src/share/vm/opto/escape.cpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3657
ed4c92f54c2d
child 3969
1d7922586cf6
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/bcEscapeAnalyzer.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "opto/c2compiler.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/compile.hpp"
    34 #include "opto/escape.hpp"
    35 #include "opto/phaseX.hpp"
    36 #include "opto/rootnode.hpp"
    38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
    39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
    40   _collecting(true),
    41   _verify(false),
    42   _compile(C),
    43   _igvn(igvn),
    44   _node_map(C->comp_arena()) {
    45   // Add unknown java object.
    46   add_java_object(C->top(), PointsToNode::GlobalEscape);
    47   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
    48   // Add ConP(#NULL) and ConN(#NULL) nodes.
    49   Node* oop_null = igvn->zerocon(T_OBJECT);
    50   assert(oop_null->_idx < nodes_size(), "should be created already");
    51   add_java_object(oop_null, PointsToNode::NoEscape);
    52   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
    53   if (UseCompressedOops) {
    54     Node* noop_null = igvn->zerocon(T_NARROWOOP);
    55     assert(noop_null->_idx < nodes_size(), "should be created already");
    56     map_ideal_node(noop_null, null_obj);
    57   }
    58   _pcmp_neq = NULL; // Should be initialized
    59   _pcmp_eq  = NULL;
    60 }
    62 bool ConnectionGraph::has_candidates(Compile *C) {
    63   // EA brings benefits only when the code has allocations and/or locks which
    64   // are represented by ideal Macro nodes.
    65   int cnt = C->macro_count();
    66   for( int i=0; i < cnt; i++ ) {
    67     Node *n = C->macro_node(i);
    68     if ( n->is_Allocate() )
    69       return true;
    70     if( n->is_Lock() ) {
    71       Node* obj = n->as_Lock()->obj_node()->uncast();
    72       if( !(obj->is_Parm() || obj->is_Con()) )
    73         return true;
    74     }
    75   }
    76   return false;
    77 }
    79 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
    80   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
    81   ResourceMark rm;
    83   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
    84   // to create space for them in ConnectionGraph::_nodes[].
    85   Node* oop_null = igvn->zerocon(T_OBJECT);
    86   Node* noop_null = igvn->zerocon(T_NARROWOOP);
    87   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
    88   // Perform escape analysis
    89   if (congraph->compute_escape()) {
    90     // There are non escaping objects.
    91     C->set_congraph(congraph);
    92   }
    93   // Cleanup.
    94   if (oop_null->outcnt() == 0)
    95     igvn->hash_delete(oop_null);
    96   if (noop_null->outcnt() == 0)
    97     igvn->hash_delete(noop_null);
    98 }
   100 bool ConnectionGraph::compute_escape() {
   101   Compile* C = _compile;
   102   PhaseGVN* igvn = _igvn;
   104   // Worklists used by EA.
   105   Unique_Node_List delayed_worklist;
   106   GrowableArray<Node*> alloc_worklist;
   107   GrowableArray<Node*> ptr_cmp_worklist;
   108   GrowableArray<Node*> storestore_worklist;
   109   GrowableArray<PointsToNode*>   ptnodes_worklist;
   110   GrowableArray<JavaObjectNode*> java_objects_worklist;
   111   GrowableArray<JavaObjectNode*> non_escaped_worklist;
   112   GrowableArray<FieldNode*>      oop_fields_worklist;
   113   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
   115   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
   117   // 1. Populate Connection Graph (CG) with PointsTo nodes.
   118   ideal_nodes.map(C->unique(), NULL);  // preallocate space
   119   // Initialize worklist
   120   if (C->root() != NULL) {
   121     ideal_nodes.push(C->root());
   122   }
   123   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
   124     Node* n = ideal_nodes.at(next);
   125     // Create PointsTo nodes and add them to Connection Graph. Called
   126     // only once per ideal node since ideal_nodes is Unique_Node list.
   127     add_node_to_connection_graph(n, &delayed_worklist);
   128     PointsToNode* ptn = ptnode_adr(n->_idx);
   129     if (ptn != NULL) {
   130       ptnodes_worklist.append(ptn);
   131       if (ptn->is_JavaObject()) {
   132         java_objects_worklist.append(ptn->as_JavaObject());
   133         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
   134             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
   135           // Only allocations and java static calls results are interesting.
   136           non_escaped_worklist.append(ptn->as_JavaObject());
   137         }
   138       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
   139         oop_fields_worklist.append(ptn->as_Field());
   140       }
   141     }
   142     if (n->is_MergeMem()) {
   143       // Collect all MergeMem nodes to add memory slices for
   144       // scalar replaceable objects in split_unique_types().
   145       _mergemem_worklist.append(n->as_MergeMem());
   146     } else if (OptimizePtrCompare && n->is_Cmp() &&
   147                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
   148       // Collect compare pointers nodes.
   149       ptr_cmp_worklist.append(n);
   150     } else if (n->is_MemBarStoreStore()) {
   151       // Collect all MemBarStoreStore nodes so that depending on the
   152       // escape status of the associated Allocate node some of them
   153       // may be eliminated.
   154       storestore_worklist.append(n);
   155 #ifdef ASSERT
   156     } else if(n->is_AddP()) {
   157       // Collect address nodes for graph verification.
   158       addp_worklist.append(n);
   159 #endif
   160     }
   161     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   162       Node* m = n->fast_out(i);   // Get user
   163       ideal_nodes.push(m);
   164     }
   165   }
   166   if (non_escaped_worklist.length() == 0) {
   167     _collecting = false;
   168     return false; // Nothing to do.
   169   }
   170   // Add final simple edges to graph.
   171   while(delayed_worklist.size() > 0) {
   172     Node* n = delayed_worklist.pop();
   173     add_final_edges(n);
   174   }
   175   int ptnodes_length = ptnodes_worklist.length();
   177 #ifdef ASSERT
   178   if (VerifyConnectionGraph) {
   179     // Verify that no new simple edges could be created and all
   180     // local vars has edges.
   181     _verify = true;
   182     for (int next = 0; next < ptnodes_length; ++next) {
   183       PointsToNode* ptn = ptnodes_worklist.at(next);
   184       add_final_edges(ptn->ideal_node());
   185       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
   186         ptn->dump();
   187         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
   188       }
   189     }
   190     _verify = false;
   191   }
   192 #endif
   194   // 2. Finish Graph construction by propagating references to all
   195   //    java objects through graph.
   196   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
   197                                  java_objects_worklist, oop_fields_worklist)) {
   198     // All objects escaped or hit time or iterations limits.
   199     _collecting = false;
   200     return false;
   201   }
   203   // 3. Adjust scalar_replaceable state of nonescaping objects and push
   204   //    scalar replaceable allocations on alloc_worklist for processing
   205   //    in split_unique_types().
   206   int non_escaped_length = non_escaped_worklist.length();
   207   for (int next = 0; next < non_escaped_length; next++) {
   208     JavaObjectNode* ptn = non_escaped_worklist.at(next);
   209     if (ptn->escape_state() == PointsToNode::NoEscape &&
   210         ptn->scalar_replaceable()) {
   211       adjust_scalar_replaceable_state(ptn);
   212       if (ptn->scalar_replaceable()) {
   213         alloc_worklist.append(ptn->ideal_node());
   214       }
   215     }
   216   }
   218 #ifdef ASSERT
   219   if (VerifyConnectionGraph) {
   220     // Verify that graph is complete - no new edges could be added or needed.
   221     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
   222                             java_objects_worklist, addp_worklist);
   223   }
   224   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
   225   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
   226          null_obj->edge_count() == 0 &&
   227          !null_obj->arraycopy_src() &&
   228          !null_obj->arraycopy_dst(), "sanity");
   229 #endif
   231   _collecting = false;
   233   } // TracePhase t3("connectionGraph")
   235   // 4. Optimize ideal graph based on EA information.
   236   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
   237   if (has_non_escaping_obj) {
   238     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
   239   }
   241 #ifndef PRODUCT
   242   if (PrintEscapeAnalysis) {
   243     dump(ptnodes_worklist); // Dump ConnectionGraph
   244   }
   245 #endif
   247   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
   248 #ifdef ASSERT
   249   if (VerifyConnectionGraph) {
   250     int alloc_length = alloc_worklist.length();
   251     for (int next = 0; next < alloc_length; ++next) {
   252       Node* n = alloc_worklist.at(next);
   253       PointsToNode* ptn = ptnode_adr(n->_idx);
   254       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
   255     }
   256   }
   257 #endif
   259   // 5. Separate memory graph for scalar replaceable allcations.
   260   if (has_scalar_replaceable_candidates &&
   261       C->AliasLevel() >= 3 && EliminateAllocations) {
   262     // Now use the escape information to create unique types for
   263     // scalar replaceable objects.
   264     split_unique_types(alloc_worklist);
   265     if (C->failing())  return false;
   266     C->print_method("After Escape Analysis", 2);
   268 #ifdef ASSERT
   269   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
   270     tty->print("=== No allocations eliminated for ");
   271     C->method()->print_short_name();
   272     if(!EliminateAllocations) {
   273       tty->print(" since EliminateAllocations is off ===");
   274     } else if(!has_scalar_replaceable_candidates) {
   275       tty->print(" since there are no scalar replaceable candidates ===");
   276     } else if(C->AliasLevel() < 3) {
   277       tty->print(" since AliasLevel < 3 ===");
   278     }
   279     tty->cr();
   280 #endif
   281   }
   282   return has_non_escaping_obj;
   283 }
   285 // Populate Connection Graph with PointsTo nodes and create simple
   286 // connection graph edges.
   287 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   288   assert(!_verify, "this method sould not be called for verification");
   289   PhaseGVN* igvn = _igvn;
   290   uint n_idx = n->_idx;
   291   PointsToNode* n_ptn = ptnode_adr(n_idx);
   292   if (n_ptn != NULL)
   293     return; // No need to redefine PointsTo node during first iteration.
   295   if (n->is_Call()) {
   296     // Arguments to allocation and locking don't escape.
   297     if (n->is_AbstractLock()) {
   298       // Put Lock and Unlock nodes on IGVN worklist to process them during
   299       // first IGVN optimization when escape information is still available.
   300       record_for_optimizer(n);
   301     } else if (n->is_Allocate()) {
   302       add_call_node(n->as_Call());
   303       record_for_optimizer(n);
   304     } else {
   305       if (n->is_CallStaticJava()) {
   306         const char* name = n->as_CallStaticJava()->_name;
   307         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
   308           return; // Skip uncommon traps
   309       }
   310       // Don't mark as processed since call's arguments have to be processed.
   311       delayed_worklist->push(n);
   312       // Check if a call returns an object.
   313       if (n->as_Call()->returns_pointer() &&
   314           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
   315         add_call_node(n->as_Call());
   316       }
   317     }
   318     return;
   319   }
   320   // Put this check here to process call arguments since some call nodes
   321   // point to phantom_obj.
   322   if (n_ptn == phantom_obj || n_ptn == null_obj)
   323     return; // Skip predefined nodes.
   325   int opcode = n->Opcode();
   326   switch (opcode) {
   327     case Op_AddP: {
   328       Node* base = get_addp_base(n);
   329       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   330       // Field nodes are created for all field types. They are used in
   331       // adjust_scalar_replaceable_state() and split_unique_types().
   332       // Note, non-oop fields will have only base edges in Connection
   333       // Graph because such fields are not used for oop loads and stores.
   334       int offset = address_offset(n, igvn);
   335       add_field(n, PointsToNode::NoEscape, offset);
   336       if (ptn_base == NULL) {
   337         delayed_worklist->push(n); // Process it later.
   338       } else {
   339         n_ptn = ptnode_adr(n_idx);
   340         add_base(n_ptn->as_Field(), ptn_base);
   341       }
   342       break;
   343     }
   344     case Op_CastX2P: {
   345       map_ideal_node(n, phantom_obj);
   346       break;
   347     }
   348     case Op_CastPP:
   349     case Op_CheckCastPP:
   350     case Op_EncodeP:
   351     case Op_DecodeN: {
   352       add_local_var_and_edge(n, PointsToNode::NoEscape,
   353                              n->in(1), delayed_worklist);
   354       break;
   355     }
   356     case Op_CMoveP: {
   357       add_local_var(n, PointsToNode::NoEscape);
   358       // Do not add edges during first iteration because some could be
   359       // not defined yet.
   360       delayed_worklist->push(n);
   361       break;
   362     }
   363     case Op_ConP:
   364     case Op_ConN: {
   365       // assume all oop constants globally escape except for null
   366       PointsToNode::EscapeState es;
   367       if (igvn->type(n) == TypePtr::NULL_PTR ||
   368           igvn->type(n) == TypeNarrowOop::NULL_PTR) {
   369         es = PointsToNode::NoEscape;
   370       } else {
   371         es = PointsToNode::GlobalEscape;
   372       }
   373       add_java_object(n, es);
   374       break;
   375     }
   376     case Op_CreateEx: {
   377       // assume that all exception objects globally escape
   378       add_java_object(n, PointsToNode::GlobalEscape);
   379       break;
   380     }
   381     case Op_LoadKlass:
   382     case Op_LoadNKlass: {
   383       // Unknown class is loaded
   384       map_ideal_node(n, phantom_obj);
   385       break;
   386     }
   387     case Op_LoadP:
   388     case Op_LoadN:
   389     case Op_LoadPLocked: {
   390       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   391       // ThreadLocal has RawPrt type.
   392       const Type* t = igvn->type(n);
   393       if (t->make_ptr() != NULL) {
   394         Node* adr = n->in(MemNode::Address);
   395 #ifdef ASSERT
   396         if (!adr->is_AddP()) {
   397           assert(igvn->type(adr)->isa_rawptr(), "sanity");
   398         } else {
   399           assert((ptnode_adr(adr->_idx) == NULL ||
   400                   ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
   401         }
   402 #endif
   403         add_local_var_and_edge(n, PointsToNode::NoEscape,
   404                                adr, delayed_worklist);
   405       }
   406       break;
   407     }
   408     case Op_Parm: {
   409       map_ideal_node(n, phantom_obj);
   410       break;
   411     }
   412     case Op_PartialSubtypeCheck: {
   413       // Produces Null or notNull and is used in only in CmpP so
   414       // phantom_obj could be used.
