src/share/vm/opto/phaseX.cpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3260
670a74b863fc
child 3947
611e8a669a2c
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/block.hpp"
    28 #include "opto/callnode.hpp"
    29 #include "opto/cfgnode.hpp"
    30 #include "opto/connode.hpp"
    31 #include "opto/idealGraphPrinter.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/machnode.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/phaseX.hpp"
    36 #include "opto/regalloc.hpp"
    37 #include "opto/rootnode.hpp"
    39 //=============================================================================
    40 #define NODE_HASH_MINIMUM_SIZE    255
    41 //------------------------------NodeHash---------------------------------------
    42 NodeHash::NodeHash(uint est_max_size) :
    43   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
    44   _a(Thread::current()->resource_area()),
    45   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ), // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
    46   _inserts(0), _insert_limit( insert_limit() ),
    47   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
    48   _total_insert_probes(0), _total_inserts(0),
    49   _insert_probes(0), _grows(0) {
    50   // _sentinel must be in the current node space
    51   _sentinel = new (Compile::current(), 1) ProjNode(NULL, TypeFunc::Control);
    52   memset(_table,0,sizeof(Node*)*_max);
    53 }
    55 //------------------------------NodeHash---------------------------------------
    56 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
    57   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
    58   _a(arena),
    59   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ),
    60   _inserts(0), _insert_limit( insert_limit() ),
    61   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
    62   _delete_probes(0), _delete_hits(0), _delete_misses(0),
    63   _total_insert_probes(0), _total_inserts(0),
    64   _insert_probes(0), _grows(0) {
    65   // _sentinel must be in the current node space
    66   _sentinel = new (Compile::current(), 1) ProjNode(NULL, TypeFunc::Control);
    67   memset(_table,0,sizeof(Node*)*_max);
    68 }
    70 //------------------------------NodeHash---------------------------------------
    71 NodeHash::NodeHash(NodeHash *nh) {
    72   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
    73   // just copy in all the fields
    74   *this = *nh;
    75   // nh->_sentinel must be in the current node space
    76 }
    78 //------------------------------hash_find--------------------------------------
    79 // Find in hash table
    80 Node *NodeHash::hash_find( const Node *n ) {
    81   // ((Node*)n)->set_hash( n->hash() );
    82   uint hash = n->hash();
    83   if (hash == Node::NO_HASH) {
    84     debug_only( _lookup_misses++ );
    85     return NULL;
    86   }
    87   uint key = hash & (_max-1);
    88   uint stride = key | 0x01;
    89   debug_only( _look_probes++ );
    90   Node *k = _table[key];        // Get hashed value
    91   if( !k ) {                    // ?Miss?
    92     debug_only( _lookup_misses++ );
    93     return NULL;                // Miss!
    94   }
    96   int op = n->Opcode();
    97   uint req = n->req();
    98   while( 1 ) {                  // While probing hash table
    99     if( k->req() == req &&      // Same count of inputs
   100         k->Opcode() == op ) {   // Same Opcode
   101       for( uint i=0; i<req; i++ )
   102         if( n->in(i)!=k->in(i)) // Different inputs?
   103           goto collision;       // "goto" is a speed hack...
   104       if( n->cmp(*k) ) {        // Check for any special bits
   105         debug_only( _lookup_hits++ );
   106         return k;               // Hit!
   107       }
   108     }
   109   collision:
   110     debug_only( _look_probes++ );
   111     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
   112     k = _table[key];            // Get hashed value
   113     if( !k ) {                  // ?Miss?
   114       debug_only( _lookup_misses++ );
   115       return NULL;              // Miss!
   116     }
   117   }
   118   ShouldNotReachHere();
   119   return NULL;
   120 }
   122 //------------------------------hash_find_insert-------------------------------
   123 // Find in hash table, insert if not already present
   124 // Used to preserve unique entries in hash table
   125 Node *NodeHash::hash_find_insert( Node *n ) {
   126   // n->set_hash( );
   127   uint hash = n->hash();
   128   if (hash == Node::NO_HASH) {
   129     debug_only( _lookup_misses++ );
   130     return NULL;
   131   }
   132   uint key = hash & (_max-1);
   133   uint stride = key | 0x01;     // stride must be relatively prime to table siz
   134   uint first_sentinel = 0;      // replace a sentinel if seen.
   135   debug_only( _look_probes++ );
   136   Node *k = _table[key];        // Get hashed value
   137   if( !k ) {                    // ?Miss?
   138     debug_only( _lookup_misses++ );
   139     _table[key] = n;            // Insert into table!
   140     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
   141     check_grow();               // Grow table if insert hit limit
   142     return NULL;                // Miss!
   143   }
   144   else if( k == _sentinel ) {
   145     first_sentinel = key;      // Can insert here
   146   }
   148   int op = n->Opcode();
   149   uint req = n->req();
   150   while( 1 ) {                  // While probing hash table
   151     if( k->req() == req &&      // Same count of inputs
   152         k->Opcode() == op ) {   // Same Opcode
   153       for( uint i=0; i<req; i++ )
   154         if( n->in(i)!=k->in(i)) // Different inputs?
   155           goto collision;       // "goto" is a speed hack...
   156       if( n->cmp(*k) ) {        // Check for any special bits
   157         debug_only( _lookup_hits++ );
   158         return k;               // Hit!
   159       }
   160     }
   161   collision:
   162     debug_only( _look_probes++ );
   163     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
   164     k = _table[key];            // Get hashed value
   165     if( !k ) {                  // ?Miss?
   166       debug_only( _lookup_misses++ );
   167       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
   168       _table[key] = n;          // Insert into table!
   169       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
   170       check_grow();             // Grow table if insert hit limit
   171       return NULL;              // Miss!
   172     }
   173     else if( first_sentinel == 0 && k == _sentinel ) {
   174       first_sentinel = key;    // Can insert here
   175     }
   177   }
   178   ShouldNotReachHere();
   179   return NULL;
   180 }
   182 //------------------------------hash_insert------------------------------------
   183 // Insert into hash table
   184 void NodeHash::hash_insert( Node *n ) {
   185   // // "conflict" comments -- print nodes that conflict
   186   // bool conflict = false;
   187   // n->set_hash();
   188   uint hash = n->hash();
   189   if (hash == Node::NO_HASH) {
   190     return;
   191   }
   192   check_grow();
   193   uint key = hash & (_max-1);
   194   uint stride = key | 0x01;
   196   while( 1 ) {                  // While probing hash table
   197     debug_only( _insert_probes++ );
   198     Node *k = _table[key];      // Get hashed value
   199     if( !k || (k == _sentinel) ) break;       // Found a slot
   200     assert( k != n, "already inserted" );
   201     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
   202     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
   203   }
   204   _table[key] = n;              // Insert into table!
   205   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
   206   // if( conflict ) { n->dump(); }
   207 }
   209 //------------------------------hash_delete------------------------------------
   210 // Replace in hash table with sentinel
   211 bool NodeHash::hash_delete( const Node *n ) {
   212   Node *k;
   213   uint hash = n->hash();
   214   if (hash == Node::NO_HASH) {
   215     debug_only( _delete_misses++ );
   216     return false;
   217   }
   218   uint key = hash & (_max-1);
   219   uint stride = key | 0x01;
   220   debug_only( uint counter = 0; );
   221   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
   222     debug_only( counter++ );
   223     debug_only( _delete_probes++ );
   224     k = _table[key];            // Get hashed value
   225     if( !k ) {                  // Miss?
