src/share/vm/opto/callnode.cpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3651
ee138854b3a6
child 3969
1d7922586cf6
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/bcEscapeAnalyzer.hpp"
    27 #include "compiler/oopMap.hpp"
    28 #include "opto/callnode.hpp"
    29 #include "opto/escape.hpp"
    30 #include "opto/locknode.hpp"
    31 #include "opto/machnode.hpp"
    32 #include "opto/matcher.hpp"
    33 #include "opto/parse.hpp"
    34 #include "opto/regalloc.hpp"
    35 #include "opto/regmask.hpp"
    36 #include "opto/rootnode.hpp"
    37 #include "opto/runtime.hpp"
    39 // Portions of code courtesy of Clifford Click
    41 // Optimization - Graph Style
    43 //=============================================================================
    44 uint StartNode::size_of() const { return sizeof(*this); }
    45 uint StartNode::cmp( const Node &n ) const
    46 { return _domain == ((StartNode&)n)._domain; }
    47 const Type *StartNode::bottom_type() const { return _domain; }
    48 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
    49 #ifndef PRODUCT
    50 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
    51 #endif
    53 //------------------------------Ideal------------------------------------------
    54 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
    55   return remove_dead_region(phase, can_reshape) ? this : NULL;
    56 }
    58 //------------------------------calling_convention-----------------------------
    59 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
    60   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
    61 }
    63 //------------------------------Registers--------------------------------------
    64 const RegMask &StartNode::in_RegMask(uint) const {
    65   return RegMask::Empty;
    66 }
    68 //------------------------------match------------------------------------------
    69 // Construct projections for incoming parameters, and their RegMask info
    70 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
    71   switch (proj->_con) {
    72   case TypeFunc::Control:
    73   case TypeFunc::I_O:
    74   case TypeFunc::Memory:
    75     return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
    76   case TypeFunc::FramePtr:
    77     return new (match->C, 1) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
    78   case TypeFunc::ReturnAdr:
    79     return new (match->C, 1) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
    80   case TypeFunc::Parms:
    81   default: {
    82       uint parm_num = proj->_con - TypeFunc::Parms;
    83       const Type *t = _domain->field_at(proj->_con);
    84       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
    85         return new (match->C, 1) ConNode(Type::TOP);
    86       uint ideal_reg = Matcher::base2reg[t->base()];
    87       RegMask &rm = match->_calling_convention_mask[parm_num];
    88       return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
    89     }
    90   }
    91   return NULL;
    92 }
    94 //------------------------------StartOSRNode----------------------------------
    95 // The method start node for an on stack replacement adapter
    97 //------------------------------osr_domain-----------------------------
    98 const TypeTuple *StartOSRNode::osr_domain() {
    99   const Type **fields = TypeTuple::fields(2);
   100   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
   102   return TypeTuple::make(TypeFunc::Parms+1, fields);
   103 }
   105 //=============================================================================
   106 const char * const ParmNode::names[TypeFunc::Parms+1] = {
   107   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
   108 };
   110 #ifndef PRODUCT
   111 void ParmNode::dump_spec(outputStream *st) const {
   112   if( _con < TypeFunc::Parms ) {
   113     st->print(names[_con]);
   114   } else {
   115     st->print("Parm%d: ",_con-TypeFunc::Parms);
   116     // Verbose and WizardMode dump bottom_type for all nodes
   117     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
   118   }
   119 }
   120 #endif
   122 uint ParmNode::ideal_reg() const {
   123   switch( _con ) {
   124   case TypeFunc::Control  : // fall through
   125   case TypeFunc::I_O      : // fall through
   126   case TypeFunc::Memory   : return 0;
   127   case TypeFunc::FramePtr : // fall through
   128   case TypeFunc::ReturnAdr: return Op_RegP;
   129   default                 : assert( _con > TypeFunc::Parms, "" );
   130     // fall through
   131   case TypeFunc::Parms    : {
   132     // Type of argument being passed
   133     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
   134     return Matcher::base2reg[t->base()];
   135   }
   136   }
   137   ShouldNotReachHere();
   138   return 0;
   139 }
   141 //=============================================================================
   142 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
   143   init_req(TypeFunc::Control,cntrl);
   144   init_req(TypeFunc::I_O,i_o);
   145   init_req(TypeFunc::Memory,memory);
   146   init_req(TypeFunc::FramePtr,frameptr);
   147   init_req(TypeFunc::ReturnAdr,retadr);
   148 }
   150 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
   151   return remove_dead_region(phase, can_reshape) ? this : NULL;
   152 }
   154 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
   155   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
   156     ? Type::TOP
   157     : Type::BOTTOM;
   158 }
   160 // Do we Match on this edge index or not?  No edges on return nodes
   161 uint ReturnNode::match_edge(uint idx) const {
   162   return 0;
   163 }
   166 #ifndef PRODUCT
   167 void ReturnNode::dump_req() const {
   168   // Dump the required inputs, enclosed in '(' and ')'
   169   uint i;                       // Exit value of loop
   170   for( i=0; i<req(); i++ ) {    // For all required inputs
