src/share/vm/opto/memnode.cpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3842
0919b2e7895d
child 3882
8c92982cbbc4
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "oops/objArrayKlass.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/cfgnode.hpp"
    32 #include "opto/compile.hpp"
    33 #include "opto/connode.hpp"
    34 #include "opto/loopnode.hpp"
    35 #include "opto/machnode.hpp"
    36 #include "opto/matcher.hpp"
    37 #include "opto/memnode.hpp"
    38 #include "opto/mulnode.hpp"
    39 #include "opto/phaseX.hpp"
    40 #include "opto/regmask.hpp"
    42 // Portions of code courtesy of Clifford Click
    44 // Optimization - Graph Style
    46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    48 //=============================================================================
    49 uint MemNode::size_of() const { return sizeof(*this); }
    51 const TypePtr *MemNode::adr_type() const {
    52   Node* adr = in(Address);
    53   const TypePtr* cross_check = NULL;
    54   DEBUG_ONLY(cross_check = _adr_type);
    55   return calculate_adr_type(adr->bottom_type(), cross_check);
    56 }
    58 #ifndef PRODUCT
    59 void MemNode::dump_spec(outputStream *st) const {
    60   if (in(Address) == NULL)  return; // node is dead
    61 #ifndef ASSERT
    62   // fake the missing field
    63   const TypePtr* _adr_type = NULL;
    64   if (in(Address) != NULL)
    65     _adr_type = in(Address)->bottom_type()->isa_ptr();
    66 #endif
    67   dump_adr_type(this, _adr_type, st);
    69   Compile* C = Compile::current();
    70   if( C->alias_type(_adr_type)->is_volatile() )
    71     st->print(" Volatile!");
    72 }
    74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    75   st->print(" @");
    76   if (adr_type == NULL) {
    77     st->print("NULL");
    78   } else {
    79     adr_type->dump_on(st);
    80     Compile* C = Compile::current();
    81     Compile::AliasType* atp = NULL;
    82     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    83     if (atp == NULL)
    84       st->print(", idx=?\?;");
    85     else if (atp->index() == Compile::AliasIdxBot)
    86       st->print(", idx=Bot;");
    87     else if (atp->index() == Compile::AliasIdxTop)
    88       st->print(", idx=Top;");
    89     else if (atp->index() == Compile::AliasIdxRaw)
    90       st->print(", idx=Raw;");
    91     else {
    92       ciField* field = atp->field();
    93       if (field) {
    94         st->print(", name=");
    95         field->print_name_on(st);
    96       }
    97       st->print(", idx=%d;", atp->index());
    98     }
    99   }
   100 }
   102 extern void print_alias_types();
   104 #endif
   106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   107   const TypeOopPtr *tinst = t_adr->isa_oopptr();
   108   if (tinst == NULL || !tinst->is_known_instance_field())
   109     return mchain;  // don't try to optimize non-instance types
   110   uint instance_id = tinst->instance_id();
   111   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
   112   Node *prev = NULL;
   113   Node *result = mchain;
   114   while (prev != result) {
   115     prev = result;
   116     if (result == start_mem)
   117       break;  // hit one of our sentinels
   118     // skip over a call which does not affect this memory slice
   119     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   120       Node *proj_in = result->in(0);
   121       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
   122         break;  // hit one of our sentinels
   123       } else if (proj_in->is_Call()) {
   124         CallNode *call = proj_in->as_Call();
   125         if (!call->may_modify(t_adr, phase)) {
   126           result = call->in(TypeFunc::Memory);
   127         }
   128       } else if (proj_in->is_Initialize()) {
   129         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   130         // Stop if this is the initialization for the object instance which
   131         // which contains this memory slice, otherwise skip over it.
   132         if (alloc != NULL && alloc->_idx != instance_id) {
   133           result = proj_in->in(TypeFunc::Memory);
   134         }
   135       } else if (proj_in->is_MemBar()) {
   136         result = proj_in->in(TypeFunc::Memory);
   137       } else {
   138         assert(false, "unexpected projection");
   139       }
   140     } else if (result->is_ClearArray()) {
   141       if (!ClearArrayNode::step_through(&result, instance_id, phase)) {
   142         // Can not bypass initialization of the instance
   143         // we are looking for.
   144         break;
   145       }
   146       // Otherwise skip it (the call updated 'result' value).
   147     } else if (result->is_MergeMem()) {
   148       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
   149     }
   150   }
   151   return result;
   152 }
   154 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   155   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
   156   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
   157   PhaseIterGVN *igvn = phase->is_IterGVN();
   158   Node *result = mchain;
   159   result = optimize_simple_memory_chain(result, t_adr, phase);
   160   if (is_instance && igvn != NULL  && result->is_Phi()) {
   161     PhiNode *mphi = result->as_Phi();
   162     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   163     const TypePtr *t = mphi->adr_type();
   164     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   165         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
   166         t->is_oopptr()->cast_to_exactness(true)
   167          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
   168          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
   169       // clone the Phi with our address type
   170       result = mphi->split_out_instance(t_adr, igvn);
   171     } else {
   172       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   173     }
   174   }
   175   return result;
   176 }
   178 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   179   uint alias_idx = phase->C->get_alias_index(tp);
   180   Node *mem = mmem;
   181 #ifdef ASSERT
   182   {
   183     // Check that current type is consistent with the alias index used during graph construction
   184     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   185     bool consistent =  adr_check == NULL || adr_check->empty() ||
   186                        phase->C->must_alias(adr_check, alias_idx );
   187     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   188     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   189                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
   190         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   191         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   192           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   193           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   194       // don't assert if it is dead code.
   195       consistent = true;
   196     }
   197     if( !consistent ) {
   198       st->print("alias_idx==%d, adr_check==", alias_idx);
   199       if( adr_check == NULL ) {
   200         st->print("NULL");
   201       } else {
   202         adr_check->dump();
   203       }
   204       st->cr();
   205       print_alias_types();
   206       assert(consistent, "adr_check must match alias idx");
   207     }
   208   }
   209 #endif
   210   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
   211   // means an array I have not precisely typed yet.  Do not do any
   212   // alias stuff with it any time soon.
   213   const TypeOopPtr *toop = tp->isa_oopptr();
   214   if( tp->base() != Type::AnyPtr &&
   215       !(toop &&
   216         toop->klass() != NULL &&
   217         toop->klass()->is_java_lang_Object() &&
   218         toop->offset() == Type::OffsetBot) ) {
   219     // compress paths and change unreachable cycles to TOP
   220     // If not, we can update the input infinitely along a MergeMem cycle
   221     // Equivalent code in PhiNode::Ideal
   222     Node* m  = phase->transform(mmem);
   223     // If transformed to a MergeMem, get the desired slice
   224     // Otherwise the returned node represents memory for every slice
   225     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   226     // Update input if it is progress over what we have now
   227   }
   228   return mem;
   229 }
   231 //--------------------------Ideal_common---------------------------------------
   232 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   233 // Unhook non-raw memories from complete (macro-expanded) initializations.
   234 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   235   // If our control input is a dead region, kill all below the region
   236   Node *ctl = in(MemNode::Control);
   237   if (ctl && remove_dead_region(phase, can_reshape))
   238     return this;
   239   ctl = in(MemNode::Control);
   240   // Don't bother trying to transform a dead node
   241   if( ctl && ctl->is_top() )  return NodeSentinel;
   243   PhaseIterGVN *igvn = phase->is_IterGVN();
   244   // Wait if control on the worklist.
   245   if (ctl && can_reshape && igvn != NULL) {
   246     Node* bol = NULL;
   247     Node* cmp = NULL;
   248     if (ctl->in(0)->is_If()) {
   249       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
   250       bol = ctl->in(0)->in(1);
   251       if (bol->is_Bool())
   252         cmp = ctl->in(0)->in(1)->in(1);
   253     }
   254     if (igvn->_worklist.member(ctl) ||
   255         (bol != NULL && igvn->_worklist.member(bol)) ||
   256         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
   257       // This control path may be dead.
   258       // Delay this memory node transformation until the control is processed.
   259       phase->is_IterGVN()->_worklist.push(this);
   260       return NodeSentinel; // caller will return NULL
   261     }
   262   }
   263   // Ignore if memory is dead, or self-loop
   264   Node *mem = in(MemNode::Memory);
   265   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   266   assert( mem != this, "dead loop in MemNode::Ideal" );
   268   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
   269     // This memory slice may be dead.
   270     // Delay this mem node transformation until the memory is processed.
   271     phase->is_IterGVN()->_worklist.push(this);
   272     return NodeSentinel; // caller will return NULL
   273   }
   275   Node *address = in(MemNode::Address);
   276   const Type *t_adr = phase->type( address );
   277   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   279   if( can_reshape && igvn != NULL &&
   280       (igvn->_worklist.member(address) ||
   281        igvn->_worklist.size() > 0 && (phase->type(address) != adr_type())) ) {
   282     // The address's base and type may change when the address is processed.
   283     // Delay this mem node transformation until the address is processed.
   284     phase->is_IterGVN()->_worklist.push(this);
   285     return NodeSentinel; // caller will return NULL
   286   }
   288   // Do NOT remove or optimize the next lines: ensure a new alias index
   289   // is allocated for an oop pointer type before Escape Analysis.
   290   // Note: C++ will not remove it since the call has side effect.
   291   if ( t_adr->isa_oopptr() ) {
   292     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
   293   }
   295 #ifdef ASSERT
   296   Node* base = NULL;
   297   if (address->is_AddP())
   298     base = address->in(AddPNode::Base);
   299   assert(base == NULL || t_adr->isa_rawptr() ||
   300         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
   301 #endif
   303   // Avoid independent memory operations
   304   Node* old_mem = mem;
   306   // The code which unhooks non-raw memories from complete (macro-expanded)
   307   // initializations was removed. After macro-expansion all stores catched
   308   // by Initialize node became raw stores and there is no information
   309   // which memory slices they modify. So it is unsafe to move any memory
   310   // operation above these stores. Also in most cases hooked non-raw memories
   311   // were already unhooked by using information from detect_ptr_independence()
   312   // and find_previous_store().
   314   if (mem->is_MergeMem()) {
   315     MergeMemNode* mmem = mem->as_MergeMem();
   316     const TypePtr *tp = t_adr->is_ptr();
   318     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   319   }
   321   if (mem != old_mem) {
   322     set_req(MemNode::Memory, mem);
   323     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
   324     return this;
   325   }
   327   // let the subclass continue analyzing...
   328   return NULL;
   329 }
   331 // Helper function for proving some simple control dominations.
   332 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   333 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   334 // is not a constant (dominated by the method's StartNode).
   335 // Used by MemNode::find_previous_store to prove that the
   336 // control input of a memory operation predates (dominates)
   337 // an allocation it wants to look past.
   338 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   339   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   340     return false; // Conservative answer for dead code
   342   // Check 'dom'. Skip Proj and CatchProj nodes.
   343   dom = dom->find_exact_control(dom);
   344   if (dom == NULL || dom->is_top())
   345     return false; // Conservative answer for dead code
   347   if (dom == sub) {
   348     // For the case when, for example, 'sub' is Initialize and the original
   349     // 'dom' is Proj node of the 'sub'.
   350     return false;
   351   }
   353   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
   354     return true;
   356   // 'dom' dominates 'sub' if its control edge and control edges
   357   // of all its inputs dominate or equal to sub's control edge.
   359   // Currently 'sub' is either Allocate, Initialize or Start nodes.
   360   // Or Region for the check in LoadNode::Ideal();
   361   // 'sub' should have sub->in(0) != NULL.
   362   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
   363          sub->is_Region(), "expecting only these nodes");
   365   // Get control edge of 'sub'.
   366   Node* orig_sub = sub;
   367   sub = sub->find_exact_control(sub->in(0));
   368   if (sub == NULL || sub->is_top())
   369     return false; // Conservative answer for dead code
   371   assert(sub->is_CFG(), "expecting control");
   373   if (sub == dom)
   374     return true;
   376   if (sub->is_Start() || sub->is_Root())
   377     return false;
   379   {
   380     // Check all control edges of 'dom'.
   382     ResourceMark rm;
   383     Arena* arena = Thread::current()->resource_area();
   384     Node_List nlist(arena);
   385     Unique_Node_List dom_list(arena);
   387     dom_list.push(dom);
   388     bool only_dominating_controls = false;
   390     for (uint next = 0; next < dom_list.size(); next++) {
   391       Node* n = dom_list.at(next);
   392       if (n == orig_sub)
   393         return false; // One of dom's inputs dominated by sub.
   394       if (!n->is_CFG() && n->pinned()) {
   395         // Check only own control edge for pinned non-control nodes.
   396         n = n->find_exact_control(n->in(0));
   397         if (n == NULL || n->is_top())
   398           return false; // Conservative answer for dead code
   399         assert(n->is_CFG(), "expecting control");
   400         dom_list.push(n);
   401       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
   402         only_dominating_controls = true;
   403       } else if (n->is_CFG()) {
   404         if (n->dominates(sub, nlist))
   405           only_dominating_controls = true;
   406         else
   407           return false;
   408       } else {
   409         // First, own control edge.
   410         Node* m = n->find_exact_control(n->in(0));
   411         if (m != NULL) {
   412           if (m->is_top())
   413             return false; // Conservative answer for dead code
   414           dom_list.push(m);
   415         }
   416         // Now, the rest of edges.
   417         uint cnt = n->req();
   418         for (uint i = 1; i < cnt; i++) {
   419           m = n->find_exact_control(n->in(i));
   420           if (m == NULL || m->is_top())
   421             continue;
   422           dom_list.push(m);
   423         }
   424       }
   425     }
   426     return only_dominating_controls;
   427   }
   428 }
   430 //---------------------detect_ptr_independence---------------------------------
   431 // Used by MemNode::find_previous_store to prove that two base
   432 // pointers are never equal.
   433 // The pointers are accompanied by their associated allocations,
   434 // if any, which have been previously discovered by the caller.
   435 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   436                                       Node* p2, AllocateNode* a2,
   437                                       PhaseTransform* phase) {
   438   // Attempt to prove that these two pointers cannot be aliased.
   439   // They may both manifestly be allocations, and they should differ.
   440   // Or, if they are not both allocations, they can be distinct constants.
   441   // Otherwise, one is an allocation and the other a pre-existing value.
   442   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   443     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   444   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   445     return (a1 != a2);
   446   } else if (a1 != NULL) {                  // one allocation a1
   447     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   448     return all_controls_dominate(p2, a1);
   449   } else { //(a2 != NULL)                   // one allocation a2
   450     return all_controls_dominate(p1, a2);
   451   }
   452   return false;
   453 }
   456 // The logic for reordering loads and stores uses four steps:
   457 // (a) Walk carefully past stores and initializations which we
   458 //     can prove are independent of this load.
   459 // (b) Observe that the next memory state makes an exact match
   460 //     with self (load or store), and locate the relevant store.
   461 // (c) Ensure that, if we were to wire self directly to the store,
   462 //     the optimizer would fold it up somehow.
   463 // (d) Do the rewiring, and return, depending on some other part of
   464 //     the optimizer to fold up the load.
   465 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   466 // specific to loads and stores, so they are handled by the callers.
   467 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   468 //
   469 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   470   Node*         ctrl   = in(MemNode::Control);
   471   Node*         adr    = in(MemNode::Address);
   472   intptr_t      offset = 0;
   473   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   474   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   476   if (offset == Type::OffsetBot)
   477     return NULL;            // cannot unalias unless there are precise offsets
   479   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   481   intptr_t size_in_bytes = memory_size();
   483   Node* mem = in(MemNode::Memory);   // start searching here...
   485   int cnt = 50;             // Cycle limiter
   486   for (;;) {                // While we can dance past unrelated stores...
   487     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   489     if (mem->is_Store()) {
   490       Node* st_adr = mem->in(MemNode::Address);
   491       intptr_t st_offset = 0;
   492       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   493       if (st_base == NULL)
   494         break;              // inscrutable pointer
   495       if (st_offset != offset && st_offset != Type::OffsetBot) {
   496         const int MAX_STORE = BytesPerLong;
   497         if (st_offset >= offset + size_in_bytes ||
   498             st_offset <= offset - MAX_STORE ||
   499             st_offset <= offset - mem->as_Store()->memory_size()) {
   500           // Success:  The offsets are provably independent.
   501           // (You may ask, why not just test st_offset != offset and be done?
   502           // The answer is that stores of different sizes can co-exist
   503           // in the same sequence of RawMem effects.  We sometimes initialize
   504           // a whole 'tile' of array elements with a single jint or jlong.)
   505           mem = mem->in(MemNode::Memory);
   506           continue;           // (a) advance through independent store memory
   507         }
   508       }
   509       if (st_base != base &&
   510           detect_ptr_independence(base, alloc,
   511                                   st_base,
   512                                   AllocateNode::Ideal_allocation(st_base, phase),
   513                                   phase)) {
   514         // Success:  The bases are provably independent.
   515         mem = mem->in(MemNode::Memory);
   516         continue;           // (a) advance through independent store memory
   517       }
   519       // (b) At this point, if the bases or offsets do not agree, we lose,
   520       // since we have not managed to prove 'this' and 'mem' independent.
   521       if (st_base == base && st_offset == offset) {
   522         return mem;         // let caller handle steps (c), (d)
   523       }
   525     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   526       InitializeNode* st_init = mem->in(0)->as_Initialize();
   527       AllocateNode*  st_alloc = st_init->allocation();
   528       if (st_alloc == NULL)
   529         break;              // something degenerated
   530       bool known_identical = false;
   531       bool known_independent = false;
   532       if (alloc == st_alloc)
   533         known_identical = true;
   534       else if (alloc != NULL)
   535         known_independent = true;
   536       else if (all_controls_dominate(this, st_alloc))
   537         known_independent = true;
   539       if (known_independent) {
   540         // The bases are provably independent: Either they are
   541         // manifestly distinct allocations, or else the control
   542         // of this load dominates the store's allocation.
   543         int alias_idx = phase->C->get_alias_index(adr_type());
   544         if (alias_idx == Compile::AliasIdxRaw) {
   545           mem = st_alloc->in(TypeFunc::Memory);
   546         } else {
   547           mem = st_init->memory(alias_idx);
   548         }
   549         continue;           // (a) advance through independent store memory
   550       }
   552       // (b) at this point, if we are not looking at a store initializing
   553       // the same allocation we are loading from, we lose.