   226       debug_only( _delete_misses++ );
   227 #ifdef ASSERT
   228       if( VerifyOpto ) {
   229         for( uint i=0; i < _max; i++ )
   230           assert( _table[i] != n, "changed edges with rehashing" );
   231       }
   232 #endif
   233       return false;             // Miss! Not in chain
   234     }
   235     else if( n == k ) {
   236       debug_only( _delete_hits++ );
   237       _table[key] = _sentinel;  // Hit! Label as deleted entry
   238       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
   239       return true;
   240     }
   241     else {
   242       // collision: move through table with prime offset
   243       key = (key + stride/*7*/) & (_max-1);
   244       assert( counter <= _insert_limit, "Cycle in hash-table");
   245     }
   246   }
   247   ShouldNotReachHere();
   248   return false;
   249 }
   251 //------------------------------round_up---------------------------------------
   252 // Round up to nearest power of 2
   253 uint NodeHash::round_up( uint x ) {
   254   x += (x>>2);                  // Add 25% slop
   255   if( x <16 ) return 16;        // Small stuff
   256   uint i=16;
   257   while( i < x ) i <<= 1;       // Double to fit
   258   return i;                     // Return hash table size
   259 }
   261 //------------------------------grow-------------------------------------------
   262 // Grow _table to next power of 2 and insert old entries
   263 void  NodeHash::grow() {
   264   // Record old state
   265   uint   old_max   = _max;
   266   Node **old_table = _table;
   267   // Construct new table with twice the space
   268   _grows++;
   269   _total_inserts       += _inserts;
   270   _total_insert_probes += _insert_probes;
   271   _inserts         = 0;
   272   _insert_probes   = 0;
   273   _max     = _max << 1;
   274   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
   275   memset(_table,0,sizeof(Node*)*_max);
   276   _insert_limit = insert_limit();
   277   // Insert old entries into the new table
   278   for( uint i = 0; i < old_max; i++ ) {
   279     Node *m = *old_table++;
   280     if( !m || m == _sentinel ) continue;
   281     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
   282     hash_insert(m);
   283   }
   284 }
   286 //------------------------------clear------------------------------------------
   287 // Clear all entries in _table to NULL but keep storage
   288 void  NodeHash::clear() {
   289 #ifdef ASSERT
   290   // Unlock all nodes upon removal from table.
   291   for (uint i = 0; i < _max; i++) {
   292     Node* n = _table[i];
   293     if (!n || n == _sentinel)  continue;
   294     n->exit_hash_lock();
   295   }
   296 #endif
   298   memset( _table, 0, _max * sizeof(Node*) );
   299 }
   301 //-----------------------remove_useless_nodes----------------------------------
   302 // Remove useless nodes from value table,
   303 // implementation does not depend on hash function
   304 void NodeHash::remove_useless_nodes(VectorSet &useful) {
   306   // Dead nodes in the hash table inherited from GVN should not replace
   307   // existing nodes, remove dead nodes.
   308   uint max = size();
   309   Node *sentinel_node = sentinel();
   310   for( uint i = 0; i < max; ++i ) {
   311     Node *n = at(i);
   312     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
   313       debug_only(n->exit_hash_lock()); // Unlock the node when removed
   314       _table[i] = sentinel_node;       // Replace with placeholder
   315     }
   316   }
   317 }
   319 #ifndef PRODUCT
   320 //------------------------------dump-------------------------------------------
   321 // Dump statistics for the hash table
   322 void NodeHash::dump() {
   323   _total_inserts       += _inserts;
   324   _total_insert_probes += _insert_probes;
   325   if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
   326     if (WizardMode) {
   327       for (uint i=0; i<_max; i++) {
   328         if (_table[i])
   329           tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
   330       }
   331     }
   332     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
   333     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
   334     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
   335     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
   336     // sentinels increase lookup cost, but not insert cost
   337     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
   338     assert( _inserts+(_inserts>>3) < _max, "table too full" );
   339     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
   340   }
   341 }
   343 Node *NodeHash::find_index(uint idx) { // For debugging
   344   // Find an entry by its index value
   345   for( uint i = 0; i < _max; i++ ) {
   346     Node *m = _table[i];
   347     if( !m || m == _sentinel ) continue;
   348     if( m->_idx == (uint)idx ) return m;
   349   }
   350   return NULL;
   351 }
   352 #endif
   354 #ifdef ASSERT
   355 NodeHash::~NodeHash() {
   356   // Unlock all nodes upon destruction of table.
   357   if (_table != (Node**)badAddress)  clear();
   358 }
   360 void NodeHash::operator=(const NodeHash& nh) {
   361   // Unlock all nodes upon replacement of table.
   362   if (&nh == this)  return;
   363   if (_table != (Node**)badAddress)  clear();
   364   memcpy(this, &nh, sizeof(*this));
   365   // Do not increment hash_lock counts again.
   366   // Instead, be sure we never again use the source table.
   367   ((NodeHash*)&nh)->_table = (Node**)badAddress;
   368 }
   371 #endif
   374 //=============================================================================
   375 //------------------------------PhaseRemoveUseless-----------------------------
   376 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
   377 PhaseRemoveUseless::PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist ) : Phase(Remove_Useless),
   378   _useful(Thread::current()->resource_area()) {
   380   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
   381   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
   382   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
   384   // Identify nodes that are reachable from below, useful.
   385   C->identify_useful_nodes(_useful);
   387   // Remove all useless nodes from PhaseValues' recorded types
   388   // Must be done before disconnecting nodes to preserve hash-table-invariant
   389   gvn->remove_useless_nodes(_useful.member_set());
   391   // Remove all useless nodes from future worklist
   392   worklist->remove_useless_nodes(_useful.member_set());
   394   // Disconnect 'useless' nodes that are adjacent to useful nodes
   395   C->remove_useless_nodes(_useful);
   397   // Remove edges from "root" to each SafePoint at a backward branch.
   398   // They were inserted during parsing (see add_safepoint()) to make infinite
   399   // loops without calls or exceptions visible to root, i.e., useful.
   400   Node *root = C->root();
   401   if( root != NULL ) {
   402     for( uint i = root->req(); i < root->len(); ++i ) {
   403       Node *n = root->in(i);
   404       if( n != NULL && n->is_SafePoint() ) {
   405         root->rm_prec(i);
   406         --i;
   407       }
   408     }
   409   }
   410 }
   413 //=============================================================================
   414 //------------------------------PhaseTransform---------------------------------
   415 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
   416   _arena(Thread::current()->resource_area()),
   417   _nodes(_arena),
   418   _types(_arena)
   419 {
   420   init_con_caches();
   421 #ifndef PRODUCT
   422   clear_progress();
   423   clear_transforms();
   424   set_allow_progress(true);
   425 #endif
   426   // Force allocation for currently existing nodes
   427   _types.map(C->unique(), NULL);
   428 }
   430 //------------------------------PhaseTransform---------------------------------
   431 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
   432   _arena(arena),
   433   _nodes(arena),
   434   _types(arena)
   435 {
   436   init_con_caches();
   437 #ifndef PRODUCT
   438   clear_progress();
   439   clear_transforms();
   440   set_allow_progress(true);
   441 #endif
   442   // Force allocation for currently existing nodes
   443   _types.map(C->unique(), NULL);
   444 }
   446 //------------------------------PhaseTransform---------------------------------
   447 // Initialize with previously generated type information
   448 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
   449   _arena(pt->_arena),
   450   _nodes(pt->_nodes),
   451   _types(pt->_types)
   452 {
   453   init_con_caches();
   454 #ifndef PRODUCT
   455   clear_progress();
   456   clear_transforms();
   457   set_allow_progress(true);
   458 #endif
   459 }
   461 void PhaseTransform::init_con_caches() {
   462   memset(_icons,0,sizeof(_icons));
   463   memset(_lcons,0,sizeof(_lcons));
   464   memset(_zcons,0,sizeof(_zcons));
   465 }
   468 //--------------------------------find_int_type--------------------------------
   469 const TypeInt* PhaseTransform::find_int_type(Node* n) {
   470   if (n == NULL)  return NULL;
   471   // Call type_or_null(n) to determine node's type since we might be in
   472   // parse phase and call n->Value() may return wrong type.
