src/share/vm/opto/callnode.hpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3651
ee138854b3a6
child 3969
1d7922586cf6
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
    26 #define SHARE_VM_OPTO_CALLNODE_HPP
    28 #include "opto/connode.hpp"
    29 #include "opto/mulnode.hpp"
    30 #include "opto/multnode.hpp"
    31 #include "opto/opcodes.hpp"
    32 #include "opto/phaseX.hpp"
    33 #include "opto/type.hpp"
    35 // Portions of code courtesy of Clifford Click
    37 // Optimization - Graph Style
    39 class Chaitin;
    40 class NamedCounter;
    41 class MultiNode;
    42 class  SafePointNode;
    43 class   CallNode;
    44 class     CallJavaNode;
    45 class       CallStaticJavaNode;
    46 class       CallDynamicJavaNode;
    47 class     CallRuntimeNode;
    48 class       CallLeafNode;
    49 class         CallLeafNoFPNode;
    50 class     AllocateNode;
    51 class       AllocateArrayNode;
    52 class     LockNode;
    53 class     UnlockNode;
    54 class JVMState;
    55 class OopMap;
    56 class State;
    57 class StartNode;
    58 class MachCallNode;
    59 class FastLockNode;
    61 //------------------------------StartNode--------------------------------------
    62 // The method start node
    63 class StartNode : public MultiNode {
    64   virtual uint cmp( const Node &n ) const;
    65   virtual uint size_of() const; // Size is bigger
    66 public:
    67   const TypeTuple *_domain;
    68   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    69     init_class_id(Class_Start);
    70     init_req(0,this);
    71     init_req(1,root);
    72   }
    73   virtual int Opcode() const;
    74   virtual bool pinned() const { return true; };
    75   virtual const Type *bottom_type() const;
    76   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
    77   virtual const Type *Value( PhaseTransform *phase ) const;
    78   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    79   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
    80   virtual const RegMask &in_RegMask(uint) const;
    81   virtual Node *match( const ProjNode *proj, const Matcher *m );
    82   virtual uint ideal_reg() const { return 0; }
    83 #ifndef PRODUCT
    84   virtual void  dump_spec(outputStream *st) const;
    85 #endif
    86 };
    88 //------------------------------StartOSRNode-----------------------------------
    89 // The method start node for on stack replacement code
    90 class StartOSRNode : public StartNode {
    91 public:
    92   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
    93   virtual int   Opcode() const;
    94   static  const TypeTuple *osr_domain();
    95 };
    98 //------------------------------ParmNode---------------------------------------
    99 // Incoming parameters
   100 class ParmNode : public ProjNode {
   101   static const char * const names[TypeFunc::Parms+1];
   102 public:
   103   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
   104     init_class_id(Class_Parm);
   105   }
   106   virtual int Opcode() const;
   107   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
   108   virtual uint ideal_reg() const;
   109 #ifndef PRODUCT
   110   virtual void dump_spec(outputStream *st) const;
   111 #endif
   112 };
   115 //------------------------------ReturnNode-------------------------------------
   116 // Return from subroutine node
   117 class ReturnNode : public Node {
   118 public:
   119   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
   120   virtual int Opcode() const;
   121   virtual bool  is_CFG() const { return true; }
   122   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   123   virtual bool depends_only_on_test() const { return false; }
   124   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   125   virtual const Type *Value( PhaseTransform *phase ) const;
   126   virtual uint ideal_reg() const { return NotAMachineReg; }
   127   virtual uint match_edge(uint idx) const;
   128 #ifndef PRODUCT
   129   virtual void dump_req() const;
   130 #endif
   131 };
   134 //------------------------------RethrowNode------------------------------------
   135 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
   136 // ends the current basic block like a ReturnNode.  Restores registers and
   137 // unwinds stack.  Rethrow happens in the caller's method.