   554       if (known_identical) {
   555         // From caller, can_see_stored_value will consult find_captured_store.
   556         return mem;         // let caller handle steps (c), (d)
   557       }
   559     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
   560       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   561       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   562         CallNode *call = mem->in(0)->as_Call();
   563         if (!call->may_modify(addr_t, phase)) {
   564           mem = call->in(TypeFunc::Memory);
   565           continue;         // (a) advance through independent call memory
   566         }
   567       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   568         mem = mem->in(0)->in(TypeFunc::Memory);
   569         continue;           // (a) advance through independent MemBar memory
   570       } else if (mem->is_ClearArray()) {
   571         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
   572           // (the call updated 'mem' value)
   573           continue;         // (a) advance through independent allocation memory
   574         } else {
   575           // Can not bypass initialization of the instance
   576           // we are looking for.
   577           return mem;
   578         }
   579       } else if (mem->is_MergeMem()) {
   580         int alias_idx = phase->C->get_alias_index(adr_type());
   581         mem = mem->as_MergeMem()->memory_at(alias_idx);
   582         continue;           // (a) advance through independent MergeMem memory
   583       }
   584     }
   586     // Unless there is an explicit 'continue', we must bail out here,
   587     // because 'mem' is an inscrutable memory state (e.g., a call).
   588     break;
   589   }
   591   return NULL;              // bail out
   592 }
   594 //----------------------calculate_adr_type-------------------------------------
   595 // Helper function.  Notices when the given type of address hits top or bottom.
   596 // Also, asserts a cross-check of the type against the expected address type.
   597 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   598   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   599   #ifdef PRODUCT
   600   cross_check = NULL;
   601   #else
   602   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   603   #endif
   604   const TypePtr* tp = t->isa_ptr();
   605   if (tp == NULL) {
   606     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   607     return TypePtr::BOTTOM;           // touches lots of memory
   608   } else {
   609     #ifdef ASSERT
   610     // %%%% [phh] We don't check the alias index if cross_check is
   611     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   612     if (cross_check != NULL &&
   613         cross_check != TypePtr::BOTTOM &&
   614         cross_check != TypeRawPtr::BOTTOM) {
   615       // Recheck the alias index, to see if it has changed (due to a bug).
   616       Compile* C = Compile::current();
   617       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   618              "must stay in the original alias category");
   619       // The type of the address must be contained in the adr_type,
   620       // disregarding "null"-ness.
   621       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   622       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   623       assert(cross_check->meet(tp_notnull) == cross_check,
   624              "real address must not escape from expected memory type");
   625     }
   626     #endif
   627     return tp;
   628   }
   629 }
   631 //------------------------adr_phi_is_loop_invariant----------------------------
   632 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   633 // loop is loop invariant. Make a quick traversal of Phi and associated
   634 // CastPP nodes, looking to see if they are a closed group within the loop.
   635 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   636   // The idea is that the phi-nest must boil down to only CastPP nodes
   637   // with the same data. This implies that any path into the loop already
   638   // includes such a CastPP, and so the original cast, whatever its input,
   639   // must be covered by an equivalent cast, with an earlier control input.
   640   ResourceMark rm;
   642   // The loop entry input of the phi should be the unique dominating
   643   // node for every Phi/CastPP in the loop.
   644   Unique_Node_List closure;
   645   closure.push(adr_phi->in(LoopNode::EntryControl));
   647   // Add the phi node and the cast to the worklist.
   648   Unique_Node_List worklist;
   649   worklist.push(adr_phi);
   650   if( cast != NULL ){
   651     if( !cast->is_ConstraintCast() ) return false;
   652     worklist.push(cast);
   653   }
   655   // Begin recursive walk of phi nodes.
   656   while( worklist.size() ){
   657     // Take a node off the worklist
   658     Node *n = worklist.pop();
   659     if( !closure.member(n) ){
   660       // Add it to the closure.
   661       closure.push(n);
   662       // Make a sanity check to ensure we don't waste too much time here.
   663       if( closure.size() > 20) return false;
   664       // This node is OK if:
   665       //  - it is a cast of an identical value
   666       //  - or it is a phi node (then we add its inputs to the worklist)
   667       // Otherwise, the node is not OK, and we presume the cast is not invariant
   668       if( n->is_ConstraintCast() ){
   669         worklist.push(n->in(1));
   670       } else if( n->is_Phi() ) {
   671         for( uint i = 1; i < n->req(); i++ ) {
   672           worklist.push(n->in(i));
   673         }
   674       } else {
   675         return false;
   676       }
   677     }
   678   }
   680   // Quit when the worklist is empty, and we've found no offending nodes.
   681   return true;
   682 }
   684 //------------------------------Ideal_DU_postCCP-------------------------------
   685 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   686 // going away in this pass and we need to make this memory op depend on the
   687 // gating null check.
   688 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   689   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
   690 }
   692 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   693 // some sense; we get to keep around the knowledge that an oop is not-null
   694 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   695 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   696 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   697 // some of the more trivial cases in the optimizer.  Removing more useless
   698 // Phi's started allowing Loads to illegally float above null checks.  I gave
   699 // up on this approach.  CNC 10/20/2000
   700 // This static method may be called not from MemNode (EncodePNode calls it).
   701 // Only the control edge of the node 'n' might be updated.
   702 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
   703   Node *skipped_cast = NULL;
   704   // Need a null check?  Regular static accesses do not because they are
   705   // from constant addresses.  Array ops are gated by the range check (which
   706   // always includes a NULL check).  Just check field ops.
   707   if( n->in(MemNode::Control) == NULL ) {
   708     // Scan upwards for the highest location we can place this memory op.
   709     while( true ) {
   710       switch( adr->Opcode() ) {
   712       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   713         adr = adr->in(AddPNode::Base);
   714         continue;
   716       case Op_DecodeN:         // No change to NULL-ness, so peek thru
   717         adr = adr->in(1);
   718         continue;
   720       case Op_EncodeP:
   721         // EncodeP node's control edge could be set by this method
   722         // when EncodeP node depends on CastPP node.
   723         //
   724         // Use its control edge for memory op because EncodeP may go away
   725         // later when it is folded with following or preceding DecodeN node.
   726         if (adr->in(0) == NULL) {
   727           // Keep looking for cast nodes.
   728           adr = adr->in(1);
   729           continue;
   730         }
   731         ccp->hash_delete(n);
   732         n->set_req(MemNode::Control, adr->in(0));
   733         ccp->hash_insert(n);
   734         return n;
   736       case Op_CastPP:
   737         // If the CastPP is useless, just peek on through it.
   738         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   739           // Remember the cast that we've peeked though. If we peek
   740           // through more than one, then we end up remembering the highest
   741           // one, that is, if in a loop, the one closest to the top.
   742           skipped_cast = adr;
   743           adr = adr->in(1);
   744           continue;
   745         }
   746         // CastPP is going away in this pass!  We need this memory op to be
   747         // control-dependent on the test that is guarding the CastPP.
   748         ccp->hash_delete(n);
   749         n->set_req(MemNode::Control, adr->in(0));
   750         ccp->hash_insert(n);
   751         return n;
   753       case Op_Phi:
   754         // Attempt to float above a Phi to some dominating point.
   755         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   756           // If we've already peeked through a Cast (which could have set the
   757           // control), we can't float above a Phi, because the skipped Cast
   758           // may not be loop invariant.
   759           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   760             adr = adr->in(1);
   761             continue;
   762           }
   763         }
   765         // Intentional fallthrough!
   767         // No obvious dominating point.  The mem op is pinned below the Phi
   768         // by the Phi itself.  If the Phi goes away (no true value is merged)
   769         // then the mem op can float, but not indefinitely.  It must be pinned
   770         // behind the controls leading to the Phi.
   771       case Op_CheckCastPP:
   772         // These usually stick around to change address type, however a
   773         // useless one can be elided and we still need to pick up a control edge
   774         if (adr->in(0) == NULL) {
   775           // This CheckCastPP node has NO control and is likely useless. But we
   776           // need check further up the ancestor chain for a control input to keep
   777           // the node in place. 4959717.
   778           skipped_cast = adr;
   779           adr = adr->in(1);
   780           continue;
   781         }
   782         ccp->hash_delete(n);
   783         n->set_req(MemNode::Control, adr->in(0));
   784         ccp->hash_insert(n);
   785         return n;
   787         // List of "safe" opcodes; those that implicitly block the memory
   788         // op below any null check.
   789       case Op_CastX2P:          // no null checks on native pointers
   790       case Op_Parm:             // 'this' pointer is not null
   791       case Op_LoadP:            // Loading from within a klass
   792       case Op_LoadN:            // Loading from within a klass
   793       case Op_LoadKlass:        // Loading from within a klass
   794       case Op_LoadNKlass:       // Loading from within a klass
   795       case Op_ConP:             // Loading from a klass
   796       case Op_ConN:             // Loading from a klass
   797       case Op_CreateEx:         // Sucking up the guts of an exception oop
   798       case Op_Con:              // Reading from TLS
   799       case Op_CMoveP:           // CMoveP is pinned
   800       case Op_CMoveN:           // CMoveN is pinned
   801         break;                  // No progress
   803       case Op_Proj:             // Direct call to an allocation routine
   804       case Op_SCMemProj:        // Memory state from store conditional ops
   805 #ifdef ASSERT
   806         {
   807           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   808           const Node* call = adr->in(0);
   809           if (call->is_CallJava()) {
   810             const CallJavaNode* call_java = call->as_CallJava();
   811             const TypeTuple *r = call_java->tf()->range();
   812             assert(r->cnt() > TypeFunc::Parms, "must return value");
   813             const Type* ret_type = r->field_at(TypeFunc::Parms);
   814             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   815             // We further presume that this is one of
   816             // new_instance_Java, new_array_Java, or
   817             // the like, but do not assert for this.
   818           } else if (call->is_Allocate()) {
   819             // similar case to new_instance_Java, etc.
   820           } else if (!call->is_CallLeaf()) {
   821             // Projections from fetch_oop (OSR) are allowed as well.
   822             ShouldNotReachHere();
   823           }
   824         }
   825 #endif
   826         break;
   827       default:
   828         ShouldNotReachHere();
   829       }
   830       break;
   831     }
   832   }
   834   return  NULL;               // No progress
   835 }
   838 //=============================================================================
   839 uint LoadNode::size_of() const { return sizeof(*this); }
   840 uint LoadNode::cmp( const Node &n ) const
   841 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   842 const Type *LoadNode::bottom_type() const { return _type; }
   843 uint LoadNode::ideal_reg() const {
   844   return Matcher::base2reg[_type->base()];
   845 }
   847 #ifndef PRODUCT
   848 void LoadNode::dump_spec(outputStream *st) const {
   849   MemNode::dump_spec(st);
   850   if( !Verbose && !WizardMode ) {
   851     // standard dump does this in Verbose and WizardMode
   852     st->print(" #"); _type->dump_on(st);
   853   }
   854 }
   855 #endif
   857 #ifdef ASSERT
   858 //----------------------------is_immutable_value-------------------------------
   859 // Helper function to allow a raw load without control edge for some cases
   860 bool LoadNode::is_immutable_value(Node* adr) {
   861   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
   862           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   863           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
   864            in_bytes(JavaThread::osthread_offset())));
   865 }
   866 #endif
   868 //----------------------------LoadNode::make-----------------------------------
   869 // Polymorphic factory method:
   870 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   871   Compile* C = gvn.C;
   873   // sanity check the alias category against the created node type
   874   assert(!(adr_type->isa_oopptr() &&
   875            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   876          "use LoadKlassNode instead");
   877   assert(!(adr_type->isa_aryptr() &&
   878            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   879          "use LoadRangeNode instead");
   880   // Check control edge of raw loads
   881   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
   882           // oop will be recorded in oop map if load crosses safepoint
   883           rt->isa_oopptr() || is_immutable_value(adr),
   884           "raw memory operations should have control edge");
   885   switch (bt) {
   886   case T_BOOLEAN: return new (C, 3) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   887   case T_BYTE:    return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
   888   case T_INT:     return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
   889   case T_CHAR:    return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   890   case T_SHORT:   return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
   891   case T_LONG:    return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
   892   case T_FLOAT:   return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt              );
   893   case T_DOUBLE:  return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt              );
   894   case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
   895   case T_OBJECT:
   896 #ifdef _LP64
   897     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
   898       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
   899       return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
   900     } else
   901 #endif
   902     {
   903       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
   904       return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   905     }
   906   }
   907   ShouldNotReachHere();
   908   return (LoadNode*)NULL;
   909 }
   911 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   912   bool require_atomic = true;
   913   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   914 }
   919 //------------------------------hash-------------------------------------------
   920 uint LoadNode::hash() const {
   921   // unroll addition of interesting fields
   922   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   923 }
   925 //---------------------------can_see_stored_value------------------------------
   926 // This routine exists to make sure this set of tests is done the same
   927 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   928 // will change the graph shape in a way which makes memory alive twice at the
   929 // same time (uses the Oracle model of aliasing), then some
   930 // LoadXNode::Identity will fold things back to the equivalence-class model
   931 // of aliasing.
   932 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   933   Node* ld_adr = in(MemNode::Address);
   935   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   936   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   937   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   938       atp->field() != NULL && !atp->field()->is_volatile()) {
   939     uint alias_idx = atp->index();
   940     bool final = atp->field()->is_final();
   941     Node* result = NULL;
   942     Node* current = st;
   943     // Skip through chains of MemBarNodes checking the MergeMems for
   944     // new states for the slice of this load.  Stop once any other
   945     // kind of node is encountered.  Loads from final memory can skip
   946     // through any kind of MemBar but normal loads shouldn't skip
   947     // through MemBarAcquire since the could allow them to move out of
   948     // a synchronized region.
   949     while (current->is_Proj()) {
   950       int opc = current->in(0)->Opcode();
   951       if ((final && (opc == Op_MemBarAcquire || opc == Op_MemBarAcquireLock)) ||
   952           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder ||
   953           opc == Op_MemBarReleaseLock) {
   954         Node* mem = current->in(0)->in(TypeFunc::Memory);
   955         if (mem->is_MergeMem()) {
   956           MergeMemNode* merge = mem->as_MergeMem();
   957           Node* new_st = merge->memory_at(alias_idx);
   958           if (new_st == merge->base_memory()) {
   959             // Keep searching
   960             current = merge->base_memory();
   961             continue;
   962           }
   963           // Save the new memory state for the slice and fall through
   964           // to exit.
   965           result = new_st;
   966         }
   967       }
   968       break;
   969     }
   970     if (result != NULL) {
   971       st = result;
   972     }
   973   }
   976   // Loop around twice in the case Load -> Initialize -> Store.
   977   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   978   for (int trip = 0; trip <= 1; trip++) {
   980     if (st->is_Store()) {
   981       Node* st_adr = st->in(MemNode::Address);
   982       if (!phase->eqv(st_adr, ld_adr)) {
   983         // Try harder before giving up...  Match raw and non-raw pointers.
   984         intptr_t st_off = 0;
   985         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   986         if (alloc == NULL)       return NULL;
   987         intptr_t ld_off = 0;
   988         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   989         if (alloc != allo2)      return NULL;
   990         if (ld_off != st_off)    return NULL;
   991         // At this point we have proven something like this setup:
   992         //  A = Allocate(...)
   993         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   994         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   995         // (Actually, we haven't yet proven the Q's are the same.)
   996         // In other words, we are loading from a casted version of
   997         // the same pointer-and-offset that we stored to.
   998         // Thus, we are able to replace L by V.
   999       }
  1000       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
  1001       if (store_Opcode() != st->Opcode())
  1002         return NULL;
  1003       return st->in(MemNode::ValueIn);
  1006     intptr_t offset = 0;  // scratch
  1008     // A load from a freshly-created object always returns zero.
  1009     // (This can happen after LoadNode::Ideal resets the load's memory input
  1010     // to find_captured_store, which returned InitializeNode::zero_memory.)
  1011     if (st->is_Proj() && st->in(0)->is_Allocate() &&
  1012         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
  1013         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
  1014       // return a zero value for the load's basic type
  1015       // (This is one of the few places where a generic PhaseTransform
  1016       // can create new nodes.  Think of it as lazily manifesting
  1017       // virtually pre-existing constants.)
  1018       return phase->zerocon(memory_type());
  1021     // A load from an initialization barrier can match a captured store.
  1022     if (st->is_Proj() && st->in(0)->is_Initialize()) {
  1023       InitializeNode* init = st->in(0)->as_Initialize();
  1024       AllocateNode* alloc = init->allocation();
  1025       if (alloc != NULL &&
  1026           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
  1027         // examine a captured store value
  1028         st = init->find_captured_store(offset, memory_size(), phase);
  1029         if (st != NULL)
  1030           continue;             // take one more trip around
  1034     break;
  1037   return NULL;
  1040 //----------------------is_instance_field_load_with_local_phi------------------
  1041 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
  1042   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
  1043       in(MemNode::Address)->is_AddP() ) {
  1044     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
  1045     // Only instances.
  1046     if( t_oop != NULL && t_oop->is_known_instance_field() &&
  1047         t_oop->offset() != Type::OffsetBot &&
  1048         t_oop->offset() != Type::OffsetTop) {
  1049       return true;
  1052   return false;
  1055 //------------------------------Identity---------------------------------------
  1056 // Loads are identity if previous store is to same address
  1057 Node *LoadNode::Identity( PhaseTransform *phase ) {
  1058   // If the previous store-maker is the right kind of Store, and the store is
  1059   // to the same address, then we are equal to the value stored.
  1060   Node* mem = in(MemNode::Memory);
  1061   Node* value = can_see_stored_value(mem, phase);
  1062   if( value ) {
  1063     // byte, short & char stores truncate naturally.
  1064     // A load has to load the truncated value which requires
  1065     // some sort of masking operation and that requires an
  1066     // Ideal call instead of an Identity call.
  1067     if (memory_size() < BytesPerInt) {
  1068       // If the input to the store does not fit with the load's result type,
  1069       // it must be truncated via an Ideal call.
  1070       if (!phase->type(value)->higher_equal(phase->type(this)))
  1071         return this;
  1073     // (This works even when value is a Con, but LoadNode::Value
  1074     // usually runs first, producing the singleton type of the Con.)
  1075     return value;
  1078   // Search for an existing data phi which was generated before for the same
  1079   // instance's field to avoid infinite generation of phis in a loop.
