366     // Handle ^BREAK
   367     os::signal(SIGBREAK, os::user_handler());
   368   }
   369 }
   372 void os::terminate_signal_thread() {
   373   if (!ReduceSignalUsage)
   374     signal_notify(sigexitnum_pd());
   375 }
   378 // --------------------- loading libraries ---------------------
   380 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
   381 extern struct JavaVM_ main_vm;
   383 static void* _native_java_library = NULL;
   385 void* os::native_java_library() {
   386   if (_native_java_library == NULL) {
   387     char buffer[JVM_MAXPATHLEN];
   388     char ebuf[1024];
   390     // Try to load verify dll first. In 1.3 java dll depends on it and is not
   391     // always able to find it when the loading executable is outside the JDK.
   392     // In order to keep working with 1.2 we ignore any loading errors.
   393     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "verify");
   394     dll_load(buffer, ebuf, sizeof(ebuf));
   396     // Load java dll
   397     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "java");
   398     _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
   399     if (_native_java_library == NULL) {
   400       vm_exit_during_initialization("Unable to load native library", ebuf);
   401     }
   403 #if defined(__OpenBSD__)
   404     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
   405     // ignore errors
   406     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "net");
   407     dll_load(buffer, ebuf, sizeof(ebuf));
   408 #endif
   409   }
   410   static jboolean onLoaded = JNI_FALSE;
   411   if (onLoaded) {
   412     // We may have to wait to fire OnLoad until TLS is initialized.
   413     if (ThreadLocalStorage::is_initialized()) {
   414       // The JNI_OnLoad handling is normally done by method load in
   415       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
   416       // explicitly so we have to check for JNI_OnLoad as well
   417       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
   418       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
   419           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
   420       if (JNI_OnLoad != NULL) {
   421         JavaThread* thread = JavaThread::current();
   422         ThreadToNativeFromVM ttn(thread);
   423         HandleMark hm(thread);
   424         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
   425         onLoaded = JNI_TRUE;
   426         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
   427           vm_exit_during_initialization("Unsupported JNI version");
   428         }
   429       }
   430     }
   431   }
   432   return _native_java_library;
   433 }
   435 // --------------------- heap allocation utilities ---------------------
   437 char *os::strdup(const char *str, MEMFLAGS flags) {
   438   size_t size = strlen(str);
   439   char *dup_str = (char *)malloc(size + 1, flags);
   440   if (dup_str == NULL) return NULL;
   441   strcpy(dup_str, str);
   442   return dup_str;
   443 }
   447 #ifdef ASSERT
   448 #define space_before             (MallocCushion + sizeof(double))
   449 #define space_after              MallocCushion
   450 #define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
   451 #define size_addr_from_obj(p)    ((size_t*)p - 1)
   452 // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
   453 // NB: cannot be debug variable, because these aren't set from the command line until
   454 // *after* the first few allocs already happened
   455 #define MallocCushion            16
   456 #else
   457 #define space_before             0
   458 #define space_after              0
   459 #define size_addr_from_base(p)   should not use w/o ASSERT
   460 #define size_addr_from_obj(p)    should not use w/o ASSERT
   461 #define MallocCushion            0
   462 #endif
   463 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
   465 #ifdef ASSERT
   466 inline size_t get_size(void* obj) {
   467   size_t size = *size_addr_from_obj(obj);
   468   if (size < 0) {
   469     fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
   470                   SIZE_FORMAT ")", obj, size));
   471   }
   472   return size;
   473 }
   475 u_char* find_cushion_backwards(u_char* start) {
   476   u_char* p = start;
   477   while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
   478          p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
   479   // ok, we have four consecutive marker bytes; find start
   480   u_char* q = p - 4;
   481   while (*q == badResourceValue) q--;
   482   return q + 1;
   483 }
   485 u_char* find_cushion_forwards(u_char* start) {
   486   u_char* p = start;
   487   while (p[0] != badResourceValue || p[1] != badResourceValue ||
   488          p[2] != badResourceValue || p[3] != badResourceValue) p++;
   489   // ok, we have four consecutive marker bytes; find end of cushion
   490   u_char* q = p + 4;
   491   while (*q == badResourceValue) q++;
   492   return q - MallocCushion;
   493 }
   495 void print_neighbor_blocks(void* ptr) {
   496   // find block allocated before ptr (not entirely crash-proof)
   497   if (MallocCushion < 4) {
   498     tty->print_cr("### cannot find previous block (MallocCushion < 4)");
   499     return;
   500   }
   501   u_char* start_of_this_block = (u_char*)ptr - space_before;
   502   u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
   503   // look for cushion in front of prev. block
   504   u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
   505   ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
   506   u_char* obj = start_of_prev_block + space_before;
   507   if (size <= 0 ) {