   171     if( i == TypeFunc::Parms ) tty->print("returns");
   172     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   173     else tty->print("_ ");
   174   }
   175 }
   176 #endif
   178 //=============================================================================
   179 RethrowNode::RethrowNode(
   180   Node* cntrl,
   181   Node* i_o,
   182   Node* memory,
   183   Node* frameptr,
   184   Node* ret_adr,
   185   Node* exception
   186 ) : Node(TypeFunc::Parms + 1) {
   187   init_req(TypeFunc::Control  , cntrl    );
   188   init_req(TypeFunc::I_O      , i_o      );
   189   init_req(TypeFunc::Memory   , memory   );
   190   init_req(TypeFunc::FramePtr , frameptr );
   191   init_req(TypeFunc::ReturnAdr, ret_adr);
   192   init_req(TypeFunc::Parms    , exception);
   193 }
   195 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
   196   return remove_dead_region(phase, can_reshape) ? this : NULL;
   197 }
   199 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
   200   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
   201     ? Type::TOP
   202     : Type::BOTTOM;
   203 }
   205 uint RethrowNode::match_edge(uint idx) const {
   206   return 0;
   207 }
   209 #ifndef PRODUCT
   210 void RethrowNode::dump_req() const {
   211   // Dump the required inputs, enclosed in '(' and ')'
   212   uint i;                       // Exit value of loop
   213   for( i=0; i<req(); i++ ) {    // For all required inputs
   214     if( i == TypeFunc::Parms ) tty->print("exception");
   215     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   216     else tty->print("_ ");
   217   }
   218 }
   219 #endif
   221 //=============================================================================
   222 // Do we Match on this edge index or not?  Match only target address & method
   223 uint TailCallNode::match_edge(uint idx) const {
   224   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
   225 }
   227 //=============================================================================
   228 // Do we Match on this edge index or not?  Match only target address & oop
   229 uint TailJumpNode::match_edge(uint idx) const {
   230   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
   231 }
   233 //=============================================================================
   234 JVMState::JVMState(ciMethod* method, JVMState* caller) {
   235   assert(method != NULL, "must be valid call site");
   236   _method = method;
   237   _reexecute = Reexecute_Undefined;
   238   debug_only(_bci = -99);  // random garbage value
   239   debug_only(_map = (SafePointNode*)-1);
   240   _caller = caller;
   241   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
   242   _locoff = TypeFunc::Parms;
   243   _stkoff = _locoff + _method->max_locals();
   244   _monoff = _stkoff + _method->max_stack();
   245   _scloff = _monoff;
   246   _endoff = _monoff;
   247   _sp = 0;
   248 }
   249 JVMState::JVMState(int stack_size) {
   250   _method = NULL;
   251   _bci = InvocationEntryBci;
   252   _reexecute = Reexecute_Undefined;
   253   debug_only(_map = (SafePointNode*)-1);
   254   _caller = NULL;
   255   _depth  = 1;
   256   _locoff = TypeFunc::Parms;
   257   _stkoff = _locoff;
   258   _monoff = _stkoff + stack_size;
   259   _scloff = _monoff;
   260   _endoff = _monoff;
   261   _sp = 0;
   262 }
   264 //--------------------------------of_depth-------------------------------------
   265 JVMState* JVMState::of_depth(int d) const {
   266   const JVMState* jvmp = this;
   267   assert(0 < d && (uint)d <= depth(), "oob");
   268   for (int skip = depth() - d; skip > 0; skip--) {
   269     jvmp = jvmp->caller();
   270   }
   271   assert(jvmp->depth() == (uint)d, "found the right one");
   272   return (JVMState*)jvmp;
   273 }
   275 //-----------------------------same_calls_as-----------------------------------
   276 bool JVMState::same_calls_as(const JVMState* that) const {
   277   if (this == that)                    return true;
   278   if (this->depth() != that->depth())  return false;
   279   const JVMState* p = this;
   280   const JVMState* q = that;
   281   for (;;) {
   282     if (p->_method != q->_method)    return false;
   283     if (p->_method == NULL)          return true;   // bci is irrelevant
   284     if (p->_bci    != q->_bci)       return false;
   285     if (p->_reexecute != q->_reexecute)  return false;
   286     p = p->caller();
   287     q = q->caller();
   288     if (p == q)                      return true;
   289     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
   290   }
   291 }
   293 //------------------------------debug_start------------------------------------
   294 uint JVMState::debug_start()  const {
   295   debug_only(JVMState* jvmroot = of_depth(1));
   296   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
   297   return of_depth(1)->locoff();
   298 }
   300 //-------------------------------debug_end-------------------------------------
   301 uint JVMState::debug_end() const {
   302   debug_only(JVMState* jvmroot = of_depth(1));
   303   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
   304   return endoff();
   305 }
   307 //------------------------------debug_depth------------------------------------
   308 uint JVMState::debug_depth() const {
   309   uint total = 0;
   310   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
   311     total += jvmp->debug_size();
   312   }
   313   return total;
   314 }
   316 #ifndef PRODUCT
   318 //------------------------------format_helper----------------------------------
   319 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
   320 // any defined value or not.  If it does, print out the register or constant.
   321 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
   322   if (n == NULL) { st->print(" NULL"); return; }
   323   if (n->is_SafePointScalarObject()) {
   324     // Scalar replacement.