  1080   Node *region = mem->in(0);
  1081   if (is_instance_field_load_with_local_phi(region)) {
  1082     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
  1083     int this_index  = phase->C->get_alias_index(addr_t);
  1084     int this_offset = addr_t->offset();
  1085     int this_id    = addr_t->is_oopptr()->instance_id();
  1086     const Type* this_type = bottom_type();
  1087     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  1088       Node* phi = region->fast_out(i);
  1089       if (phi->is_Phi() && phi != mem &&
  1090           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
  1091         return phi;
  1096   return this;
  1100 // Returns true if the AliasType refers to the field that holds the
  1101 // cached box array.  Currently only handles the IntegerCache case.
  1102 static bool is_autobox_cache(Compile::AliasType* atp) {
  1103   if (atp != NULL && atp->field() != NULL) {
  1104     ciField* field = atp->field();
  1105     ciSymbol* klass = field->holder()->name();
  1106     if (field->name() == ciSymbol::cache_field_name() &&
  1107         field->holder()->uses_default_loader() &&
  1108         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1109       return true;
  1112   return false;
  1115 // Fetch the base value in the autobox array
  1116 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
  1117   if (atp != NULL && atp->field() != NULL) {
  1118     ciField* field = atp->field();
  1119     ciSymbol* klass = field->holder()->name();
  1120     if (field->name() == ciSymbol::cache_field_name() &&
  1121         field->holder()->uses_default_loader() &&
  1122         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1123       assert(field->is_constant(), "what?");
  1124       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
  1125       // Fetch the box object at the base of the array and get its value
  1126       ciInstance* box = array->obj_at(0)->as_instance();
  1127       ciInstanceKlass* ik = box->klass()->as_instance_klass();
  1128       if (ik->nof_nonstatic_fields() == 1) {
  1129         // This should be true nonstatic_field_at requires calling
  1130         // nof_nonstatic_fields so check it anyway
  1131         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
  1132         cache_offset = c.as_int();
  1134       return true;
  1137   return false;
  1140 // Returns true if the AliasType refers to the value field of an
  1141 // autobox object.  Currently only handles Integer.
  1142 static bool is_autobox_object(Compile::AliasType* atp) {
  1143   if (atp != NULL && atp->field() != NULL) {
  1144     ciField* field = atp->field();
  1145     ciSymbol* klass = field->holder()->name();
  1146     if (field->name() == ciSymbol::value_name() &&
  1147         field->holder()->uses_default_loader() &&
  1148         klass == ciSymbol::java_lang_Integer()) {
  1149       return true;
  1152   return false;
  1156 // We're loading from an object which has autobox behaviour.
  1157 // If this object is result of a valueOf call we'll have a phi
  1158 // merging a newly allocated object and a load from the cache.
  1159 // We want to replace this load with the original incoming
  1160 // argument to the valueOf call.
  1161 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1162   Node* base = in(Address)->in(AddPNode::Base);
  1163   if (base->is_Phi() && base->req() == 3) {
  1164     AllocateNode* allocation = NULL;
  1165     int allocation_index = -1;
  1166     int load_index = -1;
  1167     for (uint i = 1; i < base->req(); i++) {
  1168       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
  1169       if (allocation != NULL) {
  1170         allocation_index = i;
  1171         load_index = 3 - allocation_index;
  1172         break;
  1175     bool has_load = ( allocation != NULL &&
  1176                       (base->in(load_index)->is_Load() ||
  1177                        base->in(load_index)->is_DecodeN() &&
  1178                        base->in(load_index)->in(1)->is_Load()) );
  1179     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
  1180       // Push the loads from the phi that comes from valueOf up
  1181       // through it to allow elimination of the loads and the recovery
  1182       // of the original value.
  1183       Node* mem_phi = in(Memory);
  1184       Node* offset = in(Address)->in(AddPNode::Offset);
  1185       Node* region = base->in(0);
  1187       Node* in1 = clone();
  1188       Node* in1_addr = in1->in(Address)->clone();
  1189       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
  1190       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
  1191       in1_addr->set_req(AddPNode::Offset, offset);
  1192       in1->set_req(0, region->in(allocation_index));
  1193       in1->set_req(Address, in1_addr);
  1194       in1->set_req(Memory, mem_phi->in(allocation_index));
  1196       Node* in2 = clone();
  1197       Node* in2_addr = in2->in(Address)->clone();
  1198       in2_addr->set_req(AddPNode::Base, base->in(load_index));
  1199       in2_addr->set_req(AddPNode::Address, base->in(load_index));
  1200       in2_addr->set_req(AddPNode::Offset, offset);
  1201       in2->set_req(0, region->in(load_index));
  1202       in2->set_req(Address, in2_addr);
  1203       in2->set_req(Memory, mem_phi->in(load_index));
  1205       in1_addr = phase->transform(in1_addr);
  1206       in1 =      phase->transform(in1);
  1207       in2_addr = phase->transform(in2_addr);
  1208       in2 =      phase->transform(in2);
  1210       PhiNode* result = PhiNode::make_blank(region, this);
  1211       result->set_req(allocation_index, in1);
  1212       result->set_req(load_index, in2);
  1213       return result;
  1215   } else if (base->is_Load() ||
  1216              base->is_DecodeN() && base->in(1)->is_Load()) {
  1217     if (base->is_DecodeN()) {
  1218       // Get LoadN node which loads cached Integer object
  1219       base = base->in(1);
  1221     // Eliminate the load of Integer.value for integers from the cache
  1222     // array by deriving the value from the index into the array.
  1223     // Capture the offset of the load and then reverse the computation.
  1224     Node* load_base = base->in(Address)->in(AddPNode::Base);
  1225     if (load_base->is_DecodeN()) {
  1226       // Get LoadN node which loads IntegerCache.cache field
  1227       load_base = load_base->in(1);
  1229     if (load_base != NULL) {
  1230       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
  1231       intptr_t cache_offset;
  1232       int shift = -1;
  1233       Node* cache = NULL;
  1234       if (is_autobox_cache(atp)) {
  1235         shift  = exact_log2(type2aelembytes(T_OBJECT));
  1236         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
  1238       if (cache != NULL && base->in(Address)->is_AddP()) {
  1239         Node* elements[4];
  1240         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  1241         int cache_low;
  1242         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
  1243           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
  1244           // Add up all the offsets making of the address of the load
  1245           Node* result = elements[0];
  1246           for (int i = 1; i < count; i++) {
  1247             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
  1249           // Remove the constant offset from the address and then
  1250           // remove the scaling of the offset to recover the original index.
  1251           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
  1252           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1253             // Peel the shift off directly but wrap it in a dummy node
  1254             // since Ideal can't return existing nodes
  1255             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
  1256           } else {
  1257             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
  1259 #ifdef _LP64
  1260           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
  1261 #endif
  1262           return result;
  1267   return NULL;
  1270 //------------------------------split_through_phi------------------------------
  1271 // Split instance field load through Phi.
  1272 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
  1273   Node* mem     = in(MemNode::Memory);
  1274   Node* address = in(MemNode::Address);
  1275   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1276   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1278   assert(mem->is_Phi() && (t_oop != NULL) &&
  1279          t_oop->is_known_instance_field(), "invalide conditions");
  1281   Node *region = mem->in(0);
  1282   if (region == NULL) {
  1283     return NULL; // Wait stable graph
  1285   uint cnt = mem->req();
  1286   for (uint i = 1; i < cnt; i++) {
  1287     Node* rc = region->in(i);
  1288     if (rc == NULL || phase->type(rc) == Type::TOP)
  1289       return NULL; // Wait stable graph
  1290     Node *in = mem->in(i);
  1291     if (in == NULL) {
  1292       return NULL; // Wait stable graph
  1295   // Check for loop invariant.
  1296   if (cnt == 3) {
  1297     for (uint i = 1; i < cnt; i++) {
  1298       Node *in = mem->in(i);
  1299       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
  1300       if (m == mem) {
  1301         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
  1302         return this;
  1306   // Split through Phi (see original code in loopopts.cpp).
  1307   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
  1309   // Do nothing here if Identity will find a value
  1310   // (to avoid infinite chain of value phis generation).
  1311   if (!phase->eqv(this, this->Identity(phase)))
  1312     return NULL;
  1314   // Skip the split if the region dominates some control edge of the address.
  1315   if (!MemNode::all_controls_dominate(address, region))
  1316     return NULL;
  1318   const Type* this_type = this->bottom_type();
  1319   int this_index  = phase->C->get_alias_index(addr_t);
  1320   int this_offset = addr_t->offset();
  1321   int this_iid    = addr_t->is_oopptr()->instance_id();
  1322   PhaseIterGVN *igvn = phase->is_IterGVN();
  1323   Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1324   for (uint i = 1; i < region->req(); i++) {
  1325     Node *x;
  1326     Node* the_clone = NULL;
  1327     if (region->in(i) == phase->C->top()) {
  1328       x = phase->C->top();      // Dead path?  Use a dead data op
  1329     } else {
  1330       x = this->clone();        // Else clone up the data op
  1331       the_clone = x;            // Remember for possible deletion.
  1332       // Alter data node to use pre-phi inputs
  1333       if (this->in(0) == region) {
  1334         x->set_req(0, region->in(i));
  1335       } else {
  1336         x->set_req(0, NULL);
  1338       for (uint j = 1; j < this->req(); j++) {
  1339         Node *in = this->in(j);
  1340         if (in->is_Phi() && in->in(0) == region)
  1341           x->set_req(j, in->in(i)); // Use pre-Phi input for the clone
  1344     // Check for a 'win' on some paths
  1345     const Type *t = x->Value(igvn);
  1347     bool singleton = t->singleton();
  1349     // See comments in PhaseIdealLoop::split_thru_phi().
  1350     if (singleton && t == Type::TOP) {
  1351       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1354     if (singleton) {
  1355       x = igvn->makecon(t);
  1356     } else {
  1357       // We now call Identity to try to simplify the cloned node.
  1358       // Note that some Identity methods call phase->type(this).
  1359       // Make sure that the type array is big enough for
  1360       // our new node, even though we may throw the node away.
  1361       // (This tweaking with igvn only works because x is a new node.)
  1362       igvn->set_type(x, t);
  1363       // If x is a TypeNode, capture any more-precise type permanently into Node
  1364       // otherwise it will be not updated during igvn->transform since
  1365       // igvn->type(x) is set to x->Value() already.
  1366       x->raise_bottom_type(t);
  1367       Node *y = x->Identity(igvn);
  1368       if (y != x) {
  1369         x = y;
  1370       } else {
  1371         y = igvn->hash_find(x);
  1372         if (y) {
  1373           x = y;
  1374         } else {
  1375           // Else x is a new node we are keeping
  1376           // We do not need register_new_node_with_optimizer
  1377           // because set_type has already been called.
  1378           igvn->_worklist.push(x);
  1382     if (x != the_clone && the_clone != NULL)
  1383       igvn->remove_dead_node(the_clone);
  1384     phi->set_req(i, x);
  1386   // Record Phi
  1387   igvn->register_new_node_with_optimizer(phi);
  1388   return phi;
  1391 //------------------------------Ideal------------------------------------------
  1392 // If the load is from Field memory and the pointer is non-null, we can
  1393 // zero out the control input.
  1394 // If the offset is constant and the base is an object allocation,
  1395 // try to hook me up to the exact initializing store.
  1396 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1397   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1398   if (p)  return (p == NodeSentinel) ? NULL : p;
  1400   Node* ctrl    = in(MemNode::Control);
  1401   Node* address = in(MemNode::Address);
  1403   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1404   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1405   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1406       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1407     ctrl = ctrl->in(0);
  1408     set_req(MemNode::Control,ctrl);
  1411   intptr_t ignore = 0;
  1412   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1413   if (base != NULL
  1414       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
  1415     // Check for useless control edge in some common special cases
  1416     if (in(MemNode::Control) != NULL
  1417         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1418         && all_controls_dominate(base, phase->C->start())) {
  1419       // A method-invariant, non-null address (constant or 'this' argument).
  1420       set_req(MemNode::Control, NULL);
  1423     if (EliminateAutoBox && can_reshape) {
  1424       assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
  1425       Compile::AliasType* atp = phase->C->alias_type(adr_type());
  1426       if (is_autobox_object(atp)) {
  1427         Node* result = eliminate_autobox(phase);
  1428         if (result != NULL) return result;
  1433   Node* mem = in(MemNode::Memory);
  1434   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1436   if (addr_t != NULL) {
  1437     // try to optimize our memory input
  1438     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
  1439     if (opt_mem != mem) {
  1440       set_req(MemNode::Memory, opt_mem);
  1441       if (phase->type( opt_mem ) == Type::TOP) return NULL;
  1442       return this;
  1444     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1445     if (can_reshape && opt_mem->is_Phi() &&
  1446         (t_oop != NULL) && t_oop->is_known_instance_field()) {
  1447       PhaseIterGVN *igvn = phase->is_IterGVN();
  1448       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
  1449         // Delay this transformation until memory Phi is processed.
  1450         phase->is_IterGVN()->_worklist.push(this);
  1451         return NULL;
  1453       // Split instance field load through Phi.
  1454       Node* result = split_through_phi(phase);
  1455       if (result != NULL) return result;
  1459   // Check for prior store with a different base or offset; make Load
  1460   // independent.  Skip through any number of them.  Bail out if the stores
  1461   // are in an endless dead cycle and report no progress.  This is a key
  1462   // transform for Reflection.  However, if after skipping through the Stores
  1463   // we can't then fold up against a prior store do NOT do the transform as
  1464   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1465   // array memory alive twice: once for the hoisted Load and again after the
  1466   // bypassed Store.  This situation only works if EVERYBODY who does
  1467   // anti-dependence work knows how to bypass.  I.e. we need all
  1468   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1469   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1470   // fold up, do so.
  1471   Node* prev_mem = find_previous_store(phase);
  1472   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1473   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1474     // (c) See if we can fold up on the spot, but don't fold up here.
  1475     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
  1476     // just return a prior value, which is done by Identity calls.
  1477     if (can_see_stored_value(prev_mem, phase)) {
  1478       // Make ready for step (d):
  1479       set_req(MemNode::Memory, prev_mem);
  1480       return this;
  1484   return NULL;                  // No further progress
  1487 // Helper to recognize certain Klass fields which are invariant across
  1488 // some group of array types (e.g., int[] or all T[] where T < Object).
  1489 const Type*
  1490 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1491                                  ciKlass* klass) const {
  1492   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
  1493     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1494     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1495     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1496     return TypeInt::make(klass->modifier_flags());
  1498   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
  1499     // The field is Klass::_access_flags.  Return its (constant) value.
  1500     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1501     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1502     return TypeInt::make(klass->access_flags());
  1504   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
  1505     // The field is Klass::_layout_helper.  Return its constant value if known.
  1506     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1507     return TypeInt::make(klass->layout_helper());
  1510   // No match.
  1511   return NULL;
  1514 //------------------------------Value-----------------------------------------
  1515 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1516   // Either input is TOP ==> the result is TOP
  1517   Node* mem = in(MemNode::Memory);
  1518   const Type *t1 = phase->type(mem);
  1519   if (t1 == Type::TOP)  return Type::TOP;
  1520   Node* adr = in(MemNode::Address);
  1521   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1522   if (tp == NULL || tp->empty())  return Type::TOP;
  1523   int off = tp->offset();
  1524   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1525   Compile* C = phase->C;
  1527   // Try to guess loaded type from pointer type
  1528   if (tp->base() == Type::AryPtr) {
  1529     const Type *t = tp->is_aryptr()->elem();
  1530     // Don't do this for integer types. There is only potential profit if
  1531     // the element type t is lower than _type; that is, for int types, if _type is
  1532     // more restrictive than t.  This only happens here if one is short and the other
  1533     // char (both 16 bits), and in those cases we've made an intentional decision
  1534     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1535     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1536     //
  1537     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1538     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1539     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1540     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1541     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1542     // In fact, that could have been the original type of p1, and p1 could have
  1543     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1544     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1545     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1546         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
  1547       // t might actually be lower than _type, if _type is a unique
  1548       // concrete subclass of abstract class t.
  1549       // Make sure the reference is not into the header, by comparing
  1550       // the offset against the offset of the start of the array's data.
  1551       // Different array types begin at slightly different offsets (12 vs. 16).
  1552       // We choose T_BYTE as an example base type that is least restrictive
  1553       // as to alignment, which will therefore produce the smallest
  1554       // possible base offset.
  1555       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1556       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1557         const Type* jt = t->join(_type);
  1558         // In any case, do not allow the join, per se, to empty out the type.
  1559         if (jt->empty() && !t->empty()) {
  1560           // This can happen if a interface-typed array narrows to a class type.
  1561           jt = _type;
  1564         if (EliminateAutoBox && adr->is_AddP()) {
  1565           // The pointers in the autobox arrays are always non-null
  1566           Node* base = adr->in(AddPNode::Base);
  1567           if (base != NULL &&
  1568               !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
  1569             Compile::AliasType* atp = C->alias_type(base->adr_type());
  1570             if (is_autobox_cache(atp)) {
  1571               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1575         return jt;
  1578   } else if (tp->base() == Type::InstPtr) {
  1579     ciEnv* env = C->env();
  1580     const TypeInstPtr* tinst = tp->is_instptr();
  1581     ciKlass* klass = tinst->klass();
  1582     assert( off != Type::OffsetBot ||
  1583             // arrays can be cast to Objects
  1584             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1585             // unsafe field access may not have a constant offset
  1586             C->has_unsafe_access(),
  1587             "Field accesses must be precise" );
  1588     // For oop loads, we expect the _type to be precise
  1589     if (klass == env->String_klass() &&
  1590         adr->is_AddP() && off != Type::OffsetBot) {
  1591       // For constant Strings treat the final fields as compile time constants.
  1592       Node* base = adr->in(AddPNode::Base);
  1593       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
  1594       if (t != NULL && t->singleton()) {
  1595         ciField* field = env->String_klass()->get_field_by_offset(off, false);
  1596         if (field != NULL && field->is_final()) {
  1597           ciObject* string = t->const_oop();
  1598           ciConstant constant = string->as_instance()->field_value(field);
  1599           if (constant.basic_type() == T_INT) {
  1600             return TypeInt::make(constant.as_int());
  1601           } else if (constant.basic_type() == T_ARRAY) {
  1602             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1603               return TypeNarrowOop::make_from_constant(constant.as_object(), true);
  1604             } else {
  1605               return TypeOopPtr::make_from_constant(constant.as_object(), true);
  1611     // Optimizations for constant objects
  1612     ciObject* const_oop = tinst->const_oop();
  1613     if (const_oop != NULL) {
  1614       // For constant CallSites treat the target field as a compile time constant.