   508     // start is bad; mayhave been confused by OS data inbetween objects
   509     // search one more backwards
   510     start_of_prev_block = find_cushion_backwards(start_of_prev_block);
   511     size = *size_addr_from_base(start_of_prev_block);
   512     obj = start_of_prev_block + space_before;
   513   }
   515   if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
   516     tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
   517   } else {
   518     tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
   519   }
   521   // now find successor block
   522   u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
   523   start_of_next_block = find_cushion_forwards(start_of_next_block);
   524   u_char* next_obj = start_of_next_block + space_before;
   525   ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
   526   if (start_of_next_block[0] == badResourceValue &&
   527       start_of_next_block[1] == badResourceValue &&
   528       start_of_next_block[2] == badResourceValue &&
   529       start_of_next_block[3] == badResourceValue) {
   530     tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
   531   } else {
   532     tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
   533   }
   534 }
   537 void report_heap_error(void* memblock, void* bad, const char* where) {
   538   tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
   539   tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
   540   print_neighbor_blocks(memblock);
   541   fatal("memory stomping error");
   542 }
   544 void verify_block(void* memblock) {
   545   size_t size = get_size(memblock);
   546   if (MallocCushion) {
   547     u_char* ptr = (u_char*)memblock - space_before;
   548     for (int i = 0; i < MallocCushion; i++) {
   549       if (ptr[i] != badResourceValue) {
   550         report_heap_error(memblock, ptr+i, "in front of");
   551       }
   552     }
   553     u_char* end = (u_char*)memblock + size + space_after;
   554     for (int j = -MallocCushion; j < 0; j++) {
   555       if (end[j] != badResourceValue) {
   556         report_heap_error(memblock, end+j, "after");
   557       }
   558     }
   559   }
   560 }
   561 #endif
   563 void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
   564   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   565   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   567   if (size == 0) {
   568     // return a valid pointer if size is zero
   569     // if NULL is returned the calling functions assume out of memory.
   570     size = 1;
   571   }
   573   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   574   u_char* ptr = (u_char*)::malloc(size + space_before + space_after);
   576 #ifdef ASSERT
   577   if (ptr == NULL) return NULL;
   578   if (MallocCushion) {
   579     for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
   580     u_char* end = ptr + space_before + size;
   581     for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
   582     for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
   583   }
   584   // put size just before data
   585   *size_addr_from_base(ptr) = size;
   586 #endif
   587   u_char* memblock = ptr + space_before;
   588   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   589     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
   590     breakpoint();
   591   }
   592   debug_only(if (paranoid) verify_block(memblock));
   593   if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
   595   // we do not track MallocCushion memory
   596   if (MemTracker::is_on()) {
   597     MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
   598   }
   600   return memblock;
   601 }
   604 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
   605 #ifndef ASSERT
   606   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   607   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   608   void* ptr = ::realloc(memblock, size);
   609   if (ptr != NULL && MemTracker::is_on()) {
   610     MemTracker::record_realloc((address)memblock, (address)ptr, size, memflags,
   611      caller == 0 ? CALLER_PC : caller);
   612   }
   613   return ptr;
   614 #else
   615   if (memblock == NULL) {
   616     return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
   617   }
   618   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   619     tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
   620     breakpoint();
   621   }
   622   verify_block(memblock);
   623   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   624   if (size == 0) return NULL;
   625   // always move the block
   626   void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
   627   if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
   628   // Copy to new memory if malloc didn't fail
   629   if ( ptr != NULL ) {
   630     memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
   631     if (paranoid) verify_block(ptr);
   632     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
   633       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
   634       breakpoint();
   635     }
   636     free(memblock);
   637   }
   638   return ptr;
   639 #endif
   640 }
   643 void  os::free(void *memblock, MEMFLAGS memflags) {
   644   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
   645 #ifdef ASSERT
   646   if (memblock == NULL) return;
   647   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   648     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
   649     breakpoint();
   650   }
   651   verify_block(memblock);
   652   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   653   // Added by detlefs.