   415       map_ideal_node(n, phantom_obj); // Result is unknown
   416       break;
   417     }
   418     case Op_Phi: {
   419       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   420       // ThreadLocal has RawPrt type.
   421       const Type* t = n->as_Phi()->type();
   422       if (t->make_ptr() != NULL) {
   423         add_local_var(n, PointsToNode::NoEscape);
   424         // Do not add edges during first iteration because some could be
   425         // not defined yet.
   426         delayed_worklist->push(n);
   427       }
   428       break;
   429     }
   430     case Op_Proj: {
   431       // we are only interested in the oop result projection from a call
   432       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   433           n->in(0)->as_Call()->returns_pointer()) {
   434         add_local_var_and_edge(n, PointsToNode::NoEscape,
   435                                n->in(0), delayed_worklist);
   436       }
   437       break;
   438     }
   439     case Op_Rethrow: // Exception object escapes
   440     case Op_Return: {
   441       if (n->req() > TypeFunc::Parms &&
   442           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   443         // Treat Return value as LocalVar with GlobalEscape escape state.
   444         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   445                                n->in(TypeFunc::Parms), delayed_worklist);
   446       }
   447       break;
   448     }
   449     case Op_StoreP:
   450     case Op_StoreN:
   451     case Op_StorePConditional:
   452     case Op_CompareAndSwapP:
   453     case Op_CompareAndSwapN: {
   454       Node* adr = n->in(MemNode::Address);
   455       const Type *adr_type = igvn->type(adr);
   456       adr_type = adr_type->make_ptr();
   457       if (adr_type->isa_oopptr() ||
   458           (opcode == Op_StoreP || opcode == Op_StoreN) &&
   459                         (adr_type == TypeRawPtr::NOTNULL &&
   460                          adr->in(AddPNode::Address)->is_Proj() &&
   461                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   462         delayed_worklist->push(n); // Process it later.
   463 #ifdef ASSERT
   464         assert(adr->is_AddP(), "expecting an AddP");
   465         if (adr_type == TypeRawPtr::NOTNULL) {
   466           // Verify a raw address for a store captured by Initialize node.
   467           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   468           assert(offs != Type::OffsetBot, "offset must be a constant");
   469         }
   470 #endif
   471       } else {
   472         // Ignore copy the displaced header to the BoxNode (OSR compilation).
   473         if (adr->is_BoxLock())
   474           break;
   475         // Stored value escapes in unsafe access.
   476         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   477           // Pointer stores in G1 barriers looks like unsafe access.
   478           // Ignore such stores to be able scalar replace non-escaping
   479           // allocations.
   480           if (UseG1GC && adr->is_AddP()) {
   481             Node* base = get_addp_base(adr);
   482             if (base->Opcode() == Op_LoadP &&
   483                 base->in(MemNode::Address)->is_AddP()) {
   484               adr = base->in(MemNode::Address);
   485               Node* tls = get_addp_base(adr);
   486               if (tls->Opcode() == Op_ThreadLocal) {
   487                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   488                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
   489                                      PtrQueue::byte_offset_of_buf())) {
   490                   break; // G1 pre barier previous oop value store.
   491                 }
   492                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
   493                                      PtrQueue::byte_offset_of_buf())) {
   494                   break; // G1 post barier card address store.
   495                 }
   496               }
   497             }
   498           }
   499           delayed_worklist->push(n); // Process unsafe access later.
   500           break;
   501         }
   502 #ifdef ASSERT
   503         n->dump(1);
   504         assert(false, "not unsafe or G1 barrier raw StoreP");
   505 #endif
   506       }
   507       break;
   508     }
   509     case Op_AryEq:
   510     case Op_StrComp:
   511     case Op_StrEquals:
   512     case Op_StrIndexOf: {
   513       add_local_var(n, PointsToNode::ArgEscape);
   514       delayed_worklist->push(n); // Process it later.
   515       break;
   516     }
   517     case Op_ThreadLocal: {
   518       add_java_object(n, PointsToNode::ArgEscape);
   519       break;
   520     }
   521     default:
   522       ; // Do nothing for nodes not related to EA.
   523   }
   524   return;
   525 }
   527 #ifdef ASSERT
   528 #define ELSE_FAIL(name)                               \
   529       /* Should not be called for not pointer type. */  \
   530       n->dump(1);                                       \
   531       assert(false, name);                              \
   532       break;
   533 #else
   534 #define ELSE_FAIL(name) \
   535       break;
   536 #endif
   538 // Add final simple edges to graph.
   539 void ConnectionGraph::add_final_edges(Node *n) {
   540   PointsToNode* n_ptn = ptnode_adr(n->_idx);
   541 #ifdef ASSERT
   542   if (_verify && n_ptn->is_JavaObject())
   543     return; // This method does not change graph for JavaObject.
   544 #endif
   546   if (n->is_Call()) {
   547     process_call_arguments(n->as_Call());
   548     return;
   549   }
   550   assert(n->is_Store() || n->is_LoadStore() ||
   551          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
   552          "node should be registered already");
   553   int opcode = n->Opcode();
   554   switch (opcode) {
   555     case Op_AddP: {
   556       Node* base = get_addp_base(n);
   557       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   558       assert(ptn_base != NULL, "field's base should be registered");
   559       add_base(n_ptn->as_Field(), ptn_base);
   560       break;
   561     }
   562     case Op_CastPP:
   563     case Op_CheckCastPP:
   564     case Op_EncodeP:
   565     case Op_DecodeN: {
   566       add_local_var_and_edge(n, PointsToNode::NoEscape,
   567                              n->in(1), NULL);
   568       break;
   569     }
   570     case Op_CMoveP: {
   571       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
   572         Node* in = n->in(i);
   573         if (in == NULL)
   574           continue;  // ignore NULL
   575         Node* uncast_in = in->uncast();
   576         if (uncast_in->is_top() || uncast_in == n)
   577           continue;  // ignore top or inputs which go back this node
   578         PointsToNode* ptn = ptnode_adr(in->_idx);
   579         assert(ptn != NULL, "node should be registered");
   580         add_edge(n_ptn, ptn);
   581       }
   582       break;
   583     }
   584     case Op_LoadP:
   585     case Op_LoadN:
   586     case Op_LoadPLocked: {
   587       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   588       // ThreadLocal has RawPrt type.
   589       const Type* t = _igvn->type(n);
   590       if (t->make_ptr() != NULL) {
   591         Node* adr = n->in(MemNode::Address);
   592         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   593         break;
   594       }
   595       ELSE_FAIL("Op_LoadP");
   596     }
   597     case Op_Phi: {
   598       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   599       // ThreadLocal has RawPrt type.
   600       const Type* t = n->as_Phi()->type();
   601       if (t->make_ptr() != NULL) {
   602         for (uint i = 1; i < n->req(); i++) {
   603           Node* in = n->in(i);
   604           if (in == NULL)
   605             continue;  // ignore NULL
   606           Node* uncast_in = in->uncast();
   607           if (uncast_in->is_top() || uncast_in == n)
   608             continue;  // ignore top or inputs which go back this node
   609           PointsToNode* ptn = ptnode_adr(in->_idx);
   610           assert(ptn != NULL, "node should be registered");
   611           add_edge(n_ptn, ptn);
   612         }
   613         break;
   614       }
   615       ELSE_FAIL("Op_Phi");
   616     }
   617     case Op_Proj: {
   618       // we are only interested in the oop result projection from a call
   619       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   620           n->in(0)->as_Call()->returns_pointer()) {
   621         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
   622         break;
   623       }
   624       ELSE_FAIL("Op_Proj");
   625     }
   626     case Op_Rethrow: // Exception object escapes
   627     case Op_Return: {
   628       if (n->req() > TypeFunc::Parms &&
   629           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   630         // Treat Return value as LocalVar with GlobalEscape escape state.
   631         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   632                                n->in(TypeFunc::Parms), NULL);
   633         break;
   634       }
   635       ELSE_FAIL("Op_Return");
   636     }
   637     case Op_StoreP:
   638     case Op_StoreN:
   639     case Op_StorePConditional:
   640     case Op_CompareAndSwapP:
   641     case Op_CompareAndSwapN: {
   642       Node* adr = n->in(MemNode::Address);
   643       const Type *adr_type = _igvn->type(adr);
   644       adr_type = adr_type->make_ptr();
   645       if (adr_type->isa_oopptr() ||
   646           (opcode == Op_StoreP || opcode == Op_StoreN) &&
   647                         (adr_type == TypeRawPtr::NOTNULL &&
   648                          adr->in(AddPNode::Address)->is_Proj() &&
   649                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   650         // Point Address to Value
   651         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   652         assert(adr_ptn != NULL &&
   653                adr_ptn->as_Field()->is_oop(), "node should be registered");
   654         Node *val = n->in(MemNode::ValueIn);
   655         PointsToNode* ptn = ptnode_adr(val->_idx);
   656         assert(ptn != NULL, "node should be registered");
   657         add_edge(adr_ptn, ptn);
   658         break;
   659       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   660         // Stored value escapes in unsafe access.
   661         Node *val = n->in(MemNode::ValueIn);
   662         PointsToNode* ptn = ptnode_adr(val->_idx);
   663         assert(ptn != NULL, "node should be registered");
   664         ptn->set_escape_state(PointsToNode::GlobalEscape);
   665         // Add edge to object for unsafe access with offset.
   666         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   667         assert(adr_ptn != NULL, "node should be registered");
   668         if (adr_ptn->is_Field()) {
   669           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
   670           add_edge(adr_ptn, ptn);
   671         }
   672         break;
   673       }
   674       ELSE_FAIL("Op_StoreP");
   675     }
   676     case Op_AryEq:
   677     case Op_StrComp:
   678     case Op_StrEquals:
   679     case Op_StrIndexOf: {
   680       // char[] arrays passed to string intrinsic do not escape but
   681       // they are not scalar replaceable. Adjust escape state for them.
   682       // Start from in(2) edge since in(1) is memory edge.
   683       for (uint i = 2; i < n->req(); i++) {
   684         Node* adr = n->in(i);
   685         const Type* at = _igvn->type(adr);
   686         if (!adr->is_top() && at->isa_ptr()) {
   687           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
   688                  at->isa_ptr() != NULL, "expecting a pointer");
   689           if (adr->is_AddP()) {
   690             adr = get_addp_base(adr);
   691           }
   692           PointsToNode* ptn = ptnode_adr(adr->_idx);
   693           assert(ptn != NULL, "node should be registered");
   694           add_edge(n_ptn, ptn);
   695         }
   696       }
   697       break;
   698     }
   699     default: {
   700       // This method should be called only for EA specific nodes which may
   701       // miss some edges when they were created.
   702 #ifdef ASSERT
   703       n->dump(1);
   704 #endif
   705       guarantee(false, "unknown node");
   706     }
   707   }
   708   return;
   709 }
   711 void ConnectionGraph::add_call_node(CallNode* call) {
   712   assert(call->returns_pointer(), "only for call which returns pointer");
   713   uint call_idx = call->_idx;
   714   if (call->is_Allocate()) {
   715     Node* k = call->in(AllocateNode::KlassNode);
   716     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
   717     assert(kt != NULL, "TypeKlassPtr  required.");
   718     ciKlass* cik = kt->klass();
   719     PointsToNode::EscapeState es = PointsToNode::NoEscape;
   720     bool scalar_replaceable = true;
   721     if (call->is_AllocateArray()) {
   722       if (!cik->is_array_klass()) { // StressReflectiveCode
   723         es = PointsToNode::GlobalEscape;
   724       } else {
   725         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
   726         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
   727           // Not scalar replaceable if the length is not constant or too big.
   728           scalar_replaceable = false;
   729         }
   730       }
   731     } else {  // Allocate instance
   732       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
   733          !cik->is_instance_klass() || // StressReflectiveCode
   734           cik->as_instance_klass()->has_finalizer()) {
   735         es = PointsToNode::GlobalEscape;
   736       }
   737     }
   738     add_java_object(call, es);
   739     PointsToNode* ptn = ptnode_adr(call_idx);
   740     if (!scalar_replaceable && ptn->scalar_replaceable()) {
   741       ptn->set_scalar_replaceable(false);
   742     }
   743   } else if (call->is_CallStaticJava()) {
   744     // Call nodes could be different types:
   745     //
   746     // 1. CallDynamicJavaNode (what happened during call is unknown):
   747     //
   748     //    - mapped to GlobalEscape JavaObject node if oop is returned;
   749     //
   750     //    - all oop arguments are escaping globally;
   751     //
   752     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
   753     //
   754     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
   755     //
   756     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
   757     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
   758     //      during call is returned;
   759     //    - mapped to ArgEscape LocalVar node pointed to object arguments
   760     //      which are returned and does not escape during call;
   761     //
   762     //    - oop arguments escaping status is defined by bytecode analysis;
   763     //
   764     // For a static call, we know exactly what method is being called.
   765     // Use bytecode estimator to record whether the call's return value escapes.
   766     ciMethod* meth = call->as_CallJava()->method();
   767     if (meth == NULL) {
   768       const char* name = call->as_CallStaticJava()->_name;
   769       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
   770       // Returns a newly allocated unescaped object.
   771       add_java_object(call, PointsToNode::NoEscape);
   772       ptnode_adr(call_idx)->set_scalar_replaceable(false);
   773     } else {
   774       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
   775       call_analyzer->copy_dependencies(_compile->dependencies());
   776       if (call_analyzer->is_return_allocated()) {
   777         // Returns a newly allocated unescaped object, simply
   778         // update dependency information.
   779         // Mark it as NoEscape so that objects referenced by
   780         // it's fields will be marked as NoEscape at least.
   781         add_java_object(call, PointsToNode::NoEscape);
   782         ptnode_adr(call_idx)->set_scalar_replaceable(false);
   783       } else {
   784         // Determine whether any arguments are returned.