  1615       if (const_oop->is_call_site()) {
  1616         ciCallSite* call_site = const_oop->as_call_site();
  1617         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
  1618         if (field != NULL && field->is_call_site_target()) {
  1619           ciMethodHandle* target = call_site->get_target();
  1620           if (target != NULL) {  // just in case
  1621             ciConstant constant(T_OBJECT, target);
  1622             const Type* t;
  1623             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1624               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
  1625             } else {
  1626               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
  1628             // Add a dependence for invalidation of the optimization.
  1629             if (!call_site->is_constant_call_site()) {
  1630               C->dependencies()->assert_call_site_target_value(call_site, target);
  1632             return t;
  1637   } else if (tp->base() == Type::KlassPtr) {
  1638     assert( off != Type::OffsetBot ||
  1639             // arrays can be cast to Objects
  1640             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1641             // also allow array-loading from the primary supertype
  1642             // array during subtype checks
  1643             Opcode() == Op_LoadKlass,
  1644             "Field accesses must be precise" );
  1645     // For klass/static loads, we expect the _type to be precise
  1648   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1649   if (tkls != NULL && !StressReflectiveCode) {
  1650     ciKlass* klass = tkls->klass();
  1651     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1652       // We are loading a field from a Klass metaobject whose identity
  1653       // is known at compile time (the type is "exact" or "precise").
  1654       // Check for fields we know are maintained as constants by the VM.
  1655       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
  1656         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1657         // (Folds up type checking code.)
  1658         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1659         return TypeInt::make(klass->super_check_offset());
  1661       // Compute index into primary_supers array
  1662       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(klassOop);
  1663       // Check for overflowing; use unsigned compare to handle the negative case.
  1664       if( depth < ciKlass::primary_super_limit() ) {
  1665         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1666         // (Folds up type checking code.)
  1667         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1668         ciKlass *ss = klass->super_of_depth(depth);
  1669         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1671       const Type* aift = load_array_final_field(tkls, klass);
  1672       if (aift != NULL)  return aift;
  1673       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset())
  1674           && klass->is_array_klass()) {
  1675         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
  1676         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1677         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1678         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1680       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
  1681         // The field is Klass::_java_mirror.  Return its (constant) value.
  1682         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1683         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1684         return TypeInstPtr::make(klass->java_mirror());
  1688     // We can still check if we are loading from the primary_supers array at a
  1689     // shallow enough depth.  Even though the klass is not exact, entries less
  1690     // than or equal to its super depth are correct.
  1691     if (klass->is_loaded() ) {
  1692       ciType *inner = klass->klass();
  1693       while( inner->is_obj_array_klass() )
  1694         inner = inner->as_obj_array_klass()->base_element_type();
  1695       if( inner->is_instance_klass() &&
  1696           !inner->as_instance_klass()->flags().is_interface() ) {
  1697         // Compute index into primary_supers array
  1698         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(klassOop);
  1699         // Check for overflowing; use unsigned compare to handle the negative case.
  1700         if( depth < ciKlass::primary_super_limit() &&
  1701             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1702           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1703           // (Folds up type checking code.)
  1704           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1705           ciKlass *ss = klass->super_of_depth(depth);
  1706           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1711     // If the type is enough to determine that the thing is not an array,
  1712     // we can give the layout_helper a positive interval type.
  1713     // This will help short-circuit some reflective code.
  1714     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
  1715         && !klass->is_array_klass() // not directly typed as an array
  1716         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1717         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1718         ) {
  1719       // Note:  When interfaces are reliable, we can narrow the interface
  1720       // test to (klass != Serializable && klass != Cloneable).
  1721       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1722       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1723       // The key property of this type is that it folds up tests
  1724       // for array-ness, since it proves that the layout_helper is positive.
  1725       // Thus, a generic value like the basic object layout helper works fine.
  1726       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1730   // If we are loading from a freshly-allocated object, produce a zero,
  1731   // if the load is provably beyond the header of the object.
  1732   // (Also allow a variable load from a fresh array to produce zero.)
  1733   const TypeOopPtr *tinst = tp->isa_oopptr();
  1734   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
  1735   if (ReduceFieldZeroing || is_instance) {
  1736     Node* value = can_see_stored_value(mem,phase);
  1737     if (value != NULL && value->is_Con()) {
  1738       assert(value->bottom_type()->higher_equal(_type),"sanity");
  1739       return value->bottom_type();
  1743   if (is_instance) {
  1744     // If we have an instance type and our memory input is the
  1745     // programs's initial memory state, there is no matching store,
  1746     // so just return a zero of the appropriate type
  1747     Node *mem = in(MemNode::Memory);
  1748     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1749       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1750       return Type::get_zero_type(_type->basic_type());
  1753   return _type;
  1756 //------------------------------match_edge-------------------------------------
  1757 // Do we Match on this edge index or not?  Match only the address.
  1758 uint LoadNode::match_edge(uint idx) const {
  1759   return idx == MemNode::Address;
  1762 //--------------------------LoadBNode::Ideal--------------------------------------
  1763 //
  1764 //  If the previous store is to the same address as this load,
  1765 //  and the value stored was larger than a byte, replace this load
  1766 //  with the value stored truncated to a byte.  If no truncation is
  1767 //  needed, the replacement is done in LoadNode::Identity().
  1768 //
  1769 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1770   Node* mem = in(MemNode::Memory);
  1771   Node* value = can_see_stored_value(mem,phase);
  1772   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1773     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
  1774     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
  1776   // Identity call will handle the case where truncation is not needed.
  1777   return LoadNode::Ideal(phase, can_reshape);
  1780 const Type* LoadBNode::Value(PhaseTransform *phase) const {
  1781   Node* mem = in(MemNode::Memory);
  1782   Node* value = can_see_stored_value(mem,phase);
  1783   if (value != NULL && value->is_Con() &&
  1784       !value->bottom_type()->higher_equal(_type)) {
  1785     // If the input to the store does not fit with the load's result type,
  1786     // it must be truncated. We can't delay until Ideal call since
  1787     // a singleton Value is needed for split_thru_phi optimization.
  1788     int con = value->get_int();
  1789     return TypeInt::make((con << 24) >> 24);
  1791   return LoadNode::Value(phase);
  1794 //--------------------------LoadUBNode::Ideal-------------------------------------
  1795 //
  1796 //  If the previous store is to the same address as this load,
  1797 //  and the value stored was larger than a byte, replace this load
  1798 //  with the value stored truncated to a byte.  If no truncation is
  1799 //  needed, the replacement is done in LoadNode::Identity().
  1800 //
  1801 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
  1802   Node* mem = in(MemNode::Memory);
  1803   Node* value = can_see_stored_value(mem, phase);
  1804   if (value && !phase->type(value)->higher_equal(_type))
  1805     return new (phase->C, 3) AndINode(value, phase->intcon(0xFF));
  1806   // Identity call will handle the case where truncation is not needed.
  1807   return LoadNode::Ideal(phase, can_reshape);
  1810 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
  1811   Node* mem = in(MemNode::Memory);
  1812   Node* value = can_see_stored_value(mem,phase);
  1813   if (value != NULL && value->is_Con() &&
  1814       !value->bottom_type()->higher_equal(_type)) {
  1815     // If the input to the store does not fit with the load's result type,
  1816     // it must be truncated. We can't delay until Ideal call since
  1817     // a singleton Value is needed for split_thru_phi optimization.
  1818     int con = value->get_int();
  1819     return TypeInt::make(con & 0xFF);
  1821   return LoadNode::Value(phase);
  1824 //--------------------------LoadUSNode::Ideal-------------------------------------
  1825 //
  1826 //  If the previous store is to the same address as this load,
  1827 //  and the value stored was larger than a char, replace this load
  1828 //  with the value stored truncated to a char.  If no truncation is
  1829 //  needed, the replacement is done in LoadNode::Identity().
  1830 //
  1831 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1832   Node* mem = in(MemNode::Memory);
  1833   Node* value = can_see_stored_value(mem,phase);
  1834   if( value && !phase->type(value)->higher_equal( _type ) )
  1835     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1836   // Identity call will handle the case where truncation is not needed.
  1837   return LoadNode::Ideal(phase, can_reshape);
  1840 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
  1841   Node* mem = in(MemNode::Memory);
  1842   Node* value = can_see_stored_value(mem,phase);
  1843   if (value != NULL && value->is_Con() &&
  1844       !value->bottom_type()->higher_equal(_type)) {
  1845     // If the input to the store does not fit with the load's result type,
  1846     // it must be truncated. We can't delay until Ideal call since
  1847     // a singleton Value is needed for split_thru_phi optimization.
  1848     int con = value->get_int();
  1849     return TypeInt::make(con & 0xFFFF);
  1851   return LoadNode::Value(phase);
  1854 //--------------------------LoadSNode::Ideal--------------------------------------
  1855 //
  1856 //  If the previous store is to the same address as this load,
  1857 //  and the value stored was larger than a short, replace this load
  1858 //  with the value stored truncated to a short.  If no truncation is
  1859 //  needed, the replacement is done in LoadNode::Identity().
  1860 //
  1861 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1862   Node* mem = in(MemNode::Memory);
  1863   Node* value = can_see_stored_value(mem,phase);
  1864   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1865     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1866     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1868   // Identity call will handle the case where truncation is not needed.
  1869   return LoadNode::Ideal(phase, can_reshape);
  1872 const Type* LoadSNode::Value(PhaseTransform *phase) const {
  1873   Node* mem = in(MemNode::Memory);
  1874   Node* value = can_see_stored_value(mem,phase);
  1875   if (value != NULL && value->is_Con() &&
  1876       !value->bottom_type()->higher_equal(_type)) {
  1877     // If the input to the store does not fit with the load's result type,
  1878     // it must be truncated. We can't delay until Ideal call since
  1879     // a singleton Value is needed for split_thru_phi optimization.
  1880     int con = value->get_int();
  1881     return TypeInt::make((con << 16) >> 16);
  1883   return LoadNode::Value(phase);
  1886 //=============================================================================
  1887 //----------------------------LoadKlassNode::make------------------------------
  1888 // Polymorphic factory method:
  1889 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
  1890   Compile* C = gvn.C;
  1891   Node *ctl = NULL;
  1892   // sanity check the alias category against the created node type
  1893   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
  1894   assert(adr_type != NULL, "expecting TypeOopPtr");
  1895 #ifdef _LP64
  1896   if (adr_type->is_ptr_to_narrowoop()) {
  1897     Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
  1898     return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
  1900 #endif
  1901   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
  1902   return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
  1905 //------------------------------Value------------------------------------------
  1906 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1907   return klass_value_common(phase);
  1910 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
  1911   // Either input is TOP ==> the result is TOP
  1912   const Type *t1 = phase->type( in(MemNode::Memory) );
  1913   if (t1 == Type::TOP)  return Type::TOP;
  1914   Node *adr = in(MemNode::Address);
  1915   const Type *t2 = phase->type( adr );
  1916   if (t2 == Type::TOP)  return Type::TOP;
  1917   const TypePtr *tp = t2->is_ptr();
  1918   if (TypePtr::above_centerline(tp->ptr()) ||
  1919       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1921   // Return a more precise klass, if possible
  1922   const TypeInstPtr *tinst = tp->isa_instptr();
  1923   if (tinst != NULL) {
  1924     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1925     int offset = tinst->offset();
  1926     if (ik == phase->C->env()->Class_klass()
  1927         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1928             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1929       // We are loading a special hidden field from a Class mirror object,
  1930       // the field which points to the VM's Klass metaobject.
  1931       ciType* t = tinst->java_mirror_type();
  1932       // java_mirror_type returns non-null for compile-time Class constants.
  1933       if (t != NULL) {
  1934         // constant oop => constant klass
  1935         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1936           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1938         if (!t->is_klass()) {
  1939           // a primitive Class (e.g., int.class) has NULL for a klass field
  1940           return TypePtr::NULL_PTR;
  1942         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1943         return TypeKlassPtr::make(t->as_klass());
  1945       // non-constant mirror, so we can't tell what's going on
  1947     if( !ik->is_loaded() )
  1948       return _type;             // Bail out if not loaded
  1949     if (offset == oopDesc::klass_offset_in_bytes()) {
  1950       if (tinst->klass_is_exact()) {
  1951         return TypeKlassPtr::make(ik);
  1953       // See if we can become precise: no subklasses and no interface
  1954       // (Note:  We need to support verified interfaces.)
  1955       if (!ik->is_interface() && !ik->has_subklass()) {
  1956         //assert(!UseExactTypes, "this code should be useless with exact types");
  1957         // Add a dependence; if any subclass added we need to recompile
  1958         if (!ik->is_final()) {
  1959           // %%% should use stronger assert_unique_concrete_subtype instead
  1960           phase->C->dependencies()->assert_leaf_type(ik);
  1962         // Return precise klass
  1963         return TypeKlassPtr::make(ik);
  1966       // Return root of possible klass
  1967       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1971   // Check for loading klass from an array
  1972   const TypeAryPtr *tary = tp->isa_aryptr();
  1973   if( tary != NULL ) {
  1974     ciKlass *tary_klass = tary->klass();
  1975     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1976         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1977       if (tary->klass_is_exact()) {
  1978         return TypeKlassPtr::make(tary_klass);
  1980       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1981       // If the klass is an object array, we defer the question to the
  1982       // array component klass.
  1983       if( ak->is_obj_array_klass() ) {
  1984         assert( ak->is_loaded(), "" );
  1985         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1986         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1987           ciInstanceKlass* ik = base_k->as_instance_klass();
  1988           // See if we can become precise: no subklasses and no interface
  1989           if (!ik->is_interface() && !ik->has_subklass()) {
  1990             //assert(!UseExactTypes, "this code should be useless with exact types");
  1991             // Add a dependence; if any subclass added we need to recompile
  1992             if (!ik->is_final()) {
  1993               phase->C->dependencies()->assert_leaf_type(ik);
  1995             // Return precise array klass
  1996             return TypeKlassPtr::make(ak);
  1999         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  2000       } else {                  // Found a type-array?
  2001         //assert(!UseExactTypes, "this code should be useless with exact types");
  2002         assert( ak->is_type_array_klass(), "" );
  2003         return TypeKlassPtr::make(ak); // These are always precise
  2008   // Check for loading klass from an array klass
  2009   const TypeKlassPtr *tkls = tp->isa_klassptr();
  2010   if (tkls != NULL && !StressReflectiveCode) {
  2011     ciKlass* klass = tkls->klass();
  2012     if( !klass->is_loaded() )
  2013       return _type;             // Bail out if not loaded
  2014     if( klass->is_obj_array_klass() &&
  2015         tkls->offset() == in_bytes(objArrayKlass::element_klass_offset())) {
  2016       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  2017       // // Always returning precise element type is incorrect,
  2018       // // e.g., element type could be object and array may contain strings
  2019       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  2021       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  2022       // according to the element type's subclassing.
  2023       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  2025     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  2026         tkls->offset() == in_bytes(Klass::super_offset())) {
  2027       ciKlass* sup = klass->as_instance_klass()->super();
  2028       // The field is Klass::_super.  Return its (constant) value.
  2029       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  2030       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  2034   // Bailout case
  2035   return LoadNode::Value(phase);
  2038 //------------------------------Identity---------------------------------------
  2039 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  2040 // Also feed through the klass in Allocate(...klass...)._klass.
  2041 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  2042   return klass_identity_common(phase);
  2045 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
  2046   Node* x = LoadNode::Identity(phase);
  2047   if (x != this)  return x;
  2049   // Take apart the address into an oop and and offset.
  2050   // Return 'this' if we cannot.
  2051   Node*    adr    = in(MemNode::Address);
  2052   intptr_t offset = 0;
  2053   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  2054   if (base == NULL)     return this;
  2055   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  2056   if (toop == NULL)     return this;
  2058   // We can fetch the klass directly through an AllocateNode.
  2059   // This works even if the klass is not constant (clone or newArray).
  2060   if (offset == oopDesc::klass_offset_in_bytes()) {
  2061     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  2062     if (allocated_klass != NULL) {
  2063       return allocated_klass;
  2067   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  2068   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  2069   // See inline_native_Class_query for occurrences of these patterns.
  2070   // Java Example:  x.getClass().isAssignableFrom(y)
  2071   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  2072   //
  2073   // This improves reflective code, often making the Class
  2074   // mirror go completely dead.  (Current exception:  Class
  2075   // mirrors may appear in debug info, but we could clean them out by
  2076   // introducing a new debug info operator for klassOop.java_mirror).
  2077   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  2078       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  2079           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2080     // We are loading a special hidden field from a Class mirror,
  2081     // the field which points to its Klass or arrayKlass metaobject.
  2082     if (base->is_Load()) {
  2083       Node* adr2 = base->in(MemNode::Address);
  2084       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  2085       if (tkls != NULL && !tkls->empty()
  2086           && (tkls->klass()->is_instance_klass() ||
  2087               tkls->klass()->is_array_klass())
  2088           && adr2->is_AddP()
  2089           ) {
  2090         int mirror_field = in_bytes(Klass::java_mirror_offset());
  2091         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  2092           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  2094         if (tkls->offset() == mirror_field) {
  2095           return adr2->in(AddPNode::Base);
  2101   return this;
  2105 //------------------------------Value------------------------------------------
  2106 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
  2107   const Type *t = klass_value_common(phase);
  2108   if (t == Type::TOP)
  2109     return t;
  2111   return t->make_narrowoop();
  2114 //------------------------------Identity---------------------------------------
  2115 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
  2116 // Also feed through the klass in Allocate(...klass...)._klass.
  2117 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
  2118   Node *x = klass_identity_common(phase);
  2120   const Type *t = phase->type( x );
  2121   if( t == Type::TOP ) return x;
  2122   if( t->isa_narrowoop()) return x;
  2124   return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
  2127 //------------------------------Value-----------------------------------------
  2128 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  2129   // Either input is TOP ==> the result is TOP
  2130   const Type *t1 = phase->type( in(MemNode::Memory) );
  2131   if( t1 == Type::TOP ) return Type::TOP;
  2132   Node *adr = in(MemNode::Address);
  2133   const Type *t2 = phase->type( adr );
  2134   if( t2 == Type::TOP ) return Type::TOP;
  2135   const TypePtr *tp = t2->is_ptr();
  2136   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  2137   const TypeAryPtr *tap = tp->isa_aryptr();
  2138   if( !tap ) return _type;
  2139   return tap->size();
  2142 //-------------------------------Ideal---------------------------------------
  2143 // Feed through the length in AllocateArray(...length...)._length.