   654   if (MallocCushion) {
   655     u_char* ptr = (u_char*)memblock - space_before;
   656     for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
   657       guarantee(*p == badResourceValue,
   658                 "Thing freed should be malloc result.");
   659       *p = (u_char)freeBlockPad;
   660     }
   661     size_t size = get_size(memblock);
   662     inc_stat_counter(&free_bytes, size);
   663     u_char* end = ptr + space_before + size;
   664     for (u_char* q = end; q < end + MallocCushion; q++) {
   665       guarantee(*q == badResourceValue,
   666                 "Thing freed should be malloc result.");
   667       *q = (u_char)freeBlockPad;
   668     }
   669     if (PrintMalloc && tty != NULL)
   670       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
   671   } else if (PrintMalloc && tty != NULL) {
   672     // tty->print_cr("os::free %p", memblock);
   673     fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
   674   }
   675 #endif
   676   MemTracker::record_free((address)memblock, memflags);
   678   ::free((char*)memblock - space_before);
   679 }
   681 void os::init_random(long initval) {
   682   _rand_seed = initval;
   683 }
   686 long os::random() {
   687   /* standard, well-known linear congruential random generator with
   688    * next_rand = (16807*seed) mod (2**31-1)
   689    * see
   690    * (1) "Random Number Generators: Good Ones Are Hard to Find",
   691    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
   692    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
   693    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
   694   */
   695   const long a = 16807;
   696   const unsigned long m = 2147483647;
   697   const long q = m / a;        assert(q == 127773, "weird math");
   698   const long r = m % a;        assert(r == 2836, "weird math");
   700   // compute az=2^31p+q
   701   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
   702   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
   703   lo += (hi & 0x7FFF) << 16;
   705   // if q overflowed, ignore the overflow and increment q
   706   if (lo > m) {
   707     lo &= m;
   708     ++lo;
   709   }
   710   lo += hi >> 15;
   712   // if (p+q) overflowed, ignore the overflow and increment (p+q)
   713   if (lo > m) {
   714     lo &= m;
   715     ++lo;
   716   }
   717   return (_rand_seed = lo);
   718 }
   720 // The INITIALIZED state is distinguished from the SUSPENDED state because the
   721 // conditions in which a thread is first started are different from those in which
   722 // a suspension is resumed.  These differences make it hard for us to apply the
   723 // tougher checks when starting threads that we want to do when resuming them.
   724 // However, when start_thread is called as a result of Thread.start, on a Java
   725 // thread, the operation is synchronized on the Java Thread object.  So there
   726 // cannot be a race to start the thread and hence for the thread to exit while
   727 // we are working on it.  Non-Java threads that start Java threads either have
   728 // to do so in a context in which races are impossible, or should do appropriate
   729 // locking.
   731 void os::start_thread(Thread* thread) {
   732   // guard suspend/resume
   733   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
   734   OSThread* osthread = thread->osthread();
   735   osthread->set_state(RUNNABLE);
   736   pd_start_thread(thread);
   737 }
   739 //---------------------------------------------------------------------------
   740 // Helper functions for fatal error handler
   742 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
   743   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
   745   int cols = 0;
   746   int cols_per_line = 0;
   747   switch (unitsize) {
   748     case 1: cols_per_line = 16; break;
   749     case 2: cols_per_line = 8;  break;
   750     case 4: cols_per_line = 4;  break;
   751     case 8: cols_per_line = 2;  break;
   752     default: return;
   753   }
   755   address p = start;
   756   st->print(PTR_FORMAT ":   ", start);
   757   while (p < end) {
   758     switch (unitsize) {
   759       case 1: st->print("%02x", *(u1*)p); break;
   760       case 2: st->print("%04x", *(u2*)p); break;
   761       case 4: st->print("%08x", *(u4*)p); break;
   762       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
   763     }
   764     p += unitsize;
   765     cols++;
   766     if (cols >= cols_per_line && p < end) {
   767        cols = 0;
   768        st->cr();
   769        st->print(PTR_FORMAT ":   ", p);
   770     } else {
   771        st->print(" ");
   772     }
   773   }
   774   st->cr();
   775 }
   777 void os::print_environment_variables(outputStream* st, const char** env_list,
   778                                      char* buffer, int len) {
   779   if (env_list) {
   780     st->print_cr("Environment Variables:");
   782     for (int i = 0; env_list[i] != NULL; i++) {
   783       if (getenv(env_list[i], buffer, len)) {
   784         st->print(env_list[i]);
   785         st->print("=");
   786         st->print_cr(buffer);
   787       }
   788     }
   789   }
   790 }
   792 void os::print_cpu_info(outputStream* st) {
   793   // cpu
   794   st->print("CPU:");
   795   st->print("total %d", os::processor_count());
   796   // It's not safe to query number of active processors after crash
   797   // st->print("(active %d)", os::active_processor_count());
   798   st->print(" %s", VM_Version::cpu_features());
   799   st->cr();
   800   pd_print_cpu_info(st);
   801 }
   803 void os::print_date_and_time(outputStream *st) {
   804   time_t tloc;
   805   (void)time(&tloc);
   806   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
   808   double t = os::elapsedTime();
   809   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
   810   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
   811   //       before printf. We lost some precision, but who cares?