   785         const TypeTuple* d = call->tf()->domain();
   786         bool ret_arg = false;
   787         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   788           if (d->field_at(i)->isa_ptr() != NULL &&
   789               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
   790             ret_arg = true;
   791             break;
   792           }
   793         }
   794         if (ret_arg) {
   795           add_local_var(call, PointsToNode::ArgEscape);
   796         } else {
   797           // Returns unknown object.
   798           map_ideal_node(call, phantom_obj);
   799         }
   800       }
   801     }
   802   } else {
   803     // An other type of call, assume the worst case:
   804     // returned value is unknown and globally escapes.
   805     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
   806     map_ideal_node(call, phantom_obj);
   807   }
   808 }
   810 void ConnectionGraph::process_call_arguments(CallNode *call) {
   811     bool is_arraycopy = false;
   812     switch (call->Opcode()) {
   813 #ifdef ASSERT
   814     case Op_Allocate:
   815     case Op_AllocateArray:
   816     case Op_Lock:
   817     case Op_Unlock:
   818       assert(false, "should be done already");
   819       break;
   820 #endif
   821     case Op_CallLeafNoFP:
   822       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
   823                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
   824       // fall through
   825     case Op_CallLeaf: {
   826       // Stub calls, objects do not escape but they are not scale replaceable.
   827       // Adjust escape state for outgoing arguments.
   828       const TypeTuple * d = call->tf()->domain();
   829       bool src_has_oops = false;
   830       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   831         const Type* at = d->field_at(i);
   832         Node *arg = call->in(i);
   833         const Type *aat = _igvn->type(arg);
   834         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
   835           continue;
   836         if (arg->is_AddP()) {
   837           //
   838           // The inline_native_clone() case when the arraycopy stub is called
   839           // after the allocation before Initialize and CheckCastPP nodes.
   840           // Or normal arraycopy for object arrays case.
   841           //
   842           // Set AddP's base (Allocate) as not scalar replaceable since
   843           // pointer to the base (with offset) is passed as argument.
   844           //
   845           arg = get_addp_base(arg);
   846         }
   847         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
   848         assert(arg_ptn != NULL, "should be registered");
   849         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
   850         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
   851           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
   852                  aat->isa_ptr() != NULL, "expecting an Ptr");
   853           bool arg_has_oops = aat->isa_oopptr() &&
   854                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
   855                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
   856           if (i == TypeFunc::Parms) {
   857             src_has_oops = arg_has_oops;
   858           }
   859           //
   860           // src or dst could be j.l.Object when other is basic type array:
   861           //
   862           //   arraycopy(char[],0,Object*,0,size);
   863           //   arraycopy(Object*,0,char[],0,size);
   864           //
   865           // Don't add edges in such cases.
   866           //
   867           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
   868                                        arg_has_oops && (i > TypeFunc::Parms);
   869 #ifdef ASSERT
   870           if (!(is_arraycopy ||
   871                 call->as_CallLeaf()->_name != NULL &&
   872                 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
   873                  strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
   874           ) {
   875             call->dump();
   876             assert(false, "EA: unexpected CallLeaf");
   877           }
   878 #endif
   879           // Always process arraycopy's destination object since
   880           // we need to add all possible edges to references in
   881           // source object.
   882           if (arg_esc >= PointsToNode::ArgEscape &&
   883               !arg_is_arraycopy_dest) {
   884             continue;
   885           }
   886           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
   887           if (arg_is_arraycopy_dest) {
   888             Node* src = call->in(TypeFunc::Parms);
   889             if (src->is_AddP()) {
   890               src = get_addp_base(src);
   891             }
   892             PointsToNode* src_ptn = ptnode_adr(src->_idx);
   893             assert(src_ptn != NULL, "should be registered");
   894             if (arg_ptn != src_ptn) {
   895               // Special arraycopy edge:
   896               // A destination object's field can't have the source object
   897               // as base since objects escape states are not related.
   898               // Only escape state of destination object's fields affects
   899               // escape state of fields in source object.
   900               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
   901             }
   902           }
   903         }
   904       }
   905       break;
   906     }
   907     case Op_CallStaticJava: {
   908       // For a static call, we know exactly what method is being called.
   909       // Use bytecode estimator to record the call's escape affects
   910 #ifdef ASSERT
   911       const char* name = call->as_CallStaticJava()->_name;
   912       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
   913 #endif
   914       ciMethod* meth = call->as_CallJava()->method();
   915       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
   916       // fall-through if not a Java method or no analyzer information
   917       if (call_analyzer != NULL) {
   918         PointsToNode* call_ptn = ptnode_adr(call->_idx);
   919         const TypeTuple* d = call->tf()->domain();
   920         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   921           const Type* at = d->field_at(i);
   922           int k = i - TypeFunc::Parms;
   923           Node* arg = call->in(i);
   924           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
   925           if (at->isa_ptr() != NULL &&
   926               call_analyzer->is_arg_returned(k)) {
   927             // The call returns arguments.
   928             if (call_ptn != NULL) { // Is call's result used?
   929               assert(call_ptn->is_LocalVar(), "node should be registered");
   930               assert(arg_ptn != NULL, "node should be registered");
   931               add_edge(call_ptn, arg_ptn);
   932             }
   933           }
   934           if (at->isa_oopptr() != NULL &&
   935               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
   936             if (!call_analyzer->is_arg_stack(k)) {
   937               // The argument global escapes
   938               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
   939             } else {
   940               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
   941               if (!call_analyzer->is_arg_local(k)) {
   942                 // The argument itself doesn't escape, but any fields might
   943                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
   944               }
   945             }
   946           }
   947         }
   948         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
   949           // The call returns arguments.
   950           assert(call_ptn->edge_count() > 0, "sanity");
   951           if (!call_analyzer->is_return_local()) {
   952             // Returns also unknown object.
   953             add_edge(call_ptn, phantom_obj);
   954           }
   955         }
   956         break;
   957       }
   958     }
   959     default: {
   960       // Fall-through here if not a Java method or no analyzer information
   961       // or some other type of call, assume the worst case: all arguments
   962       // globally escape.
   963       const TypeTuple* d = call->tf()->domain();
   964       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   965         const Type* at = d->field_at(i);
   966         if (at->isa_oopptr() != NULL) {
   967           Node* arg = call->in(i);
   968           if (arg->is_AddP()) {
   969             arg = get_addp_base(arg);
   970           }
   971           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
   972           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
   973         }
   974       }
   975     }
   976   }
   977 }
   980 // Finish Graph construction.
   981 bool ConnectionGraph::complete_connection_graph(
   982                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
   983                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
   984                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
   985                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
   986   // Normally only 1-3 passes needed to build Connection Graph depending
   987   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
   988   // Set limit to 20 to catch situation when something did go wrong and
   989   // bailout Escape Analysis.
   990   // Also limit build time to 30 sec (60 in debug VM).
   991 #define CG_BUILD_ITER_LIMIT 20
   992 #ifdef ASSERT
   993 #define CG_BUILD_TIME_LIMIT 60.0
   994 #else
   995 #define CG_BUILD_TIME_LIMIT 30.0
   996 #endif
   998   // Propagate GlobalEscape and ArgEscape escape states and check that
   999   // we still have non-escaping objects. The method pushs on _worklist
  1000   // Field nodes which reference phantom_object.
  1001   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1002     return false; // Nothing to do.
  1004   // Now propagate references to all JavaObject nodes.
  1005   int java_objects_length = java_objects_worklist.length();
  1006   elapsedTimer time;
  1007   int new_edges = 1;
  1008   int iterations = 0;
  1009   do {
  1010     while ((new_edges > 0) &&
  1011           (iterations++   < CG_BUILD_ITER_LIMIT) &&
  1012           (time.seconds() < CG_BUILD_TIME_LIMIT)) {
  1013       time.start();
  1014       new_edges = 0;
  1015       // Propagate references to phantom_object for nodes pushed on _worklist
  1016       // by find_non_escaped_objects() and find_field_value().
  1017       new_edges += add_java_object_edges(phantom_obj, false);
  1018       for (int next = 0; next < java_objects_length; ++next) {
  1019         JavaObjectNode* ptn = java_objects_worklist.at(next);
  1020         new_edges += add_java_object_edges(ptn, true);
  1022       if (new_edges > 0) {
  1023         // Update escape states on each iteration if graph was updated.
  1024         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1025           return false; // Nothing to do.
  1028       time.stop();
  1030     if ((iterations     < CG_BUILD_ITER_LIMIT) &&
  1031         (time.seconds() < CG_BUILD_TIME_LIMIT)) {
  1032       time.start();
  1033       // Find fields which have unknown value.
  1034       int fields_length = oop_fields_worklist.length();
  1035       for (int next = 0; next < fields_length; next++) {
  1036         FieldNode* field = oop_fields_worklist.at(next);
  1037         if (field->edge_count() == 0) {
  1038           new_edges += find_field_value(field);
  1039           // This code may added new edges to phantom_object.
  1040           // Need an other cycle to propagate references to phantom_object.
  1043       time.stop();
  1044     } else {
  1045       new_edges = 0; // Bailout
  1047   } while (new_edges > 0);
  1049   // Bailout if passed limits.
  1050   if ((iterations     >= CG_BUILD_ITER_LIMIT) ||
  1051       (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
  1052     Compile* C = _compile;
  1053     if (C->log() != NULL) {
  1054       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
  1055       C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time");
  1056       C->log()->end_elem(" limit'");
  1058     assert(false, err_msg("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
  1059            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
  1060     // Possible infinite build_connection_graph loop,
  1061     // bailout (no changes to ideal graph were made).
  1062     return false;
  1064 #ifdef ASSERT
  1065   if (Verbose && PrintEscapeAnalysis) {
  1066     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
  1067                   iterations, nodes_size(), ptnodes_worklist.length());
  1069 #endif
  1071 #undef CG_BUILD_ITER_LIMIT
  1072 #undef CG_BUILD_TIME_LIMIT
  1074   // Find fields initialized by NULL for non-escaping Allocations.
  1075   int non_escaped_length = non_escaped_worklist.length();
  1076   for (int next = 0; next < non_escaped_length; next++) {
  1077     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1078     PointsToNode::EscapeState es = ptn->escape_state();
  1079     assert(es <= PointsToNode::ArgEscape, "sanity");
  1080     if (es == PointsToNode::NoEscape) {
  1081       if (find_init_values(ptn, null_obj, _igvn) > 0) {
  1082         // Adding references to NULL object does not change escape states
  1083         // since it does not escape. Also no fields are added to NULL object.
  1084         add_java_object_edges(null_obj, false);
  1087     Node* n = ptn->ideal_node();
  1088     if (n->is_Allocate()) {
  1089       // The object allocated by this Allocate node will never be
  1090       // seen by an other thread. Mark it so that when it is
  1091       // expanded no MemBarStoreStore is added.
  1092       InitializeNode* ini = n->as_Allocate()->initialization();
  1093       if (ini != NULL)
  1094         ini->set_does_not_escape();
  1097   return true; // Finished graph construction.
  1100 // Propagate GlobalEscape and ArgEscape escape states to all nodes
  1101 // and check that we still have non-escaping java objects.
  1102 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
  1103                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
  1104   GrowableArray<PointsToNode*> escape_worklist;
  1105   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
  1106   int ptnodes_length = ptnodes_worklist.length();
  1107   for (int next = 0; next < ptnodes_length; ++next) {
  1108     PointsToNode* ptn = ptnodes_worklist.at(next);
  1109     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
  1110         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
  1111       escape_worklist.push(ptn);
  1114   // Set escape states to referenced nodes (edges list).
  1115   while (escape_worklist.length() > 0) {
  1116     PointsToNode* ptn = escape_worklist.pop();
  1117     PointsToNode::EscapeState es  = ptn->escape_state();
  1118     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
  1119     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
  1120         es >= PointsToNode::ArgEscape) {
  1121       // GlobalEscape or ArgEscape state of field means it has unknown value.
  1122       if (add_edge(ptn, phantom_obj)) {
  1123         // New edge was added
  1124         add_field_uses_to_worklist(ptn->as_Field());
  1127     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1128       PointsToNode* e = i.get();
  1129       if (e->is_Arraycopy()) {
  1130         assert(ptn->arraycopy_dst(), "sanity");
  1131         // Propagate only fields escape state through arraycopy edge.
  1132         if (e->fields_escape_state() < field_es) {
  1133           set_fields_escape_state(e, field_es);
  1134           escape_worklist.push(e);
  1136       } else if (es >= field_es) {
  1137         // fields_escape_state is also set to 'es' if it is less than 'es'.
  1138         if (e->escape_state() < es) {
  1139           set_escape_state(e, es);
  1140           escape_worklist.push(e);
  1142       } else {
  1143         // Propagate field escape state.
  1144         bool es_changed = false;
  1145         if (e->fields_escape_state() < field_es) {
  1146           set_fields_escape_state(e, field_es);
  1147           es_changed = true;
  1149         if ((e->escape_state() < field_es) &&
  1150             e->is_Field() && ptn->is_JavaObject() &&
  1151             e->as_Field()->is_oop()) {
  1152           // Change escape state of referenced fileds.
  1153           set_escape_state(e, field_es);
  1154           es_changed = true;;
  1155         } else if (e->escape_state() < es) {
  1156           set_escape_state(e, es);
  1157           es_changed = true;;
  1159         if (es_changed) {
  1160           escape_worklist.push(e);
  1165   // Remove escaped objects from non_escaped list.
  1166   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
  1167     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1168     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
  1169       non_escaped_worklist.delete_at(next);
  1171     if (ptn->escape_state() == PointsToNode::NoEscape) {
  1172       // Find fields in non-escaped allocations which have unknown value.
  1173       find_init_values(ptn, phantom_obj, NULL);
  1176   return (non_escaped_worklist.length() > 0);
  1179 // Add all references to JavaObject node by walking over all uses.
  1180 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
  1181   int new_edges = 0;
  1182   if (populate_worklist) {
  1183     // Populate _worklist by uses of jobj's uses.
  1184     for (UseIterator i(jobj); i.has_next(); i.next()) {
  1185       PointsToNode* use = i.get();
  1186       if (use->is_Arraycopy())
  1187         continue;
  1188       add_uses_to_worklist(use);
  1189       if (use->is_Field() && use->as_Field()->is_oop()) {
  1190         // Put on worklist all field's uses (loads) and
  1191         // related field nodes (same base and offset).