   325     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
   326     scobjs->append_if_missing(spobj);
   327     int sco_n = scobjs->find(spobj);
   328     assert(sco_n >= 0, "");
   329     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
   330     return;
   331   }
   332   if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
   333     char buf[50];
   334     regalloc->dump_register(n,buf);
   335     st->print(" %s%d]=%s",msg,i,buf);
   336   } else {                      // No register, but might be constant
   337     const Type *t = n->bottom_type();
   338     switch (t->base()) {
   339     case Type::Int:
   340       st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
   341       break;
   342     case Type::AnyPtr:
   343       assert( t == TypePtr::NULL_PTR, "" );
   344       st->print(" %s%d]=#NULL",msg,i);
   345       break;
   346     case Type::AryPtr:
   347     case Type::KlassPtr:
   348     case Type::InstPtr:
   349       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
   350       break;
   351     case Type::NarrowOop:
   352       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_oopptr()->const_oop());
   353       break;
   354     case Type::RawPtr:
   355       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
   356       break;
   357     case Type::DoubleCon:
   358       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
   359       break;
   360     case Type::FloatCon:
   361       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
   362       break;
   363     case Type::Long:
   364       st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
   365       break;
   366     case Type::Half:
   367     case Type::Top:
   368       st->print(" %s%d]=_",msg,i);
   369       break;
   370     default: ShouldNotReachHere();
   371     }
   372   }
   373 }
   375 //------------------------------format-----------------------------------------
   376 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
   377   st->print("        #");
   378   if( _method ) {
   379     _method->print_short_name(st);
   380     st->print(" @ bci:%d ",_bci);
   381   } else {
   382     st->print_cr(" runtime stub ");
   383     return;
   384   }
   385   if (n->is_MachSafePoint()) {
   386     GrowableArray<SafePointScalarObjectNode*> scobjs;
   387     MachSafePointNode *mcall = n->as_MachSafePoint();
   388     uint i;
   389     // Print locals
   390     for( i = 0; i < (uint)loc_size(); i++ )
   391       format_helper( regalloc, st, mcall->local(this, i), "L[", i, &scobjs );
   392     // Print stack
   393     for (i = 0; i < (uint)stk_size(); i++) {
   394       if ((uint)(_stkoff + i) >= mcall->len())
   395         st->print(" oob ");
   396       else
   397        format_helper( regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs );
   398     }
   399     for (i = 0; (int)i < nof_monitors(); i++) {
   400       Node *box = mcall->monitor_box(this, i);
   401       Node *obj = mcall->monitor_obj(this, i);
   402       if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
   403         box = BoxLockNode::box_node(box);
   404         format_helper( regalloc, st, box, "MON-BOX[", i, &scobjs );
   405       } else {
   406         OptoReg::Name box_reg = BoxLockNode::reg(box);
   407         st->print(" MON-BOX%d=%s+%d",
   408                    i,
   409                    OptoReg::regname(OptoReg::c_frame_pointer),
   410                    regalloc->reg2offset(box_reg));
   411       }
   412       const char* obj_msg = "MON-OBJ[";
   413       if (EliminateLocks) {
   414         if (BoxLockNode::box_node(box)->is_eliminated())
   415           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
   416       }
   417       format_helper( regalloc, st, obj, obj_msg, i, &scobjs );
   418     }
   420     for (i = 0; i < (uint)scobjs.length(); i++) {
   421       // Scalar replaced objects.
   422       st->print_cr("");
   423       st->print("        # ScObj" INT32_FORMAT " ", i);
   424       SafePointScalarObjectNode* spobj = scobjs.at(i);
   425       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
   426       assert(cik->is_instance_klass() ||
   427              cik->is_array_klass(), "Not supported allocation.");
   428       ciInstanceKlass *iklass = NULL;
   429       if (cik->is_instance_klass()) {
   430         cik->print_name_on(st);
   431         iklass = cik->as_instance_klass();
   432       } else if (cik->is_type_array_klass()) {
   433         cik->as_array_klass()->base_element_type()->print_name_on(st);
   434         st->print("[%d]", spobj->n_fields());
   435       } else if (cik->is_obj_array_klass()) {
   436         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
   437         if (cie->is_instance_klass()) {
   438           cie->print_name_on(st);
   439         } else if (cie->is_type_array_klass()) {
   440           cie->as_array_klass()->base_element_type()->print_name_on(st);
   441         } else {
   442           ShouldNotReachHere();
   443         }
   444         st->print("[%d]", spobj->n_fields());
   445         int ndim = cik->as_array_klass()->dimension() - 1;
   446         while (ndim-- > 0) {
   447           st->print("[]");
   448         }
   449       }
   450       st->print("={");
   451       uint nf = spobj->n_fields();
   452       if (nf > 0) {
   453         uint first_ind = spobj->first_index();
   454         Node* fld_node = mcall->in(first_ind);
   455         ciField* cifield;
   456         if (iklass != NULL) {
   457           st->print(" [");
   458           cifield = iklass->nonstatic_field_at(0);
   459           cifield->print_name_on(st);
   460           format_helper( regalloc, st, fld_node, ":", 0, &scobjs );
   461         } else {
   462           format_helper( regalloc, st, fld_node, "[", 0, &scobjs );
   463         }
   464         for (uint j = 1; j < nf; j++) {
   465           fld_node = mcall->in(first_ind+j);
   466           if (iklass != NULL) {
   467             st->print(", [");
   468             cifield = iklass->nonstatic_field_at(j);
   469             cifield->print_name_on(st);
   470             format_helper( regalloc, st, fld_node, ":", j, &scobjs );
   471           } else {
   472             format_helper( regalloc, st, fld_node, ", [", j, &scobjs );
   473           }
   474         }
   475       }
   476       st->print(" }");
   477     }
   478   }
   479   st->print_cr("");
   480   if (caller() != NULL)  caller()->format(regalloc, n, st);
   481 }
   484 void JVMState::dump_spec(outputStream *st) const {
   485   if (_method != NULL) {
   486     bool printed = false;
   487     if (!Verbose) {
   488       // The JVMS dumps make really, really long lines.
   489       // Take out the most boring parts, which are the package prefixes.
   490       char buf[500];
   491       stringStream namest(buf, sizeof(buf));
   492       _method->print_short_name(&namest);
   493       if (namest.count() < sizeof(buf)) {
   494         const char* name = namest.base();
   495         if (name[0] == ' ')  ++name;
   496         const char* endcn = strchr(name, ':');  // end of class name
   497         if (endcn == NULL)  endcn = strchr(name, '(');
   498         if (endcn == NULL)  endcn = name + strlen(name);
   499         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
   500           --endcn;
   501         st->print(" %s", endcn);
   502         printed = true;
   503       }
   504     }
   505     if (!printed)
   506       _method->print_short_name(st);
   507     st->print(" @ bci:%d",_bci);
   508     if(_reexecute == Reexecute_True)
   509       st->print(" reexecute");
   510   } else {
   511     st->print(" runtime stub");
   512   }
   513   if (caller() != NULL)  caller()->dump_spec(st);
   514 }
   517 void JVMState::dump_on(outputStream* st) const {
   518   if (_map && !((uintptr_t)_map & 1)) {
   519     if (_map->len() > _map->req()) {  // _map->has_exceptions()
   520       Node* ex = _map->in(_map->req());  // _map->next_exception()
   521       // skip the first one; it's already being printed
   522       while (ex != NULL && ex->len() > ex->req()) {
   523         ex = ex->in(ex->req());  // ex->next_exception()
   524         ex->dump(1);
   525       }
   526     }
   527     _map->dump(2);
   528   }
   529   st->print("JVMS depth=%d loc=%d stk=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
   530              depth(), locoff(), stkoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
   531   if (_method == NULL) {
   532     st->print_cr("(none)");
   533   } else {
   534     _method->print_name(st);
   535     st->cr();
   536     if (bci() >= 0 && bci() < _method->code_size()) {
   537       st->print("    bc: ");
   538       _method->print_codes_on(bci(), bci()+1, st);
   539     }
   540   }
   541   if (caller() != NULL) {
   542     caller()->dump_on(st);
   543   }
   544 }
   546 // Extra way to dump a jvms from the debugger,
   547 // to avoid a bug with C++ member function calls.