   812   st->print_cr("elapsed time: %d seconds", (int)t);
   813 }
   815 // moved from debug.cpp (used to be find()) but still called from there
   816 // The verbose parameter is only set by the debug code in one case
   817 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
   818   address addr = (address)x;
   819   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
   820   if (b != NULL) {
   821     if (b->is_buffer_blob()) {
   822       // the interpreter is generated into a buffer blob
   823       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
   824       if (i != NULL) {
   825         st->print_cr(INTPTR_FORMAT " is an Interpreter codelet", addr);
   826         i->print_on(st);
   827         return;
   828       }
   829       if (Interpreter::contains(addr)) {
   830         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
   831                      " (not bytecode specific)", addr);
   832         return;
   833       }
   834       //
   835       if (AdapterHandlerLibrary::contains(b)) {
   836         st->print_cr(INTPTR_FORMAT " is an AdapterHandler", addr);
   837         AdapterHandlerLibrary::print_handler_on(st, b);
   838       }
   839       // the stubroutines are generated into a buffer blob
   840       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
   841       if (d != NULL) {
   842         d->print_on(st);
   843         if (verbose) st->cr();
   844         return;
   845       }
   846       if (StubRoutines::contains(addr)) {
   847         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
   848                      "stub routine", addr);
   849         return;
   850       }
   851       // the InlineCacheBuffer is using stubs generated into a buffer blob
   852       if (InlineCacheBuffer::contains(addr)) {
   853         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
   854         return;
   855       }
   856       VtableStub* v = VtableStubs::stub_containing(addr);
   857       if (v != NULL) {
   858         v->print_on(st);
   859         return;
   860       }
   861     }
   862     if (verbose && b->is_nmethod()) {
   863       ResourceMark rm;
   864       st->print("%#p: Compiled ", addr);
   865       ((nmethod*)b)->method()->print_value_on(st);
   866       st->print("  = (CodeBlob*)" INTPTR_FORMAT, b);
   867       st->cr();
   868       return;
   869     }
   870     st->print(INTPTR_FORMAT " ", b);
   871     if ( b->is_nmethod()) {
   872       if (b->is_zombie()) {
   873         st->print_cr("is zombie nmethod");
   874       } else if (b->is_not_entrant()) {
   875         st->print_cr("is non-entrant nmethod");
   876       }
   877     }
   878     b->print_on(st);
   879     return;
   880   }
   882   if (Universe::heap()->is_in(addr)) {
   883     HeapWord* p = Universe::heap()->block_start(addr);
   884     bool print = false;
   885     // If we couldn't find it it just may mean that heap wasn't parseable
   886     // See if we were just given an oop directly
   887     if (p != NULL && Universe::heap()->block_is_obj(p)) {
   888       print = true;
   889     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
   890       p = (HeapWord*) addr;
   891       print = true;
   892     }
   893     if (print) {
   894       st->print_cr(INTPTR_FORMAT " is an oop", addr);
   895       oop(p)->print_on(st);
   896       if (p != (HeapWord*)x && oop(p)->is_constMethod() &&
   897           constMethodOop(p)->contains(addr)) {
   898         Thread *thread = Thread::current();
   899         HandleMark hm(thread);
   900         methodHandle mh (thread, constMethodOop(p)->method());
   901         if (!mh->is_native()) {
   902           st->print_cr("bci_from(%p) = %d; print_codes():",
   903                         addr, mh->bci_from(address(x)));
   904           mh->print_codes_on(st);
   905         }
   906       }
   907       return;
   908     }
   909   } else {
   910     if (Universe::heap()->is_in_reserved(addr)) {
   911       st->print_cr(INTPTR_FORMAT " is an unallocated location "
   912                    "in the heap", addr);
   913       return;
   914     }
   915   }
   916   if (JNIHandles::is_global_handle((jobject) addr)) {
   917     st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
   918     return;
   919   }
   920   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
   921     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
   922     return;
   923   }
   924 #ifndef PRODUCT
   925   // we don't keep the block list in product mode
   926   if (JNIHandleBlock::any_contains((jobject) addr)) {
   927     st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
   928     return;
   929   }
   930 #endif
   932   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
   933     // Check for privilege stack
   934     if (thread->privileged_stack_top() != NULL &&
   935         thread->privileged_stack_top()->contains(addr)) {
   936       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
   937                    "for thread: " INTPTR_FORMAT, addr, thread);
   938       if (verbose) thread->print_on(st);
   939       return;
   940     }
   941     // If the addr is a java thread print information about that.