   138 class RethrowNode : public Node {
   139  public:
   140   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
   141   virtual int Opcode() const;
   142   virtual bool  is_CFG() const { return true; }
   143   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   144   virtual bool depends_only_on_test() const { return false; }
   145   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   146   virtual const Type *Value( PhaseTransform *phase ) const;
   147   virtual uint match_edge(uint idx) const;
   148   virtual uint ideal_reg() const { return NotAMachineReg; }
   149 #ifndef PRODUCT
   150   virtual void dump_req() const;
   151 #endif
   152 };
   155 //------------------------------TailCallNode-----------------------------------
   156 // Pop stack frame and jump indirect
   157 class TailCallNode : public ReturnNode {
   158 public:
   159   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
   160     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
   161     init_req(TypeFunc::Parms, target);
   162     init_req(TypeFunc::Parms+1, moop);
   163   }
   165   virtual int Opcode() const;
   166   virtual uint match_edge(uint idx) const;
   167 };
   169 //------------------------------TailJumpNode-----------------------------------
   170 // Pop stack frame and jump indirect
   171 class TailJumpNode : public ReturnNode {
   172 public:
   173   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
   174     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
   175     init_req(TypeFunc::Parms, target);
   176     init_req(TypeFunc::Parms+1, ex_oop);
   177   }
   179   virtual int Opcode() const;
   180   virtual uint match_edge(uint idx) const;
   181 };
   183 //-------------------------------JVMState-------------------------------------
   184 // A linked list of JVMState nodes captures the whole interpreter state,
   185 // plus GC roots, for all active calls at some call site in this compilation
   186 // unit.  (If there is no inlining, then the list has exactly one link.)
   187 // This provides a way to map the optimized program back into the interpreter,
   188 // or to let the GC mark the stack.
   189 class JVMState : public ResourceObj {
   190   friend class VMStructs;
   191 public:
   192   typedef enum {
   193     Reexecute_Undefined = -1, // not defined -- will be translated into false later
   194     Reexecute_False     =  0, // false       -- do not reexecute
   195     Reexecute_True      =  1  // true        -- reexecute the bytecode
   196   } ReexecuteState; //Reexecute State
   198 private:
   199   JVMState*         _caller;    // List pointer for forming scope chains
   200   uint              _depth;     // One mroe than caller depth, or one.
   201   uint              _locoff;    // Offset to locals in input edge mapping
   202   uint              _stkoff;    // Offset to stack in input edge mapping
   203   uint              _monoff;    // Offset to monitors in input edge mapping
   204   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
   205   uint              _endoff;    // Offset to end of input edge mapping
   206   uint              _sp;        // Jave Expression Stack Pointer for this state
   207   int               _bci;       // Byte Code Index of this JVM point
   208   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
   209   ciMethod*         _method;    // Method Pointer
   210   SafePointNode*    _map;       // Map node associated with this scope
   211 public:
   212   friend class Compile;
   213   friend class PreserveReexecuteState;
   215   // Because JVMState objects live over the entire lifetime of the
   216   // Compile object, they are allocated into the comp_arena, which
   217   // does not get resource marked or reset during the compile process
   218   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
   219   void operator delete( void * ) { } // fast deallocation
   221   // Create a new JVMState, ready for abstract interpretation.
   222   JVMState(ciMethod* method, JVMState* caller);
   223   JVMState(int stack_size);  // root state; has a null method
   225   // Access functions for the JVM
   226   uint              locoff() const { return _locoff; }
   227   uint              stkoff() const { return _stkoff; }
   228   uint              argoff() const { return _stkoff + _sp; }
   229   uint              monoff() const { return _monoff; }
   230   uint              scloff() const { return _scloff; }
   231   uint              endoff() const { return _endoff; }
   232   uint              oopoff() const { return debug_end(); }
   234   int            loc_size() const { return _stkoff - _locoff; }
   235   int            stk_size() const { return _monoff - _stkoff; }
   236   int            mon_size() const { return _scloff - _monoff; }
   237   int            scl_size() const { return _endoff - _scloff; }
   239   bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
   240   bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
   241   bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
   242   bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }
   244   uint                      sp() const { return _sp; }
   245   int                      bci() const { return _bci; }
   246   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
   247   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
   248   bool              has_method() const { return _method != NULL; }
   249   ciMethod*             method() const { assert(has_method(), ""); return _method; }
   250   JVMState*             caller() const { return _caller; }
   251   SafePointNode*           map() const { return _map; }
   252   uint                   depth() const { return _depth; }
   253   uint             debug_start() const; // returns locoff of root caller
   254   uint               debug_end() const; // returns endoff of self
   255   uint              debug_size() const {
   256     return loc_size() + sp() + mon_size() + scl_size();
   257   }
   258   uint        debug_depth()  const; // returns sum of debug_size values at all depths
   260   // Returns the JVM state at the desired depth (1 == root).