   473   // (For example, a phi node at the beginning of loop parsing is not ready.)
   474   const Type* t = type_or_null(n);
   475   if (t == NULL)  return NULL;
   476   return t->isa_int();
   477 }
   480 //-------------------------------find_long_type--------------------------------
   481 const TypeLong* PhaseTransform::find_long_type(Node* n) {
   482   if (n == NULL)  return NULL;
   483   // (See comment above on type_or_null.)
   484   const Type* t = type_or_null(n);
   485   if (t == NULL)  return NULL;
   486   return t->isa_long();
   487 }
   490 #ifndef PRODUCT
   491 void PhaseTransform::dump_old2new_map() const {
   492   _nodes.dump();
   493 }
   495 void PhaseTransform::dump_new( uint nidx ) const {
   496   for( uint i=0; i<_nodes.Size(); i++ )
   497     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
   498       _nodes[i]->dump();
   499       tty->cr();
   500       tty->print_cr("Old index= %d",i);
   501       return;
   502     }
   503   tty->print_cr("Node %d not found in the new indices", nidx);
   504 }
   506 //------------------------------dump_types-------------------------------------
   507 void PhaseTransform::dump_types( ) const {
   508   _types.dump();
   509 }
   511 //------------------------------dump_nodes_and_types---------------------------
   512 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
   513   VectorSet visited(Thread::current()->resource_area());
   514   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
   515 }
   517 //------------------------------dump_nodes_and_types_recur---------------------
   518 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
   519   if( !n ) return;
   520   if( depth == 0 ) return;
   521   if( visited.test_set(n->_idx) ) return;
   522   for( uint i=0; i<n->len(); i++ ) {
   523     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
   524     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
   525   }
   526   n->dump();
   527   if (type_or_null(n) != NULL) {
   528     tty->print("      "); type(n)->dump(); tty->cr();
   529   }
   530 }
   532 #endif
   535 //=============================================================================
   536 //------------------------------PhaseValues------------------------------------
   537 // Set minimum table size to "255"
   538 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
   539   NOT_PRODUCT( clear_new_values(); )
   540 }
   542 //------------------------------PhaseValues------------------------------------
   543 // Set minimum table size to "255"
   544 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
   545   _table(&ptv->_table) {
   546   NOT_PRODUCT( clear_new_values(); )
   547 }
   549 //------------------------------PhaseValues------------------------------------
   550 // Used by +VerifyOpto.  Clear out hash table but copy _types array.
   551 PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
   552   _table(ptv->arena(),ptv->_table.size()) {
   553   NOT_PRODUCT( clear_new_values(); )
   554 }
   556 //------------------------------~PhaseValues-----------------------------------
   557 #ifndef PRODUCT
   558 PhaseValues::~PhaseValues() {
   559   _table.dump();
   561   // Statistics for value progress and efficiency
   562   if( PrintCompilation && Verbose && WizardMode ) {
   563     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
   564       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
   565     if( made_transforms() != 0 ) {
   566       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
   567     } else {
   568       tty->cr();
   569     }
   570   }
   571 }
   572 #endif
   574 //------------------------------makecon----------------------------------------
   575 ConNode* PhaseTransform::makecon(const Type *t) {
   576   assert(t->singleton(), "must be a constant");
   577   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
   578   switch (t->base()) {  // fast paths
   579   case Type::Half:
   580   case Type::Top:  return (ConNode*) C->top();
   581   case Type::Int:  return intcon( t->is_int()->get_con() );
   582   case Type::Long: return longcon( t->is_long()->get_con() );
   583   }
   584   if (t->is_zero_type())
   585     return zerocon(t->basic_type());
   586   return uncached_makecon(t);
   587 }
   589 //--------------------------uncached_makecon-----------------------------------
   590 // Make an idealized constant - one of ConINode, ConPNode, etc.
   591 ConNode* PhaseValues::uncached_makecon(const Type *t) {
   592   assert(t->singleton(), "must be a constant");
   593   ConNode* x = ConNode::make(C, t);
   594   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
   595   if (k == NULL) {
   596     set_type(x, t);             // Missed, provide type mapping
   597     GrowableArray<Node_Notes*>* nna = C->node_note_array();
   598     if (nna != NULL) {
   599       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
   600       loc->clear(); // do not put debug info on constants
   601     }
   602   } else {
   603     x->destruct();              // Hit, destroy duplicate constant
   604     x = k;                      // use existing constant
   605   }
   606   return x;
   607 }
   609 //------------------------------intcon-----------------------------------------
   610 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
   611 ConINode* PhaseTransform::intcon(int i) {
   612   // Small integer?  Check cache! Check that cached node is not dead
   613   if (i >= _icon_min && i <= _icon_max) {
   614     ConINode* icon = _icons[i-_icon_min];
   615     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
   616       return icon;
   617   }
   618   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
   619   assert(icon->is_Con(), "");
   620   if (i >= _icon_min && i <= _icon_max)
   621     _icons[i-_icon_min] = icon;   // Cache small integers
   622   return icon;
   623 }
   625 //------------------------------longcon----------------------------------------
   626 // Fast long constant.
   627 ConLNode* PhaseTransform::longcon(jlong l) {
   628   // Small integer?  Check cache! Check that cached node is not dead
   629   if (l >= _lcon_min && l <= _lcon_max) {
   630     ConLNode* lcon = _lcons[l-_lcon_min];
   631     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
   632       return lcon;
   633   }
   634   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
   635   assert(lcon->is_Con(), "");
   636   if (l >= _lcon_min && l <= _lcon_max)
   637     _lcons[l-_lcon_min] = lcon;      // Cache small integers
   638   return lcon;
   639 }
   641 //------------------------------zerocon-----------------------------------------
   642 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
   643 ConNode* PhaseTransform::zerocon(BasicType bt) {
   644   assert((uint)bt <= _zcon_max, "domain check");
   645   ConNode* zcon = _zcons[bt];
   646   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
   647     return zcon;
   648   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
   649   _zcons[bt] = zcon;
   650   return zcon;
   651 }
   655 //=============================================================================
   656 //------------------------------transform--------------------------------------
   657 // Return a node which computes the same function as this node, but in a
   658 // faster or cheaper fashion.
   659 Node *PhaseGVN::transform( Node *n ) {
   660   return transform_no_reclaim(n);
   661 }
   663 //------------------------------transform--------------------------------------
   664 // Return a node which computes the same function as this node, but
   665 // in a faster or cheaper fashion.