   942     if (addr == (address)thread) {
   943       if (verbose) {
   944         thread->print_on(st);
   945       } else {
   946         st->print_cr(INTPTR_FORMAT " is a thread", addr);
   947       }
   948       return;
   949     }
   950     // If the addr is in the stack region for this thread then report that
   951     // and print thread info
   952     if (thread->stack_base() >= addr &&
   953         addr > (thread->stack_base() - thread->stack_size())) {
   954       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
   955                    INTPTR_FORMAT, addr, thread);
   956       if (verbose) thread->print_on(st);
   957       return;
   958     }
   960   }
   961   // Try an OS specific find
   962   if (os::find(addr, st)) {
   963     return;
   964   }
   966   st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
   967 }
   969 // Looks like all platforms except IA64 can use the same function to check
   970 // if C stack is walkable beyond current frame. The check for fp() is not
   971 // necessary on Sparc, but it's harmless.
   972 bool os::is_first_C_frame(frame* fr) {
   973 #ifdef IA64
   974   // In order to walk native frames on Itanium, we need to access the unwind
   975   // table, which is inside ELF. We don't want to parse ELF after fatal error,
   976   // so return true for IA64. If we need to support C stack walking on IA64,
   977   // this function needs to be moved to CPU specific files, as fp() on IA64
   978   // is register stack, which grows towards higher memory address.
   979   return true;
   980 #endif
   982   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
   983   // Check usp first, because if that's bad the other accessors may fault
   984   // on some architectures.  Ditto ufp second, etc.
   985   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
   986   // sp on amd can be 32 bit aligned.
   987   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
   989   uintptr_t usp    = (uintptr_t)fr->sp();
   990   if ((usp & sp_align_mask) != 0) return true;
   992   uintptr_t ufp    = (uintptr_t)fr->fp();
   993   if ((ufp & fp_align_mask) != 0) return true;
   995   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
   996   if ((old_sp & sp_align_mask) != 0) return true;
   997   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
   999   uintptr_t old_fp = (uintptr_t)fr->link();
  1000   if ((old_fp & fp_align_mask) != 0) return true;
  1001   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
  1003   // stack grows downwards; if old_fp is below current fp or if the stack
  1004   // frame is too large, either the stack is corrupted or fp is not saved
  1005   // on stack (i.e. on x86, ebp may be used as general register). The stack
  1006   // is not walkable beyond current frame.
  1007   if (old_fp < ufp) return true;
  1008   if (old_fp - ufp > 64 * K) return true;
  1010   return false;
  1013 #ifdef ASSERT
  1014 extern "C" void test_random() {
  1015   const double m = 2147483647;
  1016   double mean = 0.0, variance = 0.0, t;
  1017   long reps = 10000;
  1018   unsigned long seed = 1;
  1020   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
  1021   os::init_random(seed);
  1022   long num;
  1023   for (int k = 0; k < reps; k++) {
  1024     num = os::random();
  1025     double u = (double)num / m;
  1026     assert(u >= 0.0 && u <= 1.0, "bad random number!");
  1028     // calculate mean and variance of the random sequence
  1029     mean += u;
  1030     variance += (u*u);
  1032   mean /= reps;
  1033   variance /= (reps - 1);
  1035   assert(num == 1043618065, "bad seed");
  1036   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
  1037   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
  1038   const double eps = 0.0001;
  1039   t = fabsd(mean - 0.5018);
  1040   assert(t < eps, "bad mean");
  1041   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
  1042   assert(t < eps, "bad variance");
  1044 #endif
  1047 // Set up the boot classpath.
  1049 char* os::format_boot_path(const char* format_string,
  1050                            const char* home,
  1051                            int home_len,
  1052                            char fileSep,
  1053                            char pathSep) {
  1054     assert((fileSep == '/' && pathSep == ':') ||
  1055            (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
  1057     // Scan the format string to determine the length of the actual
  1058     // boot classpath, and handle platform dependencies as well.