  2144 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2145   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2146   if (p)  return (p == NodeSentinel) ? NULL : p;
  2148   // Take apart the address into an oop and and offset.
  2149   // Return 'this' if we cannot.
  2150   Node*    adr    = in(MemNode::Address);
  2151   intptr_t offset = 0;
  2152   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
  2153   if (base == NULL)     return NULL;
  2154   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2155   if (tary == NULL)     return NULL;
  2157   // We can fetch the length directly through an AllocateArrayNode.
  2158   // This works even if the length is not constant (clone or newArray).
  2159   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2160     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2161     if (alloc != NULL) {
  2162       Node* allocated_length = alloc->Ideal_length();
  2163       Node* len = alloc->make_ideal_length(tary, phase);
  2164       if (allocated_length != len) {
  2165         // New CastII improves on this.
  2166         return len;
  2171   return NULL;
  2174 //------------------------------Identity---------------------------------------
  2175 // Feed through the length in AllocateArray(...length...)._length.
  2176 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  2177   Node* x = LoadINode::Identity(phase);
  2178   if (x != this)  return x;
  2180   // Take apart the address into an oop and and offset.
  2181   // Return 'this' if we cannot.
  2182   Node*    adr    = in(MemNode::Address);
  2183   intptr_t offset = 0;
  2184   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  2185   if (base == NULL)     return this;
  2186   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2187   if (tary == NULL)     return this;
  2189   // We can fetch the length directly through an AllocateArrayNode.
  2190   // This works even if the length is not constant (clone or newArray).
  2191   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2192     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2193     if (alloc != NULL) {
  2194       Node* allocated_length = alloc->Ideal_length();
  2195       // Do not allow make_ideal_length to allocate a CastII node.
  2196       Node* len = alloc->make_ideal_length(tary, phase, false);
  2197       if (allocated_length == len) {
  2198         // Return allocated_length only if it would not be improved by a CastII.
  2199         return allocated_length;
  2204   return this;
  2208 //=============================================================================
  2209 //---------------------------StoreNode::make-----------------------------------
  2210 // Polymorphic factory method:
  2211 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  2212   Compile* C = gvn.C;
  2213   assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
  2214           ctl != NULL, "raw memory operations should have control edge");
  2216   switch (bt) {
  2217   case T_BOOLEAN:
  2218   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  2219   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  2220   case T_CHAR:
  2221   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  2222   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  2223   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  2224   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  2225   case T_ADDRESS:
  2226   case T_OBJECT:
  2227 #ifdef _LP64
  2228     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
  2229         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
  2230          adr->bottom_type()->isa_rawptr())) {
  2231       val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
  2232       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
  2233     } else
  2234 #endif
  2236       return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  2239   ShouldNotReachHere();
  2240   return (StoreNode*)NULL;
  2243 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  2244   bool require_atomic = true;
  2245   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  2249 //--------------------------bottom_type----------------------------------------
  2250 const Type *StoreNode::bottom_type() const {
  2251   return Type::MEMORY;
  2254 //------------------------------hash-------------------------------------------
  2255 uint StoreNode::hash() const {
  2256   // unroll addition of interesting fields
  2257   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  2259   // Since they are not commoned, do not hash them:
  2260   return NO_HASH;
  2263 //------------------------------Ideal------------------------------------------
  2264 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  2265 // When a store immediately follows a relevant allocation/initialization,
  2266 // try to capture it into the initialization, or hoist it above.
  2267 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2268   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2269   if (p)  return (p == NodeSentinel) ? NULL : p;
  2271   Node* mem     = in(MemNode::Memory);
  2272   Node* address = in(MemNode::Address);
  2274   // Back-to-back stores to same address?  Fold em up.  Generally
  2275   // unsafe if I have intervening uses...  Also disallowed for StoreCM
  2276   // since they must follow each StoreP operation.  Redundant StoreCMs
  2277   // are eliminated just before matching in final_graph_reshape.
  2278   if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
  2279       mem->Opcode() != Op_StoreCM) {
  2280     // Looking at a dead closed cycle of memory?
  2281     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  2283     assert(Opcode() == mem->Opcode() ||
  2284            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  2285            "no mismatched stores, except on raw memory");
  2287     if (mem->outcnt() == 1 &&           // check for intervening uses
  2288         mem->as_Store()->memory_size() <= this->memory_size()) {
  2289       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  2290       // For example, 'mem' might be the final state at a conditional return.
  2291       // Or, 'mem' might be used by some node which is live at the same time
  2292       // 'this' is live, which might be unschedulable.  So, require exactly
  2293       // ONE user, the 'this' store, until such time as we clone 'mem' for
  2294       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  2295       if (can_reshape) {  // (%%% is this an anachronism?)
  2296         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  2297                   phase->is_IterGVN());
  2298       } else {
  2299         // It's OK to do this in the parser, since DU info is always accurate,
  2300         // and the parser always refers to nodes via SafePointNode maps.
  2301         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2303       return this;
  2307   // Capture an unaliased, unconditional, simple store into an initializer.
  2308   // Or, if it is independent of the allocation, hoist it above the allocation.
  2309   if (ReduceFieldZeroing && /*can_reshape &&*/
  2310       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  2311     InitializeNode* init = mem->in(0)->as_Initialize();
  2312     intptr_t offset = init->can_capture_store(this, phase);
  2313     if (offset > 0) {
  2314       Node* moved = init->capture_store(this, offset, phase);
  2315       // If the InitializeNode captured me, it made a raw copy of me,
  2316       // and I need to disappear.
  2317       if (moved != NULL) {
  2318         // %%% hack to ensure that Ideal returns a new node:
  2319         mem = MergeMemNode::make(phase->C, mem);
  2320         return mem;             // fold me away
  2325   return NULL;                  // No further progress
  2328 //------------------------------Value-----------------------------------------
  2329 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  2330   // Either input is TOP ==> the result is TOP
  2331   const Type *t1 = phase->type( in(MemNode::Memory) );
  2332   if( t1 == Type::TOP ) return Type::TOP;
  2333   const Type *t2 = phase->type( in(MemNode::Address) );
  2334   if( t2 == Type::TOP ) return Type::TOP;
  2335   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  2336   if( t3 == Type::TOP ) return Type::TOP;
  2337   return Type::MEMORY;
  2340 //------------------------------Identity---------------------------------------
  2341 // Remove redundant stores:
  2342 //   Store(m, p, Load(m, p)) changes to m.
  2343 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  2344 Node *StoreNode::Identity( PhaseTransform *phase ) {
  2345   Node* mem = in(MemNode::Memory);
  2346   Node* adr = in(MemNode::Address);
  2347   Node* val = in(MemNode::ValueIn);
  2349   // Load then Store?  Then the Store is useless
  2350   if (val->is_Load() &&
  2351       val->in(MemNode::Address)->eqv_uncast(adr) &&
  2352       val->in(MemNode::Memory )->eqv_uncast(mem) &&
  2353       val->as_Load()->store_Opcode() == Opcode()) {
  2354     return mem;
  2357   // Two stores in a row of the same value?
  2358   if (mem->is_Store() &&
  2359       mem->in(MemNode::Address)->eqv_uncast(adr) &&
  2360       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
  2361       mem->Opcode() == Opcode()) {
  2362     return mem;
  2365   // Store of zero anywhere into a freshly-allocated object?
  2366   // Then the store is useless.
  2367   // (It must already have been captured by the InitializeNode.)
  2368   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  2369     // a newly allocated object is already all-zeroes everywhere
  2370     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  2371       return mem;
  2374     // the store may also apply to zero-bits in an earlier object
  2375     Node* prev_mem = find_previous_store(phase);
  2376     // Steps (a), (b):  Walk past independent stores to find an exact match.
  2377     if (prev_mem != NULL) {
  2378       Node* prev_val = can_see_stored_value(prev_mem, phase);
  2379       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  2380         // prev_val and val might differ by a cast; it would be good
  2381         // to keep the more informative of the two.
  2382         return mem;
  2387   return this;
  2390 //------------------------------match_edge-------------------------------------
  2391 // Do we Match on this edge index or not?  Match only memory & value
  2392 uint StoreNode::match_edge(uint idx) const {
  2393   return idx == MemNode::Address || idx == MemNode::ValueIn;
  2396 //------------------------------cmp--------------------------------------------
  2397 // Do not common stores up together.  They generally have to be split
  2398 // back up anyways, so do not bother.
  2399 uint StoreNode::cmp( const Node &n ) const {
  2400   return (&n == this);          // Always fail except on self
  2403 //------------------------------Ideal_masked_input-----------------------------
  2404 // Check for a useless mask before a partial-word store
  2405 // (StoreB ... (AndI valIn conIa) )
  2406 // If (conIa & mask == mask) this simplifies to
  2407 // (StoreB ... (valIn) )
  2408 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  2409   Node *val = in(MemNode::ValueIn);
  2410   if( val->Opcode() == Op_AndI ) {
  2411     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2412     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  2413       set_req(MemNode::ValueIn, val->in(1));
  2414       return this;
  2417   return NULL;
  2421 //------------------------------Ideal_sign_extended_input----------------------
  2422 // Check for useless sign-extension before a partial-word store
  2423 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  2424 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  2425 // (StoreB ... (valIn) )
  2426 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  2427   Node *val = in(MemNode::ValueIn);
  2428   if( val->Opcode() == Op_RShiftI ) {
  2429     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2430     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  2431       Node *shl = val->in(1);
  2432       if( shl->Opcode() == Op_LShiftI ) {
  2433         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  2434         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  2435           set_req(MemNode::ValueIn, shl->in(1));
  2436           return this;
  2441   return NULL;
  2444 //------------------------------value_never_loaded-----------------------------------
  2445 // Determine whether there are any possible loads of the value stored.
  2446 // For simplicity, we actually check if there are any loads from the
  2447 // address stored to, not just for loads of the value stored by this node.
  2448 //
  2449 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  2450   Node *adr = in(Address);
  2451   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  2452   if (adr_oop == NULL)
  2453     return false;
  2454   if (!adr_oop->is_known_instance_field())
  2455     return false; // if not a distinct instance, there may be aliases of the address
  2456   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  2457     Node *use = adr->fast_out(i);
  2458     int opc = use->Opcode();
  2459     if (use->is_Load() || use->is_LoadStore()) {
  2460       return false;
  2463   return true;
  2466 //=============================================================================
  2467 //------------------------------Ideal------------------------------------------
  2468 // If the store is from an AND mask that leaves the low bits untouched, then
  2469 // we can skip the AND operation.  If the store is from a sign-extension
  2470 // (a left shift, then right shift) we can skip both.
  2471 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2472   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  2473   if( progress != NULL ) return progress;
  2475   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  2476   if( progress != NULL ) return progress;
  2478   // Finally check the default case
  2479   return StoreNode::Ideal(phase, can_reshape);
  2482 //=============================================================================
  2483 //------------------------------Ideal------------------------------------------
  2484 // If the store is from an AND mask that leaves the low bits untouched, then
  2485 // we can skip the AND operation
  2486 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2487   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2488   if( progress != NULL ) return progress;
  2490   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2491   if( progress != NULL ) return progress;
  2493   // Finally check the default case
  2494   return StoreNode::Ideal(phase, can_reshape);
  2497 //=============================================================================
  2498 //------------------------------Identity---------------------------------------
  2499 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2500   // No need to card mark when storing a null ptr
  2501   Node* my_store = in(MemNode::OopStore);
  2502   if (my_store->is_Store()) {
  2503     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2504     if( t1 == TypePtr::NULL_PTR ) {
  2505       return in(MemNode::Memory);
  2508   return this;
  2511 //=============================================================================
  2512 //------------------------------Ideal---------------------------------------
  2513 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2514   Node* progress = StoreNode::Ideal(phase, can_reshape);
  2515   if (progress != NULL) return progress;
  2517   Node* my_store = in(MemNode::OopStore);
  2518   if (my_store->is_MergeMem()) {
  2519     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
  2520     set_req(MemNode::OopStore, mem);
  2521     return this;
  2524   return NULL;
  2527 //------------------------------Value-----------------------------------------
  2528 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2529   // Either input is TOP ==> the result is TOP
  2530   const Type *t = phase->type( in(MemNode::Memory) );
  2531   if( t == Type::TOP ) return Type::TOP;
  2532   t = phase->type( in(MemNode::Address) );
  2533   if( t == Type::TOP ) return Type::TOP;
  2534   t = phase->type( in(MemNode::ValueIn) );
  2535   if( t == Type::TOP ) return Type::TOP;
  2536   // If extra input is TOP ==> the result is TOP
  2537   t = phase->type( in(MemNode::OopStore) );
  2538   if( t == Type::TOP ) return Type::TOP;
  2540   return StoreNode::Value( phase );
  2544 //=============================================================================
  2545 //----------------------------------SCMemProjNode------------------------------
  2546 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2548   return bottom_type();
  2551 //=============================================================================
  2552 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  2553   init_req(MemNode::Control, c  );
  2554   init_req(MemNode::Memory , mem);
  2555   init_req(MemNode::Address, adr);
  2556   init_req(MemNode::ValueIn, val);
  2557   init_req(         ExpectedIn, ex );
  2558   init_class_id(Class_LoadStore);
  2562 //=============================================================================
  2563 //-------------------------------adr_type--------------------------------------
  2564 // Do we Match on this edge index or not?  Do not match memory
  2565 const TypePtr* ClearArrayNode::adr_type() const {
  2566   Node *adr = in(3);
  2567   return MemNode::calculate_adr_type(adr->bottom_type());
  2570 //------------------------------match_edge-------------------------------------
  2571 // Do we Match on this edge index or not?  Do not match memory
  2572 uint ClearArrayNode::match_edge(uint idx) const {
  2573   return idx > 1;
  2576 //------------------------------Identity---------------------------------------
  2577 // Clearing a zero length array does nothing
  2578 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2579   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2582 //------------------------------Idealize---------------------------------------
  2583 // Clearing a short array is faster with stores
  2584 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2585   const int unit = BytesPerLong;
  2586   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2587   if (!t)  return NULL;
  2588   if (!t->is_con())  return NULL;
  2589   intptr_t raw_count = t->get_con();
  2590   intptr_t size = raw_count;
  2591   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2592   // Clearing nothing uses the Identity call.
  2593   // Negative clears are possible on dead ClearArrays
  2594   // (see jck test stmt114.stmt11402.val).
  2595   if (size <= 0 || size % unit != 0)  return NULL;
  2596   intptr_t count = size / unit;
  2597   // Length too long; use fast hardware clear
  2598   if (size > Matcher::init_array_short_size)  return NULL;
  2599   Node *mem = in(1);
  2600   if( phase->type(mem)==Type::TOP ) return NULL;
  2601   Node *adr = in(3);
  2602   const Type* at = phase->type(adr);
  2603   if( at==Type::TOP ) return NULL;
  2604   const TypePtr* atp = at->isa_ptr();
  2605   // adjust atp to be the correct array element address type
  2606   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2607   else              atp = atp->add_offset(Type::OffsetBot);
  2608   // Get base for derived pointer purposes
  2609   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2610   Node *base = adr->in(1);
  2612   Node *zero = phase->makecon(TypeLong::ZERO);
  2613   Node *off  = phase->MakeConX(BytesPerLong);
  2614   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2615   count--;
  2616   while( count-- ) {
  2617     mem = phase->transform(mem);
  2618     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  2619     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2621   return mem;
  2624 //----------------------------step_through----------------------------------
  2625 // Return allocation input memory edge if it is different instance
  2626 // or itself if it is the one we are looking for.
  2627 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
  2628   Node* n = *np;
  2629   assert(n->is_ClearArray(), "sanity");
  2630   intptr_t offset;
  2631   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
  2632   // This method is called only before Allocate nodes are expanded during
  2633   // macro nodes expansion. Before that ClearArray nodes are only generated
  2634   // in LibraryCallKit::generate_arraycopy() which follows allocations.
  2635   assert(alloc != NULL, "should have allocation");
  2636   if (alloc->_idx == instance_id) {
  2637     // Can not bypass initialization of the instance we are looking for.
  2638     return false;
  2640   // Otherwise skip it.
  2641   InitializeNode* init = alloc->initialization();
  2642   if (init != NULL)
  2643     *np = init->in(TypeFunc::Memory);
  2644   else
  2645     *np = alloc->in(TypeFunc::Memory);
  2646   return true;
  2649 //----------------------------clear_memory-------------------------------------
  2650 // Generate code to initialize object storage to zero.
  2651 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2652                                    intptr_t start_offset,
  2653                                    Node* end_offset,
  2654                                    PhaseGVN* phase) {
  2655   Compile* C = phase->C;
  2656   intptr_t offset = start_offset;
  2658   int unit = BytesPerLong;
  2659   if ((offset % unit) != 0) {
  2660     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  2661     adr = phase->transform(adr);
  2662     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2663     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2664     mem = phase->transform(mem);
  2665     offset += BytesPerInt;
  2667   assert((offset % unit) == 0, "");
  2669   // Initialize the remaining stuff, if any, with a ClearArray.
  2670   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2673 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2674                                    Node* start_offset,
  2675                                    Node* end_offset,
  2676                                    PhaseGVN* phase) {
  2677   if (start_offset == end_offset) {
  2678     // nothing to do
  2679     return mem;
  2682   Compile* C = phase->C;
  2683   int unit = BytesPerLong;
  2684   Node* zbase = start_offset;
  2685   Node* zend  = end_offset;
  2687   // Scale to the unit required by the CPU:
  2688   if (!Matcher::init_array_count_is_in_bytes) {
  2689     Node* shift = phase->intcon(exact_log2(unit));
  2690     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  2691     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  2694   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  2695   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  2697   // Bulk clear double-words
  2698   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  2699   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  2700   return phase->transform(mem);
  2703 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2704                                    intptr_t start_offset,
  2705                                    intptr_t end_offset,
  2706                                    PhaseGVN* phase) {
  2707   if (start_offset == end_offset) {
  2708     // nothing to do
  2709     return mem;
  2712   Compile* C = phase->C;
  2713   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2714   intptr_t done_offset = end_offset;
  2715   if ((done_offset % BytesPerLong) != 0) {
  2716     done_offset -= BytesPerInt;
  2718   if (done_offset > start_offset) {
  2719     mem = clear_memory(ctl, mem, dest,
  2720                        start_offset, phase->MakeConX(done_offset), phase);
  2722   if (done_offset < end_offset) { // emit the final 32-bit store
  2723     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2724     adr = phase->transform(adr);
  2725     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2726     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2727     mem = phase->transform(mem);
  2728     done_offset += BytesPerInt;
  2730   assert(done_offset == end_offset, "");
  2731   return mem;
  2734 //=============================================================================
  2735 // Do not match memory edge.