   261   JVMState* of_depth(int d) const;
   263   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
   264   bool same_calls_as(const JVMState* that) const;
   266   // Monitors (monitors are stored as (boxNode, objNode) pairs
   267   enum { logMonitorEdges = 1 };
   268   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
   269   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
   270   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
   271   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
   272   bool is_monitor_box(uint off)    const {
   273     assert(is_mon(off), "should be called only for monitor edge");
   274     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
   275   }
   276   bool is_monitor_use(uint off)    const { return (is_mon(off)
   277                                                    && is_monitor_box(off))
   278                                              || (caller() && caller()->is_monitor_use(off)); }
   280   // Initialization functions for the JVM
   281   void              set_locoff(uint off) { _locoff = off; }
   282   void              set_stkoff(uint off) { _stkoff = off; }
   283   void              set_monoff(uint off) { _monoff = off; }
   284   void              set_scloff(uint off) { _scloff = off; }
   285   void              set_endoff(uint off) { _endoff = off; }
   286   void              set_offsets(uint off) {
   287     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
   288   }
   289   void              set_map(SafePointNode *map) { _map = map; }
   290   void              set_sp(uint sp) { _sp = sp; }
   291                     // _reexecute is initialized to "undefined" for a new bci
   292   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
   293   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
   295   // Miscellaneous utility functions
   296   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
   297   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
   299 #ifndef PRODUCT
   300   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
   301   void      dump_spec(outputStream *st) const;
   302   void      dump_on(outputStream* st) const;
   303   void      dump() const {
   304     dump_on(tty);
   305   }
   306 #endif
   307 };
   309 //------------------------------SafePointNode----------------------------------
   310 // A SafePointNode is a subclass of a MultiNode for convenience (and
   311 // potential code sharing) only - conceptually it is independent of
   312 // the Node semantics.
   313 class SafePointNode : public MultiNode {
   314   virtual uint           cmp( const Node &n ) const;
   315   virtual uint           size_of() const;       // Size is bigger
   317 public:
   318   SafePointNode(uint edges, JVMState* jvms,
   319                 // A plain safepoint advertises no memory effects (NULL):
   320                 const TypePtr* adr_type = NULL)
   321     : MultiNode( edges ),
   322       _jvms(jvms),
   323       _oop_map(NULL),
   324       _adr_type(adr_type)
   325   {
   326     init_class_id(Class_SafePoint);
   327   }
   329   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
   330   JVMState* const _jvms;      // Pointer to list of JVM State objects
   331   const TypePtr*  _adr_type;  // What type of memory does this node produce?
   333   // Many calls take *all* of memory as input,
   334   // but some produce a limited subset of that memory as output.
   335   // The adr_type reports the call's behavior as a store, not a load.
   337   virtual JVMState* jvms() const { return _jvms; }
   338   void set_jvms(JVMState* s) {
   339     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
   340   }
   341   OopMap *oop_map() const { return _oop_map; }
   342   void set_oop_map(OopMap *om) { _oop_map = om; }
   344   // Functionality from old debug nodes which has changed
   345   Node *local(JVMState* jvms, uint idx) const {
   346     assert(verify_jvms(jvms), "jvms must match");
   347     return in(jvms->locoff() + idx);
   348   }
   349   Node *stack(JVMState* jvms, uint idx) const {
   350     assert(verify_jvms(jvms), "jvms must match");
   351     return in(jvms->stkoff() + idx);
   352   }
   353   Node *argument(JVMState* jvms, uint idx) const {
   354     assert(verify_jvms(jvms), "jvms must match");
   355     return in(jvms->argoff() + idx);
   356   }
   357   Node *monitor_box(JVMState* jvms, uint idx) const {
   358     assert(verify_jvms(jvms), "jvms must match");
   359     return in(jvms->monitor_box_offset(idx));
   360   }
   361   Node *monitor_obj(JVMState* jvms, uint idx) const {
   362     assert(verify_jvms(jvms), "jvms must match");
   363     return in(jvms->monitor_obj_offset(idx));
   364   }
   366   void  set_local(JVMState* jvms, uint idx, Node *c);
   368   void  set_stack(JVMState* jvms, uint idx, Node *c) {
   369     assert(verify_jvms(jvms), "jvms must match");
   370     set_req(jvms->stkoff() + idx, c);
   371   }
   372   void  set_argument(JVMState* jvms, uint idx, Node *c) {