  1059     int formatted_path_len = 0;
  1060     const char* p;
  1061     for (p = format_string; *p != 0; ++p) {
  1062         if (*p == '%') formatted_path_len += home_len - 1;
  1063         ++formatted_path_len;
  1066     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
  1067     if (formatted_path == NULL) {
  1068         return NULL;
  1071     // Create boot classpath from format, substituting separator chars and
  1072     // java home directory.
  1073     char* q = formatted_path;
  1074     for (p = format_string; *p != 0; ++p) {
  1075         switch (*p) {
  1076         case '%':
  1077             strcpy(q, home);
  1078             q += home_len;
  1079             break;
  1080         case '/':
  1081             *q++ = fileSep;
  1082             break;
  1083         case ':':
  1084             *q++ = pathSep;
  1085             break;
  1086         default:
  1087             *q++ = *p;
  1090     *q = '\0';
  1092     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
  1093     return formatted_path;
  1097 bool os::set_boot_path(char fileSep, char pathSep) {
  1098     const char* home = Arguments::get_java_home();
  1099     int home_len = (int)strlen(home);
  1101     static const char* meta_index_dir_format = "%/lib/";
  1102     static const char* meta_index_format = "%/lib/meta-index";
  1103     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
  1104     if (meta_index == NULL) return false;
  1105     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
  1106     if (meta_index_dir == NULL) return false;
  1107     Arguments::set_meta_index_path(meta_index, meta_index_dir);
  1109     // Any modification to the JAR-file list, for the boot classpath must be
  1110     // aligned with install/install/make/common/Pack.gmk. Note: boot class
  1111     // path class JARs, are stripped for StackMapTable to reduce download size.
  1112     static const char classpath_format[] =
  1113         "%/lib/resources.jar:"
  1114         "%/lib/rt.jar:"
  1115         "%/lib/sunrsasign.jar:"
  1116         "%/lib/jsse.jar:"
  1117         "%/lib/jce.jar:"
  1118         "%/lib/charsets.jar:"
  1119         "%/lib/jfr.jar:"
  1120 #ifdef __APPLE__
  1121         "%/lib/JObjC.jar:"
  1122 #endif
  1123         "%/classes";
  1124     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
  1125     if (sysclasspath == NULL) return false;
  1126     Arguments::set_sysclasspath(sysclasspath);
  1128     return true;
  1131 /*
  1132  * Splits a path, based on its separator, the number of
  1133  * elements is returned back in n.
  1134  * It is the callers responsibility to:
  1135  *   a> check the value of n, and n may be 0.
  1136  *   b> ignore any empty path elements
  1137  *   c> free up the data.
  1138  */
  1139 char** os::split_path(const char* path, int* n) {
  1140   *n = 0;
  1141   if (path == NULL || strlen(path) == 0) {
  1142     return NULL;
  1144   const char psepchar = *os::path_separator();
  1145   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
  1146   if (inpath == NULL) {
  1147     return NULL;
  1149   strncpy(inpath, path, strlen(path));
  1150   int count = 1;
  1151   char* p = strchr(inpath, psepchar);
  1152   // Get a count of elements to allocate memory
  1153   while (p != NULL) {
  1154     count++;
  1155     p++;
  1156     p = strchr(p, psepchar);
  1158   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
  1159   if (opath == NULL) {
  1160     return NULL;
  1163   // do the actual splitting
  1164   p = inpath;
  1165   for (int i = 0 ; i < count ; i++) {
  1166     size_t len = strcspn(p, os::path_separator());
  1167     if (len > JVM_MAXPATHLEN) {
  1168       return NULL;
  1170     // allocate the string and add terminator storage
  1171     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
  1172     if (s == NULL) {
  1173       return NULL;
  1175     strncpy(s, p, len);
  1176     s[len] = '\0';
  1177     opath[i] = s;
  1178     p += len + 1;
  1180   FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
  1181   *n = count;
  1182   return opath;
  1185 void os::set_memory_serialize_page(address page) {
  1186   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
  1187   _mem_serialize_page = (volatile int32_t *)page;
  1188   // We initialize the serialization page shift count here
  1189   // We assume a cache line size of 64 bytes
  1190   assert(SerializePageShiftCount == count,
  1191          "thread size changed, fix SerializePageShiftCount constant");
  1192   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
  1195 static volatile intptr_t SerializePageLock = 0;
  1197 // This method is called from signal handler when SIGSEGV occurs while the current
  1198 // thread tries to store to the "read-only" memory serialize page during state
  1199 // transition.