   666 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
   667   NOT_PRODUCT( set_transforms(); )
   669   // Apply the Ideal call in a loop until it no longer applies
   670   Node *k = n;
   671   NOT_PRODUCT( uint loop_count = 0; )
   672   while( 1 ) {
   673     Node *i = k->Ideal(this, /*can_reshape=*/false);
   674     if( !i ) break;
   675     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
   676     k = i;
   677     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
   678   }
   679   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
   682   // If brand new node, make space in type array.
   683   ensure_type_or_null(k);
   685   // Since I just called 'Value' to compute the set of run-time values
   686   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
   687   // cache Value.  Later requests for the local phase->type of this Node can
   688   // use the cached Value instead of suffering with 'bottom_type'.
   689   const Type *t = k->Value(this); // Get runtime Value set
   690   assert(t != NULL, "value sanity");
   691   if (type_or_null(k) != t) {
   692 #ifndef PRODUCT
   693     // Do not count initial visit to node as a transformation
   694     if (type_or_null(k) == NULL) {
   695       inc_new_values();
   696       set_progress();
   697     }
   698 #endif
   699     set_type(k, t);
   700     // If k is a TypeNode, capture any more-precise type permanently into Node
   701     k->raise_bottom_type(t);
   702   }
   704   if( t->singleton() && !k->is_Con() ) {
   705     NOT_PRODUCT( set_progress(); )
   706     return makecon(t);          // Turn into a constant
   707   }
   709   // Now check for Identities
   710   Node *i = k->Identity(this);  // Look for a nearby replacement
   711   if( i != k ) {                // Found? Return replacement!
   712     NOT_PRODUCT( set_progress(); )
   713     return i;
   714   }
   716   // Global Value Numbering
   717   i = hash_find_insert(k);      // Insert if new
   718   if( i && (i != k) ) {
   719     // Return the pre-existing node
   720     NOT_PRODUCT( set_progress(); )
   721     return i;
   722   }
   724   // Return Idealized original
   725   return k;
   726 }
   728 #ifdef ASSERT
   729 //------------------------------dead_loop_check--------------------------------
   730 // Check for a simple dead loop when a data node references itself directly
   731 // or through an other data node excluding cons and phis.
   732 void PhaseGVN::dead_loop_check( Node *n ) {
   733   // Phi may reference itself in a loop
   734   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
   735     // Do 2 levels check and only data inputs.
   736     bool no_dead_loop = true;
   737     uint cnt = n->req();
   738     for (uint i = 1; i < cnt && no_dead_loop; i++) {
   739       Node *in = n->in(i);
   740       if (in == n) {
   741         no_dead_loop = false;
   742       } else if (in != NULL && !in->is_dead_loop_safe()) {
   743         uint icnt = in->req();
   744         for (uint j = 1; j < icnt && no_dead_loop; j++) {
   745           if (in->in(j) == n || in->in(j) == in)
   746             no_dead_loop = false;
   747         }
   748       }
   749     }
   750     if (!no_dead_loop) n->dump(3);
   751     assert(no_dead_loop, "dead loop detected");
   752   }
   753 }
   754 #endif
   756 //=============================================================================
   757 //------------------------------PhaseIterGVN-----------------------------------
   758 // Initialize hash table to fresh and clean for +VerifyOpto
   759 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), _worklist( ),
   760                                                                       _delay_transform(false) {
   761 }
   763 //------------------------------PhaseIterGVN-----------------------------------
   764 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
   765 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
   766                                                    _worklist( igvn->_worklist ),
   767                                                    _delay_transform(igvn->_delay_transform)
   768 {
   769 }
   771 //------------------------------PhaseIterGVN-----------------------------------
   772 // Initialize with previous PhaseGVN info from Parser
   773 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
   774                                               _worklist(*C->for_igvn()),
   775                                               _delay_transform(false)
   776 {
   777   uint max;
   779   // Dead nodes in the hash table inherited from GVN were not treated as
   780   // roots during def-use info creation; hence they represent an invisible
   781   // use.  Clear them out.
   782   max = _table.size();
   783   for( uint i = 0; i < max; ++i ) {
   784     Node *n = _table.at(i);
   785     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
   786       if( n->is_top() ) continue;
   787       assert( false, "Parse::remove_useless_nodes missed this node");
   788       hash_delete(n);
   789     }
   790   }
   792   // Any Phis or Regions on the worklist probably had uses that could not
   793   // make more progress because the uses were made while the Phis and Regions
   794   // were in half-built states.  Put all uses of Phis and Regions on worklist.
   795   max = _worklist.size();
   796   for( uint j = 0; j < max; j++ ) {
   797     Node *n = _worklist.at(j);
   798     uint uop = n->Opcode();
   799     if( uop == Op_Phi || uop == Op_Region ||
   800         n->is_Type() ||
   801         n->is_Mem() )
   802       add_users_to_worklist(n);
   803   }
   804 }
   807 #ifndef PRODUCT
   808 void PhaseIterGVN::verify_step(Node* n) {
   809   _verify_window[_verify_counter % _verify_window_size] = n;
   810   ++_verify_counter;
   811   ResourceMark rm;
   812   ResourceArea *area = Thread::current()->resource_area();
   813   VectorSet old_space(area), new_space(area);
   814   if (C->unique() < 1000 ||
   815       0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
   816     ++_verify_full_passes;
   817     Node::verify_recur(C->root(), -1, old_space, new_space);
   818   }
   819   const int verify_depth = 4;
   820   for ( int i = 0; i < _verify_window_size; i++ ) {
   821     Node* n = _verify_window[i];
   822     if ( n == NULL )  continue;
   823     if( n->in(0) == NodeSentinel ) {  // xform_idom
   824       _verify_window[i] = n->in(1);
   825       --i; continue;
   826     }
   827     // Typical fanout is 1-2, so this call visits about 6 nodes.
   828     Node::verify_recur(n, verify_depth, old_space, new_space);
   829   }
   830 }
   831 #endif
   834 //------------------------------init_worklist----------------------------------
   835 // Initialize worklist for each node.
   836 void PhaseIterGVN::init_worklist( Node *n ) {
   837   if( _worklist.member(n) ) return;
   838   _worklist.push(n);
   839   uint cnt = n->req();
   840   for( uint i =0 ; i < cnt; i++ ) {
   841     Node *m = n->in(i);
   842     if( m ) init_worklist(m);
   843   }
   844 }
   846 //------------------------------optimize---------------------------------------
   847 void PhaseIterGVN::optimize() {
   848   debug_only(uint num_processed  = 0;);
   849 #ifndef PRODUCT
   850   {
   851     _verify_counter = 0;
   852     _verify_full_passes = 0;
   853     for ( int i = 0; i < _verify_window_size; i++ ) {
   854       _verify_window[i] = NULL;
   855     }
   856   }
   857 #endif
   859 #ifdef ASSERT
   860   Node* prev = NULL;
   861   uint rep_cnt = 0;
   862 #endif
   863   uint loop_count = 0;
   865   // Pull from worklist; transform node;
   866   // If node has changed: update edge info and put uses on worklist.