  2736 uint StrIntrinsicNode::match_edge(uint idx) const {
  2737   return idx == 2 || idx == 3;
  2740 //------------------------------Ideal------------------------------------------
  2741 // Return a node which is more "ideal" than the current node.  Strip out
  2742 // control copies
  2743 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2744   if (remove_dead_region(phase, can_reshape)) return this;
  2745   // Don't bother trying to transform a dead node
  2746   if (in(0) && in(0)->is_top())  return NULL;
  2748   if (can_reshape) {
  2749     Node* mem = phase->transform(in(MemNode::Memory));
  2750     // If transformed to a MergeMem, get the desired slice
  2751     uint alias_idx = phase->C->get_alias_index(adr_type());
  2752     mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
  2753     if (mem != in(MemNode::Memory)) {
  2754       set_req(MemNode::Memory, mem);
  2755       return this;
  2758   return NULL;
  2761 //------------------------------Value------------------------------------------
  2762 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
  2763   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
  2764   return bottom_type();
  2767 //=============================================================================
  2768 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2769   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2770     _adr_type(C->get_adr_type(alias_idx))
  2772   init_class_id(Class_MemBar);
  2773   Node* top = C->top();
  2774   init_req(TypeFunc::I_O,top);
  2775   init_req(TypeFunc::FramePtr,top);
  2776   init_req(TypeFunc::ReturnAdr,top);
  2777   if (precedent != NULL)
  2778     init_req(TypeFunc::Parms, precedent);
  2781 //------------------------------cmp--------------------------------------------
  2782 uint MemBarNode::hash() const { return NO_HASH; }
  2783 uint MemBarNode::cmp( const Node &n ) const {
  2784   return (&n == this);          // Always fail except on self
  2787 //------------------------------make-------------------------------------------
  2788 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2789   int len = Precedent + (pn == NULL? 0: 1);
  2790   switch (opcode) {
  2791   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  2792   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  2793   case Op_MemBarAcquireLock: return new(C, len) MemBarAcquireLockNode(C,  atp, pn);
  2794   case Op_MemBarReleaseLock: return new(C, len) MemBarReleaseLockNode(C,  atp, pn);
  2795   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  2796   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  2797   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  2798   case Op_MemBarStoreStore: return new(C, len) MemBarStoreStoreNode(C,  atp, pn);
  2799   default:                 ShouldNotReachHere(); return NULL;
  2803 //------------------------------Ideal------------------------------------------
  2804 // Return a node which is more "ideal" than the current node.  Strip out
  2805 // control copies
  2806 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2807   if (remove_dead_region(phase, can_reshape)) return this;
  2808   // Don't bother trying to transform a dead node
  2809   if (in(0) && in(0)->is_top())  return NULL;
  2811   // Eliminate volatile MemBars for scalar replaced objects.
  2812   if (can_reshape && req() == (Precedent+1) &&
  2813       (Opcode() == Op_MemBarAcquire || Opcode() == Op_MemBarVolatile)) {
  2814     // Volatile field loads and stores.
  2815     Node* my_mem = in(MemBarNode::Precedent);
  2816     if (my_mem != NULL && my_mem->is_Mem()) {
  2817       const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
  2818       // Check for scalar replaced object reference.
  2819       if( t_oop != NULL && t_oop->is_known_instance_field() &&
  2820           t_oop->offset() != Type::OffsetBot &&
  2821           t_oop->offset() != Type::OffsetTop) {
  2822         // Replace MemBar projections by its inputs.
  2823         PhaseIterGVN* igvn = phase->is_IterGVN();
  2824         igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
  2825         igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
  2826         // Must return either the original node (now dead) or a new node
  2827         // (Do not return a top here, since that would break the uniqueness of top.)
  2828         return new (phase->C, 1) ConINode(TypeInt::ZERO);
  2832   return NULL;
  2835 //------------------------------Value------------------------------------------
  2836 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2837   if( !in(0) ) return Type::TOP;
  2838   if( phase->type(in(0)) == Type::TOP )
  2839     return Type::TOP;
  2840   return TypeTuple::MEMBAR;
  2843 //------------------------------match------------------------------------------
  2844 // Construct projections for memory.
  2845 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2846   switch (proj->_con) {
  2847   case TypeFunc::Control:
  2848   case TypeFunc::Memory:
  2849     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2851   ShouldNotReachHere();
  2852   return NULL;
  2855 //===========================InitializeNode====================================
  2856 // SUMMARY:
  2857 // This node acts as a memory barrier on raw memory, after some raw stores.
  2858 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2859 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2860 // It can coalesce related raw stores into larger units (called 'tiles').
  2861 // It can avoid zeroing new storage for memory units which have raw inits.
  2862 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2863 //
  2864 // EXAMPLE:
  2865 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2866 //   ctl = incoming control; mem* = incoming memory
  2867 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2868 // First allocate uninitialized memory and fill in the header:
  2869 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2870 //   ctl := alloc.Control; mem* := alloc.Memory*
  2871 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2872 // Then initialize to zero the non-header parts of the raw memory block:
  2873 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2874 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2875 // After the initialize node executes, the object is ready for service:
  2876 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2877 // Suppose its body is immediately initialized as {1,2}:
  2878 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2879 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2880 //   mem.SLICE(#short[*]) := store2
  2881 //
  2882 // DETAILS:
  2883 // An InitializeNode collects and isolates object initialization after
  2884 // an AllocateNode and before the next possible safepoint.  As a
  2885 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2886 // down past any safepoint or any publication of the allocation.
  2887 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2888 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2889 //
  2890 // The semantics of the InitializeNode include an implicit zeroing of
  2891 // the new object from object header to the end of the object.
  2892 // (The object header and end are determined by the AllocateNode.)
  2893 //
  2894 // Certain stores may be added as direct inputs to the InitializeNode.
  2895 // These stores must update raw memory, and they must be to addresses
  2896 // derived from the raw address produced by AllocateNode, and with
  2897 // a constant offset.  They must be ordered by increasing offset.
  2898 // The first one is at in(RawStores), the last at in(req()-1).
  2899 // Unlike most memory operations, they are not linked in a chain,
  2900 // but are displayed in parallel as users of the rawmem output of
  2901 // the allocation.
  2902 //
  2903 // (See comments in InitializeNode::capture_store, which continue
  2904 // the example given above.)
  2905 //
  2906 // When the associated Allocate is macro-expanded, the InitializeNode
  2907 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2908 // may also be created at that point to represent any required zeroing.
  2909 // The InitializeNode is then marked 'complete', prohibiting further
  2910 // capturing of nearby memory operations.
  2911 //
  2912 // During macro-expansion, all captured initializations which store
  2913 // constant values of 32 bits or smaller are coalesced (if advantageous)
  2914 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2915 // initialized in fewer memory operations.  Memory words which are
  2916 // covered by neither tiles nor non-constant stores are pre-zeroed
  2917 // by explicit stores of zero.  (The code shape happens to do all
  2918 // zeroing first, then all other stores, with both sequences occurring
  2919 // in order of ascending offsets.)
  2920 //
  2921 // Alternatively, code may be inserted between an AllocateNode and its
  2922 // InitializeNode, to perform arbitrary initialization of the new object.
  2923 // E.g., the object copying intrinsics insert complex data transfers here.
  2924 // The initialization must then be marked as 'complete' disable the
  2925 // built-in zeroing semantics and the collection of initializing stores.
  2926 //
  2927 // While an InitializeNode is incomplete, reads from the memory state
  2928 // produced by it are optimizable if they match the control edge and
  2929 // new oop address associated with the allocation/initialization.
  2930 // They return a stored value (if the offset matches) or else zero.
  2931 // A write to the memory state, if it matches control and address,
  2932 // and if it is to a constant offset, may be 'captured' by the
  2933 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2934 // inside the initialization, to the raw oop produced by the allocation.
  2935 // Operations on addresses which are provably distinct (e.g., to
  2936 // other AllocateNodes) are allowed to bypass the initialization.
  2937 //
  2938 // The effect of all this is to consolidate object initialization
  2939 // (both arrays and non-arrays, both piecewise and bulk) into a
  2940 // single location, where it can be optimized as a unit.
  2941 //
  2942 // Only stores with an offset less than TrackedInitializationLimit words
  2943 // will be considered for capture by an InitializeNode.  This puts a
  2944 // reasonable limit on the complexity of optimized initializations.
  2946 //---------------------------InitializeNode------------------------------------
  2947 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  2948   : _is_complete(Incomplete), _does_not_escape(false),
  2949     MemBarNode(C, adr_type, rawoop)
  2951   init_class_id(Class_Initialize);
  2953   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  2954   assert(in(RawAddress) == rawoop, "proper init");
  2955   // Note:  allocation() can be NULL, for secondary initialization barriers
  2958 // Since this node is not matched, it will be processed by the
  2959 // register allocator.  Declare that there are no constraints
  2960 // on the allocation of the RawAddress edge.
  2961 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  2962   // This edge should be set to top, by the set_complete.  But be conservative.
  2963   if (idx == InitializeNode::RawAddress)
  2964     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  2965   return RegMask::Empty;
  2968 Node* InitializeNode::memory(uint alias_idx) {
  2969   Node* mem = in(Memory);
  2970   if (mem->is_MergeMem()) {
  2971     return mem->as_MergeMem()->memory_at(alias_idx);
  2972   } else {
  2973     // incoming raw memory is not split
  2974     return mem;
  2978 bool InitializeNode::is_non_zero() {
  2979   if (is_complete())  return false;
  2980   remove_extra_zeroes();
  2981   return (req() > RawStores);
  2984 void InitializeNode::set_complete(PhaseGVN* phase) {
  2985   assert(!is_complete(), "caller responsibility");
  2986   _is_complete = Complete;
  2988   // After this node is complete, it contains a bunch of
  2989   // raw-memory initializations.  There is no need for
  2990   // it to have anything to do with non-raw memory effects.
  2991   // Therefore, tell all non-raw users to re-optimize themselves,
  2992   // after skipping the memory effects of this initialization.
  2993   PhaseIterGVN* igvn = phase->is_IterGVN();
  2994   if (igvn)  igvn->add_users_to_worklist(this);
  2997 // convenience function
  2998 // return false if the init contains any stores already
  2999 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  3000   InitializeNode* init = initialization();
  3001   if (init == NULL || init->is_complete())  return false;
  3002   init->remove_extra_zeroes();
  3003   // for now, if this allocation has already collected any inits, bail:
  3004   if (init->is_non_zero())  return false;
  3005   init->set_complete(phase);
  3006   return true;
  3009 void InitializeNode::remove_extra_zeroes() {
  3010   if (req() == RawStores)  return;
  3011   Node* zmem = zero_memory();
  3012   uint fill = RawStores;
  3013   for (uint i = fill; i < req(); i++) {
  3014     Node* n = in(i);
  3015     if (n->is_top() || n == zmem)  continue;  // skip
  3016     if (fill < i)  set_req(fill, n);          // compact
  3017     ++fill;
  3019   // delete any empty spaces created:
  3020   while (fill < req()) {
  3021     del_req(fill);
  3025 // Helper for remembering which stores go with which offsets.
  3026 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  3027   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  3028   intptr_t offset = -1;
  3029   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  3030                                                phase, offset);
  3031   if (base == NULL)     return -1;  // something is dead,
  3032   if (offset < 0)       return -1;  //        dead, dead
  3033   return offset;
  3036 // Helper for proving that an initialization expression is
  3037 // "simple enough" to be folded into an object initialization.
  3038 // Attempts to prove that a store's initial value 'n' can be captured
  3039 // within the initialization without creating a vicious cycle, such as:
  3040 //     { Foo p = new Foo(); p.next = p; }
  3041 // True for constants and parameters and small combinations thereof.
  3042 bool InitializeNode::detect_init_independence(Node* n,
  3043                                               bool st_is_pinned,
  3044                                               int& count) {
  3045   if (n == NULL)      return true;   // (can this really happen?)
  3046   if (n->is_Proj())   n = n->in(0);
  3047   if (n == this)      return false;  // found a cycle
  3048   if (n->is_Con())    return true;
  3049   if (n->is_Start())  return true;   // params, etc., are OK
  3050   if (n->is_Root())   return true;   // even better
  3052   Node* ctl = n->in(0);
  3053   if (ctl != NULL && !ctl->is_top()) {
  3054     if (ctl->is_Proj())  ctl = ctl->in(0);
  3055     if (ctl == this)  return false;
  3057     // If we already know that the enclosing memory op is pinned right after
  3058     // the init, then any control flow that the store has picked up
  3059     // must have preceded the init, or else be equal to the init.
  3060     // Even after loop optimizations (which might change control edges)
  3061     // a store is never pinned *before* the availability of its inputs.
  3062     if (!MemNode::all_controls_dominate(n, this))
  3063       return false;                  // failed to prove a good control
  3067   // Check data edges for possible dependencies on 'this'.
  3068   if ((count += 1) > 20)  return false;  // complexity limit
  3069   for (uint i = 1; i < n->req(); i++) {
  3070     Node* m = n->in(i);
  3071     if (m == NULL || m == n || m->is_top())  continue;
  3072     uint first_i = n->find_edge(m);
  3073     if (i != first_i)  continue;  // process duplicate edge just once
  3074     if (!detect_init_independence(m, st_is_pinned, count)) {
  3075       return false;
  3079   return true;
  3082 // Here are all the checks a Store must pass before it can be moved into
  3083 // an initialization.  Returns zero if a check fails.
  3084 // On success, returns the (constant) offset to which the store applies,
  3085 // within the initialized memory.
  3086 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  3087   const int FAIL = 0;
  3088   if (st->req() != MemNode::ValueIn + 1)
  3089     return FAIL;                // an inscrutable StoreNode (card mark?)
  3090   Node* ctl = st->in(MemNode::Control);
  3091   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  3092     return FAIL;                // must be unconditional after the initialization
  3093   Node* mem = st->in(MemNode::Memory);
  3094   if (!(mem->is_Proj() && mem->in(0) == this))
  3095     return FAIL;                // must not be preceded by other stores
  3096   Node* adr = st->in(MemNode::Address);
  3097   intptr_t offset;
  3098   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  3099   if (alloc == NULL)
  3100     return FAIL;                // inscrutable address
  3101   if (alloc != allocation())
  3102     return FAIL;                // wrong allocation!  (store needs to float up)
  3103   Node* val = st->in(MemNode::ValueIn);
  3104   int complexity_count = 0;
  3105   if (!detect_init_independence(val, true, complexity_count))
  3106     return FAIL;                // stored value must be 'simple enough'
  3108   return offset;                // success
  3111 // Find the captured store in(i) which corresponds to the range
  3112 // [start..start+size) in the initialized object.
  3113 // If there is one, return its index i.  If there isn't, return the
  3114 // negative of the index where it should be inserted.
  3115 // Return 0 if the queried range overlaps an initialization boundary
  3116 // or if dead code is encountered.
  3117 // If size_in_bytes is zero, do not bother with overlap checks.
  3118 int InitializeNode::captured_store_insertion_point(intptr_t start,
  3119                                                    int size_in_bytes,
  3120                                                    PhaseTransform* phase) {
  3121   const int FAIL = 0, MAX_STORE = BytesPerLong;
  3123   if (is_complete())
  3124     return FAIL;                // arraycopy got here first; punt
  3126   assert(allocation() != NULL, "must be present");
  3128   // no negatives, no header fields:
  3129   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  3131   // after a certain size, we bail out on tracking all the stores:
  3132   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3133   if (start >= ti_limit)  return FAIL;
  3135   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  3136     if (i >= limit)  return -(int)i; // not found; here is where to put it
  3138     Node*    st     = in(i);
  3139     intptr_t st_off = get_store_offset(st, phase);
  3140     if (st_off < 0) {
  3141       if (st != zero_memory()) {
  3142         return FAIL;            // bail out if there is dead garbage
  3144     } else if (st_off > start) {
  3145       // ...we are done, since stores are ordered
  3146       if (st_off < start + size_in_bytes) {
  3147         return FAIL;            // the next store overlaps
  3149       return -(int)i;           // not found; here is where to put it
  3150     } else if (st_off < start) {
  3151       if (size_in_bytes != 0 &&
  3152           start < st_off + MAX_STORE &&
  3153           start < st_off + st->as_Store()->memory_size()) {
  3154         return FAIL;            // the previous store overlaps
  3156     } else {
  3157       if (size_in_bytes != 0 &&
  3158           st->as_Store()->memory_size() != size_in_bytes) {
  3159         return FAIL;            // mismatched store size
  3161       return i;
  3164     ++i;
  3168 // Look for a captured store which initializes at the offset 'start'
  3169 // with the given size.  If there is no such store, and no other
  3170 // initialization interferes, then return zero_memory (the memory
  3171 // projection of the AllocateNode).
  3172 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  3173                                           PhaseTransform* phase) {
  3174   assert(stores_are_sane(phase), "");
  3175   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3176   if (i == 0) {
  3177     return NULL;                // something is dead
  3178   } else if (i < 0) {
  3179     return zero_memory();       // just primordial zero bits here
  3180   } else {
  3181     Node* st = in(i);           // here is the store at this position
  3182     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  3183     return st;
  3187 // Create, as a raw pointer, an address within my new object at 'offset'.
  3188 Node* InitializeNode::make_raw_address(intptr_t offset,
  3189                                        PhaseTransform* phase) {
  3190   Node* addr = in(RawAddress);
  3191   if (offset != 0) {
  3192     Compile* C = phase->C;
  3193     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  3194                                                  phase->MakeConX(offset)) );
  3196   return addr;
  3199 // Clone the given store, converting it into a raw store
  3200 // initializing a field or element of my new object.
  3201 // Caller is responsible for retiring the original store,
  3202 // with subsume_node or the like.