  1200 void os::block_on_serialize_page_trap() {
  1201   if (TraceSafepoint) {
  1202     tty->print_cr("Block until the serialize page permission restored");
  1204   // When VMThread is holding the SerializePageLock during modifying the
  1205   // access permission of the memory serialize page, the following call
  1206   // will block until the permission of that page is restored to rw.
  1207   // Generally, it is unsafe to manipulate locks in signal handlers, but in
  1208   // this case, it's OK as the signal is synchronous and we know precisely when
  1209   // it can occur.
  1210   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
  1211   Thread::muxRelease(&SerializePageLock);
  1214 // Serialize all thread state variables
  1215 void os::serialize_thread_states() {
  1216   // On some platforms such as Solaris & Linux, the time duration of the page
  1217   // permission restoration is observed to be much longer than expected  due to
  1218   // scheduler starvation problem etc. To avoid the long synchronization
  1219   // time and expensive page trap spinning, 'SerializePageLock' is used to block
  1220   // the mutator thread if such case is encountered. See bug 6546278 for details.
  1221   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
  1222   os::protect_memory((char *)os::get_memory_serialize_page(),
  1223                      os::vm_page_size(), MEM_PROT_READ);
  1224   os::protect_memory((char *)os::get_memory_serialize_page(),
  1225                      os::vm_page_size(), MEM_PROT_RW);
  1226   Thread::muxRelease(&SerializePageLock);
  1229 // Returns true if the current stack pointer is above the stack shadow
  1230 // pages, false otherwise.
  1232 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
  1233   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
  1234   address sp = current_stack_pointer();
  1235   // Check if we have StackShadowPages above the yellow zone.  This parameter
  1236   // is dependent on the depth of the maximum VM call stack possible from
  1237   // the handler for stack overflow.  'instanceof' in the stack overflow
  1238   // handler or a println uses at least 8k stack of VM and native code
  1239   // respectively.
  1240   const int framesize_in_bytes =
  1241     Interpreter::size_top_interpreter_activation(method()) * wordSize;
  1242   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
  1243                       * vm_page_size()) + framesize_in_bytes;
  1244   // The very lower end of the stack
  1245   address stack_limit = thread->stack_base() - thread->stack_size();
  1246   return (sp > (stack_limit + reserved_area));
  1249 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
  1250                                 uint min_pages)
  1252   assert(min_pages > 0, "sanity");
  1253   if (UseLargePages) {
  1254     const size_t max_page_size = region_max_size / min_pages;
  1256     for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
  1257       const size_t sz = _page_sizes[i];
  1258       const size_t mask = sz - 1;
  1259       if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
  1260         // The largest page size with no fragmentation.
  1261         return sz;
  1264       if (sz <= max_page_size) {
  1265         // The largest page size that satisfies the min_pages requirement.
  1266         return sz;
  1271   return vm_page_size();
  1274 #ifndef PRODUCT
  1275 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
  1277   if (TracePageSizes) {
  1278     tty->print("%s: ", str);
  1279     for (int i = 0; i < count; ++i) {
  1280       tty->print(" " SIZE_FORMAT, page_sizes[i]);
  1282     tty->cr();
  1286 void os::trace_page_sizes(const char* str, const size_t region_min_size,
  1287                           const size_t region_max_size, const size_t page_size,
  1288                           const char* base, const size_t size)
  1290   if (TracePageSizes) {
  1291     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
  1292                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
  1293                   " size=" SIZE_FORMAT,
  1294                   str, region_min_size, region_max_size,
  1295                   page_size, base, size);
  1298 #endif  // #ifndef PRODUCT
  1300 // This is the working definition of a server class machine:
  1301 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
  1302 // because the graphics memory (?) sometimes masks physical memory.
  1303 // If you want to change the definition of a server class machine
  1304 // on some OS or platform, e.g., >=4GB on Windohs platforms,
  1305 // then you'll have to parameterize this method based on that state,
  1306 // as was done for logical processors here, or replicate and
  1307 // specialize this method for each platform.  (Or fix os to have
  1308 // some inheritance structure and use subclassing.  Sigh.)
  1309 // If you want some platform to always or never behave as a server
  1310 // class machine, change the setting of AlwaysActAsServerClassMachine
  1311 // and NeverActAsServerClassMachine in globals*.hpp.