  1192         add_field_uses_to_worklist(use->as_Field());
  1196   while(_worklist.length() > 0) {
  1197     PointsToNode* use = _worklist.pop();
  1198     if (PointsToNode::is_base_use(use)) {
  1199       // Add reference from jobj to field and from field to jobj (field's base).
  1200       use = PointsToNode::get_use_node(use)->as_Field();
  1201       if (add_base(use->as_Field(), jobj)) {
  1202         new_edges++;
  1204       continue;
  1206     assert(!use->is_JavaObject(), "sanity");
  1207     if (use->is_Arraycopy()) {
  1208       if (jobj == null_obj) // NULL object does not have field edges
  1209         continue;
  1210       // Added edge from Arraycopy node to arraycopy's source java object
  1211       if (add_edge(use, jobj)) {
  1212         jobj->set_arraycopy_src();
  1213         new_edges++;
  1215       // and stop here.
  1216       continue;
  1218     if (!add_edge(use, jobj))
  1219       continue; // No new edge added, there was such edge already.
  1220     new_edges++;
  1221     if (use->is_LocalVar()) {
  1222       add_uses_to_worklist(use);
  1223       if (use->arraycopy_dst()) {
  1224         for (EdgeIterator i(use); i.has_next(); i.next()) {
  1225           PointsToNode* e = i.get();
  1226           if (e->is_Arraycopy()) {
  1227             if (jobj == null_obj) // NULL object does not have field edges
  1228               continue;
  1229             // Add edge from arraycopy's destination java object to Arraycopy node.
  1230             if (add_edge(jobj, e)) {
  1231               new_edges++;
  1232               jobj->set_arraycopy_dst();
  1237     } else {
  1238       // Added new edge to stored in field values.
  1239       // Put on worklist all field's uses (loads) and
  1240       // related field nodes (same base and offset).
  1241       add_field_uses_to_worklist(use->as_Field());
  1244   return new_edges;
  1247 // Put on worklist all related field nodes.
  1248 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
  1249   assert(field->is_oop(), "sanity");
  1250   int offset = field->offset();
  1251   add_uses_to_worklist(field);
  1252   // Loop over all bases of this field and push on worklist Field nodes
  1253   // with the same offset and base (since they may reference the same field).
  1254   for (BaseIterator i(field); i.has_next(); i.next()) {
  1255     PointsToNode* base = i.get();
  1256     add_fields_to_worklist(field, base);
  1257     // Check if the base was source object of arraycopy and go over arraycopy's
  1258     // destination objects since values stored to a field of source object are
  1259     // accessable by uses (loads) of fields of destination objects.
  1260     if (base->arraycopy_src()) {
  1261       for (UseIterator j(base); j.has_next(); j.next()) {
  1262         PointsToNode* arycp = j.get();
  1263         if (arycp->is_Arraycopy()) {
  1264           for (UseIterator k(arycp); k.has_next(); k.next()) {
  1265             PointsToNode* abase = k.get();
  1266             if (abase->arraycopy_dst() && abase != base) {
  1267               // Look for the same arracopy reference.
  1268               add_fields_to_worklist(field, abase);
  1277 // Put on worklist all related field nodes.
  1278 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
  1279   int offset = field->offset();
  1280   if (base->is_LocalVar()) {
  1281     for (UseIterator j(base); j.has_next(); j.next()) {
  1282       PointsToNode* f = j.get();
  1283       if (PointsToNode::is_base_use(f)) { // Field
  1284         f = PointsToNode::get_use_node(f);
  1285         if (f == field || !f->as_Field()->is_oop())
  1286           continue;
  1287         int offs = f->as_Field()->offset();
  1288         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1289           add_to_worklist(f);
  1293   } else {
  1294     assert(base->is_JavaObject(), "sanity");
  1295     if (// Skip phantom_object since it is only used to indicate that
  1296         // this field's content globally escapes.
  1297         (base != phantom_obj) &&
  1298         // NULL object node does not have fields.
  1299         (base != null_obj)) {
  1300       for (EdgeIterator i(base); i.has_next(); i.next()) {
  1301         PointsToNode* f = i.get();
  1302         // Skip arraycopy edge since store to destination object field
  1303         // does not update value in source object field.
  1304         if (f->is_Arraycopy()) {
  1305           assert(base->arraycopy_dst(), "sanity");
  1306           continue;
  1308         if (f == field || !f->as_Field()->is_oop())
  1309           continue;
  1310         int offs = f->as_Field()->offset();
  1311         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1312           add_to_worklist(f);
  1319 // Find fields which have unknown value.
  1320 int ConnectionGraph::find_field_value(FieldNode* field) {
  1321   // Escaped fields should have init value already.
  1322   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
  1323   int new_edges = 0;
  1324   for (BaseIterator i(field); i.has_next(); i.next()) {
  1325     PointsToNode* base = i.get();
  1326     if (base->is_JavaObject()) {
  1327       // Skip Allocate's fields which will be processed later.
  1328       if (base->ideal_node()->is_Allocate())
  1329         return 0;
  1330       assert(base == null_obj, "only NULL ptr base expected here");
  1333   if (add_edge(field, phantom_obj)) {
  1334     // New edge was added
  1335     new_edges++;
  1336     add_field_uses_to_worklist(field);
  1338   return new_edges;
  1341 // Find fields initializing values for allocations.
  1342 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
  1343   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
  1344   int new_edges = 0;
  1345   Node* alloc = pta->ideal_node();
  1346   if (init_val == phantom_obj) {
  1347     // Do nothing for Allocate nodes since its fields values are "known".
  1348     if (alloc->is_Allocate())
  1349       return 0;
  1350     assert(alloc->as_CallStaticJava(), "sanity");
  1351 #ifdef ASSERT
  1352     if (alloc->as_CallStaticJava()->method() == NULL) {
  1353       const char* name = alloc->as_CallStaticJava()->_name;
  1354       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
  1356 #endif
  1357     // Non-escaped allocation returned from Java or runtime call have
  1358     // unknown values in fields.
  1359     for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1360       PointsToNode* ptn = i.get();
  1361       if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
  1362         if (add_edge(ptn, phantom_obj)) {
  1363           // New edge was added
  1364           new_edges++;
  1365           add_field_uses_to_worklist(ptn->as_Field());
  1369     return new_edges;
  1371   assert(init_val == null_obj, "sanity");
  1372   // Do nothing for Call nodes since its fields values are unknown.
  1373   if (!alloc->is_Allocate())
  1374     return 0;
  1376   InitializeNode* ini = alloc->as_Allocate()->initialization();
  1377   Compile* C = _compile;
  1378   bool visited_bottom_offset = false;
  1379   GrowableArray<int> offsets_worklist;
  1381   // Check if an oop field's initializing value is recorded and add
  1382   // a corresponding NULL if field's value if it is not recorded.
  1383   // Connection Graph does not record a default initialization by NULL
  1384   // captured by Initialize node.
  1385   //
  1386   for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1387     PointsToNode* ptn = i.get(); // Field (AddP)
  1388     if (!ptn->is_Field() || !ptn->as_Field()->is_oop())
  1389       continue; // Not oop field
  1390     int offset = ptn->as_Field()->offset();
  1391     if (offset == Type::OffsetBot) {
  1392       if (!visited_bottom_offset) {
  1393         // OffsetBot is used to reference array's element,
  1394         // always add reference to NULL to all Field nodes since we don't
  1395         // known which element is referenced.
  1396         if (add_edge(ptn, null_obj)) {
  1397           // New edge was added
  1398           new_edges++;
  1399           add_field_uses_to_worklist(ptn->as_Field());
  1400           visited_bottom_offset = true;
  1403     } else {
  1404       // Check only oop fields.
  1405       const Type* adr_type = ptn->ideal_node()->as_AddP()->bottom_type();
  1406       if (adr_type->isa_rawptr()) {
  1407 #ifdef ASSERT
  1408         // Raw pointers are used for initializing stores so skip it
  1409         // since it should be recorded already
  1410         Node* base = get_addp_base(ptn->ideal_node());
  1411         assert(adr_type->isa_rawptr() && base->is_Proj() &&
  1412                (base->in(0) == alloc),"unexpected pointer type");
  1413 #endif
  1414         continue;
  1416       if (!offsets_worklist.contains(offset)) {
  1417         offsets_worklist.append(offset);
  1418         Node* value = NULL;
  1419         if (ini != NULL) {
  1420           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
  1421           Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
  1422           if (store != NULL && store->is_Store()) {
  1423             value = store->in(MemNode::ValueIn);
  1424           } else {
  1425             // There could be initializing stores which follow allocation.
  1426             // For example, a volatile field store is not collected
  1427             // by Initialize node.
  1428             //
  1429             // Need to check for dependent loads to separate such stores from
  1430             // stores which follow loads. For now, add initial value NULL so
  1431             // that compare pointers optimization works correctly.
  1434         if (value == NULL) {
  1435           // A field's initializing value was not recorded. Add NULL.
  1436           if (add_edge(ptn, null_obj)) {
  1437             // New edge was added
  1438             new_edges++;
  1439             add_field_uses_to_worklist(ptn->as_Field());
  1445   return new_edges;
  1448 // Adjust scalar_replaceable state after Connection Graph is built.
  1449 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
  1450   // Search for non-escaping objects which are not scalar replaceable
  1451   // and mark them to propagate the state to referenced objects.
  1453   // 1. An object is not scalar replaceable if the field into which it is
  1454   // stored has unknown offset (stored into unknown element of an array).
  1455   //
  1456   for (UseIterator i(jobj); i.has_next(); i.next()) {
  1457     PointsToNode* use = i.get();
  1458     assert(!use->is_Arraycopy(), "sanity");
  1459     if (use->is_Field()) {
  1460       FieldNode* field = use->as_Field();
  1461       assert(field->is_oop() && field->scalar_replaceable() &&
  1462              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
  1463       if (field->offset() == Type::OffsetBot) {
  1464         jobj->set_scalar_replaceable(false);
  1465         return;
  1468     assert(use->is_Field() || use->is_LocalVar(), "sanity");
  1469     // 2. An object is not scalar replaceable if it is merged with other objects.
  1470     for (EdgeIterator j(use); j.has_next(); j.next()) {
  1471       PointsToNode* ptn = j.get();
  1472       if (ptn->is_JavaObject() && ptn != jobj) {
  1473         // Mark all objects.
  1474         jobj->set_scalar_replaceable(false);
  1475          ptn->set_scalar_replaceable(false);
  1478     if (!jobj->scalar_replaceable()) {
  1479       return;
  1483   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
  1484     // Non-escaping object node should point only to field nodes.
  1485     FieldNode* field = j.get()->as_Field();
  1486     int offset = field->as_Field()->offset();
  1488     // 3. An object is not scalar replaceable if it has a field with unknown
  1489     // offset (array's element is accessed in loop).
  1490     if (offset == Type::OffsetBot) {
  1491       jobj->set_scalar_replaceable(false);
  1492       return;
  1494     // 4. Currently an object is not scalar replaceable if a LoadStore node
  1495     // access its field since the field value is unknown after it.
  1496     //
  1497     Node* n = field->ideal_node();
  1498     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1499       if (n->fast_out(i)->is_LoadStore()) {
  1500         jobj->set_scalar_replaceable(false);
  1501         return;
  1505     // 5. Or the address may point to more then one object. This may produce
  1506     // the false positive result (set not scalar replaceable)
  1507     // since the flow-insensitive escape analysis can't separate
  1508     // the case when stores overwrite the field's value from the case
  1509     // when stores happened on different control branches.
  1510     //
  1511     // Note: it will disable scalar replacement in some cases:
  1512     //
  1513     //    Point p[] = new Point[1];
  1514     //    p[0] = new Point(); // Will be not scalar replaced
  1515     //
  1516     // but it will save us from incorrect optimizations in next cases:
  1517     //
  1518     //    Point p[] = new Point[1];
  1519     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
  1520     //
  1521     if (field->base_count() > 1) {
  1522       for (BaseIterator i(field); i.has_next(); i.next()) {
  1523         PointsToNode* base = i.get();
  1524         // Don't take into account LocalVar nodes which
  1525         // may point to only one object which should be also
  1526         // this field's base by now.
  1527         if (base->is_JavaObject() && base != jobj) {
  1528           // Mark all bases.
  1529           jobj->set_scalar_replaceable(false);
  1530           base->set_scalar_replaceable(false);
  1537 #ifdef ASSERT
  1538 void ConnectionGraph::verify_connection_graph(
  1539                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1540                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1541                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1542                          GrowableArray<Node*>& addp_worklist) {
  1543   // Verify that graph is complete - no new edges could be added.
  1544   int java_objects_length = java_objects_worklist.length();
  1545   int non_escaped_length  = non_escaped_worklist.length();
  1546   int new_edges = 0;
  1547   for (int next = 0; next < java_objects_length; ++next) {
  1548     JavaObjectNode* ptn = java_objects_worklist.at(next);
  1549     new_edges += add_java_object_edges(ptn, true);
  1551   assert(new_edges == 0, "graph was not complete");
  1552   // Verify that escape state is final.
  1553   int length = non_escaped_worklist.length();
  1554   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
  1555   assert((non_escaped_length == non_escaped_worklist.length()) &&
  1556          (non_escaped_length == length) &&
  1557          (_worklist.length() == 0), "escape state was not final");
  1559   // Verify fields information.
  1560   int addp_length = addp_worklist.length();
  1561   for (int next = 0; next < addp_length; ++next ) {
  1562     Node* n = addp_worklist.at(next);
  1563     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
  1564     if (field->is_oop()) {
  1565       // Verify that field has all bases
  1566       Node* base = get_addp_base(n);
  1567       PointsToNode* ptn = ptnode_adr(base->_idx);
  1568       if (ptn->is_JavaObject()) {
  1569         assert(field->has_base(ptn->as_JavaObject()), "sanity");
  1570       } else {
  1571         assert(ptn->is_LocalVar(), "sanity");
  1572         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1573           PointsToNode* e = i.get();
  1574           if (e->is_JavaObject()) {
  1575             assert(field->has_base(e->as_JavaObject()), "sanity");
  1579       // Verify that all fields have initializing values.