   548 void dump_jvms(JVMState* jvms) {
   549   jvms->dump();
   550 }
   551 #endif
   553 //--------------------------clone_shallow--------------------------------------
   554 JVMState* JVMState::clone_shallow(Compile* C) const {
   555   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
   556   n->set_bci(_bci);
   557   n->_reexecute = _reexecute;
   558   n->set_locoff(_locoff);
   559   n->set_stkoff(_stkoff);
   560   n->set_monoff(_monoff);
   561   n->set_scloff(_scloff);
   562   n->set_endoff(_endoff);
   563   n->set_sp(_sp);
   564   n->set_map(_map);
   565   return n;
   566 }
   568 //---------------------------clone_deep----------------------------------------
   569 JVMState* JVMState::clone_deep(Compile* C) const {
   570   JVMState* n = clone_shallow(C);
   571   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
   572     p->_caller = p->_caller->clone_shallow(C);
   573   }
   574   assert(n->depth() == depth(), "sanity");
   575   assert(n->debug_depth() == debug_depth(), "sanity");
   576   return n;
   577 }
   579 //=============================================================================
   580 uint CallNode::cmp( const Node &n ) const
   581 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
   582 #ifndef PRODUCT
   583 void CallNode::dump_req() const {
   584   // Dump the required inputs, enclosed in '(' and ')'
   585   uint i;                       // Exit value of loop
   586   for( i=0; i<req(); i++ ) {    // For all required inputs
   587     if( i == TypeFunc::Parms ) tty->print("(");
   588     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   589     else tty->print("_ ");
   590   }
   591   tty->print(")");
   592 }
   594 void CallNode::dump_spec(outputStream *st) const {
   595   st->print(" ");
   596   tf()->dump_on(st);
   597   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
   598   if (jvms() != NULL)  jvms()->dump_spec(st);
   599 }
   600 #endif
   602 const Type *CallNode::bottom_type() const { return tf()->range(); }
   603 const Type *CallNode::Value(PhaseTransform *phase) const {
   604   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
   605   return tf()->range();
   606 }
   608 //------------------------------calling_convention-----------------------------
   609 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
   610   // Use the standard compiler calling convention
   611   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
   612 }
   615 //------------------------------match------------------------------------------
   616 // Construct projections for control, I/O, memory-fields, ..., and
   617 // return result(s) along with their RegMask info
   618 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
   619   switch (proj->_con) {
   620   case TypeFunc::Control:
   621   case TypeFunc::I_O:
   622   case TypeFunc::Memory:
   623     return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
   625   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
   626     assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
   627     // 2nd half of doubles and longs
   628     return new (match->C, 1) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
   630   case TypeFunc::Parms: {       // Normal returns
   631     uint ideal_reg = Matcher::base2reg[tf()->range()->field_at(TypeFunc::Parms)->base()];
   632     OptoRegPair regs = is_CallRuntime()
   633       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
   634       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
   635     RegMask rm = RegMask(regs.first());
   636     if( OptoReg::is_valid(regs.second()) )
   637       rm.Insert( regs.second() );
   638     return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
   639   }
   641   case TypeFunc::ReturnAdr:
   642   case TypeFunc::FramePtr:
   643   default:
   644     ShouldNotReachHere();
   645   }
   646   return NULL;
   647 }
   649 // Do we Match on this edge index or not?  Match no edges
   650 uint CallNode::match_edge(uint idx) const {
   651   return 0;
   652 }
   654 //
   655 // Determine whether the call could modify the field of the specified
   656 // instance at the specified offset.
   657 //
   658 bool CallNode::may_modify(const TypePtr *addr_t, PhaseTransform *phase) {
   659   const TypeOopPtr *adrInst_t  = addr_t->isa_oopptr();
   661   // If not an OopPtr or not an instance type, assume the worst.
   662   // Note: currently this method is called only for instance types.
   663   if (adrInst_t == NULL || !adrInst_t->is_known_instance()) {
   664     return true;
   665   }
   666   // The instance_id is set only for scalar-replaceable allocations which
   667   // are not passed as arguments according to Escape Analysis.
   668   return false;
   669 }
   671 // Does this call have a direct reference to n other than debug information?
   672 bool CallNode::has_non_debug_use(Node *n) {
   673   const TypeTuple * d = tf()->domain();
   674   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   675     Node *arg = in(i);
   676     if (arg == n) {
   677       return true;
   678     }
   679   }
   680   return false;
   681 }
   683 // Returns the unique CheckCastPP of a call
   684 // or 'this' if there are several CheckCastPP
   685 // or returns NULL if there is no one.