  1312 bool os::is_server_class_machine() {
  1313   // First check for the early returns
  1314   if (NeverActAsServerClassMachine) {
  1315     return false;
  1317   if (AlwaysActAsServerClassMachine) {
  1318     return true;
  1320   // Then actually look at the machine
  1321   bool         result            = false;
  1322   const unsigned int    server_processors = 2;
  1323   const julong server_memory     = 2UL * G;
  1324   // We seem not to get our full complement of memory.
  1325   //     We allow some part (1/8?) of the memory to be "missing",
  1326   //     based on the sizes of DIMMs, and maybe graphics cards.
  1327   const julong missing_memory   = 256UL * M;
  1329   /* Is this a server class machine? */
  1330   if ((os::active_processor_count() >= (int)server_processors) &&
  1331       (os::physical_memory() >= (server_memory - missing_memory))) {
  1332     const unsigned int logical_processors =
  1333       VM_Version::logical_processors_per_package();
  1334     if (logical_processors > 1) {
  1335       const unsigned int physical_packages =
  1336         os::active_processor_count() / logical_processors;
  1337       if (physical_packages > server_processors) {
  1338         result = true;
  1340     } else {
  1341       result = true;
  1344   return result;
  1347 // Read file line by line, if line is longer than bsize,
  1348 // skip rest of line.
  1349 int os::get_line_chars(int fd, char* buf, const size_t bsize){
  1350   size_t sz, i = 0;
  1352   // read until EOF, EOL or buf is full
  1353   while ((sz = (int) read(fd, &buf[i], 1)) == 1 && i < (bsize-2) && buf[i] != '\n') {
  1354      ++i;
  1357   if (buf[i] == '\n') {
  1358     // EOL reached so ignore EOL character and return
  1360     buf[i] = 0;
  1361     return (int) i;
  1364   buf[i+1] = 0;
  1366   if (sz != 1) {
  1367     // EOF reached. if we read chars before EOF return them and
  1368     // return EOF on next call otherwise return EOF
  1370     return (i == 0) ? -1 : (int) i;
  1373   // line is longer than size of buf, skip to EOL
  1374   char ch;
  1375   while (read(fd, &ch, 1) == 1 && ch != '\n') {
  1376     // Do nothing
  1379   // return initial part of line that fits in buf.
  1380   // If we reached EOF, it will be returned on next call.
  1382   return (int) i;
  1385 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
  1386   return os::pd_create_stack_guard_pages(addr, bytes);
  1390 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  1391   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
  1392   if (result != NULL && MemTracker::is_on()) {
  1393     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1396   return result;
  1398 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
  1399   char* result = pd_attempt_reserve_memory_at(bytes, addr);
  1400   if (result != NULL && MemTracker::is_on()) {
  1401     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1403   return result;
  1406 void os::split_reserved_memory(char *base, size_t size,
  1407                                  size_t split, bool realloc) {
  1408   pd_split_reserved_memory(base, size, split, realloc);
  1411 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
  1412   bool res = pd_commit_memory(addr, bytes, executable);
  1413   if (res && MemTracker::is_on()) {
  1414     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
  1416   return res;
  1419 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  1420                               bool executable) {
  1421   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
  1422   if (res && MemTracker::is_on()) {
  1423     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
  1425   return res;
  1428 bool os::uncommit_memory(char* addr, size_t bytes) {
  1429   bool res = pd_uncommit_memory(addr, bytes);
  1430   if (res) {
  1431     MemTracker::record_virtual_memory_uncommit((address)addr, bytes);
  1433   return res;
  1436 bool os::release_memory(char* addr, size_t bytes) {
  1437   bool res = pd_release_memory(addr, bytes);
  1438   if (res) {
  1439     MemTracker::record_virtual_memory_release((address)addr, bytes);
  1441   return res;
  1445 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  1446                            char *addr, size_t bytes, bool read_only,
  1447                            bool allow_exec) {
  1448   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
  1449   if (result != NULL && MemTracker::is_on()) {
  1450     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1452   return result;
  1455 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  1456                              char *addr, size_t bytes, bool read_only,
  1457                              bool allow_exec) {
  1458   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
  1459                     read_only, allow_exec);
  1462 bool os::unmap_memory(char *addr, size_t bytes) {
  1463   bool result = pd_unmap_memory(addr, bytes);
  1464   if (result) {
  1465     MemTracker::record_virtual_memory_release((address)addr, bytes);
  1467   return result;
  1470 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  1471   pd_free_memory(addr, bytes, alignment_hint);
  1474 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  1475   pd_realign_memory(addr, bytes, alignment_hint);

mercurial