  1580       if (field->edge_count() == 0) {
  1581         field->dump();
  1582         assert(field->edge_count() > 0, "sanity");
  1587 #endif
  1589 // Optimize ideal graph.
  1590 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
  1591                                            GrowableArray<Node*>& storestore_worklist) {
  1592   Compile* C = _compile;
  1593   PhaseIterGVN* igvn = _igvn;
  1594   if (EliminateLocks) {
  1595     // Mark locks before changing ideal graph.
  1596     int cnt = C->macro_count();
  1597     for( int i=0; i < cnt; i++ ) {
  1598       Node *n = C->macro_node(i);
  1599       if (n->is_AbstractLock()) { // Lock and Unlock nodes
  1600         AbstractLockNode* alock = n->as_AbstractLock();
  1601         if (!alock->is_non_esc_obj()) {
  1602           if (not_global_escape(alock->obj_node())) {
  1603             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
  1604             // The lock could be marked eliminated by lock coarsening
  1605             // code during first IGVN before EA. Replace coarsened flag
  1606             // to eliminate all associated locks/unlocks.
  1607             alock->set_non_esc_obj();
  1614   if (OptimizePtrCompare) {
  1615     // Add ConI(#CC_GT) and ConI(#CC_EQ).
  1616     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
  1617     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
  1618     // Optimize objects compare.
  1619     while (ptr_cmp_worklist.length() != 0) {
  1620       Node *n = ptr_cmp_worklist.pop();
  1621       Node *res = optimize_ptr_compare(n);
  1622       if (res != NULL) {
  1623 #ifndef PRODUCT
  1624         if (PrintOptimizePtrCompare) {
  1625           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
  1626           if (Verbose) {
  1627             n->dump(1);
  1630 #endif
  1631         igvn->replace_node(n, res);
  1634     // cleanup
  1635     if (_pcmp_neq->outcnt() == 0)
  1636       igvn->hash_delete(_pcmp_neq);
  1637     if (_pcmp_eq->outcnt()  == 0)
  1638       igvn->hash_delete(_pcmp_eq);
  1641   // For MemBarStoreStore nodes added in library_call.cpp, check
  1642   // escape status of associated AllocateNode and optimize out
  1643   // MemBarStoreStore node if the allocated object never escapes.
  1644   while (storestore_worklist.length() != 0) {
  1645     Node *n = storestore_worklist.pop();
  1646     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
  1647     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
  1648     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
  1649     if (not_global_escape(alloc)) {
  1650       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
  1651       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
  1652       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
  1653       igvn->register_new_node_with_optimizer(mb);
  1654       igvn->replace_node(storestore, mb);
  1659 // Optimize objects compare.
  1660 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
  1661   assert(OptimizePtrCompare, "sanity");
  1662   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
  1663   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
  1664   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
  1665   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
  1666   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
  1667   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
  1669   // Check simple cases first.
  1670   if (jobj1 != NULL) {
  1671     if (jobj1->escape_state() == PointsToNode::NoEscape) {
  1672       if (jobj1 == jobj2) {
  1673         // Comparing the same not escaping object.
  1674         return _pcmp_eq;
  1676       Node* obj = jobj1->ideal_node();
  1677       // Comparing not escaping allocation.
  1678       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1679           !ptn2->points_to(jobj1)) {
  1680         return _pcmp_neq; // This includes nullness check.
  1684   if (jobj2 != NULL) {
  1685     if (jobj2->escape_state() == PointsToNode::NoEscape) {
  1686       Node* obj = jobj2->ideal_node();
  1687       // Comparing not escaping allocation.
  1688       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1689           !ptn1->points_to(jobj2)) {
  1690         return _pcmp_neq; // This includes nullness check.
  1694   if (jobj1 != NULL && jobj1 != phantom_obj &&
  1695       jobj2 != NULL && jobj2 != phantom_obj &&
  1696       jobj1->ideal_node()->is_Con() &&
  1697       jobj2->ideal_node()->is_Con()) {
  1698     // Klass or String constants compare. Need to be careful with
  1699     // compressed pointers - compare types of ConN and ConP instead of nodes.
  1700     const Type* t1 = jobj1->ideal_node()->bottom_type()->make_ptr();
  1701     const Type* t2 = jobj2->ideal_node()->bottom_type()->make_ptr();
  1702     assert(t1 != NULL && t2 != NULL, "sanity");
  1703     if (t1->make_ptr() == t2->make_ptr()) {
  1704       return _pcmp_eq;
  1705     } else {
  1706       return _pcmp_neq;
  1709   if (ptn1->meet(ptn2)) {
  1710     return NULL; // Sets are not disjoint
  1713   // Sets are disjoint.
  1714   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
  1715   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
  1716   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
  1717   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
  1718   if (set1_has_unknown_ptr && set2_has_null_ptr ||
  1719       set2_has_unknown_ptr && set1_has_null_ptr) {
  1720     // Check nullness of unknown object.
  1721     return NULL;
  1724   // Disjointness by itself is not sufficient since
  1725   // alias analysis is not complete for escaped objects.
  1726   // Disjoint sets are definitely unrelated only when
  1727   // at least one set has only not escaping allocations.
  1728   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
  1729     if (ptn1->non_escaping_allocation()) {
  1730       return _pcmp_neq;
  1733   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
  1734     if (ptn2->non_escaping_allocation()) {
  1735       return _pcmp_neq;
  1738   return NULL;
  1741 // Connection Graph constuction functions.
  1743 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
  1744   PointsToNode* ptadr = _nodes.at(n->_idx);
  1745   if (ptadr != NULL) {
  1746     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
  1747     return;
  1749   Compile* C = _compile;
  1750   ptadr = new (C->comp_arena()) LocalVarNode(C, n, es);
  1751   _nodes.at_put(n->_idx, ptadr);
  1754 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
  1755   PointsToNode* ptadr = _nodes.at(n->_idx);
  1756   if (ptadr != NULL) {
  1757     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
  1758     return;
  1760   Compile* C = _compile;
  1761   ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es);
  1762   _nodes.at_put(n->_idx, ptadr);
  1765 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
  1766   PointsToNode* ptadr = _nodes.at(n->_idx);
  1767   if (ptadr != NULL) {
  1768     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
  1769     return;
  1771   Compile* C = _compile;
  1772   bool is_oop = is_oop_field(n, offset);
  1773   FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop);
  1774   _nodes.at_put(n->_idx, field);
  1777 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
  1778                                     PointsToNode* src, PointsToNode* dst) {
  1779   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
  1780   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
  1781   PointsToNode* ptadr = _nodes.at(n->_idx);
  1782   if (ptadr != NULL) {
  1783     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
  1784     return;
  1786   Compile* C = _compile;
  1787   ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es);
  1788   _nodes.at_put(n->_idx, ptadr);
  1789   // Add edge from arraycopy node to source object.
  1790   (void)add_edge(ptadr, src);
  1791   src->set_arraycopy_src();
  1792   // Add edge from destination object to arraycopy node.
  1793   (void)add_edge(dst, ptadr);
  1794   dst->set_arraycopy_dst();
  1797 bool ConnectionGraph::is_oop_field(Node* n, int offset) {
  1798   const Type* adr_type = n->as_AddP()->bottom_type();
  1799   BasicType bt = T_INT;
  1800   if (offset == Type::OffsetBot) {
  1801     // Check only oop fields.
  1802     if (!adr_type->isa_aryptr() ||
  1803         (adr_type->isa_aryptr()->klass() == NULL) ||
  1804          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
  1805       // OffsetBot is used to reference array's element. Ignore first AddP.
  1806       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
  1807         bt = T_OBJECT;
  1810   } else if (offset != oopDesc::klass_offset_in_bytes()) {
  1811     if (adr_type->isa_instptr()) {
  1812       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
  1813       if (field != NULL) {
  1814         bt = field->layout_type();
  1815       } else {
  1816         // Ignore non field load (for example, klass load)
  1818     } else if (adr_type->isa_aryptr()) {
  1819       if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1820         // Ignore array length load.
  1821       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
  1822         // Ignore first AddP.
  1823       } else {
  1824         const Type* elemtype = adr_type->isa_aryptr()->elem();
  1825         bt = elemtype->array_element_basic_type();
  1827     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
  1828       // Allocation initialization, ThreadLocal field access, unsafe access
  1829       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1830         int opcode = n->fast_out(i)->Opcode();
  1831         if (opcode == Op_StoreP || opcode == Op_LoadP ||
  1832             opcode == Op_StoreN || opcode == Op_LoadN) {
  1833           bt = T_OBJECT;
  1838   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
  1841 // Returns unique pointed java object or NULL.
  1842 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
  1843   assert(!_collecting, "should not call when contructed graph");
  1844   // If the node was created after the escape computation we can't answer.
  1845   uint idx = n->_idx;
  1846   if (idx >= nodes_size()) {
  1847     return NULL;
  1849   PointsToNode* ptn = ptnode_adr(idx);
  1850   if (ptn->is_JavaObject()) {
  1851     return ptn->as_JavaObject();
  1853   assert(ptn->is_LocalVar(), "sanity");
  1854   // Check all java objects it points to.
  1855   JavaObjectNode* jobj = NULL;
  1856   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1857     PointsToNode* e = i.get();
  1858     if (e->is_JavaObject()) {
  1859       if (jobj == NULL) {
  1860         jobj = e->as_JavaObject();
  1861       } else if (jobj != e) {
  1862         return NULL;
  1866   return jobj;
  1869 // Return true if this node points only to non-escaping allocations.
  1870 bool PointsToNode::non_escaping_allocation() {
  1871   if (is_JavaObject()) {
  1872     Node* n = ideal_node();
  1873     if (n->is_Allocate() || n->is_CallStaticJava()) {
  1874       return (escape_state() == PointsToNode::NoEscape);
  1875     } else {
  1876       return false;
  1879   assert(is_LocalVar(), "sanity");
  1880   // Check all java objects it points to.
  1881   for (EdgeIterator i(this); i.has_next(); i.next()) {
  1882     PointsToNode* e = i.get();
  1883     if (e->is_JavaObject()) {
  1884       Node* n = e->ideal_node();
  1885       if ((e->escape_state() != PointsToNode::NoEscape) ||
  1886           !(n->is_Allocate() || n->is_CallStaticJava())) {
  1887         return false;
  1891   return true;
  1894 // Return true if we know the node does not escape globally.
  1895 bool ConnectionGraph::not_global_escape(Node *n) {
  1896   assert(!_collecting, "should not call during graph construction");
  1897   // If the node was created after the escape computation we can't answer.
  1898   uint idx = n->_idx;
  1899   if (idx >= nodes_size()) {
  1900     return false;
  1902   PointsToNode* ptn = ptnode_adr(idx);
  1903   PointsToNode::EscapeState es = ptn->escape_state();
  1904   // If we have already computed a value, return it.
  1905   if (es >= PointsToNode::GlobalEscape)
  1906     return false;
  1907   if (ptn->is_JavaObject()) {
  1908     return true; // (es < PointsToNode::GlobalEscape);
  1910   assert(ptn->is_LocalVar(), "sanity");
  1911   // Check all java objects it points to.
  1912   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1913     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
  1914       return false;
  1916   return true;
  1920 // Helper functions
  1922 // Return true if this node points to specified node or nodes it points to.
  1923 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
  1924   if (is_JavaObject()) {
  1925     return (this == ptn);
  1927   assert(is_LocalVar(), "sanity");
  1928   for (EdgeIterator i(this); i.has_next(); i.next()) {
  1929     if (i.get() == ptn)
  1930       return true;
  1932   return false;
  1935 // Return true if one node points to an other.
  1936 bool PointsToNode::meet(PointsToNode* ptn) {
  1937   if (this == ptn) {
  1938     return true;
  1939   } else if (ptn->is_JavaObject()) {
  1940     return this->points_to(ptn->as_JavaObject());
  1941   } else if (this->is_JavaObject()) {
  1942     return ptn->points_to(this->as_JavaObject());
  1944   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
  1945   int ptn_count =  ptn->edge_count();
  1946   for (EdgeIterator i(this); i.has_next(); i.next()) {
  1947     PointsToNode* this_e = i.get();
  1948     for (int j = 0; j < ptn_count; j++) {
  1949       if (this_e == ptn->edge(j))
  1950         return true;
  1953   return false;
  1956 #ifdef ASSERT
  1957 // Return true if bases point to this java object.
  1958 bool FieldNode::has_base(JavaObjectNode* jobj) const {
  1959   for (BaseIterator i(this); i.has_next(); i.next()) {
  1960     if (i.get() == jobj)
  1961       return true;
  1963   return false;
  1965 #endif
  1967 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
  1968   const Type *adr_type = phase->type(adr);
  1969   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
  1970       adr->in(AddPNode::Address)->is_Proj() &&
  1971       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
  1972     // We are computing a raw address for a store captured by an Initialize
  1973     // compute an appropriate address type. AddP cases #3 and #5 (see below).
  1974     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
  1975     assert(offs != Type::OffsetBot ||
  1976            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
  1977            "offset must be a constant or it is initialization of array");
  1978     return offs;
  1980   const TypePtr *t_ptr = adr_type->isa_ptr();
  1981   assert(t_ptr != NULL, "must be a pointer type");
  1982   return t_ptr->offset();
  1985 Node* ConnectionGraph::get_addp_base(Node *addp) {
  1986   assert(addp->is_AddP(), "must be AddP");
  1987   //
  1988   // AddP cases for Base and Address inputs:
  1989   // case #1. Direct object's field reference:
  1990   //     Allocate
  1991   //       |
  1992   //     Proj #5 ( oop result )
  1993   //       |
  1994   //     CheckCastPP (cast to instance type)
  1995   //      | |
  1996   //     AddP  ( base == address )
  1997   //
  1998   // case #2. Indirect object's field reference:
  1999   //      Phi
  2000   //       |
  2001   //     CastPP (cast to instance type)
  2002   //      | |
  2003   //     AddP  ( base == address )
  2004   //
  2005   // case #3. Raw object's field reference for Initialize node:
  2006   //      Allocate
  2007   //        |
  2008   //      Proj #5 ( oop result )
  2009   //  top   |
  2010   //     \  |
  2011   //     AddP  ( base == top )
  2012   //
  2013   // case #4. Array's element reference:
  2014   //   {CheckCastPP | CastPP}
  2015   //     |  | |
  2016   //     |  AddP ( array's element offset )
  2017   //     |  |
  2018   //     AddP ( array's offset )
  2019   //
  2020   // case #5. Raw object's field reference for arraycopy stub call:
  2021   //          The inline_native_clone() case when the arraycopy stub is called
  2022   //          after the allocation before Initialize and CheckCastPP nodes.