   373     assert(verify_jvms(jvms), "jvms must match");
   374     set_req(jvms->argoff() + idx, c);
   375   }
   376   void ensure_stack(JVMState* jvms, uint stk_size) {
   377     assert(verify_jvms(jvms), "jvms must match");
   378     int grow_by = (int)stk_size - (int)jvms->stk_size();
   379     if (grow_by > 0)  grow_stack(jvms, grow_by);
   380   }
   381   void grow_stack(JVMState* jvms, uint grow_by);
   382   // Handle monitor stack
   383   void push_monitor( const FastLockNode *lock );
   384   void pop_monitor ();
   385   Node *peek_monitor_box() const;
   386   Node *peek_monitor_obj() const;
   388   // Access functions for the JVM
   389   Node *control  () const { return in(TypeFunc::Control  ); }
   390   Node *i_o      () const { return in(TypeFunc::I_O      ); }
   391   Node *memory   () const { return in(TypeFunc::Memory   ); }
   392   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
   393   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
   395   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
   396   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
   397   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
   399   MergeMemNode* merged_memory() const {
   400     return in(TypeFunc::Memory)->as_MergeMem();
   401   }
   403   // The parser marks useless maps as dead when it's done with them:
   404   bool is_killed() { return in(TypeFunc::Control) == NULL; }
   406   // Exception states bubbling out of subgraphs such as inlined calls
   407   // are recorded here.  (There might be more than one, hence the "next".)
   408   // This feature is used only for safepoints which serve as "maps"
   409   // for JVM states during parsing, intrinsic expansion, etc.
   410   SafePointNode*         next_exception() const;
   411   void               set_next_exception(SafePointNode* n);
   412   bool                   has_exceptions() const { return next_exception() != NULL; }
   414   // Standard Node stuff
   415   virtual int            Opcode() const;
   416   virtual bool           pinned() const { return true; }
   417   virtual const Type    *Value( PhaseTransform *phase ) const;
   418   virtual const Type    *bottom_type() const { return Type::CONTROL; }
   419   virtual const TypePtr *adr_type() const { return _adr_type; }
   420   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
   421   virtual Node          *Identity( PhaseTransform *phase );
   422   virtual uint           ideal_reg() const { return 0; }
   423   virtual const RegMask &in_RegMask(uint) const;
   424   virtual const RegMask &out_RegMask() const;
   425   virtual uint           match_edge(uint idx) const;
   427   static  bool           needs_polling_address_input();
   429 #ifndef PRODUCT
   430   virtual void              dump_spec(outputStream *st) const;
   431 #endif
   432 };
   434 //------------------------------SafePointScalarObjectNode----------------------
   435 // A SafePointScalarObjectNode represents the state of a scalarized object
   436 // at a safepoint.
   438 class SafePointScalarObjectNode: public TypeNode {
   439   uint _first_index; // First input edge index of a SafePoint node where
   440                      // states of the scalarized object fields are collected.
   441   uint _n_fields;    // Number of non-static fields of the scalarized object.
   442   DEBUG_ONLY(AllocateNode* _alloc;)
   444   virtual uint hash() const ; // { return NO_HASH; }
   445   virtual uint cmp( const Node &n ) const;
   447 public:
   448   SafePointScalarObjectNode(const TypeOopPtr* tp,
   449 #ifdef ASSERT
   450                             AllocateNode* alloc,
   451 #endif
   452                             uint first_index, uint n_fields);
   453   virtual int Opcode() const;
   454   virtual uint           ideal_reg() const;
   455   virtual const RegMask &in_RegMask(uint) const;
   456   virtual const RegMask &out_RegMask() const;
   457   virtual uint           match_edge(uint idx) const;
   459   uint first_index() const { return _first_index; }
   460   uint n_fields()    const { return _n_fields; }
   462 #ifdef ASSERT
   463   AllocateNode* alloc() const { return _alloc; }
   464 #endif
   466   virtual uint size_of() const { return sizeof(*this); }
   468   // Assumes that "this" is an argument to a safepoint node "s", and that
   469   // "new_call" is being created to correspond to "s".  But the difference
   470   // between the start index of the jvmstates of "new_call" and "s" is
   471   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
   472   // corresponds appropriately to "this" in "new_call".  Assumes that
   473   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
   474   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
   475   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
   477 #ifndef PRODUCT
   478   virtual void              dump_spec(outputStream *st) const;
   479 #endif
   480 };
   483 // Simple container for the outgoing projections of a call.  Useful
   484 // for serious surgery on calls.