   867   while( _worklist.size() ) {
   868     if (C->check_node_count(NodeLimitFudgeFactor * 2,
   869                             "out of nodes optimizing method")) {
   870       return;
   871     }
   872     Node *n  = _worklist.pop();
   873     if (++loop_count >= K * C->unique()) {
   874       debug_only(n->dump(4);)
   875       assert(false, "infinite loop in PhaseIterGVN::optimize");
   876       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
   877       return;
   878     }
   879 #ifdef ASSERT
   880     if (n == prev) {
   881       if (++rep_cnt > 3) {
   882         n->dump(4);
   883         assert(false, "loop in Ideal transformation");
   884       }
   885     } else {
   886       rep_cnt = 0;
   887     }
   888     prev = n;
   889 #endif
   890     if (TraceIterativeGVN && Verbose) {
   891       tty->print("  Pop ");
   892       NOT_PRODUCT( n->dump(); )
   893       debug_only(if( (num_processed++ % 100) == 0 ) _worklist.print_set();)
   894     }
   896     if (n->outcnt() != 0) {
   898 #ifndef PRODUCT
   899       uint wlsize = _worklist.size();
   900       const Type* oldtype = type_or_null(n);
   901 #endif //PRODUCT
   903       Node *nn = transform_old(n);
   905 #ifndef PRODUCT
   906       if (TraceIterativeGVN) {
   907         const Type* newtype = type_or_null(n);
   908         if (nn != n) {
   909           // print old node
   910           tty->print("< ");
   911           if (oldtype != newtype && oldtype != NULL) {
   912             oldtype->dump();
   913           }
   914           do { tty->print("\t"); } while (tty->position() < 16);
   915           tty->print("<");
   916           n->dump();
   917         }
   918         if (oldtype != newtype || nn != n) {
   919           // print new node and/or new type
   920           if (oldtype == NULL) {
   921             tty->print("* ");
   922           } else if (nn != n) {
   923             tty->print("> ");
   924           } else {
   925             tty->print("= ");
   926           }
   927           if (newtype == NULL) {
   928             tty->print("null");
   929           } else {
   930             newtype->dump();
   931           }
   932           do { tty->print("\t"); } while (tty->position() < 16);
   933           nn->dump();
   934         }
   935         if (Verbose && wlsize < _worklist.size()) {
   936           tty->print("  Push {");
   937           while (wlsize != _worklist.size()) {
   938             Node* pushed = _worklist.at(wlsize++);
   939             tty->print(" %d", pushed->_idx);
   940           }
   941           tty->print_cr(" }");
   942         }
   943       }
   944       if( VerifyIterativeGVN && nn != n ) {
   945         verify_step((Node*) NULL);  // ignore n, it might be subsumed
   946       }
   947 #endif
   948     } else if (!n->is_top()) {
   949       remove_dead_node(n);
   950     }
   951   }
   953 #ifndef PRODUCT
   954   C->verify_graph_edges();
   955   if( VerifyOpto && allow_progress() ) {
   956     // Must turn off allow_progress to enable assert and break recursion
   957     C->root()->verify();
   958     { // Check if any progress was missed using IterGVN
   959       // Def-Use info enables transformations not attempted in wash-pass
   960       // e.g. Region/Phi cleanup, ...
   961       // Null-check elision -- may not have reached fixpoint
   962       //                       do not propagate to dominated nodes
   963       ResourceMark rm;
   964       PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
   965       // Fill worklist completely
   966       igvn2.init_worklist(C->root());
   968       igvn2.set_allow_progress(false);
   969       igvn2.optimize();
   970       igvn2.set_allow_progress(true);
   971     }
   972   }
   973   if ( VerifyIterativeGVN && PrintOpto ) {
   974     if ( _verify_counter == _verify_full_passes )
   975       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
   976                     _verify_full_passes);
   977     else
   978       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
   979                   _verify_counter, _verify_full_passes);
   980   }
   981 #endif
   982 }
   985 //------------------register_new_node_with_optimizer---------------------------
   986 // Register a new node with the optimizer.  Update the types array, the def-use
   987 // info.  Put on worklist.
   988 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
   989   set_type_bottom(n);
   990   _worklist.push(n);
   991   if (orig != NULL)  C->copy_node_notes_to(n, orig);
   992   return n;
   993 }
   995 //------------------------------transform--------------------------------------
   996 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
   997 Node *PhaseIterGVN::transform( Node *n ) {
   998   if (_delay_transform) {
   999     // Register the node but don't optimize for now
  1000     register_new_node_with_optimizer(n);
  1001     return n;
  1004   // If brand new node, make space in type array, and give it a type.
  1005   ensure_type_or_null(n);
  1006   if (type_or_null(n) == NULL) {
  1007     set_type_bottom(n);
  1010   return transform_old(n);
  1013 //------------------------------transform_old----------------------------------
  1014 Node *PhaseIterGVN::transform_old( Node *n ) {
  1015 #ifndef PRODUCT
  1016   debug_only(uint loop_count = 0;);
  1017   set_transforms();
  1018 #endif
  1019   // Remove 'n' from hash table in case it gets modified
  1020   _table.hash_delete(n);
  1021   if( VerifyIterativeGVN ) {
  1022    assert( !_table.find_index(n->_idx), "found duplicate entry in table");
  1025   // Apply the Ideal call in a loop until it no longer applies
  1026   Node *k = n;
  1027   DEBUG_ONLY(dead_loop_check(k);)
  1028   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
  1029   Node *i = k->Ideal(this, /*can_reshape=*/true);
  1030   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
  1031 #ifndef PRODUCT
  1032   if( VerifyIterativeGVN )
  1033     verify_step(k);
  1034   if( i && VerifyOpto ) {
  1035     if( !allow_progress() ) {
  1036       if (i->is_Add() && i->outcnt() == 1) {
  1037         // Switched input to left side because this is the only use
  1038       } else if( i->is_If() && (i->in(0) == NULL) ) {
  1039         // This IF is dead because it is dominated by an equivalent IF When
  1040         // dominating if changed, info is not propagated sparsely to 'this'
  1041         // Propagating this info further will spuriously identify other
  1042         // progress.
  1043         return i;
  1044       } else
  1045         set_progress();
  1046     } else
  1047       set_progress();
  1049 #endif
  1051   while( i ) {
  1052 #ifndef PRODUCT
  1053     debug_only( if( loop_count >= K ) i->dump(4); )
  1054     assert(loop_count < K, "infinite loop in PhaseIterGVN::transform");
  1055     debug_only( loop_count++; )
  1056 #endif
  1057     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
  1058     // Made a change; put users of original Node on worklist
  1059     add_users_to_worklist( k );
  1060     // Replacing root of transform tree?
  1061     if( k != i ) {
  1062       // Make users of old Node now use new.
  1063       subsume_node( k, i );
  1064       k = i;
  1066     DEBUG_ONLY(dead_loop_check(k);)
  1067     // Try idealizing again
  1068     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
  1069     i = k->Ideal(this, /*can_reshape=*/true);
  1070     assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
  1071 #ifndef PRODUCT
  1072     if( VerifyIterativeGVN )
  1073       verify_step(k);
  1074     if( i && VerifyOpto ) set_progress();
  1075 #endif
  1078   // If brand new node, make space in type array.
  1079   ensure_type_or_null(k);
  1081   // See what kind of values 'k' takes on at runtime
  1082   const Type *t = k->Value(this);
  1083   assert(t != NULL, "value sanity");
  1085   // Since I just called 'Value' to compute the set of run-time values
  1086   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
  1087   // cache Value.  Later requests for the local phase->type of this Node can
  1088   // use the cached Value instead of suffering with 'bottom_type'.