  3203 //
  3204 // From the example above InitializeNode::InitializeNode,
  3205 // here are the old stores to be captured:
  3206 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  3207 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  3208 //
  3209 // Here is the changed code; note the extra edges on init:
  3210 //   alloc = (Allocate ...)
  3211 //   rawoop = alloc.RawAddress
  3212 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  3213 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  3214 //   init = (Initialize alloc.Control alloc.Memory rawoop
  3215 //                      rawstore1 rawstore2)
  3216 //
  3217 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  3218                                     PhaseTransform* phase) {
  3219   assert(stores_are_sane(phase), "");
  3221   if (start < 0)  return NULL;
  3222   assert(can_capture_store(st, phase) == start, "sanity");
  3224   Compile* C = phase->C;
  3225   int size_in_bytes = st->memory_size();
  3226   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3227   if (i == 0)  return NULL;     // bail out
  3228   Node* prev_mem = NULL;        // raw memory for the captured store
  3229   if (i > 0) {
  3230     prev_mem = in(i);           // there is a pre-existing store under this one
  3231     set_req(i, C->top());       // temporarily disconnect it
  3232     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  3233   } else {
  3234     i = -i;                     // no pre-existing store
  3235     prev_mem = zero_memory();   // a slice of the newly allocated object
  3236     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  3237       set_req(--i, C->top());   // reuse this edge; it has been folded away
  3238     else
  3239       ins_req(i, C->top());     // build a new edge
  3241   Node* new_st = st->clone();
  3242   new_st->set_req(MemNode::Control, in(Control));
  3243   new_st->set_req(MemNode::Memory,  prev_mem);
  3244   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  3245   new_st = phase->transform(new_st);
  3247   // At this point, new_st might have swallowed a pre-existing store
  3248   // at the same offset, or perhaps new_st might have disappeared,
  3249   // if it redundantly stored the same value (or zero to fresh memory).
  3251   // In any case, wire it in:
  3252   set_req(i, new_st);
  3254   // The caller may now kill the old guy.
  3255   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  3256   assert(check_st == new_st || check_st == NULL, "must be findable");
  3257   assert(!is_complete(), "");
  3258   return new_st;
  3261 static bool store_constant(jlong* tiles, int num_tiles,
  3262                            intptr_t st_off, int st_size,
  3263                            jlong con) {
  3264   if ((st_off & (st_size-1)) != 0)
  3265     return false;               // strange store offset (assume size==2**N)
  3266   address addr = (address)tiles + st_off;
  3267   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  3268   switch (st_size) {
  3269   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  3270   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  3271   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  3272   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  3273   default: return false;        // strange store size (detect size!=2**N here)
  3275   return true;                  // return success to caller
  3278 // Coalesce subword constants into int constants and possibly
  3279 // into long constants.  The goal, if the CPU permits,
  3280 // is to initialize the object with a small number of 64-bit tiles.
  3281 // Also, convert floating-point constants to bit patterns.
  3282 // Non-constants are not relevant to this pass.
  3283 //
  3284 // In terms of the running example on InitializeNode::InitializeNode
  3285 // and InitializeNode::capture_store, here is the transformation
  3286 // of rawstore1 and rawstore2 into rawstore12:
  3287 //   alloc = (Allocate ...)
  3288 //   rawoop = alloc.RawAddress
  3289 //   tile12 = 0x00010002
  3290 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  3291 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  3292 //
  3293 void
  3294 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  3295                                         Node* size_in_bytes,
  3296                                         PhaseGVN* phase) {
  3297   Compile* C = phase->C;
  3299   assert(stores_are_sane(phase), "");
  3300   // Note:  After this pass, they are not completely sane,
  3301   // since there may be some overlaps.
  3303   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  3305   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3306   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  3307   size_limit = MIN2(size_limit, ti_limit);
  3308   size_limit = align_size_up(size_limit, BytesPerLong);
  3309   int num_tiles = size_limit / BytesPerLong;
  3311   // allocate space for the tile map:
  3312   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  3313   jlong  tiles_buf[small_len];
  3314   Node*  nodes_buf[small_len];
  3315   jlong  inits_buf[small_len];
  3316   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  3317                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3318   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  3319                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  3320   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  3321                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3322   // tiles: exact bitwise model of all primitive constants
  3323   // nodes: last constant-storing node subsumed into the tiles model
  3324   // inits: which bytes (in each tile) are touched by any initializations
  3326   //// Pass A: Fill in the tile model with any relevant stores.
  3328   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  3329   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  3330   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  3331   Node* zmem = zero_memory(); // initially zero memory state
  3332   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3333     Node* st = in(i);
  3334     intptr_t st_off = get_store_offset(st, phase);
  3336     // Figure out the store's offset and constant value:
  3337     if (st_off < header_size)             continue; //skip (ignore header)
  3338     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  3339     int st_size = st->as_Store()->memory_size();
  3340     if (st_off + st_size > size_limit)    break;
  3342     // Record which bytes are touched, whether by constant or not.
  3343     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  3344       continue;                 // skip (strange store size)
  3346     const Type* val = phase->type(st->in(MemNode::ValueIn));
  3347     if (!val->singleton())                continue; //skip (non-con store)
  3348     BasicType type = val->basic_type();
  3350     jlong con = 0;
  3351     switch (type) {
  3352     case T_INT:    con = val->is_int()->get_con();  break;
  3353     case T_LONG:   con = val->is_long()->get_con(); break;
  3354     case T_FLOAT:  con = jint_cast(val->getf());    break;
  3355     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  3356     default:                              continue; //skip (odd store type)
  3359     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  3360         st->Opcode() == Op_StoreL) {
  3361       continue;                 // This StoreL is already optimal.
  3364     // Store down the constant.
  3365     store_constant(tiles, num_tiles, st_off, st_size, con);
  3367     intptr_t j = st_off >> LogBytesPerLong;
  3369     if (type == T_INT && st_size == BytesPerInt
  3370         && (st_off & BytesPerInt) == BytesPerInt) {
  3371       jlong lcon = tiles[j];
  3372       if (!Matcher::isSimpleConstant64(lcon) &&
  3373           st->Opcode() == Op_StoreI) {
  3374         // This StoreI is already optimal by itself.
  3375         jint* intcon = (jint*) &tiles[j];
  3376         intcon[1] = 0;  // undo the store_constant()
  3378         // If the previous store is also optimal by itself, back up and
  3379         // undo the action of the previous loop iteration... if we can.
  3380         // But if we can't, just let the previous half take care of itself.
  3381         st = nodes[j];
  3382         st_off -= BytesPerInt;
  3383         con = intcon[0];
  3384         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  3385           assert(st_off >= header_size, "still ignoring header");
  3386           assert(get_store_offset(st, phase) == st_off, "must be");
  3387           assert(in(i-1) == zmem, "must be");
  3388           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  3389           assert(con == tcon->is_int()->get_con(), "must be");
  3390           // Undo the effects of the previous loop trip, which swallowed st:
  3391           intcon[0] = 0;        // undo store_constant()
  3392           set_req(i-1, st);     // undo set_req(i, zmem)
  3393           nodes[j] = NULL;      // undo nodes[j] = st
  3394           --old_subword;        // undo ++old_subword
  3396         continue;               // This StoreI is already optimal.
  3400     // This store is not needed.
  3401     set_req(i, zmem);
  3402     nodes[j] = st;              // record for the moment
  3403     if (st_size < BytesPerLong) // something has changed
  3404           ++old_subword;        // includes int/float, but who's counting...
  3405     else  ++old_long;
  3408   if ((old_subword + old_long) == 0)
  3409     return;                     // nothing more to do
  3411   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  3412   // Be sure to insert them before overlapping non-constant stores.
  3413   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  3414   for (int j = 0; j < num_tiles; j++) {
  3415     jlong con  = tiles[j];
  3416     jlong init = inits[j];
  3417     if (con == 0)  continue;
  3418     jint con0,  con1;           // split the constant, address-wise
  3419     jint init0, init1;          // split the init map, address-wise
  3420     { union { jlong con; jint intcon[2]; } u;
  3421       u.con = con;
  3422       con0  = u.intcon[0];
  3423       con1  = u.intcon[1];
  3424       u.con = init;
  3425       init0 = u.intcon[0];
  3426       init1 = u.intcon[1];
  3429     Node* old = nodes[j];
  3430     assert(old != NULL, "need the prior store");
  3431     intptr_t offset = (j * BytesPerLong);
  3433     bool split = !Matcher::isSimpleConstant64(con);
  3435     if (offset < header_size) {
  3436       assert(offset + BytesPerInt >= header_size, "second int counts");
  3437       assert(*(jint*)&tiles[j] == 0, "junk in header");
  3438       split = true;             // only the second word counts
  3439       // Example:  int a[] = { 42 ... }
  3440     } else if (con0 == 0 && init0 == -1) {
  3441       split = true;             // first word is covered by full inits
  3442       // Example:  int a[] = { ... foo(), 42 ... }
  3443     } else if (con1 == 0 && init1 == -1) {
  3444       split = true;             // second word is covered by full inits
  3445       // Example:  int a[] = { ... 42, foo() ... }
  3448     // Here's a case where init0 is neither 0 nor -1:
  3449     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  3450     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  3451     // In this case the tile is not split; it is (jlong)42.
  3452     // The big tile is stored down, and then the foo() value is inserted.
  3453     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  3455     Node* ctl = old->in(MemNode::Control);
  3456     Node* adr = make_raw_address(offset, phase);
  3457     const TypePtr* atp = TypeRawPtr::BOTTOM;
  3459     // One or two coalesced stores to plop down.
  3460     Node*    st[2];
  3461     intptr_t off[2];
  3462     int  nst = 0;
  3463     if (!split) {
  3464       ++new_long;
  3465       off[nst] = offset;
  3466       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3467                                   phase->longcon(con), T_LONG);
  3468     } else {
  3469       // Omit either if it is a zero.
  3470       if (con0 != 0) {
  3471         ++new_int;
  3472         off[nst]  = offset;
  3473         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3474                                     phase->intcon(con0), T_INT);
  3476       if (con1 != 0) {
  3477         ++new_int;
  3478         offset += BytesPerInt;
  3479         adr = make_raw_address(offset, phase);
  3480         off[nst]  = offset;
  3481         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3482                                     phase->intcon(con1), T_INT);
  3486     // Insert second store first, then the first before the second.
  3487     // Insert each one just before any overlapping non-constant stores.
  3488     while (nst > 0) {
  3489       Node* st1 = st[--nst];
  3490       C->copy_node_notes_to(st1, old);
  3491       st1 = phase->transform(st1);
  3492       offset = off[nst];
  3493       assert(offset >= header_size, "do not smash header");
  3494       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  3495       guarantee(ins_idx != 0, "must re-insert constant store");
  3496       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  3497       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  3498         set_req(--ins_idx, st1);
  3499       else
  3500         ins_req(ins_idx, st1);
  3504   if (PrintCompilation && WizardMode)
  3505     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  3506                   old_subword, old_long, new_int, new_long);
  3507   if (C->log() != NULL)
  3508     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  3509                    old_subword, old_long, new_int, new_long);
  3511   // Clean up any remaining occurrences of zmem:
  3512   remove_extra_zeroes();
  3515 // Explore forward from in(start) to find the first fully initialized
  3516 // word, and return its offset.  Skip groups of subword stores which
  3517 // together initialize full words.  If in(start) is itself part of a
  3518 // fully initialized word, return the offset of in(start).  If there
  3519 // are no following full-word stores, or if something is fishy, return
  3520 // a negative value.
  3521 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  3522   int       int_map = 0;
  3523   intptr_t  int_map_off = 0;
  3524   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  3526   for (uint i = start, limit = req(); i < limit; i++) {
  3527     Node* st = in(i);
  3529     intptr_t st_off = get_store_offset(st, phase);
  3530     if (st_off < 0)  break;  // return conservative answer
  3532     int st_size = st->as_Store()->memory_size();
  3533     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  3534       return st_off;            // we found a complete word init
  3537     // update the map:
  3539     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  3540     if (this_int_off != int_map_off) {
  3541       // reset the map:
  3542       int_map = 0;
  3543       int_map_off = this_int_off;
  3546     int subword_off = st_off - this_int_off;
  3547     int_map |= right_n_bits(st_size) << subword_off;
  3548     if ((int_map & FULL_MAP) == FULL_MAP) {
  3549       return this_int_off;      // we found a complete word init
  3552     // Did this store hit or cross the word boundary?
  3553     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  3554     if (next_int_off == this_int_off + BytesPerInt) {
  3555       // We passed the current int, without fully initializing it.
  3556       int_map_off = next_int_off;
  3557       int_map >>= BytesPerInt;
  3558     } else if (next_int_off > this_int_off + BytesPerInt) {
  3559       // We passed the current and next int.
  3560       return this_int_off + BytesPerInt;
  3564   return -1;
  3568 // Called when the associated AllocateNode is expanded into CFG.
  3569 // At this point, we may perform additional optimizations.
  3570 // Linearize the stores by ascending offset, to make memory
  3571 // activity as coherent as possible.
  3572 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3573                                       intptr_t header_size,
  3574                                       Node* size_in_bytes,
  3575                                       PhaseGVN* phase) {
  3576   assert(!is_complete(), "not already complete");
  3577   assert(stores_are_sane(phase), "");
  3578   assert(allocation() != NULL, "must be present");
  3580   remove_extra_zeroes();
  3582   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3583     // reduce instruction count for common initialization patterns
  3584     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3586   Node* zmem = zero_memory();   // initially zero memory state
  3587   Node* inits = zmem;           // accumulating a linearized chain of inits
  3588   #ifdef ASSERT
  3589   intptr_t first_offset = allocation()->minimum_header_size();
  3590   intptr_t last_init_off = first_offset;  // previous init offset
  3591   intptr_t last_init_end = first_offset;  // previous init offset+size
  3592   intptr_t last_tile_end = first_offset;  // previous tile offset+size
  3593   #endif
  3594   intptr_t zeroes_done = header_size;
  3596   bool do_zeroing = true;       // we might give up if inits are very sparse
  3597   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3599   if (ZeroTLAB)  do_zeroing = false;
  3600   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3602   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3603     Node* st = in(i);
  3604     intptr_t st_off = get_store_offset(st, phase);
  3605     if (st_off < 0)
  3606       break;                    // unknown junk in the inits
  3607     if (st->in(MemNode::Memory) != zmem)
  3608       break;                    // complicated store chains somehow in list
  3610     int st_size = st->as_Store()->memory_size();
  3611     intptr_t next_init_off = st_off + st_size;
  3613     if (do_zeroing && zeroes_done < next_init_off) {
  3614       // See if this store needs a zero before it or under it.
  3615       intptr_t zeroes_needed = st_off;
  3617       if (st_size < BytesPerInt) {
  3618         // Look for subword stores which only partially initialize words.
  3619         // If we find some, we must lay down some word-level zeroes first,
  3620         // underneath the subword stores.
  3621         //
  3622         // Examples:
  3623         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3624         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3625         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3626         //
  3627         // Note:  coalesce_subword_stores may have already done this,
  3628         // if it was prompted by constant non-zero subword initializers.
  3629         // But this case can still arise with non-constant stores.
  3631         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3633         // In the examples above:
  3634         //   in(i)          p   q   r   s     x   y     z
  3635         //   st_off        12  13  14  15    12  13    14
  3636         //   st_size        1   1   1   1     1   1     1
  3637         //   next_full_s.  12  16  16  16    16  16    16
  3638         //   z's_done      12  16  16  16    12  16    12
  3639         //   z's_needed    12  16  16  16    16  16    16
  3640         //   zsize          0   0   0   0     4   0     4
  3641         if (next_full_store < 0) {
  3642           // Conservative tack:  Zero to end of current word.
  3643           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3644         } else {
  3645           // Zero to beginning of next fully initialized word.
  3646           // Or, don't zero at all, if we are already in that word.
  3647           assert(next_full_store >= zeroes_needed, "must go forward");
  3648           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3649           zeroes_needed = next_full_store;
  3653       if (zeroes_needed > zeroes_done) {
  3654         intptr_t zsize = zeroes_needed - zeroes_done;
  3655         // Do some incremental zeroing on rawmem, in parallel with inits.
  3656         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3657         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3658                                               zeroes_done, zeroes_needed,
  3659                                               phase);
  3660         zeroes_done = zeroes_needed;
  3661         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3662           do_zeroing = false;   // leave the hole, next time
  3666     // Collect the store and move on:
  3667     st->set_req(MemNode::Memory, inits);
  3668     inits = st;                 // put it on the linearized chain
  3669     set_req(i, zmem);           // unhook from previous position
  3671     if (zeroes_done == st_off)
  3672       zeroes_done = next_init_off;
  3674     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3676     #ifdef ASSERT
  3677     // Various order invariants.  Weaker than stores_are_sane because
  3678     // a large constant tile can be filled in by smaller non-constant stores.
  3679     assert(st_off >= last_init_off, "inits do not reverse");
  3680     last_init_off = st_off;
  3681     const Type* val = NULL;
  3682     if (st_size >= BytesPerInt &&
  3683         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3684         (int)val->basic_type() < (int)T_OBJECT) {
  3685       assert(st_off >= last_tile_end, "tiles do not overlap");
  3686       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3687       last_tile_end = MAX2(last_tile_end, next_init_off);
  3688     } else {
  3689       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  3690       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  3691       assert(st_off      >= last_init_end, "inits do not overlap");
  3692       last_init_end = next_init_off;  // it's a non-tile
  3694     #endif //ASSERT
  3697   remove_extra_zeroes();        // clear out all the zmems left over
  3698   add_req(inits);
  3700   if (!ZeroTLAB) {
  3701     // If anything remains to be zeroed, zero it all now.