   485 class CallProjections : public StackObj {
   486 public:
   487   Node* fallthrough_proj;
   488   Node* fallthrough_catchproj;
   489   Node* fallthrough_memproj;
   490   Node* fallthrough_ioproj;
   491   Node* catchall_catchproj;
   492   Node* catchall_memproj;
   493   Node* catchall_ioproj;
   494   Node* resproj;
   495   Node* exobj;
   496 };
   499 //------------------------------CallNode---------------------------------------
   500 // Call nodes now subsume the function of debug nodes at callsites, so they
   501 // contain the functionality of a full scope chain of debug nodes.
   502 class CallNode : public SafePointNode {
   503   friend class VMStructs;
   504 public:
   505   const TypeFunc *_tf;        // Function type
   506   address      _entry_point;  // Address of method being called
   507   float        _cnt;          // Estimate of number of times called
   509   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
   510     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
   511       _tf(tf),
   512       _entry_point(addr),
   513       _cnt(COUNT_UNKNOWN)
   514   {
   515     init_class_id(Class_Call);
   516   }
   518   const TypeFunc* tf()        const { return _tf; }
   519   const address entry_point() const { return _entry_point; }
   520   const float   cnt()         const { return _cnt; }
   522   void set_tf(const TypeFunc* tf) { _tf = tf; }
   523   void set_entry_point(address p) { _entry_point = p; }
   524   void set_cnt(float c)           { _cnt = c; }
   526   virtual const Type *bottom_type() const;
   527   virtual const Type *Value( PhaseTransform *phase ) const;
   528   virtual Node *Identity( PhaseTransform *phase ) { return this; }
   529   virtual uint        cmp( const Node &n ) const;
   530   virtual uint        size_of() const = 0;
   531   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   532   virtual Node       *match( const ProjNode *proj, const Matcher *m );
   533   virtual uint        ideal_reg() const { return NotAMachineReg; }
   534   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
   535   // for some macro nodes whose expansion does not have a safepoint on the fast path.
   536   virtual bool        guaranteed_safepoint()  { return true; }
   537   // For macro nodes, the JVMState gets modified during expansion, so when cloning
   538   // the node the JVMState must be cloned.
   539   virtual void        clone_jvms() { }   // default is not to clone
   541   // Returns true if the call may modify n
   542   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
   543   // Does this node have a use of n other than in debug information?
   544   bool                has_non_debug_use(Node *n);
   545   // Returns the unique CheckCastPP of a call
   546   // or result projection is there are several CheckCastPP
   547   // or returns NULL if there is no one.
   548   Node *result_cast();
   549   // Does this node returns pointer?
   550   bool returns_pointer() const {
   551     const TypeTuple *r = tf()->range();
   552     return (r->cnt() > TypeFunc::Parms &&
   553             r->field_at(TypeFunc::Parms)->isa_ptr());
   554   }
   556   // Collect all the interesting edges from a call for use in
   557   // replacing the call by something else.  Used by macro expansion
   558   // and the late inlining support.
   559   void extract_projections(CallProjections* projs, bool separate_io_proj);
   561   virtual uint match_edge(uint idx) const;
   563 #ifndef PRODUCT
   564   virtual void        dump_req()  const;
   565   virtual void        dump_spec(outputStream *st) const;
   566 #endif
   567 };
   570 //------------------------------CallJavaNode-----------------------------------
   571 // Make a static or dynamic subroutine call node using Java calling
   572 // convention.  (The "Java" calling convention is the compiler's calling
   573 // convention, as opposed to the interpreter's or that of native C.)