  1089   if (t != type_or_null(k)) {
  1090     NOT_PRODUCT( set_progress(); )
  1091     NOT_PRODUCT( inc_new_values();)
  1092     set_type(k, t);
  1093     // If k is a TypeNode, capture any more-precise type permanently into Node
  1094     k->raise_bottom_type(t);
  1095     // Move users of node to worklist
  1096     add_users_to_worklist( k );
  1099   // If 'k' computes a constant, replace it with a constant
  1100   if( t->singleton() && !k->is_Con() ) {
  1101     NOT_PRODUCT( set_progress(); )
  1102     Node *con = makecon(t);     // Make a constant
  1103     add_users_to_worklist( k );
  1104     subsume_node( k, con );     // Everybody using k now uses con
  1105     return con;
  1108   // Now check for Identities
  1109   i = k->Identity(this);        // Look for a nearby replacement
  1110   if( i != k ) {                // Found? Return replacement!
  1111     NOT_PRODUCT( set_progress(); )
  1112     add_users_to_worklist( k );
  1113     subsume_node( k, i );       // Everybody using k now uses i
  1114     return i;
  1117   // Global Value Numbering
  1118   i = hash_find_insert(k);      // Check for pre-existing node
  1119   if( i && (i != k) ) {
  1120     // Return the pre-existing node if it isn't dead
  1121     NOT_PRODUCT( set_progress(); )
  1122     add_users_to_worklist( k );
  1123     subsume_node( k, i );       // Everybody using k now uses i
  1124     return i;
  1127   // Return Idealized original
  1128   return k;
  1131 //---------------------------------saturate------------------------------------
  1132 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
  1133                                    const Type* limit_type) const {
  1134   return new_type->narrow(old_type);
  1137 //------------------------------remove_globally_dead_node----------------------
  1138 // Kill a globally dead Node.  All uses are also globally dead and are
  1139 // aggressively trimmed.
  1140 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
  1141   assert(dead != C->root(), "killing root, eh?");
  1142   if (dead->is_top())  return;
  1143   NOT_PRODUCT( set_progress(); )
  1144   // Remove from iterative worklist
  1145   _worklist.remove(dead);
  1146   if (!dead->is_Con()) { // Don't kill cons but uses
  1147     // Remove from hash table
  1148     _table.hash_delete( dead );
  1149     // Smash all inputs to 'dead', isolating him completely
  1150     for( uint i = 0; i < dead->req(); i++ ) {
  1151       Node *in = dead->in(i);
  1152       if( in ) {                 // Points to something?
  1153         dead->set_req(i,NULL);  // Kill the edge
  1154         if (in->outcnt() == 0 && in != C->top()) {// Made input go dead?
  1155           remove_dead_node(in); // Recursively remove
  1156         } else if (in->outcnt() == 1 &&
  1157                    in->has_special_unique_user()) {
  1158           _worklist.push(in->unique_out());
  1159         } else if (in->outcnt() <= 2 && dead->is_Phi()) {
  1160           if( in->Opcode() == Op_Region )
  1161             _worklist.push(in);
  1162           else if( in->is_Store() ) {
  1163             DUIterator_Fast imax, i = in->fast_outs(imax);
  1164             _worklist.push(in->fast_out(i));
  1165             i++;
  1166             if(in->outcnt() == 2) {
  1167               _worklist.push(in->fast_out(i));
  1168               i++;
  1170             assert(!(i < imax), "sanity");
  1176     if (dead->is_macro()) {
  1177       C->remove_macro_node(dead);
  1180   // Aggressively kill globally dead uses
  1181   // (Cannot use DUIterator_Last because of the indefinite number
  1182   // of edge deletions per loop trip.)
  1183   while (dead->outcnt() > 0) {
  1184     remove_globally_dead_node(dead->raw_out(0));
  1188 //------------------------------subsume_node-----------------------------------
  1189 // Remove users from node 'old' and add them to node 'nn'.
  1190 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
  1191   assert( old != hash_find(old), "should already been removed" );
  1192   assert( old != C->top(), "cannot subsume top node");
  1193   // Copy debug or profile information to the new version:
  1194   C->copy_node_notes_to(nn, old);
  1195   // Move users of node 'old' to node 'nn'
  1196   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
  1197     Node* use = old->last_out(i);  // for each use...
  1198     // use might need re-hashing (but it won't if it's a new node)
  1199     bool is_in_table = _table.hash_delete( use );
  1200     // Update use-def info as well
  1201     // We remove all occurrences of old within use->in,
  1202     // so as to avoid rehashing any node more than once.
  1203     // The hash table probe swamps any outer loop overhead.
  1204     uint num_edges = 0;
  1205     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
  1206       if (use->in(j) == old) {
  1207         use->set_req(j, nn);
  1208         ++num_edges;
  1211     // Insert into GVN hash table if unique
  1212     // If a duplicate, 'use' will be cleaned up when pulled off worklist
  1213     if( is_in_table ) {
  1214       hash_find_insert(use);
  1216     i -= num_edges;    // we deleted 1 or more copies of this edge
  1219   // Smash all inputs to 'old', isolating him completely
  1220   Node *temp = new (C, 1) Node(1);
  1221   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
  1222   remove_dead_node( old );
  1223   temp->del_req(0);         // Yank bogus edge
  1224 #ifndef PRODUCT
  1225   if( VerifyIterativeGVN ) {
  1226     for ( int i = 0; i < _verify_window_size; i++ ) {
  1227       if ( _verify_window[i] == old )
  1228         _verify_window[i] = nn;
  1231 #endif
  1232   _worklist.remove(temp);   // this can be necessary
  1233   temp->destruct();         // reuse the _idx of this little guy
  1236 //------------------------------add_users_to_worklist--------------------------
  1237 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
  1238   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1239     _worklist.push(n->fast_out(i));  // Push on worklist
  1243 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
  1244   add_users_to_worklist0(n);
  1246   // Move users of node to worklist
  1247   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1248     Node* use = n->fast_out(i); // Get use
  1250     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
  1251         use->is_Store() )       // Enable store/load same address
  1252       add_users_to_worklist0(use);
  1254     // If we changed the receiver type to a call, we need to revisit
  1255     // the Catch following the call.  It's looking for a non-NULL
  1256     // receiver to know when to enable the regular fall-through path
  1257     // in addition to the NullPtrException path.
  1258     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
  1259       Node* p = use->as_CallDynamicJava()->proj_out(TypeFunc::Control);
  1260       if (p != NULL) {
  1261         add_users_to_worklist0(p);
  1265     if( use->is_Cmp() ) {       // Enable CMP/BOOL optimization
  1266       add_users_to_worklist(use); // Put Bool on worklist
  1267       // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
  1268       // phi merging either 0 or 1 onto the worklist
  1269       if (use->outcnt() > 0) {
  1270         Node* bol = use->raw_out(0);
  1271         if (bol->outcnt() > 0) {
  1272           Node* iff = bol->raw_out(0);
  1273           if (iff->outcnt() == 2) {
  1274             Node* ifproj0 = iff->raw_out(0);
  1275             Node* ifproj1 = iff->raw_out(1);
  1276             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
  1277               Node* region0 = ifproj0->raw_out(0);
  1278               Node* region1 = ifproj1->raw_out(0);
  1279               if( region0 == region1 )
  1280                 add_users_to_worklist0(region0);
  1287     uint use_op = use->Opcode();
  1288     // If changed Cast input, check Phi users for simple cycles
  1289     if( use->is_ConstraintCast() || use->is_CheckCastPP() ) {
  1290       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1291         Node* u = use->fast_out(i2);
  1292         if (u->is_Phi())
  1293           _worklist.push(u);
  1296     // If changed LShift inputs, check RShift users for useless sign-ext
  1297     if( use_op == Op_LShiftI ) {
  1298       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1299         Node* u = use->fast_out(i2);
  1300         if (u->Opcode() == Op_RShiftI)
  1301           _worklist.push(u);
  1304     // If changed AddP inputs, check Stores for loop invariant
  1305     if( use_op == Op_AddP ) {
  1306       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1307         Node* u = use->fast_out(i2);
  1308         if (u->is_Mem())
  1309           _worklist.push(u);
  1312     // If changed initialization activity, check dependent Stores
  1313     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
  1314       InitializeNode* init = use->as_Allocate()->initialization();
  1315       if (init != NULL) {
  1316         Node* imem = init->proj_out(TypeFunc::Memory);
  1317         if (imem != NULL)  add_users_to_worklist0(imem);
  1320     if (use_op == Op_Initialize) {
  1321       Node* imem = use->as_Initialize()->proj_out(TypeFunc::Memory);
  1322       if (imem != NULL)  add_users_to_worklist0(imem);
  1327 //=============================================================================
  1328 #ifndef PRODUCT
  1329 uint PhaseCCP::_total_invokes   = 0;
  1330 uint PhaseCCP::_total_constants = 0;
  1331 #endif
  1332 //------------------------------PhaseCCP---------------------------------------
  1333 // Conditional Constant Propagation, ala Wegman & Zadeck
  1334 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
  1335   NOT_PRODUCT( clear_constants(); )
  1336   assert( _worklist.size() == 0, "" );
  1337   // Clear out _nodes from IterGVN.  Must be clear to transform call.