   686 Node *CallNode::result_cast() {
   687   Node *cast = NULL;
   689   Node *p = proj_out(TypeFunc::Parms);
   690   if (p == NULL)
   691     return NULL;
   693   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
   694     Node *use = p->fast_out(i);
   695     if (use->is_CheckCastPP()) {
   696       if (cast != NULL) {
   697         return this;  // more than 1 CheckCastPP
   698       }
   699       cast = use;
   700     }
   701   }
   702   return cast;
   703 }
   706 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
   707   projs->fallthrough_proj      = NULL;
   708   projs->fallthrough_catchproj = NULL;
   709   projs->fallthrough_ioproj    = NULL;
   710   projs->catchall_ioproj       = NULL;
   711   projs->catchall_catchproj    = NULL;
   712   projs->fallthrough_memproj   = NULL;
   713   projs->catchall_memproj      = NULL;
   714   projs->resproj               = NULL;
   715   projs->exobj                 = NULL;
   717   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
   718     ProjNode *pn = fast_out(i)->as_Proj();
   719     if (pn->outcnt() == 0) continue;
   720     switch (pn->_con) {
   721     case TypeFunc::Control:
   722       {
   723         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
   724         projs->fallthrough_proj = pn;
   725         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
   726         const Node *cn = pn->fast_out(j);
   727         if (cn->is_Catch()) {
   728           ProjNode *cpn = NULL;
   729           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
   730             cpn = cn->fast_out(k)->as_Proj();
   731             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
   732             if (cpn->_con == CatchProjNode::fall_through_index)
   733               projs->fallthrough_catchproj = cpn;
   734             else {
   735               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
   736               projs->catchall_catchproj = cpn;
   737             }
   738           }
   739         }
   740         break;
   741       }
   742     case TypeFunc::I_O:
   743       if (pn->_is_io_use)
   744         projs->catchall_ioproj = pn;
   745       else
   746         projs->fallthrough_ioproj = pn;
   747       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
   748         Node* e = pn->out(j);
   749         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj()) {
   750           assert(projs->exobj == NULL, "only one");
   751           projs->exobj = e;
   752         }
   753       }
   754       break;
   755     case TypeFunc::Memory:
   756       if (pn->_is_io_use)
   757         projs->catchall_memproj = pn;
   758       else
   759         projs->fallthrough_memproj = pn;
   760       break;
   761     case TypeFunc::Parms:
   762       projs->resproj = pn;
   763       break;
   764     default:
   765       assert(false, "unexpected projection from allocation node.");
   766     }
   767   }
   769   // The resproj may not exist because the result couuld be ignored
   770   // and the exception object may not exist if an exception handler
   771   // swallows the exception but all the other must exist and be found.
   772   assert(projs->fallthrough_proj      != NULL, "must be found");
   773   assert(projs->fallthrough_catchproj != NULL, "must be found");
   774   assert(projs->fallthrough_memproj   != NULL, "must be found");
   775   assert(projs->fallthrough_ioproj    != NULL, "must be found");
   776   assert(projs->catchall_catchproj    != NULL, "must be found");
   777   if (separate_io_proj) {
   778     assert(projs->catchall_memproj      != NULL, "must be found");
   779     assert(projs->catchall_ioproj       != NULL, "must be found");
   780   }
   781 }
   784 //=============================================================================
   785 uint CallJavaNode::size_of() const { return sizeof(*this); }
   786 uint CallJavaNode::cmp( const Node &n ) const {
   787   CallJavaNode &call = (CallJavaNode&)n;
   788   return CallNode::cmp(call) && _method == call._method;
   789 }
   790 #ifndef PRODUCT
   791 void CallJavaNode::dump_spec(outputStream *st) const {
   792   if( _method ) _method->print_short_name(st);
   793   CallNode::dump_spec(st);
   794 }
   795 #endif
   797 //=============================================================================
   798 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
   799 uint CallStaticJavaNode::cmp( const Node &n ) const {
   800   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
   801   return CallJavaNode::cmp(call);
   802 }
   804 //----------------------------uncommon_trap_request----------------------------
   805 // If this is an uncommon trap, return the request code, else zero.
   806 int CallStaticJavaNode::uncommon_trap_request() const {
   807   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
   808     return extract_uncommon_trap_request(this);
   809   }
   810   return 0;
   811 }
   812 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
   813 #ifndef PRODUCT
   814   if (!(call->req() > TypeFunc::Parms &&
   815         call->in(TypeFunc::Parms) != NULL &&
   816         call->in(TypeFunc::Parms)->is_Con())) {
   817     assert(_in_dump_cnt != 0, "OK if dumping");
   818     tty->print("[bad uncommon trap]");
   819     return 0;
   820   }
   821 #endif
   822   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
   823 }
   825 #ifndef PRODUCT
   826 void CallStaticJavaNode::dump_spec(outputStream *st) const {
   827   st->print("# Static ");
   828   if (_name != NULL) {
   829     st->print("%s", _name);
   830     int trap_req = uncommon_trap_request();
   831     if (trap_req != 0) {
   832       char buf[100];
   833       st->print("(%s)",
   834                  Deoptimization::format_trap_request(buf, sizeof(buf),
   835                                                      trap_req));
   836     }
   837     st->print(" ");
   838   }
   839   CallJavaNode::dump_spec(st);
   840 }
   841 #endif
   843 //=============================================================================
   844 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
   845 uint CallDynamicJavaNode::cmp( const Node &n ) const {
   846   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
   847   return CallJavaNode::cmp(call);
   848 }
   849 #ifndef PRODUCT
   850 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
   851   st->print("# Dynamic ");
   852   CallJavaNode::dump_spec(st);
   853 }
   854 #endif
   856 //=============================================================================
   857 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
   858 uint CallRuntimeNode::cmp( const Node &n ) const {
   859   CallRuntimeNode &call = (CallRuntimeNode&)n;
   860   return CallNode::cmp(call) && !strcmp(_name,call._name);
   861 }
   862 #ifndef PRODUCT
   863 void CallRuntimeNode::dump_spec(outputStream *st) const {
   864   st->print("# ");
   865   st->print(_name);
   866   CallNode::dump_spec(st);
   867 }
   868 #endif
   870 //------------------------------calling_convention-----------------------------
   871 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
   872   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
   873 }
   875 //=============================================================================
   876 //------------------------------calling_convention-----------------------------
   879 //=============================================================================
   880 #ifndef PRODUCT
   881 void CallLeafNode::dump_spec(outputStream *st) const {
   882   st->print("# ");
   883   st->print(_name);
   884   CallNode::dump_spec(st);
   885 }
   886 #endif
   888 //=============================================================================
   890 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
   891   assert(verify_jvms(jvms), "jvms must match");
   892   int loc = jvms->locoff() + idx;
   893   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
   894     // If current local idx is top then local idx - 1 could
   895     // be a long/double that needs to be killed since top could
   896     // represent the 2nd half ofthe long/double.