  3702     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3703     // if it is the last unused 4 bytes of an instance, forget about it
  3704     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  3705     if (zeroes_done + BytesPerLong >= size_limit) {
  3706       assert(allocation() != NULL, "");
  3707       if (allocation()->Opcode() == Op_Allocate) {
  3708         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  3709         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  3710         if (zeroes_done == k->layout_helper())
  3711           zeroes_done = size_limit;
  3714     if (zeroes_done < size_limit) {
  3715       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3716                                             zeroes_done, size_in_bytes, phase);
  3720   set_complete(phase);
  3721   return rawmem;
  3725 #ifdef ASSERT
  3726 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  3727   if (is_complete())
  3728     return true;                // stores could be anything at this point
  3729   assert(allocation() != NULL, "must be present");
  3730   intptr_t last_off = allocation()->minimum_header_size();
  3731   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  3732     Node* st = in(i);
  3733     intptr_t st_off = get_store_offset(st, phase);
  3734     if (st_off < 0)  continue;  // ignore dead garbage
  3735     if (last_off > st_off) {
  3736       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  3737       this->dump(2);
  3738       assert(false, "ascending store offsets");
  3739       return false;
  3741     last_off = st_off + st->as_Store()->memory_size();
  3743   return true;
  3745 #endif //ASSERT
  3750 //============================MergeMemNode=====================================
  3751 //
  3752 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  3753 // contributing store or call operations.  Each contributor provides the memory
  3754 // state for a particular "alias type" (see Compile::alias_type).  For example,
  3755 // if a MergeMem has an input X for alias category #6, then any memory reference
  3756 // to alias category #6 may use X as its memory state input, as an exact equivalent
  3757 // to using the MergeMem as a whole.
  3758 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  3759 //
  3760 // (Here, the <N> notation gives the index of the relevant adr_type.)
  3761 //
  3762 // In one special case (and more cases in the future), alias categories overlap.
  3763 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  3764 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  3765 // it is exactly equivalent to that state W:
  3766 //   MergeMem(<Bot>: W) <==> W
  3767 //
  3768 // Usually, the merge has more than one input.  In that case, where inputs
  3769 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  3770 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  3771 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  3772 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  3773 //
  3774 // A merge can take a "wide" memory state as one of its narrow inputs.
  3775 // This simply means that the merge observes out only the relevant parts of
  3776 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  3777 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  3778 //
  3779 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  3780 // and that memory slices "leak through":
  3781 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  3782 //
  3783 // But, in such a cascade, repeated memory slices can "block the leak":
  3784 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  3785 //
  3786 // In the last example, Y is not part of the combined memory state of the
  3787 // outermost MergeMem.  The system must, of course, prevent unschedulable
  3788 // memory states from arising, so you can be sure that the state Y is somehow
  3789 // a precursor to state Y'.
  3790 //
  3791 //
  3792 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  3793 // of each MergeMemNode array are exactly the numerical alias indexes, including
  3794 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  3795 // Compile::alias_type (and kin) produce and manage these indexes.
  3796 //
  3797 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  3798 // (Note that this provides quick access to the top node inside MergeMem methods,
  3799 // without the need to reach out via TLS to Compile::current.)
  3800 //
  3801 // As a consequence of what was just described, a MergeMem that represents a full
  3802 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  3803 // containing all alias categories.
  3804 //
  3805 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  3806 //
  3807 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  3808 // a memory state for the alias type <N>, or else the top node, meaning that
  3809 // there is no particular input for that alias type.  Note that the length of
  3810 // a MergeMem is variable, and may be extended at any time to accommodate new
  3811 // memory states at larger alias indexes.  When merges grow, they are of course
  3812 // filled with "top" in the unused in() positions.
  3813 //
  3814 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  3815 // (Top was chosen because it works smoothly with passes like GCM.)
  3816 //
  3817 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  3818 // the type of random VM bits like TLS references.)  Since it is always the
  3819 // first non-Bot memory slice, some low-level loops use it to initialize an
  3820 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  3821 //
  3822 //
  3823 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  3824 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  3825 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  3826 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  3827 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  3828 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  3829 //
  3830 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  3831 // really that different from the other memory inputs.  An abbreviation called
  3832 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  3833 //
  3834 //
  3835 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  3836 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  3837 // that "emerges though" the base memory will be marked as excluding the alias types
  3838 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3839 //
  3840 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  3841 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  3842 //
  3843 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  3844 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3845 // actually a disjoint union of memory states, rather than an overlay.
  3846 //
  3848 //------------------------------MergeMemNode-----------------------------------
  3849 Node* MergeMemNode::make_empty_memory() {
  3850   Node* empty_memory = (Node*) Compile::current()->top();
  3851   assert(empty_memory->is_top(), "correct sentinel identity");
  3852   return empty_memory;
  3855 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3856   init_class_id(Class_MergeMem);
  3857   // all inputs are nullified in Node::Node(int)
  3858   // set_input(0, NULL);  // no control input
  3860   // Initialize the edges uniformly to top, for starters.
  3861   Node* empty_mem = make_empty_memory();
  3862   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  3863     init_req(i,empty_mem);
  3865   assert(empty_memory() == empty_mem, "");
  3867   if( new_base != NULL && new_base->is_MergeMem() ) {
  3868     MergeMemNode* mdef = new_base->as_MergeMem();
  3869     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  3870     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  3871       mms.set_memory(mms.memory2());
  3873     assert(base_memory() == mdef->base_memory(), "");
  3874   } else {
  3875     set_base_memory(new_base);
  3879 // Make a new, untransformed MergeMem with the same base as 'mem'.
  3880 // If mem is itself a MergeMem, populate the result with the same edges.
  3881 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  3882   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  3885 //------------------------------cmp--------------------------------------------
  3886 uint MergeMemNode::hash() const { return NO_HASH; }
  3887 uint MergeMemNode::cmp( const Node &n ) const {
  3888   return (&n == this);          // Always fail except on self
  3891 //------------------------------Identity---------------------------------------
  3892 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  3893   // Identity if this merge point does not record any interesting memory
  3894   // disambiguations.
  3895   Node* base_mem = base_memory();
  3896   Node* empty_mem = empty_memory();
  3897   if (base_mem != empty_mem) {  // Memory path is not dead?
  3898     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3899       Node* mem = in(i);
  3900       if (mem != empty_mem && mem != base_mem) {
  3901         return this;            // Many memory splits; no change
  3905   return base_mem;              // No memory splits; ID on the one true input
  3908 //------------------------------Ideal------------------------------------------
  3909 // This method is invoked recursively on chains of MergeMem nodes
  3910 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3911   // Remove chain'd MergeMems
  3912   //
  3913   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  3914   // relative to the "in(Bot)".  Since we are patching both at the same time,
  3915   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  3916   // but rewrite each "in(i)" relative to the new "in(Bot)".
  3917   Node *progress = NULL;
  3920   Node* old_base = base_memory();
  3921   Node* empty_mem = empty_memory();
  3922   if (old_base == empty_mem)
  3923     return NULL; // Dead memory path.
  3925   MergeMemNode* old_mbase;
  3926   if (old_base != NULL && old_base->is_MergeMem())
  3927     old_mbase = old_base->as_MergeMem();
  3928   else
  3929     old_mbase = NULL;
  3930   Node* new_base = old_base;
  3932   // simplify stacked MergeMems in base memory
  3933   if (old_mbase)  new_base = old_mbase->base_memory();
  3935   // the base memory might contribute new slices beyond my req()
  3936   if (old_mbase)  grow_to_match(old_mbase);
  3938   // Look carefully at the base node if it is a phi.
  3939   PhiNode* phi_base;
  3940   if (new_base != NULL && new_base->is_Phi())
  3941     phi_base = new_base->as_Phi();
  3942   else
  3943     phi_base = NULL;
  3945   Node*    phi_reg = NULL;
  3946   uint     phi_len = (uint)-1;
  3947   if (phi_base != NULL && !phi_base->is_copy()) {
  3948     // do not examine phi if degraded to a copy
  3949     phi_reg = phi_base->region();
  3950     phi_len = phi_base->req();
  3951     // see if the phi is unfinished
  3952     for (uint i = 1; i < phi_len; i++) {
  3953       if (phi_base->in(i) == NULL) {
  3954         // incomplete phi; do not look at it yet!
  3955         phi_reg = NULL;
  3956         phi_len = (uint)-1;
  3957         break;
  3962   // Note:  We do not call verify_sparse on entry, because inputs
  3963   // can normalize to the base_memory via subsume_node or similar
  3964   // mechanisms.  This method repairs that damage.
  3966   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  3968   // Look at each slice.
  3969   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3970     Node* old_in = in(i);
  3971     // calculate the old memory value
  3972     Node* old_mem = old_in;
  3973     if (old_mem == empty_mem)  old_mem = old_base;
  3974     assert(old_mem == memory_at(i), "");
  3976     // maybe update (reslice) the old memory value
  3978     // simplify stacked MergeMems
  3979     Node* new_mem = old_mem;
  3980     MergeMemNode* old_mmem;
  3981     if (old_mem != NULL && old_mem->is_MergeMem())
  3982       old_mmem = old_mem->as_MergeMem();
  3983     else
  3984       old_mmem = NULL;
  3985     if (old_mmem == this) {
  3986       // This can happen if loops break up and safepoints disappear.
  3987       // A merge of BotPtr (default) with a RawPtr memory derived from a
  3988       // safepoint can be rewritten to a merge of the same BotPtr with
  3989       // the BotPtr phi coming into the loop.  If that phi disappears
  3990       // also, we can end up with a self-loop of the mergemem.
  3991       // In general, if loops degenerate and memory effects disappear,
  3992       // a mergemem can be left looking at itself.  This simply means
  3993       // that the mergemem's default should be used, since there is
  3994       // no longer any apparent effect on this slice.
  3995       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  3996       //       from start.  Update the input to TOP.
  3997       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  3999     else if (old_mmem != NULL) {
  4000       new_mem = old_mmem->memory_at(i);
  4002     // else preceding memory was not a MergeMem
  4004     // replace equivalent phis (unfortunately, they do not GVN together)
  4005     if (new_mem != NULL && new_mem != new_base &&
  4006         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  4007       if (new_mem->is_Phi()) {
  4008         PhiNode* phi_mem = new_mem->as_Phi();
  4009         for (uint i = 1; i < phi_len; i++) {
  4010           if (phi_base->in(i) != phi_mem->in(i)) {
  4011             phi_mem = NULL;
  4012             break;
  4015         if (phi_mem != NULL) {
  4016           // equivalent phi nodes; revert to the def
  4017           new_mem = new_base;
  4022     // maybe store down a new value
  4023     Node* new_in = new_mem;
  4024     if (new_in == new_base)  new_in = empty_mem;
  4026     if (new_in != old_in) {
  4027       // Warning:  Do not combine this "if" with the previous "if"
  4028       // A memory slice might have be be rewritten even if it is semantically
  4029       // unchanged, if the base_memory value has changed.
  4030       set_req(i, new_in);
  4031       progress = this;          // Report progress
  4035   if (new_base != old_base) {
  4036     set_req(Compile::AliasIdxBot, new_base);
  4037     // Don't use set_base_memory(new_base), because we need to update du.
  4038     assert(base_memory() == new_base, "");
  4039     progress = this;
  4042   if( base_memory() == this ) {
  4043     // a self cycle indicates this memory path is dead
  4044     set_req(Compile::AliasIdxBot, empty_mem);
  4047   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  4048   // Recursion must occur after the self cycle check above
  4049   if( base_memory()->is_MergeMem() ) {
  4050     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  4051     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  4052     if( m != NULL && (m->is_top() ||
  4053         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  4054       // propagate rollup of dead cycle to self
  4055       set_req(Compile::AliasIdxBot, empty_mem);
  4059   if( base_memory() == empty_mem ) {
  4060     progress = this;
  4061     // Cut inputs during Parse phase only.
  4062     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  4063     if( !can_reshape ) {
  4064       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4065         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  4070   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  4071     // Check if PhiNode::Ideal's "Split phis through memory merges"
  4072     // transform should be attempted. Look for this->phi->this cycle.
  4073     uint merge_width = req();
  4074     if (merge_width > Compile::AliasIdxRaw) {
  4075       PhiNode* phi = base_memory()->as_Phi();
  4076       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  4077         if (phi->in(i) == this) {
  4078           phase->is_IterGVN()->_worklist.push(phi);
  4079           break;
  4085   assert(progress || verify_sparse(), "please, no dups of base");
  4086   return progress;
  4089 //-------------------------set_base_memory-------------------------------------
  4090 void MergeMemNode::set_base_memory(Node *new_base) {
  4091   Node* empty_mem = empty_memory();
  4092   set_req(Compile::AliasIdxBot, new_base);
  4093   assert(memory_at(req()) == new_base, "must set default memory");
  4094   // Clear out other occurrences of new_base:
  4095   if (new_base != empty_mem) {
  4096     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4097       if (in(i) == new_base)  set_req(i, empty_mem);
  4102 //------------------------------out_RegMask------------------------------------
  4103 const RegMask &MergeMemNode::out_RegMask() const {
  4104   return RegMask::Empty;
  4107 //------------------------------dump_spec--------------------------------------
  4108 #ifndef PRODUCT
  4109 void MergeMemNode::dump_spec(outputStream *st) const {
  4110   st->print(" {");
  4111   Node* base_mem = base_memory();
  4112   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  4113     Node* mem = memory_at(i);
  4114     if (mem == base_mem) { st->print(" -"); continue; }
  4115     st->print( " N%d:", mem->_idx );
  4116     Compile::current()->get_adr_type(i)->dump_on(st);
  4118   st->print(" }");
  4120 #endif // !PRODUCT
  4123 #ifdef ASSERT
  4124 static bool might_be_same(Node* a, Node* b) {
  4125   if (a == b)  return true;
  4126   if (!(a->is_Phi() || b->is_Phi()))  return false;
  4127   // phis shift around during optimization
  4128   return true;  // pretty stupid...
  4131 // verify a narrow slice (either incoming or outgoing)
  4132 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  4133   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  4134   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  4135   if (Node::in_dump())      return;  // muzzle asserts when printing
  4136   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  4137   assert(n != NULL, "");
  4138   // Elide intervening MergeMem's
  4139   while (n->is_MergeMem()) {
  4140     n = n->as_MergeMem()->memory_at(alias_idx);
  4142   Compile* C = Compile::current();
  4143   const TypePtr* n_adr_type = n->adr_type();
  4144   if (n == m->empty_memory()) {
  4145     // Implicit copy of base_memory()
  4146   } else if (n_adr_type != TypePtr::BOTTOM) {
  4147     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  4148     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  4149   } else {
  4150     // A few places like make_runtime_call "know" that VM calls are narrow,
  4151     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  4152     bool expected_wide_mem = false;
  4153     if (n == m->base_memory()) {
  4154       expected_wide_mem = true;
  4155     } else if (alias_idx == Compile::AliasIdxRaw ||
  4156                n == m->memory_at(Compile::AliasIdxRaw)) {
  4157       expected_wide_mem = true;
  4158     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  4159       // memory can "leak through" calls on channels that
  4160       // are write-once.  Allow this also.
  4161       expected_wide_mem = true;
  4163     assert(expected_wide_mem, "expected narrow slice replacement");
  4166 #else // !ASSERT
  4167 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  4168 #endif
  4171 //-----------------------------memory_at---------------------------------------
  4172 Node* MergeMemNode::memory_at(uint alias_idx) const {
  4173   assert(alias_idx >= Compile::AliasIdxRaw ||
  4174          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  4175          "must avoid base_memory and AliasIdxTop");
  4177   // Otherwise, it is a narrow slice.
  4178   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  4179   Compile *C = Compile::current();
  4180   if (is_empty_memory(n)) {
  4181     // the array is sparse; empty slots are the "top" node
  4182     n = base_memory();
  4183     assert(Node::in_dump()
  4184            || n == NULL || n->bottom_type() == Type::TOP
  4185            || n->adr_type() == NULL // address is TOP
  4186            || n->adr_type() == TypePtr::BOTTOM
  4187            || n->adr_type() == TypeRawPtr::BOTTOM
  4188            || Compile::current()->AliasLevel() == 0,
  4189            "must be a wide memory");
  4190     // AliasLevel == 0 if we are organizing the memory states manually.
  4191     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  4192   } else {
  4193     // make sure the stored slice is sane
  4194     #ifdef ASSERT
  4195     if (is_error_reported() || Node::in_dump()) {
  4196     } else if (might_be_same(n, base_memory())) {
  4197       // Give it a pass:  It is a mostly harmless repetition of the base.
  4198       // This can arise normally from node subsumption during optimization.
  4199     } else {
  4200       verify_memory_slice(this, alias_idx, n);
  4202     #endif
  4204   return n;
  4207 //---------------------------set_memory_at-------------------------------------
  4208 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  4209   verify_memory_slice(this, alias_idx, n);
  4210   Node* empty_mem = empty_memory();
  4211   if (n == base_memory())  n = empty_mem;  // collapse default
  4212   uint need_req = alias_idx+1;
  4213   if (req() < need_req) {
  4214     if (n == empty_mem)  return;  // already the default, so do not grow me
  4215     // grow the sparse array
  4216     do {
  4217       add_req(empty_mem);
  4218     } while (req() < need_req);
  4220   set_req( alias_idx, n );
  4225 //--------------------------iteration_setup------------------------------------
  4226 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  4227   if (other != NULL) {
  4228     grow_to_match(other);
  4229     // invariant:  the finite support of mm2 is within mm->req()
  4230     #ifdef ASSERT
  4231     for (uint i = req(); i < other->req(); i++) {
  4232       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  4234     #endif
  4236   // Replace spurious copies of base_memory by top.
  4237   Node* base_mem = base_memory();
  4238   if (base_mem != NULL && !base_mem->is_top()) {
  4239     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  4240       if (in(i) == base_mem)
  4241         set_req(i, empty_memory());
  4246 //---------------------------grow_to_match-------------------------------------
  4247 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  4248   Node* empty_mem = empty_memory();
  4249   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  4250   // look for the finite support of the other memory
  4251   for (uint i = other->req(); --i >= req(); ) {
  4252     if (other->in(i) != empty_mem) {
  4253       uint new_len = i+1;
  4254       while (req() < new_len)  add_req(empty_mem);
  4255       break;
  4260 //---------------------------verify_sparse-------------------------------------
  4261 #ifndef PRODUCT
  4262 bool MergeMemNode::verify_sparse() const {
  4263   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  4264   Node* base_mem = base_memory();
  4265   // The following can happen in degenerate cases, since empty==top.
  4266   if (is_empty_memory(base_mem))  return true;
  4267   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4268     assert(in(i) != NULL, "sane slice");
  4269     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  4271   return true;
  4274 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  4275   Node* n;
  4276   n = mm->in(idx);
  4277   if (mem == n)  return true;  // might be empty_memory()
  4278   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  4279   if (mem == n)  return true;
  4280   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  4281     if (mem == n)  return true;
  4282     if (n == NULL)  break;
  4284   return false;
  4286 #endif // !PRODUCT

mercurial