  1338   _nodes.clear();               // Clear out from IterGVN
  1339   analyze();
  1342 #ifndef PRODUCT
  1343 //------------------------------~PhaseCCP--------------------------------------
  1344 PhaseCCP::~PhaseCCP() {
  1345   inc_invokes();
  1346   _total_constants += count_constants();
  1348 #endif
  1351 #ifdef ASSERT
  1352 static bool ccp_type_widens(const Type* t, const Type* t0) {
  1353   assert(t->meet(t0) == t, "Not monotonic");
  1354   switch (t->base() == t0->base() ? t->base() : Type::Top) {
  1355   case Type::Int:
  1356     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
  1357     break;
  1358   case Type::Long:
  1359     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
  1360     break;
  1362   return true;
  1364 #endif //ASSERT
  1366 //------------------------------analyze----------------------------------------
  1367 void PhaseCCP::analyze() {
  1368   // Initialize all types to TOP, optimistic analysis
  1369   for (int i = C->unique() - 1; i >= 0; i--)  {
  1370     _types.map(i,Type::TOP);
  1373   // Push root onto worklist
  1374   Unique_Node_List worklist;
  1375   worklist.push(C->root());
  1377   // Pull from worklist; compute new value; push changes out.
  1378   // This loop is the meat of CCP.
  1379   while( worklist.size() ) {
  1380     Node *n = worklist.pop();
  1381     const Type *t = n->Value(this);
  1382     if (t != type(n)) {
  1383       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
  1384 #ifndef PRODUCT
  1385       if( TracePhaseCCP ) {
  1386         t->dump();
  1387         do { tty->print("\t"); } while (tty->position() < 16);
  1388         n->dump();
  1390 #endif
  1391       set_type(n, t);
  1392       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1393         Node* m = n->fast_out(i);   // Get user
  1394         if( m->is_Region() ) {  // New path to Region?  Must recheck Phis too
  1395           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
  1396             Node* p = m->fast_out(i2); // Propagate changes to uses
  1397             if( p->bottom_type() != type(p) ) // If not already bottomed out
  1398               worklist.push(p); // Propagate change to user
  1401         // If we changed the receiver type to a call, we need to revisit
  1402         // the Catch following the call.  It's looking for a non-NULL
  1403         // receiver to know when to enable the regular fall-through path
  1404         // in addition to the NullPtrException path
  1405         if (m->is_Call()) {
  1406           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
  1407             Node* p = m->fast_out(i2);  // Propagate changes to uses
  1408             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1)
  1409               worklist.push(p->unique_out());
  1412         if( m->bottom_type() != type(m) ) // If not already bottomed out
  1413           worklist.push(m);     // Propagate change to user
  1419 //------------------------------do_transform-----------------------------------
  1420 // Top level driver for the recursive transformer
  1421 void PhaseCCP::do_transform() {
  1422   // Correct leaves of new-space Nodes; they point to old-space.
  1423   C->set_root( transform(C->root())->as_Root() );
  1424   assert( C->top(),  "missing TOP node" );
  1425   assert( C->root(), "missing root" );
  1428 //------------------------------transform--------------------------------------
  1429 // Given a Node in old-space, clone him into new-space.
  1430 // Convert any of his old-space children into new-space children.
  1431 Node *PhaseCCP::transform( Node *n ) {
  1432   Node *new_node = _nodes[n->_idx]; // Check for transformed node
  1433   if( new_node != NULL )
  1434     return new_node;                // Been there, done that, return old answer
  1435   new_node = transform_once(n);     // Check for constant
  1436   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
  1438   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
  1439   GrowableArray <Node *> trstack(C->unique() >> 1);
  1441   trstack.push(new_node);           // Process children of cloned node
  1442   while ( trstack.is_nonempty() ) {
  1443     Node *clone = trstack.pop();
  1444     uint cnt = clone->req();
  1445     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
  1446       Node *input = clone->in(i);
  1447       if( input != NULL ) {                    // Ignore NULLs
  1448         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
  1449         if( new_input == NULL ) {
  1450           new_input = transform_once(input);   // Check for constant
  1451           _nodes.map( input->_idx, new_input );// Flag as having been cloned
  1452           trstack.push(new_input);
  1454         assert( new_input == clone->in(i), "insanity check");
  1458   return new_node;
  1462 //------------------------------transform_once---------------------------------
  1463 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
  1464 Node *PhaseCCP::transform_once( Node *n ) {
  1465   const Type *t = type(n);
  1466   // Constant?  Use constant Node instead
  1467   if( t->singleton() ) {
  1468     Node *nn = n;               // Default is to return the original constant
  1469     if( t == Type::TOP ) {
  1470       // cache my top node on the Compile instance
  1471       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
  1472         C->set_cached_top_node( ConNode::make(C, Type::TOP) );
  1473         set_type(C->top(), Type::TOP);
  1475       nn = C->top();
  1477     if( !n->is_Con() ) {
  1478       if( t != Type::TOP ) {
  1479         nn = makecon(t);        // ConNode::make(t);
  1480         NOT_PRODUCT( inc_constants(); )
  1481       } else if( n->is_Region() ) { // Unreachable region
  1482         // Note: nn == C->top()
  1483         n->set_req(0, NULL);        // Cut selfreference
  1484         // Eagerly remove dead phis to avoid phis copies creation.
  1485         for (DUIterator i = n->outs(); n->has_out(i); i++) {
  1486           Node* m = n->out(i);
  1487           if( m->is_Phi() ) {
  1488             assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
  1489             replace_node(m, nn);
  1490             --i; // deleted this phi; rescan starting with next position
  1494       replace_node(n,nn);       // Update DefUse edges for new constant
  1496     return nn;
  1499   // If x is a TypeNode, capture any more-precise type permanently into Node
  1500   if (t != n->bottom_type()) {
  1501     hash_delete(n);             // changing bottom type may force a rehash
  1502     n->raise_bottom_type(t);
  1503     _worklist.push(n);          // n re-enters the hash table via the worklist
  1506   // Idealize graph using DU info.  Must clone() into new-space.