   574 class CallJavaNode : public CallNode {
   575   friend class VMStructs;
   576 protected:
   577   virtual uint cmp( const Node &n ) const;
   578   virtual uint size_of() const; // Size is bigger
   580   bool    _optimized_virtual;
   581   bool    _method_handle_invoke;
   582   ciMethod* _method;            // Method being direct called
   583 public:
   584   const int       _bci;         // Byte Code Index of call byte code
   585   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
   586     : CallNode(tf, addr, TypePtr::BOTTOM),
   587       _method(method), _bci(bci),
   588       _optimized_virtual(false),
   589       _method_handle_invoke(false)
   590   {
   591     init_class_id(Class_CallJava);
   592   }
   594   virtual int   Opcode() const;
   595   ciMethod* method() const                { return _method; }
   596   void  set_method(ciMethod *m)           { _method = m; }
   597   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
   598   bool  is_optimized_virtual() const      { return _optimized_virtual; }
   599   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
   600   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
   602 #ifndef PRODUCT
   603   virtual void  dump_spec(outputStream *st) const;
   604 #endif
   605 };
   607 //------------------------------CallStaticJavaNode-----------------------------
   608 // Make a direct subroutine call using Java calling convention (for static
   609 // calls and optimized virtual calls, plus calls to wrappers for run-time
   610 // routines); generates static stub.
   611 class CallStaticJavaNode : public CallJavaNode {
   612   virtual uint cmp( const Node &n ) const;
   613   virtual uint size_of() const; // Size is bigger
   614 public:
   615   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
   616     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
   617     init_class_id(Class_CallStaticJava);
   618   }
   619   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
   620                      const TypePtr* adr_type)
   621     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
   622     init_class_id(Class_CallStaticJava);
   623     // This node calls a runtime stub, which often has narrow memory effects.
   624     _adr_type = adr_type;
   625   }
   626   const char *_name;            // Runtime wrapper name
   628   // If this is an uncommon trap, return the request code, else zero.
   629   int uncommon_trap_request() const;
   630   static int extract_uncommon_trap_request(const Node* call);
   632   virtual int         Opcode() const;
   633 #ifndef PRODUCT
   634   virtual void        dump_spec(outputStream *st) const;
   635 #endif
   636 };
   638 //------------------------------CallDynamicJavaNode----------------------------
   639 // Make a dispatched call using Java calling convention.
   640 class CallDynamicJavaNode : public CallJavaNode {
   641   virtual uint cmp( const Node &n ) const;
   642   virtual uint size_of() const; // Size is bigger
   643 public:
   644   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
   645     init_class_id(Class_CallDynamicJava);
   646   }
   648   int _vtable_index;
   649   virtual int   Opcode() const;
   650 #ifndef PRODUCT
   651   virtual void  dump_spec(outputStream *st) const;
   652 #endif
   653 };
   655 //------------------------------CallRuntimeNode--------------------------------
   656 // Make a direct subroutine call node into compiled C++ code.
   657 class CallRuntimeNode : public CallNode {
   658   virtual uint cmp( const Node &n ) const;
   659   virtual uint size_of() const; // Size is bigger
   660 public:
   661   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
   662                   const TypePtr* adr_type)
   663     : CallNode(tf, addr, adr_type),
   664       _name(name)
   665   {
   666     init_class_id(Class_CallRuntime);
   667   }
   669   const char *_name;            // Printable name, if _method is NULL
   670   virtual int   Opcode() const;
   671   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   673 #ifndef PRODUCT
   674   virtual void  dump_spec(outputStream *st) const;
   675 #endif
   676 };
   678 //------------------------------CallLeafNode-----------------------------------
   679 // Make a direct subroutine call node into compiled C++ code, without
   680 // safepoints
   681 class CallLeafNode : public CallRuntimeNode {
   682 public:
   683   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
   684                const TypePtr* adr_type)
   685     : CallRuntimeNode(tf, addr, name, adr_type)
   686   {
   687     init_class_id(Class_CallLeaf);
   688   }
   689   virtual int   Opcode() const;
   690   virtual bool        guaranteed_safepoint()  { return false; }
   691 #ifndef PRODUCT
   692   virtual void  dump_spec(outputStream *st) const;
   693 #endif
   694 };
   696 //------------------------------CallLeafNoFPNode-------------------------------
   697 // CallLeafNode, not using floating point or using it in the same manner as
   698 // the generated code
   699 class CallLeafNoFPNode : public CallLeafNode {
   700 public:
   701   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
   702                    const TypePtr* adr_type)
   703     : CallLeafNode(tf, addr, name, adr_type)
   704   {
   705   }
   706   virtual int   Opcode() const;
   707 };
   710 //------------------------------Allocate---------------------------------------
   711 // High-level memory allocation
   712 //
   713 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
   714 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
   715 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
   716 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
   717 //  order to differentiate the uses of the projection on the normal control path from
   718 //  those on the exception return path.