  2023   //      Allocate
  2024   //        |
  2025   //      Proj #5 ( oop result )
  2026   //       | |
  2027   //       AddP  ( base == address )
  2028   //
  2029   // case #6. Constant Pool, ThreadLocal, CastX2P or
  2030   //          Raw object's field reference:
  2031   //      {ConP, ThreadLocal, CastX2P, raw Load}
  2032   //  top   |
  2033   //     \  |
  2034   //     AddP  ( base == top )
  2035   //
  2036   // case #7. Klass's field reference.
  2037   //      LoadKlass
  2038   //       | |
  2039   //       AddP  ( base == address )
  2040   //
  2041   // case #8. narrow Klass's field reference.
  2042   //      LoadNKlass
  2043   //       |
  2044   //      DecodeN
  2045   //       | |
  2046   //       AddP  ( base == address )
  2047   //
  2048   Node *base = addp->in(AddPNode::Base);
  2049   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
  2050     base = addp->in(AddPNode::Address);
  2051     while (base->is_AddP()) {
  2052       // Case #6 (unsafe access) may have several chained AddP nodes.
  2053       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
  2054       base = base->in(AddPNode::Address);
  2056     Node* uncast_base = base->uncast();
  2057     int opcode = uncast_base->Opcode();
  2058     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
  2059            opcode == Op_CastX2P || uncast_base->is_DecodeN() ||
  2060            (uncast_base->is_Mem() && uncast_base->bottom_type() == TypeRawPtr::NOTNULL) ||
  2061            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
  2063   return base;
  2066 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
  2067   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
  2068   Node* addp2 = addp->raw_out(0);
  2069   if (addp->outcnt() == 1 && addp2->is_AddP() &&
  2070       addp2->in(AddPNode::Base) == n &&
  2071       addp2->in(AddPNode::Address) == addp) {
  2072     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
  2073     //
  2074     // Find array's offset to push it on worklist first and
  2075     // as result process an array's element offset first (pushed second)
  2076     // to avoid CastPP for the array's offset.
  2077     // Otherwise the inserted CastPP (LocalVar) will point to what
  2078     // the AddP (Field) points to. Which would be wrong since
  2079     // the algorithm expects the CastPP has the same point as
  2080     // as AddP's base CheckCastPP (LocalVar).
  2081     //
  2082     //    ArrayAllocation
  2083     //     |
  2084     //    CheckCastPP
  2085     //     |
  2086     //    memProj (from ArrayAllocation CheckCastPP)
  2087     //     |  ||
  2088     //     |  ||   Int (element index)
  2089     //     |  ||    |   ConI (log(element size))
  2090     //     |  ||    |   /
  2091     //     |  ||   LShift
  2092     //     |  ||  /
  2093     //     |  AddP (array's element offset)
  2094     //     |  |
  2095     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
  2096     //     | / /
  2097     //     AddP (array's offset)
  2098     //      |
  2099     //     Load/Store (memory operation on array's element)
  2100     //
  2101     return addp2;
  2103   return NULL;
  2106 //
  2107 // Adjust the type and inputs of an AddP which computes the
  2108 // address of a field of an instance
  2109 //
  2110 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
  2111   PhaseGVN* igvn = _igvn;
  2112   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
  2113   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
  2114   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
  2115   if (t == NULL) {
  2116     // We are computing a raw address for a store captured by an Initialize
  2117     // compute an appropriate address type (cases #3 and #5).
  2118     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
  2119     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
  2120     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
  2121     assert(offs != Type::OffsetBot, "offset must be a constant");
  2122     t = base_t->add_offset(offs)->is_oopptr();
  2124   int inst_id =  base_t->instance_id();
  2125   assert(!t->is_known_instance() || t->instance_id() == inst_id,
  2126                              "old type must be non-instance or match new type");
  2128   // The type 't' could be subclass of 'base_t'.
  2129   // As result t->offset() could be large then base_t's size and it will
  2130   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
  2131   // constructor verifies correctness of the offset.
  2132   //
  2133   // It could happened on subclass's branch (from the type profiling
  2134   // inlining) which was not eliminated during parsing since the exactness
  2135   // of the allocation type was not propagated to the subclass type check.
  2136   //
  2137   // Or the type 't' could be not related to 'base_t' at all.
  2138   // It could happened when CHA type is different from MDO type on a dead path
  2139   // (for example, from instanceof check) which is not collapsed during parsing.
  2140   //
  2141   // Do nothing for such AddP node and don't process its users since
  2142   // this code branch will go away.
  2143   //
  2144   if (!t->is_known_instance() &&
  2145       !base_t->klass()->is_subtype_of(t->klass())) {
  2146      return false; // bail out
  2148   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
  2149   // Do NOT remove the next line: ensure a new alias index is allocated
  2150   // for the instance type. Note: C++ will not remove it since the call
  2151   // has side effect.
  2152   int alias_idx = _compile->get_alias_index(tinst);
  2153   igvn->set_type(addp, tinst);
  2154   // record the allocation in the node map
  2155   set_map(addp, get_map(base->_idx));
  2156   // Set addp's Base and Address to 'base'.
  2157   Node *abase = addp->in(AddPNode::Base);
  2158   Node *adr   = addp->in(AddPNode::Address);
  2159   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
  2160       adr->in(0)->_idx == (uint)inst_id) {
  2161     // Skip AddP cases #3 and #5.
  2162   } else {
  2163     assert(!abase->is_top(), "sanity"); // AddP case #3
  2164     if (abase != base) {
  2165       igvn->hash_delete(addp);
  2166       addp->set_req(AddPNode::Base, base);
  2167       if (abase == adr) {
  2168         addp->set_req(AddPNode::Address, base);
  2169       } else {
  2170         // AddP case #4 (adr is array's element offset AddP node)
  2171 #ifdef ASSERT
  2172         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
  2173         assert(adr->is_AddP() && atype != NULL &&
  2174                atype->instance_id() == inst_id, "array's element offset should be processed first");
  2175 #endif
  2177       igvn->hash_insert(addp);
  2180   // Put on IGVN worklist since at least addp's type was changed above.
  2181   record_for_optimizer(addp);
  2182   return true;
  2185 //
  2186 // Create a new version of orig_phi if necessary. Returns either the newly
  2187 // created phi or an existing phi.  Sets create_new to indicate whether a new
  2188 // phi was created.  Cache the last newly created phi in the node map.
  2189 //
  2190 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
  2191   Compile *C = _compile;
  2192   PhaseGVN* igvn = _igvn;
  2193   new_created = false;
  2194   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
  2195   // nothing to do if orig_phi is bottom memory or matches alias_idx
  2196   if (phi_alias_idx == alias_idx) {
  2197     return orig_phi;
  2199   // Have we recently created a Phi for this alias index?
  2200   PhiNode *result = get_map_phi(orig_phi->_idx);
  2201   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
  2202     return result;
  2204   // Previous check may fail when the same wide memory Phi was split into Phis
  2205   // for different memory slices. Search all Phis for this region.
  2206   if (result != NULL) {
  2207     Node* region = orig_phi->in(0);
  2208     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  2209       Node* phi = region->fast_out(i);
  2210       if (phi->is_Phi() &&
  2211           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
  2212         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
  2213         return phi->as_Phi();
  2217   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
  2218     if (C->do_escape_analysis() == true && !C->failing()) {
  2219       // Retry compilation without escape analysis.
  2220       // If this is the first failure, the sentinel string will "stick"
  2221       // to the Compile object, and the C2Compiler will see it and retry.
  2222       C->record_failure(C2Compiler::retry_no_escape_analysis());
  2224     return NULL;
  2226   orig_phi_worklist.append_if_missing(orig_phi);
  2227   const TypePtr *atype = C->get_adr_type(alias_idx);
  2228   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
  2229   C->copy_node_notes_to(result, orig_phi);
  2230   igvn->set_type(result, result->bottom_type());
  2231   record_for_optimizer(result);
  2232   set_map(orig_phi, result);
  2233   new_created = true;
  2234   return result;
  2237 //
  2238 // Return a new version of Memory Phi "orig_phi" with the inputs having the
  2239 // specified alias index.
  2240 //
  2241 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
  2242   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
  2243   Compile *C = _compile;
  2244   PhaseGVN* igvn = _igvn;
  2245   bool new_phi_created;
  2246   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
  2247   if (!new_phi_created) {
  2248     return result;
  2250   GrowableArray<PhiNode *>  phi_list;
  2251   GrowableArray<uint>  cur_input;
  2252   PhiNode *phi = orig_phi;
  2253   uint idx = 1;
  2254   bool finished = false;
  2255   while(!finished) {
  2256     while (idx < phi->req()) {
  2257       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
  2258       if (mem != NULL && mem->is_Phi()) {
  2259         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
  2260         if (new_phi_created) {
  2261           // found an phi for which we created a new split, push current one on worklist and begin
  2262           // processing new one
  2263           phi_list.push(phi);
  2264           cur_input.push(idx);
  2265           phi = mem->as_Phi();
  2266           result = newphi;
  2267           idx = 1;
  2268           continue;
  2269         } else {
  2270           mem = newphi;
  2273       if (C->failing()) {
  2274         return NULL;
  2276       result->set_req(idx++, mem);
  2278 #ifdef ASSERT
  2279     // verify that the new Phi has an input for each input of the original
  2280     assert( phi->req() == result->req(), "must have same number of inputs.");
  2281     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
  2282 #endif
  2283     // Check if all new phi's inputs have specified alias index.
  2284     // Otherwise use old phi.
  2285     for (uint i = 1; i < phi->req(); i++) {
  2286       Node* in = result->in(i);
  2287       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
  2289     // we have finished processing a Phi, see if there are any more to do
  2290     finished = (phi_list.length() == 0 );
  2291     if (!finished) {
  2292       phi = phi_list.pop();
  2293       idx = cur_input.pop();
  2294       PhiNode *prev_result = get_map_phi(phi->_idx);
  2295       prev_result->set_req(idx++, result);
  2296       result = prev_result;
  2299   return result;
  2302 //
  2303 // The next methods are derived from methods in MemNode.
  2304 //
  2305 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
  2306   Node *mem = mmem;
  2307   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
  2308   // means an array I have not precisely typed yet.  Do not do any
  2309   // alias stuff with it any time soon.
  2310   if (toop->base() != Type::AnyPtr &&
  2311       !(toop->klass() != NULL &&
  2312         toop->klass()->is_java_lang_Object() &&
  2313         toop->offset() == Type::OffsetBot)) {
  2314     mem = mmem->memory_at(alias_idx);
  2315     // Update input if it is progress over what we have now
  2317   return mem;
  2320 //
  2321 // Move memory users to their memory slices.
  2322 //
  2323 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
  2324   Compile* C = _compile;
  2325   PhaseGVN* igvn = _igvn;
  2326   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
  2327   assert(tp != NULL, "ptr type");
  2328   int alias_idx = C->get_alias_index(tp);
  2329   int general_idx = C->get_general_index(alias_idx);
  2331   // Move users first
  2332   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2333     Node* use = n->fast_out(i);
  2334     if (use->is_MergeMem()) {
  2335       MergeMemNode* mmem = use->as_MergeMem();
  2336       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
  2337       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
  2338         continue; // Nothing to do
  2340       // Replace previous general reference to mem node.
  2341       uint orig_uniq = C->unique();
  2342       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2343       assert(orig_uniq == C->unique(), "no new nodes");
  2344       mmem->set_memory_at(general_idx, m);
  2345       --imax;
  2346       --i;
  2347     } else if (use->is_MemBar()) {
  2348       assert(!use->is_Initialize(), "initializing stores should not be moved");
  2349       if (use->req() > MemBarNode::Precedent &&
  2350           use->in(MemBarNode::Precedent) == n) {
  2351         // Don't move related membars.
  2352         record_for_optimizer(use);
  2353         continue;
  2355       tp = use->as_MemBar()->adr_type()->isa_ptr();
  2356       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
  2357           alias_idx == general_idx) {
  2358         continue; // Nothing to do
  2360       // Move to general memory slice.
  2361       uint orig_uniq = C->unique();
  2362       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2363       assert(orig_uniq == C->unique(), "no new nodes");
  2364       igvn->hash_delete(use);
  2365       imax -= use->replace_edge(n, m);
  2366       igvn->hash_insert(use);
  2367       record_for_optimizer(use);
  2368       --i;
  2369 #ifdef ASSERT
  2370     } else if (use->is_Mem()) {
  2371       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
  2372         // Don't move related cardmark.
  2373         continue;
  2375       // Memory nodes should have new memory input.
  2376       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
  2377       assert(tp != NULL, "ptr type");
  2378       int idx = C->get_alias_index(tp);
  2379       assert(get_map(use->_idx) != NULL || idx == alias_idx,
  2380              "Following memory nodes should have new memory input or be on the same memory slice");
  2381     } else if (use->is_Phi()) {
  2382       // Phi nodes should be split and moved already.
  2383       tp = use->as_Phi()->adr_type()->isa_ptr();
  2384       assert(tp != NULL, "ptr type");
  2385       int idx = C->get_alias_index(tp);
  2386       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
  2387     } else {
  2388       use->dump();
  2389       assert(false, "should not be here");
  2390 #endif
  2395 //
  2396 // Search memory chain of "mem" to find a MemNode whose address
  2397 // is the specified alias index.