   897     uint ideal = in(loc -1)->ideal_reg();
   898     if (ideal == Op_RegD || ideal == Op_RegL) {
   899       // set other (low index) half to top
   900       set_req(loc - 1, in(loc));
   901     }
   902   }
   903   set_req(loc, c);
   904 }
   906 uint SafePointNode::size_of() const { return sizeof(*this); }
   907 uint SafePointNode::cmp( const Node &n ) const {
   908   return (&n == this);          // Always fail except on self
   909 }
   911 //-------------------------set_next_exception----------------------------------
   912 void SafePointNode::set_next_exception(SafePointNode* n) {
   913   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
   914   if (len() == req()) {
   915     if (n != NULL)  add_prec(n);
   916   } else {
   917     set_prec(req(), n);
   918   }
   919 }
   922 //----------------------------next_exception-----------------------------------
   923 SafePointNode* SafePointNode::next_exception() const {
   924   if (len() == req()) {
   925     return NULL;
   926   } else {
   927     Node* n = in(req());
   928     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
   929     return (SafePointNode*) n;
   930   }
   931 }
   934 //------------------------------Ideal------------------------------------------
   935 // Skip over any collapsed Regions
   936 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   937   return remove_dead_region(phase, can_reshape) ? this : NULL;
   938 }
   940 //------------------------------Identity---------------------------------------
   941 // Remove obviously duplicate safepoints
   942 Node *SafePointNode::Identity( PhaseTransform *phase ) {
   944   // If you have back to back safepoints, remove one
   945   if( in(TypeFunc::Control)->is_SafePoint() )
   946     return in(TypeFunc::Control);
   948   if( in(0)->is_Proj() ) {
   949     Node *n0 = in(0)->in(0);
   950     // Check if he is a call projection (except Leaf Call)
   951     if( n0->is_Catch() ) {
   952       n0 = n0->in(0)->in(0);
   953       assert( n0->is_Call(), "expect a call here" );
   954     }
   955     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
   956       // Useless Safepoint, so remove it
   957       return in(TypeFunc::Control);
   958     }
   959   }
   961   return this;
   962 }
   964 //------------------------------Value------------------------------------------
   965 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
   966   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
   967   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
   968   return Type::CONTROL;
   969 }
   971 #ifndef PRODUCT
   972 void SafePointNode::dump_spec(outputStream *st) const {
   973   st->print(" SafePoint ");
   974 }
   975 #endif
   977 const RegMask &SafePointNode::in_RegMask(uint idx) const {
   978   if( idx < TypeFunc::Parms ) return RegMask::Empty;
   979   // Values outside the domain represent debug info
   980   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
   981 }
   982 const RegMask &SafePointNode::out_RegMask() const {
   983   return RegMask::Empty;
   984 }
   987 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
   988   assert((int)grow_by > 0, "sanity");
   989   int monoff = jvms->monoff();
   990   int scloff = jvms->scloff();
   991   int endoff = jvms->endoff();
   992   assert(endoff == (int)req(), "no other states or debug info after me");
   993   Node* top = Compile::current()->top();
   994   for (uint i = 0; i < grow_by; i++) {
   995     ins_req(monoff, top);
   996   }
   997   jvms->set_monoff(monoff + grow_by);
   998   jvms->set_scloff(scloff + grow_by);
   999   jvms->set_endoff(endoff + grow_by);
  1002 void SafePointNode::push_monitor(const FastLockNode *lock) {
  1003   // Add a LockNode, which points to both the original BoxLockNode (the
  1004   // stack space for the monitor) and the Object being locked.
  1005   const int MonitorEdges = 2;
  1006   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
  1007   assert(req() == jvms()->endoff(), "correct sizing");
  1008   int nextmon = jvms()->scloff();
  1009   if (GenerateSynchronizationCode) {
  1010     add_req(lock->box_node());
  1011     add_req(lock->obj_node());
  1012   } else {
  1013     Node* top = Compile::current()->top();
  1014     add_req(top);
  1015     add_req(top);
  1017   jvms()->set_scloff(nextmon+MonitorEdges);
  1018   jvms()->set_endoff(req());
  1021 void SafePointNode::pop_monitor() {
  1022   // Delete last monitor from debug info
  1023   debug_only(int num_before_pop = jvms()->nof_monitors());
  1024   const int MonitorEdges = (1<<JVMState::logMonitorEdges);
  1025   int scloff = jvms()->scloff();
  1026   int endoff = jvms()->endoff();
  1027   int new_scloff = scloff - MonitorEdges;
  1028   int new_endoff = endoff - MonitorEdges;
  1029   jvms()->set_scloff(new_scloff);
  1030   jvms()->set_endoff(new_endoff);
  1031   while (scloff > new_scloff)  del_req(--scloff);
  1032   assert(jvms()->nof_monitors() == num_before_pop-1, "");
  1035 Node *SafePointNode::peek_monitor_box() const {
  1036   int mon = jvms()->nof_monitors() - 1;
  1037   assert(mon >= 0, "most have a monitor");
  1038   return monitor_box(jvms(), mon);
  1041 Node *SafePointNode::peek_monitor_obj() const {
  1042   int mon = jvms()->nof_monitors() - 1;
  1043   assert(mon >= 0, "most have a monitor");
  1044   return monitor_obj(jvms(), mon);
  1047 // Do we Match on this edge index or not?  Match no edges
  1048 uint SafePointNode::match_edge(uint idx) const {
  1049   if( !needs_polling_address_input() )
  1050     return 0;
  1052   return (TypeFunc::Parms == idx);
  1055 //==============  SafePointScalarObjectNode  ==============
  1057 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
  1058 #ifdef ASSERT
  1059                                                      AllocateNode* alloc,
  1060 #endif
  1061                                                      uint first_index,
  1062                                                      uint n_fields) :
  1063   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
  1064 #ifdef ASSERT
  1065   _alloc(alloc),
  1066 #endif
  1067   _first_index(first_index),
  1068   _n_fields(n_fields)
  1070   init_class_id(Class_SafePointScalarObject);
  1073 // Do not allow value-numbering for SafePointScalarObject node.