   719 //
   720 class AllocateNode : public CallNode {
   721 public:
   722   enum {
   723     // Output:
   724     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
   725     // Inputs:
   726     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
   727     KlassNode,                        // type (maybe dynamic) of the obj.
   728     InitialTest,                      // slow-path test (may be constant)
   729     ALength,                          // array length (or TOP if none)
   730     ParmLimit
   731   };
   733   static const TypeFunc* alloc_type() {
   734     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
   735     fields[AllocSize]   = TypeInt::POS;
   736     fields[KlassNode]   = TypeInstPtr::NOTNULL;
   737     fields[InitialTest] = TypeInt::BOOL;
   738     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
   740     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
   742     // create result type (range)
   743     fields = TypeTuple::fields(1);
   744     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   746     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   748     return TypeFunc::make(domain, range);
   749   }
   751   bool _is_scalar_replaceable;  // Result of Escape Analysis
   753   virtual uint size_of() const; // Size is bigger
   754   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   755                Node *size, Node *klass_node, Node *initial_test);
   756   // Expansion modifies the JVMState, so we need to clone it
   757   virtual void  clone_jvms() {
   758     set_jvms(jvms()->clone_deep(Compile::current()));
   759   }
   760   virtual int Opcode() const;
   761   virtual uint ideal_reg() const { return Op_RegP; }
   762   virtual bool        guaranteed_safepoint()  { return false; }
   764   // allocations do not modify their arguments
   765   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
   767   // Pattern-match a possible usage of AllocateNode.
   768   // Return null if no allocation is recognized.
   769   // The operand is the pointer produced by the (possible) allocation.
   770   // It must be a projection of the Allocate or its subsequent CastPP.
   771   // (Note:  This function is defined in file graphKit.cpp, near
   772   // GraphKit::new_instance/new_array, whose output it recognizes.)
   773   // The 'ptr' may not have an offset unless the 'offset' argument is given.
   774   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
   776   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
   777   // an offset, which is reported back to the caller.
   778   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
   779   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
   780                                         intptr_t& offset);
   782   // Dig the klass operand out of a (possible) allocation site.
   783   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
   784     AllocateNode* allo = Ideal_allocation(ptr, phase);
   785     return (allo == NULL) ? NULL : allo->in(KlassNode);
   786   }
   788   // Conservatively small estimate of offset of first non-header byte.
   789   int minimum_header_size() {
   790     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
   791                                 instanceOopDesc::base_offset_in_bytes();
   792   }
   794   // Return the corresponding initialization barrier (or null if none).
   795   // Walks out edges to find it...
   796   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   797   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   798   InitializeNode* initialization();
   800   // Return the corresponding storestore barrier (or null if none).
   801   // Walks out edges to find it...
   802   MemBarStoreStoreNode* storestore();
   804   // Convenience for initialization->maybe_set_complete(phase)
   805   bool maybe_set_complete(PhaseGVN* phase);
   806 };
   808 //------------------------------AllocateArray---------------------------------
   809 //
   810 // High-level array allocation
   811 //
   812 class AllocateArrayNode : public AllocateNode {
   813 public:
   814   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   815                     Node* size, Node* klass_node, Node* initial_test,
   816                     Node* count_val
   817                     )
   818     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
   819                    initial_test)
   820   {
   821     init_class_id(Class_AllocateArray);
   822     set_req(AllocateNode::ALength,        count_val);
   823   }
   824   virtual int Opcode() const;
   825   virtual uint size_of() const; // Size is bigger
   826   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   828   // Dig the length operand out of a array allocation site.
   829   Node* Ideal_length() {
   830     return in(AllocateNode::ALength);
   831   }
   833   // Dig the length operand out of a array allocation site and narrow the
   834   // type with a CastII, if necesssary
   835   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
   837   // Pattern-match a possible usage of AllocateArrayNode.