  2398 //
  2399 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
  2400   if (orig_mem == NULL)
  2401     return orig_mem;
  2402   Compile* C = _compile;
  2403   PhaseGVN* igvn = _igvn;
  2404   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
  2405   bool is_instance = (toop != NULL) && toop->is_known_instance();
  2406   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
  2407   Node *prev = NULL;
  2408   Node *result = orig_mem;
  2409   while (prev != result) {
  2410     prev = result;
  2411     if (result == start_mem)
  2412       break;  // hit one of our sentinels
  2413     if (result->is_Mem()) {
  2414       const Type *at = igvn->type(result->in(MemNode::Address));
  2415       if (at == Type::TOP)
  2416         break; // Dead
  2417       assert (at->isa_ptr() != NULL, "pointer type required.");
  2418       int idx = C->get_alias_index(at->is_ptr());
  2419       if (idx == alias_idx)
  2420         break; // Found
  2421       if (!is_instance && (at->isa_oopptr() == NULL ||
  2422                            !at->is_oopptr()->is_known_instance())) {
  2423         break; // Do not skip store to general memory slice.
  2425       result = result->in(MemNode::Memory);
  2427     if (!is_instance)
  2428       continue;  // don't search further for non-instance types
  2429     // skip over a call which does not affect this memory slice
  2430     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
  2431       Node *proj_in = result->in(0);
  2432       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
  2433         break;  // hit one of our sentinels
  2434       } else if (proj_in->is_Call()) {
  2435         CallNode *call = proj_in->as_Call();
  2436         if (!call->may_modify(toop, igvn)) {
  2437           result = call->in(TypeFunc::Memory);
  2439       } else if (proj_in->is_Initialize()) {
  2440         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
  2441         // Stop if this is the initialization for the object instance which
  2442         // which contains this memory slice, otherwise skip over it.
  2443         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
  2444           result = proj_in->in(TypeFunc::Memory);
  2446       } else if (proj_in->is_MemBar()) {
  2447         result = proj_in->in(TypeFunc::Memory);
  2449     } else if (result->is_MergeMem()) {
  2450       MergeMemNode *mmem = result->as_MergeMem();
  2451       result = step_through_mergemem(mmem, alias_idx, toop);
  2452       if (result == mmem->base_memory()) {
  2453         // Didn't find instance memory, search through general slice recursively.
  2454         result = mmem->memory_at(C->get_general_index(alias_idx));
  2455         result = find_inst_mem(result, alias_idx, orig_phis);
  2456         if (C->failing()) {
  2457           return NULL;
  2459         mmem->set_memory_at(alias_idx, result);
  2461     } else if (result->is_Phi() &&
  2462                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
  2463       Node *un = result->as_Phi()->unique_input(igvn);
  2464       if (un != NULL) {
  2465         orig_phis.append_if_missing(result->as_Phi());
  2466         result = un;
  2467       } else {
  2468         break;
  2470     } else if (result->is_ClearArray()) {
  2471       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
  2472         // Can not bypass initialization of the instance
  2473         // we are looking for.
  2474         break;
  2476       // Otherwise skip it (the call updated 'result' value).
  2477     } else if (result->Opcode() == Op_SCMemProj) {
  2478       assert(result->in(0)->is_LoadStore(), "sanity");
  2479       const Type *at = igvn->type(result->in(0)->in(MemNode::Address));
  2480       if (at != Type::TOP) {
  2481         assert (at->isa_ptr() != NULL, "pointer type required.");
  2482         int idx = C->get_alias_index(at->is_ptr());
  2483         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
  2484         break;
  2486       result = result->in(0)->in(MemNode::Memory);
  2489   if (result->is_Phi()) {
  2490     PhiNode *mphi = result->as_Phi();
  2491     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
  2492     const TypePtr *t = mphi->adr_type();
  2493     if (!is_instance) {
  2494       // Push all non-instance Phis on the orig_phis worklist to update inputs
  2495       // during Phase 4 if needed.
  2496       orig_phis.append_if_missing(mphi);
  2497     } else if (C->get_alias_index(t) != alias_idx) {
  2498       // Create a new Phi with the specified alias index type.
  2499       result = split_memory_phi(mphi, alias_idx, orig_phis);
  2502   // the result is either MemNode, PhiNode, InitializeNode.
  2503   return result;
  2506 //
  2507 //  Convert the types of unescaped object to instance types where possible,
  2508 //  propagate the new type information through the graph, and update memory
  2509 //  edges and MergeMem inputs to reflect the new type.
  2510 //
  2511 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
  2512 //  The processing is done in 4 phases:
  2513 //
  2514 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
  2515 //            types for the CheckCastPP for allocations where possible.
  2516 //            Propagate the the new types through users as follows:
  2517 //               casts and Phi:  push users on alloc_worklist
  2518 //               AddP:  cast Base and Address inputs to the instance type
  2519 //                      push any AddP users on alloc_worklist and push any memnode
  2520 //                      users onto memnode_worklist.
  2521 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  2522 //            search the Memory chain for a store with the appropriate type
  2523 //            address type.  If a Phi is found, create a new version with
  2524 //            the appropriate memory slices from each of the Phi inputs.
  2525 //            For stores, process the users as follows:
  2526 //               MemNode:  push on memnode_worklist
  2527 //               MergeMem: push on mergemem_worklist
  2528 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
  2529 //            moving the first node encountered of each  instance type to the
  2530 //            the input corresponding to its alias index.
  2531 //            appropriate memory slice.
  2532 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
  2533 //
  2534 // In the following example, the CheckCastPP nodes are the cast of allocation
  2535 // results and the allocation of node 29 is unescaped and eligible to be an
  2536 // instance type.
  2537 //
  2538 // We start with:
  2539 //
  2540 //     7 Parm #memory
  2541 //    10  ConI  "12"
  2542 //    19  CheckCastPP   "Foo"
  2543 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2544 //    29  CheckCastPP   "Foo"
  2545 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
  2546 //
  2547 //    40  StoreP  25   7  20   ... alias_index=4
  2548 //    50  StoreP  35  40  30   ... alias_index=4
  2549 //    60  StoreP  45  50  20   ... alias_index=4
  2550 //    70  LoadP    _  60  30   ... alias_index=4
  2551 //    80  Phi     75  50  60   Memory alias_index=4
  2552 //    90  LoadP    _  80  30   ... alias_index=4
  2553 //   100  LoadP    _  80  20   ... alias_index=4
  2554 //
  2555 //
  2556 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
  2557 // and creating a new alias index for node 30.  This gives:
  2558 //
  2559 //     7 Parm #memory
  2560 //    10  ConI  "12"
  2561 //    19  CheckCastPP   "Foo"
  2562 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2563 //    29  CheckCastPP   "Foo"  iid=24
  2564 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2565 //
  2566 //    40  StoreP  25   7  20   ... alias_index=4
  2567 //    50  StoreP  35  40  30   ... alias_index=6
  2568 //    60  StoreP  45  50  20   ... alias_index=4
  2569 //    70  LoadP    _  60  30   ... alias_index=6
  2570 //    80  Phi     75  50  60   Memory alias_index=4
  2571 //    90  LoadP    _  80  30   ... alias_index=6
  2572 //   100  LoadP    _  80  20   ... alias_index=4
  2573 //
  2574 // In phase 2, new memory inputs are computed for the loads and stores,
  2575 // And a new version of the phi is created.  In phase 4, the inputs to
  2576 // node 80 are updated and then the memory nodes are updated with the
  2577 // values computed in phase 2.  This results in:
  2578 //
  2579 //     7 Parm #memory
  2580 //    10  ConI  "12"
  2581 //    19  CheckCastPP   "Foo"
  2582 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2583 //    29  CheckCastPP   "Foo"  iid=24
  2584 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2585 //
  2586 //    40  StoreP  25  7   20   ... alias_index=4
  2587 //    50  StoreP  35  7   30   ... alias_index=6
  2588 //    60  StoreP  45  40  20   ... alias_index=4
  2589 //    70  LoadP    _  50  30   ... alias_index=6
  2590 //    80  Phi     75  40  60   Memory alias_index=4
  2591 //   120  Phi     75  50  50   Memory alias_index=6
  2592 //    90  LoadP    _ 120  30   ... alias_index=6
  2593 //   100  LoadP    _  80  20   ... alias_index=4
  2594 //
  2595 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
  2596   GrowableArray<Node *>  memnode_worklist;
  2597   GrowableArray<PhiNode *>  orig_phis;
  2598   PhaseIterGVN  *igvn = _igvn;
  2599   uint new_index_start = (uint) _compile->num_alias_types();
  2600   Arena* arena = Thread::current()->resource_area();
  2601   VectorSet visited(arena);
  2602   ideal_nodes.clear(); // Reset for use with set_map/get_map.
  2603   uint unique_old = _compile->unique();
  2605   //  Phase 1:  Process possible allocations from alloc_worklist.
  2606   //  Create instance types for the CheckCastPP for allocations where possible.
  2607   //
  2608   // (Note: don't forget to change the order of the second AddP node on
  2609   //  the alloc_worklist if the order of the worklist processing is changed,
  2610   //  see the comment in find_second_addp().)
  2611   //
  2612   while (alloc_worklist.length() != 0) {
  2613     Node *n = alloc_worklist.pop();
  2614     uint ni = n->_idx;
  2615     if (n->is_Call()) {
  2616       CallNode *alloc = n->as_Call();
  2617       // copy escape information to call node
  2618       PointsToNode* ptn = ptnode_adr(alloc->_idx);
  2619       PointsToNode::EscapeState es = ptn->escape_state();
  2620       // We have an allocation or call which returns a Java object,
  2621       // see if it is unescaped.
  2622       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
  2623         continue;
  2624       // Find CheckCastPP for the allocate or for the return value of a call
  2625       n = alloc->result_cast();
  2626       if (n == NULL) {            // No uses except Initialize node
  2627         if (alloc->is_Allocate()) {
  2628           // Set the scalar_replaceable flag for allocation
  2629           // so it could be eliminated if it has no uses.
  2630           alloc->as_Allocate()->_is_scalar_replaceable = true;
  2632         continue;
  2634       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
  2635         assert(!alloc->is_Allocate(), "allocation should have unique type");
  2636         continue;
  2639       // The inline code for Object.clone() casts the allocation result to
  2640       // java.lang.Object and then to the actual type of the allocated
  2641       // object. Detect this case and use the second cast.
  2642       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
  2643       // the allocation result is cast to java.lang.Object and then
  2644       // to the actual Array type.
  2645       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
  2646           && (alloc->is_AllocateArray() ||
  2647               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
  2648         Node *cast2 = NULL;
  2649         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2650           Node *use = n->fast_out(i);
  2651           if (use->is_CheckCastPP()) {
  2652             cast2 = use;
  2653             break;
  2656         if (cast2 != NULL) {
  2657           n = cast2;
  2658         } else {
  2659           // Non-scalar replaceable if the allocation type is unknown statically
  2660           // (reflection allocation), the object can't be restored during
  2661           // deoptimization without precise type.
  2662           continue;
  2665       if (alloc->is_Allocate()) {
  2666         // Set the scalar_replaceable flag for allocation
  2667         // so it could be eliminated.
  2668         alloc->as_Allocate()->_is_scalar_replaceable = true;
  2670       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
  2671       // in order for an object to be scalar-replaceable, it must be:
  2672       //   - a direct allocation (not a call returning an object)
  2673       //   - non-escaping
  2674       //   - eligible to be a unique type
  2675       //   - not determined to be ineligible by escape analysis
  2676       set_map(alloc, n);
  2677       set_map(n, alloc);
  2678       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
  2679       if (t == NULL)
  2680         continue;  // not a TypeOopPtr
  2681       const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
  2682       igvn->hash_delete(n);
  2683       igvn->set_type(n,  tinst);
  2684       n->raise_bottom_type(tinst);
  2685       igvn->hash_insert(n);
  2686       record_for_optimizer(n);
  2687       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
  2689         // First, put on the worklist all Field edges from Connection Graph
  2690         // which is more accurate then putting immediate users from Ideal Graph.
  2691         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
  2692           PointsToNode* tgt = e.get();
  2693           Node* use = tgt->ideal_node();
  2694           assert(tgt->is_Field() && use->is_AddP(),
  2695                  "only AddP nodes are Field edges in CG");
  2696           if (use->outcnt() > 0) { // Don't process dead nodes
  2697             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
  2698             if (addp2 != NULL) {
  2699               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2700               alloc_worklist.append_if_missing(addp2);
  2702             alloc_worklist.append_if_missing(use);
  2706         // An allocation may have an Initialize which has raw stores. Scan
  2707         // the users of the raw allocation result and push AddP users
  2708         // on alloc_worklist.