  1074 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
  1075 uint SafePointScalarObjectNode::cmp( const Node &n ) const {
  1076   return (&n == this); // Always fail except on self
  1079 uint SafePointScalarObjectNode::ideal_reg() const {
  1080   return 0; // No matching to machine instruction
  1083 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
  1084   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
  1087 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
  1088   return RegMask::Empty;
  1091 uint SafePointScalarObjectNode::match_edge(uint idx) const {
  1092   return 0;
  1095 SafePointScalarObjectNode*
  1096 SafePointScalarObjectNode::clone(int jvms_adj, Dict* sosn_map) const {
  1097   void* cached = (*sosn_map)[(void*)this];
  1098   if (cached != NULL) {
  1099     return (SafePointScalarObjectNode*)cached;
  1101   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
  1102   res->_first_index += jvms_adj;
  1103   sosn_map->Insert((void*)this, (void*)res);
  1104   return res;
  1108 #ifndef PRODUCT
  1109 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
  1110   st->print(" # fields@[%d..%d]", first_index(),
  1111              first_index() + n_fields() - 1);
  1114 #endif
  1116 //=============================================================================
  1117 uint AllocateNode::size_of() const { return sizeof(*this); }
  1119 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
  1120                            Node *ctrl, Node *mem, Node *abio,
  1121                            Node *size, Node *klass_node, Node *initial_test)
  1122   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
  1124   init_class_id(Class_Allocate);
  1125   init_flags(Flag_is_macro);
  1126   _is_scalar_replaceable = false;
  1127   Node *topnode = C->top();
  1129   init_req( TypeFunc::Control  , ctrl );
  1130   init_req( TypeFunc::I_O      , abio );
  1131   init_req( TypeFunc::Memory   , mem );
  1132   init_req( TypeFunc::ReturnAdr, topnode );
  1133   init_req( TypeFunc::FramePtr , topnode );
  1134   init_req( AllocSize          , size);
  1135   init_req( KlassNode          , klass_node);
  1136   init_req( InitialTest        , initial_test);
  1137   init_req( ALength            , topnode);
  1138   C->add_macro_node(this);
  1141 //=============================================================================
  1142 uint AllocateArrayNode::size_of() const { return sizeof(*this); }
  1144 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1145   if (remove_dead_region(phase, can_reshape))  return this;
  1146   // Don't bother trying to transform a dead node
  1147   if (in(0) && in(0)->is_top())  return NULL;
  1149   const Type* type = phase->type(Ideal_length());
  1150   if (type->isa_int() && type->is_int()->_hi < 0) {
  1151     if (can_reshape) {
  1152       PhaseIterGVN *igvn = phase->is_IterGVN();
  1153       // Unreachable fall through path (negative array length),
  1154       // the allocation can only throw so disconnect it.
  1155       Node* proj = proj_out(TypeFunc::Control);
  1156       Node* catchproj = NULL;
  1157       if (proj != NULL) {
  1158         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
  1159           Node *cn = proj->fast_out(i);
  1160           if (cn->is_Catch()) {
  1161             catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
  1162             break;
  1166       if (catchproj != NULL && catchproj->outcnt() > 0 &&
  1167           (catchproj->outcnt() > 1 ||
  1168            catchproj->unique_out()->Opcode() != Op_Halt)) {
  1169         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
  1170         Node* nproj = catchproj->clone();
  1171         igvn->register_new_node_with_optimizer(nproj);
  1173         Node *frame = new (phase->C, 1) ParmNode( phase->C->start(), TypeFunc::FramePtr );
  1174         frame = phase->transform(frame);
  1175         // Halt & Catch Fire
  1176         Node *halt = new (phase->C, TypeFunc::Parms) HaltNode( nproj, frame );
  1177         phase->C->root()->add_req(halt);
  1178         phase->transform(halt);
  1180         igvn->replace_node(catchproj, phase->C->top());
  1181         return this;
  1183     } else {
  1184       // Can't correct it during regular GVN so register for IGVN
  1185       phase->C->record_for_igvn(this);
  1188   return NULL;
  1191 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
  1192 // CastII, if appropriate.  If we are not allowed to create new nodes, and
  1193 // a CastII is appropriate, return NULL.
  1194 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
  1195   Node *length = in(AllocateNode::ALength);
  1196   assert(length != NULL, "length is not null");
  1198   const TypeInt* length_type = phase->find_int_type(length);
  1199   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
  1201   if (ary_type != NULL && length_type != NULL) {
  1202     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
  1203     if (narrow_length_type != length_type) {
  1204       // Assert one of:
  1205       //   - the narrow_length is 0
  1206       //   - the narrow_length is not wider than length
  1207       assert(narrow_length_type == TypeInt::ZERO ||
  1208              (narrow_length_type->_hi <= length_type->_hi &&
  1209               narrow_length_type->_lo >= length_type->_lo),
  1210              "narrow type must be narrower than length type");
  1212       // Return NULL if new nodes are not allowed
  1213       if (!allow_new_nodes) return NULL;
  1214       // Create a cast which is control dependent on the initialization to
  1215       // propagate the fact that the array length must be positive.