   838   // Return null if no allocation is recognized.
   839   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
   840     AllocateNode* allo = Ideal_allocation(ptr, phase);
   841     return (allo == NULL || !allo->is_AllocateArray())
   842            ? NULL : allo->as_AllocateArray();
   843   }
   844 };
   846 //------------------------------AbstractLockNode-----------------------------------
   847 class AbstractLockNode: public CallNode {
   848 private:
   849   enum {
   850     Regular = 0,  // Normal lock
   851     NonEscObj,    // Lock is used for non escaping object
   852     Coarsened,    // Lock was coarsened
   853     Nested        // Nested lock
   854   } _kind;
   855 #ifndef PRODUCT
   856   NamedCounter* _counter;
   857 #endif
   859 protected:
   860   // helper functions for lock elimination
   861   //
   863   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
   864                             GrowableArray<AbstractLockNode*> &lock_ops);
   865   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
   866                                        GrowableArray<AbstractLockNode*> &lock_ops);
   867   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
   868                                GrowableArray<AbstractLockNode*> &lock_ops);
   869   LockNode *find_matching_lock(UnlockNode* unlock);
   871   // Update the counter to indicate that this lock was eliminated.
   872   void set_eliminated_lock_counter() PRODUCT_RETURN;
   874 public:
   875   AbstractLockNode(const TypeFunc *tf)
   876     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
   877       _kind(Regular)
   878   {
   879 #ifndef PRODUCT
   880     _counter = NULL;
   881 #endif
   882   }
   883   virtual int Opcode() const = 0;
   884   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
   885   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
   886   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
   887   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
   889   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
   891   virtual uint size_of() const { return sizeof(*this); }
   893   bool is_eliminated()  const { return (_kind != Regular); }
   894   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
   895   bool is_coarsened()   const { return (_kind == Coarsened); }
   896   bool is_nested()      const { return (_kind == Nested); }
   898   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
   899   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
   900   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
   902   // locking does not modify its arguments
   903   virtual bool may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
   905 #ifndef PRODUCT
   906   void create_lock_counter(JVMState* s);
   907   NamedCounter* counter() const { return _counter; }
   908 #endif
   909 };
   911 //------------------------------Lock---------------------------------------
   912 // High-level lock operation
   913 //
   914 // This is a subclass of CallNode because it is a macro node which gets expanded
   915 // into a code sequence containing a call.  This node takes 3 "parameters":
   916 //    0  -  object to lock
   917 //    1 -   a BoxLockNode
   918 //    2 -   a FastLockNode
   919 //
   920 class LockNode : public AbstractLockNode {
   921 public:
   923   static const TypeFunc *lock_type() {
   924     // create input type (domain)
   925     const Type **fields = TypeTuple::fields(3);
   926     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   927     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
   928     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
   929     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
   931     // create result type (range)
   932     fields = TypeTuple::fields(0);
   934     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   936     return TypeFunc::make(domain,range);
   937   }
   939   virtual int Opcode() const;
   940   virtual uint size_of() const; // Size is bigger
   941   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   942     init_class_id(Class_Lock);
   943     init_flags(Flag_is_macro);
   944     C->add_macro_node(this);
   945   }
   946   virtual bool        guaranteed_safepoint()  { return false; }
   948   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   949   // Expansion modifies the JVMState, so we need to clone it
   950   virtual void  clone_jvms() {
   951     set_jvms(jvms()->clone_deep(Compile::current()));
   952   }
   954   bool is_nested_lock_region(); // Is this Lock nested?
   955 };
   957 //------------------------------Unlock---------------------------------------
   958 // High-level unlock operation
   959 class UnlockNode : public AbstractLockNode {
   960 public:
   961   virtual int Opcode() const;
   962   virtual uint size_of() const; // Size is bigger
   963   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   964     init_class_id(Class_Unlock);
   965     init_flags(Flag_is_macro);
   966     C->add_macro_node(this);
   967   }
   968   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   969   // unlock is never a safepoint
   970   virtual bool        guaranteed_safepoint()  { return false; }
   971 };
   973 #endif // SHARE_VM_OPTO_CALLNODE_HPP

mercurial