  2709         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
  2710         assert (raw_result != NULL, "must have an allocation result");
  2711         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
  2712           Node *use = raw_result->fast_out(i);
  2713           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
  2714             Node* addp2 = find_second_addp(use, raw_result);
  2715             if (addp2 != NULL) {
  2716               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2717               alloc_worklist.append_if_missing(addp2);
  2719             alloc_worklist.append_if_missing(use);
  2720           } else if (use->is_MemBar()) {
  2721             memnode_worklist.append_if_missing(use);
  2725     } else if (n->is_AddP()) {
  2726       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
  2727       if (jobj == NULL || jobj == phantom_obj) {
  2728 #ifdef ASSERT
  2729         ptnode_adr(get_addp_base(n)->_idx)->dump();
  2730         ptnode_adr(n->_idx)->dump();
  2731         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2732 #endif
  2733         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2734         return;
  2736       Node *base = get_map(jobj->idx());  // CheckCastPP node
  2737       if (!split_AddP(n, base)) continue; // wrong type from dead path
  2738     } else if (n->is_Phi() ||
  2739                n->is_CheckCastPP() ||
  2740                n->is_EncodeP() ||
  2741                n->is_DecodeN() ||
  2742                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
  2743       if (visited.test_set(n->_idx)) {
  2744         assert(n->is_Phi(), "loops only through Phi's");
  2745         continue;  // already processed
  2747       JavaObjectNode* jobj = unique_java_object(n);
  2748       if (jobj == NULL || jobj == phantom_obj) {
  2749 #ifdef ASSERT
  2750         ptnode_adr(n->_idx)->dump();
  2751         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2752 #endif
  2753         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2754         return;
  2755       } else {
  2756         Node *val = get_map(jobj->idx());   // CheckCastPP node
  2757         TypeNode *tn = n->as_Type();
  2758         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
  2759         assert(tinst != NULL && tinst->is_known_instance() &&
  2760                tinst->instance_id() == jobj->idx() , "instance type expected.");
  2762         const Type *tn_type = igvn->type(tn);
  2763         const TypeOopPtr *tn_t;
  2764         if (tn_type->isa_narrowoop()) {
  2765           tn_t = tn_type->make_ptr()->isa_oopptr();
  2766         } else {
  2767           tn_t = tn_type->isa_oopptr();
  2769         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
  2770           if (tn_type->isa_narrowoop()) {
  2771             tn_type = tinst->make_narrowoop();
  2772           } else {
  2773             tn_type = tinst;
  2775           igvn->hash_delete(tn);
  2776           igvn->set_type(tn, tn_type);
  2777           tn->set_type(tn_type);
  2778           igvn->hash_insert(tn);
  2779           record_for_optimizer(n);
  2780         } else {
  2781           assert(tn_type == TypePtr::NULL_PTR ||
  2782                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
  2783                  "unexpected type");
  2784           continue; // Skip dead path with different type
  2787     } else {
  2788       debug_only(n->dump();)
  2789       assert(false, "EA: unexpected node");
  2790       continue;
  2792     // push allocation's users on appropriate worklist
  2793     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2794       Node *use = n->fast_out(i);
  2795       if(use->is_Mem() && use->in(MemNode::Address) == n) {
  2796         // Load/store to instance's field
  2797         memnode_worklist.append_if_missing(use);
  2798       } else if (use->is_MemBar()) {
  2799         memnode_worklist.append_if_missing(use);
  2800       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
  2801         Node* addp2 = find_second_addp(use, n);
  2802         if (addp2 != NULL) {
  2803           alloc_worklist.append_if_missing(addp2);
  2805         alloc_worklist.append_if_missing(use);
  2806       } else if (use->is_Phi() ||
  2807                  use->is_CheckCastPP() ||
  2808                  use->is_EncodeP() ||
  2809                  use->is_DecodeN() ||
  2810                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
  2811         alloc_worklist.append_if_missing(use);
  2812 #ifdef ASSERT
  2813       } else if (use->is_Mem()) {
  2814         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
  2815       } else if (use->is_MergeMem()) {
  2816         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  2817       } else if (use->is_SafePoint()) {
  2818         // Look for MergeMem nodes for calls which reference unique allocation
  2819         // (through CheckCastPP nodes) even for debug info.
  2820         Node* m = use->in(TypeFunc::Memory);
  2821         if (m->is_MergeMem()) {
  2822           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  2824       } else {
  2825         uint op = use->Opcode();
  2826         if (!(op == Op_CmpP || op == Op_Conv2B ||
  2827               op == Op_CastP2X || op == Op_StoreCM ||
  2828               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
  2829               op == Op_StrEquals || op == Op_StrIndexOf)) {
  2830           n->dump();
  2831           use->dump();
  2832           assert(false, "EA: missing allocation reference path");
  2834 #endif
  2839   // New alias types were created in split_AddP().
  2840   uint new_index_end = (uint) _compile->num_alias_types();
  2841   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
  2843   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  2844   //            compute new values for Memory inputs  (the Memory inputs are not
  2845   //            actually updated until phase 4.)
  2846   if (memnode_worklist.length() == 0)
  2847     return;  // nothing to do
  2848   while (memnode_worklist.length() != 0) {
  2849     Node *n = memnode_worklist.pop();
  2850     if (visited.test_set(n->_idx))
  2851       continue;
  2852     if (n->is_Phi() || n->is_ClearArray()) {
  2853       // we don't need to do anything, but the users must be pushed
  2854     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
  2855       // we don't need to do anything, but the users must be pushed
  2856       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
  2857       if (n == NULL)
  2858         continue;
  2859     } else {
  2860       assert(n->is_Mem(), "memory node required.");
  2861       Node *addr = n->in(MemNode::Address);
  2862       const Type *addr_t = igvn->type(addr);
  2863       if (addr_t == Type::TOP)
  2864         continue;
  2865       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
  2866       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
  2867       assert ((uint)alias_idx < new_index_end, "wrong alias index");
  2868       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
  2869       if (_compile->failing()) {
  2870         return;
  2872       if (mem != n->in(MemNode::Memory)) {
  2873         // We delay the memory edge update since we need old one in
  2874         // MergeMem code below when instances memory slices are separated.
  2875         set_map(n, mem);
  2877       if (n->is_Load()) {
  2878         continue;  // don't push users
  2879       } else if (n->is_LoadStore()) {
  2880         // get the memory projection
  2881         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2882           Node *use = n->fast_out(i);
  2883           if (use->Opcode() == Op_SCMemProj) {
  2884             n = use;
  2885             break;
  2888         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  2891     // push user on appropriate worklist
  2892     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2893       Node *use = n->fast_out(i);
  2894       if (use->is_Phi() || use->is_ClearArray()) {
  2895         memnode_worklist.append_if_missing(use);
  2896       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
  2897         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
  2898           continue;
  2899         memnode_worklist.append_if_missing(use);
  2900       } else if (use->is_MemBar()) {
  2901         memnode_worklist.append_if_missing(use);
  2902 #ifdef ASSERT
  2903       } else if(use->is_Mem()) {
  2904         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
  2905       } else if (use->is_MergeMem()) {
  2906         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  2907       } else {
  2908         uint op = use->Opcode();
  2909         if (!(op == Op_StoreCM ||
  2910               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
  2911                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
  2912               op == Op_AryEq || op == Op_StrComp ||
  2913               op == Op_StrEquals || op == Op_StrIndexOf)) {
  2914           n->dump();
  2915           use->dump();
  2916           assert(false, "EA: missing memory path");
  2918 #endif
  2923   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  2924   //            Walk each memory slice moving the first node encountered of each
  2925   //            instance type to the the input corresponding to its alias index.
  2926   uint length = _mergemem_worklist.length();
  2927   for( uint next = 0; next < length; ++next ) {
  2928     MergeMemNode* nmm = _mergemem_worklist.at(next);
  2929     assert(!visited.test_set(nmm->_idx), "should not be visited before");
  2930     // Note: we don't want to use MergeMemStream here because we only want to
  2931     // scan inputs which exist at the start, not ones we add during processing.
  2932     // Note 2: MergeMem may already contains instance memory slices added
  2933     // during find_inst_mem() call when memory nodes were processed above.
  2934     igvn->hash_delete(nmm);
  2935     uint nslices = nmm->req();
  2936     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  2937       Node* mem = nmm->in(i);
  2938       Node* cur = NULL;
  2939       if (mem == NULL || mem->is_top())
  2940         continue;
  2941       // First, update mergemem by moving memory nodes to corresponding slices
  2942       // if their type became more precise since this mergemem was created.
  2943       while (mem->is_Mem()) {
  2944         const Type *at = igvn->type(mem->in(MemNode::Address));
  2945         if (at != Type::TOP) {
  2946           assert (at->isa_ptr() != NULL, "pointer type required.");
  2947           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
  2948           if (idx == i) {
  2949             if (cur == NULL)
  2950               cur = mem;
  2951           } else {
  2952             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
  2953               nmm->set_memory_at(idx, mem);
  2957         mem = mem->in(MemNode::Memory);
  2959       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  2960       // Find any instance of the current type if we haven't encountered
  2961       // already a memory slice of the instance along the memory chain.
  2962       for (uint ni = new_index_start; ni < new_index_end; ni++) {
  2963         if((uint)_compile->get_general_index(ni) == i) {
  2964           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  2965           if (nmm->is_empty_memory(m)) {
  2966             Node* result = find_inst_mem(mem, ni, orig_phis);
  2967             if (_compile->failing()) {
  2968               return;
  2970             nmm->set_memory_at(ni, result);
  2975     // Find the rest of instances values
  2976     for (uint ni = new_index_start; ni < new_index_end; ni++) {
  2977       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
  2978       Node* result = step_through_mergemem(nmm, ni, tinst);
  2979       if (result == nmm->base_memory()) {
  2980         // Didn't find instance memory, search through general slice recursively.
  2981         result = nmm->memory_at(_compile->get_general_index(ni));
  2982         result = find_inst_mem(result, ni, orig_phis);
  2983         if (_compile->failing()) {
  2984           return;
  2986         nmm->set_memory_at(ni, result);
  2989     igvn->hash_insert(nmm);
  2990     record_for_optimizer(nmm);
  2993   //  Phase 4:  Update the inputs of non-instance memory Phis and
  2994   //            the Memory input of memnodes
  2995   // First update the inputs of any non-instance Phi's from
  2996   // which we split out an instance Phi.  Note we don't have
  2997   // to recursively process Phi's encounted on the input memory
  2998   // chains as is done in split_memory_phi() since they  will
  2999   // also be processed here.
  3000   for (int j = 0; j < orig_phis.length(); j++) {
  3001     PhiNode *phi = orig_phis.at(j);
  3002     int alias_idx = _compile->get_alias_index(phi->adr_type());
  3003     igvn->hash_delete(phi);
  3004     for (uint i = 1; i < phi->req(); i++) {
  3005       Node *mem = phi->in(i);
  3006       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
  3007       if (_compile->failing()) {
  3008         return;
  3010       if (mem != new_mem) {
  3011         phi->set_req(i, new_mem);
  3014     igvn->hash_insert(phi);
  3015     record_for_optimizer(phi);
  3018   // Update the memory inputs of MemNodes with the value we computed
  3019   // in Phase 2 and move stores memory users to corresponding memory slices.
  3020   // Disable memory split verification code until the fix for 6984348.
  3021   // Currently it produces false negative results since it does not cover all cases.
  3022 #if 0 // ifdef ASSERT
  3023   visited.Reset();
  3024   Node_Stack old_mems(arena, _compile->unique() >> 2);
  3025 #endif
  3026   for (uint i = 0; i < ideal_nodes.size(); i++) {
  3027     Node*    n = ideal_nodes.at(i);
  3028     Node* nmem = get_map(n->_idx);
  3029     assert(nmem != NULL, "sanity");
  3030     if (n->is_Mem()) {
  3031 #if 0 // ifdef ASSERT
  3032       Node* old_mem = n->in(MemNode::Memory);
  3033       if (!visited.test_set(old_mem->_idx)) {
  3034         old_mems.push(old_mem, old_mem->outcnt());
  3036 #endif
  3037       assert(n->in(MemNode::Memory) != nmem, "sanity");
  3038       if (!n->is_Load()) {
  3039         // Move memory users of a store first.
  3040         move_inst_mem(n, orig_phis);
  3042       // Now update memory input
  3043       igvn->hash_delete(n);
  3044       n->set_req(MemNode::Memory, nmem);
  3045       igvn->hash_insert(n);
  3046       record_for_optimizer(n);
  3047     } else {
  3048       assert(n->is_Allocate() || n->is_CheckCastPP() ||
  3049              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
  3052 #if 0 // ifdef ASSERT
  3053   // Verify that memory was split correctly
  3054   while (old_mems.is_nonempty()) {
  3055     Node* old_mem = old_mems.node();
  3056     uint  old_cnt = old_mems.index();
  3057     old_mems.pop();
  3058     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
  3060 #endif
  3063 #ifndef PRODUCT
  3064 static const char *node_type_names[] = {
  3065   "UnknownType",
  3066   "JavaObject",
  3067   "LocalVar",
  3068   "Field",
  3069   "Arraycopy"
  3070 };
  3072 static const char *esc_names[] = {
  3073   "UnknownEscape",
  3074   "NoEscape",
  3075   "ArgEscape",
  3076   "GlobalEscape"
  3077 };
  3079 void PointsToNode::dump(bool print_state) const {
  3080   NodeType nt = node_type();
  3081   tty->print("%s ", node_type_names[(int) nt]);
  3082   if (print_state) {
  3083     EscapeState es = escape_state();
  3084     EscapeState fields_es = fields_escape_state();
  3085     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
  3086     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
  3087       tty->print("NSR");
  3089   if (is_Field()) {
  3090     FieldNode* f = (FieldNode*)this;
  3091     tty->print("(");
  3092     for (BaseIterator i(f); i.has_next(); i.next()) {
  3093       PointsToNode* b = i.get();
  3094       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
  3096     tty->print(" )");
  3098   tty->print("[");
  3099   for (EdgeIterator i(this); i.has_next(); i.next()) {
  3100     PointsToNode* e = i.get();
  3101     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
  3103   tty->print(" [");
  3104   for (UseIterator i(this); i.has_next(); i.next()) {
  3105     PointsToNode* u = i.get();
  3106     bool is_base = false;
  3107     if (PointsToNode::is_base_use(u)) {
  3108       is_base = true;
  3109       u = PointsToNode::get_use_node(u)->as_Field();
  3111     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
  3113   tty->print(" ]]  ");
  3114   if (_node == NULL)
  3115     tty->print_cr("<null>");
  3116   else
  3117     _node->dump();
  3120 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
  3121   bool first = true;
  3122   int ptnodes_length = ptnodes_worklist.length();
  3123   for (int i = 0; i < ptnodes_length; i++) {
  3124     PointsToNode *ptn = ptnodes_worklist.at(i);
  3125     if (ptn == NULL || !ptn->is_JavaObject())
  3126       continue;
  3127     PointsToNode::EscapeState es = ptn->escape_state();
  3128     if (ptn->ideal_node()->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
  3129       if (first) {
  3130         tty->cr();
  3131         tty->print("======== Connection graph for ");
  3132         _compile->method()->print_short_name();
  3133         tty->cr();
  3134         first = false;
  3136       ptn->dump();
  3137       // Print all locals and fields which reference this allocation
  3138       for (UseIterator j(ptn); j.has_next(); j.next()) {
  3139         PointsToNode* use = j.get();
  3140         if (use->is_LocalVar()) {
  3141           use->dump(Verbose);
  3142         } else if (Verbose) {
  3143           use->dump();
  3146       tty->cr();
  3150 #endif

mercurial