  1507   // DU info is generally used to show profitability, progress or safety
  1508   // (but generally not needed for correctness).
  1509   Node *nn = n->Ideal_DU_postCCP(this);
  1511   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
  1512   switch( n->Opcode() ) {
  1513   case Op_FastLock:      // Revisit FastLocks for lock coarsening
  1514   case Op_If:
  1515   case Op_CountedLoopEnd:
  1516   case Op_Region:
  1517   case Op_Loop:
  1518   case Op_CountedLoop:
  1519   case Op_Conv2B:
  1520   case Op_Opaque1:
  1521   case Op_Opaque2:
  1522     _worklist.push(n);
  1523     break;
  1524   default:
  1525     break;
  1527   if( nn ) {
  1528     _worklist.push(n);
  1529     // Put users of 'n' onto worklist for second igvn transform
  1530     add_users_to_worklist(n);
  1531     return nn;
  1534   return  n;
  1537 //---------------------------------saturate------------------------------------
  1538 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
  1539                                const Type* limit_type) const {
  1540   const Type* wide_type = new_type->widen(old_type, limit_type);
  1541   if (wide_type != new_type) {          // did we widen?
  1542     // If so, we may have widened beyond the limit type.  Clip it back down.
  1543     new_type = wide_type->filter(limit_type);
  1545   return new_type;
  1548 //------------------------------print_statistics-------------------------------
  1549 #ifndef PRODUCT
  1550 void PhaseCCP::print_statistics() {
  1551   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
  1553 #endif
  1556 //=============================================================================
  1557 #ifndef PRODUCT
  1558 uint PhasePeephole::_total_peepholes = 0;
  1559 #endif
  1560 //------------------------------PhasePeephole----------------------------------
  1561 // Conditional Constant Propagation, ala Wegman & Zadeck
  1562 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
  1563   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
  1564   NOT_PRODUCT( clear_peepholes(); )
  1567 #ifndef PRODUCT
  1568 //------------------------------~PhasePeephole---------------------------------
  1569 PhasePeephole::~PhasePeephole() {
  1570   _total_peepholes += count_peepholes();
  1572 #endif
  1574 //------------------------------transform--------------------------------------
  1575 Node *PhasePeephole::transform( Node *n ) {
  1576   ShouldNotCallThis();
  1577   return NULL;
  1580 //------------------------------do_transform-----------------------------------
  1581 void PhasePeephole::do_transform() {
  1582   bool method_name_not_printed = true;
  1584   // Examine each basic block
  1585   for( uint block_number = 1; block_number < _cfg._num_blocks; ++block_number ) {
  1586     Block *block = _cfg._blocks[block_number];
  1587     bool block_not_printed = true;
  1589     // and each instruction within a block
  1590     uint end_index = block->_nodes.size();
  1591     // block->end_idx() not valid after PhaseRegAlloc
  1592     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
  1593       Node     *n = block->_nodes.at(instruction_index);
  1594       if( n->is_Mach() ) {
  1595         MachNode *m = n->as_Mach();
  1596         int deleted_count = 0;
  1597         // check for peephole opportunities
  1598         MachNode *m2 = m->peephole( block, instruction_index, _regalloc, deleted_count, C );
  1599         if( m2 != NULL ) {
  1600 #ifndef PRODUCT
  1601           if( PrintOptoPeephole ) {
  1602             // Print method, first time only
  1603             if( C->method() && method_name_not_printed ) {
  1604               C->method()->print_short_name(); tty->cr();
  1605               method_name_not_printed = false;
  1607             // Print this block
  1608             if( Verbose && block_not_printed) {
  1609               tty->print_cr("in block");
  1610               block->dump();
  1611               block_not_printed = false;
  1613             // Print instructions being deleted
  1614             for( int i = (deleted_count - 1); i >= 0; --i ) {
  1615               block->_nodes.at(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
  1617             tty->print_cr("replaced with");
  1618             // Print new instruction
  1619             m2->format(_regalloc);
  1620             tty->print("\n\n");
  1622 #endif
  1623           // Remove old nodes from basic block and update instruction_index
  1624           // (old nodes still exist and may have edges pointing to them
  1625           //  as register allocation info is stored in the allocator using
  1626           //  the node index to live range mappings.)
  1627           uint safe_instruction_index = (instruction_index - deleted_count);
  1628           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
  1629             block->_nodes.remove( instruction_index );
  1631           // install new node after safe_instruction_index
  1632           block->_nodes.insert( safe_instruction_index + 1, m2 );
  1633           end_index = block->_nodes.size() - 1; // Recompute new block size
  1634           NOT_PRODUCT( inc_peepholes(); )
  1641 //------------------------------print_statistics-------------------------------
  1642 #ifndef PRODUCT
  1643 void PhasePeephole::print_statistics() {
  1644   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
  1646 #endif
  1649 //=============================================================================
  1650 //------------------------------set_req_X--------------------------------------
  1651 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
  1652   assert( is_not_dead(n), "can not use dead node");
  1653   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
  1654   Node *old = in(i);
  1655   set_req(i, n);
  1657   // old goes dead?
  1658   if( old ) {
  1659     switch (old->outcnt()) {
  1660     case 0:
  1661       // Put into the worklist to kill later. We do not kill it now because the
  1662       // recursive kill will delete the current node (this) if dead-loop exists
  1663       if (!old->is_top())
  1664         igvn->_worklist.push( old );
  1665       break;
  1666     case 1:
  1667       if( old->is_Store() || old->has_special_unique_user() )
  1668         igvn->add_users_to_worklist( old );
  1669       break;
  1670     case 2:
  1671       if( old->is_Store() )
  1672         igvn->add_users_to_worklist( old );
  1673       if( old->Opcode() == Op_Region )
  1674         igvn->_worklist.push(old);
  1675       break;
  1676     case 3:
  1677       if( old->Opcode() == Op_Region ) {
  1678         igvn->_worklist.push(old);
  1679         igvn->add_users_to_worklist( old );
  1681       break;
  1682     default:
  1683       break;
  1689 //-------------------------------replace_by-----------------------------------
  1690 // Using def-use info, replace one node for another.  Follow the def-use info
  1691 // to all users of the OLD node.  Then make all uses point to the NEW node.
  1692 void Node::replace_by(Node *new_node) {
  1693   assert(!is_top(), "top node has no DU info");
  1694   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
  1695     Node* use = last_out(i);
  1696     uint uses_found = 0;
  1697     for (uint j = 0; j < use->len(); j++) {
  1698       if (use->in(j) == this) {
  1699         if (j < use->req())
  1700               use->set_req(j, new_node);
  1701         else  use->set_prec(j, new_node);
  1702         uses_found++;
  1705     i -= uses_found;    // we deleted 1 or more copies of this edge
  1709 //=============================================================================
  1710 //-----------------------------------------------------------------------------
  1711 void Type_Array::grow( uint i ) {
  1712   if( !_max ) {
  1713     _max = 1;
  1714     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
  1715     _types[0] = NULL;
  1717   uint old = _max;
  1718   while( i >= _max ) _max <<= 1;        // Double to fit
  1719   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
  1720   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
  1723 //------------------------------dump-------------------------------------------
  1724 #ifndef PRODUCT
  1725 void Type_Array::dump() const {
  1726   uint max = Size();
  1727   for( uint i = 0; i < max; i++ ) {
  1728     if( _types[i] != NULL ) {
  1729       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
  1733 #endif

mercurial