  1216       length = new (phase->C, 2) CastIINode(length, narrow_length_type);
  1217       length->set_req(0, initialization()->proj_out(0));
  1221   return length;
  1224 //=============================================================================
  1225 uint LockNode::size_of() const { return sizeof(*this); }
  1227 // Redundant lock elimination
  1228 //
  1229 // There are various patterns of locking where we release and
  1230 // immediately reacquire a lock in a piece of code where no operations
  1231 // occur in between that would be observable.  In those cases we can
  1232 // skip releasing and reacquiring the lock without violating any
  1233 // fairness requirements.  Doing this around a loop could cause a lock
  1234 // to be held for a very long time so we concentrate on non-looping
  1235 // control flow.  We also require that the operations are fully
  1236 // redundant meaning that we don't introduce new lock operations on
  1237 // some paths so to be able to eliminate it on others ala PRE.  This
  1238 // would probably require some more extensive graph manipulation to
  1239 // guarantee that the memory edges were all handled correctly.
  1240 //
  1241 // Assuming p is a simple predicate which can't trap in any way and s
  1242 // is a synchronized method consider this code:
  1243 //
  1244 //   s();
  1245 //   if (p)
  1246 //     s();
  1247 //   else
  1248 //     s();
  1249 //   s();
  1250 //
  1251 // 1. The unlocks of the first call to s can be eliminated if the
  1252 // locks inside the then and else branches are eliminated.
  1253 //
  1254 // 2. The unlocks of the then and else branches can be eliminated if
  1255 // the lock of the final call to s is eliminated.
  1256 //
  1257 // Either of these cases subsumes the simple case of sequential control flow
  1258 //
  1259 // Addtionally we can eliminate versions without the else case:
  1260 //
  1261 //   s();
  1262 //   if (p)
  1263 //     s();
  1264 //   s();
  1265 //
  1266 // 3. In this case we eliminate the unlock of the first s, the lock
  1267 // and unlock in the then case and the lock in the final s.
  1268 //
  1269 // Note also that in all these cases the then/else pieces don't have
  1270 // to be trivial as long as they begin and end with synchronization
  1271 // operations.
  1272 //
  1273 //   s();
  1274 //   if (p)
  1275 //     s();
  1276 //     f();
  1277 //     s();
  1278 //   s();
  1279 //
  1280 // The code will work properly for this case, leaving in the unlock
  1281 // before the call to f and the relock after it.
  1282 //
  1283 // A potentially interesting case which isn't handled here is when the
  1284 // locking is partially redundant.
  1285 //
  1286 //   s();
  1287 //   if (p)
  1288 //     s();
  1289 //
  1290 // This could be eliminated putting unlocking on the else case and
  1291 // eliminating the first unlock and the lock in the then side.
  1292 // Alternatively the unlock could be moved out of the then side so it
  1293 // was after the merge and the first unlock and second lock
  1294 // eliminated.  This might require less manipulation of the memory
  1295 // state to get correct.
  1296 //
  1297 // Additionally we might allow work between a unlock and lock before
  1298 // giving up eliminating the locks.  The current code disallows any
  1299 // conditional control flow between these operations.  A formulation
  1300 // similar to partial redundancy elimination computing the
  1301 // availability of unlocking and the anticipatability of locking at a
  1302 // program point would allow detection of fully redundant locking with
  1303 // some amount of work in between.  I'm not sure how often I really
  1304 // think that would occur though.  Most of the cases I've seen
  1305 // indicate it's likely non-trivial work would occur in between.
  1306 // There may be other more complicated constructs where we could
  1307 // eliminate locking but I haven't seen any others appear as hot or
  1308 // interesting.
  1309 //
  1310 // Locking and unlocking have a canonical form in ideal that looks
  1311 // roughly like this:
  1312 //
  1313 //              <obj>
  1314 //                | \\------+
  1315 //                |  \       \
  1316 //                | BoxLock   \
  1317 //                |  |   |     \
  1318 //                |  |    \     \
  1319 //                |  |   FastLock
  1320 //                |  |   /
  1321 //                |  |  /
  1322 //                |  |  |
  1323 //
  1324 //               Lock
  1325 //                |
  1326 //            Proj #0
  1327 //                |
  1328 //            MembarAcquire
  1329 //                |
  1330 //            Proj #0
  1331 //
  1332 //            MembarRelease
  1333 //                |
  1334 //            Proj #0
  1335 //                |
  1336 //              Unlock
  1337 //                |
  1338 //            Proj #0
  1339 //
  1340 //
  1341 // This code proceeds by processing Lock nodes during PhaseIterGVN
  1342 // and searching back through its control for the proper code
  1343 // patterns.  Once it finds a set of lock and unlock operations to
  1344 // eliminate they are marked as eliminatable which causes the
  1345 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
  1346 //
  1347 //=============================================================================
  1349 //
  1350 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
  1351 //   - copy regions.  (These may not have been optimized away yet.)
  1352 //   - eliminated locking nodes
  1353 //
  1354 static Node *next_control(Node *ctrl) {
  1355   if (ctrl == NULL)
  1356     return NULL;
  1357   while (1) {
  1358     if (ctrl->is_Region()) {
  1359       RegionNode *r = ctrl->as_Region();
  1360       Node *n = r->is_copy();
  1361       if (n == NULL)
  1362         break;  // hit a region, return it
  1363       else
  1364         ctrl = n;
  1365     } else if (ctrl->is_Proj()) {
  1366       Node *in0 = ctrl->in(0);
  1367       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
  1368         ctrl = in0->in(0);
  1369       } else {
  1370         break;
  1372     } else {
  1373       break; // found an interesting control
  1376   return ctrl;
  1378 //
  1379 // Given a control, see if it's the control projection of an Unlock which
  1380 // operating on the same object as lock.
  1381 //
  1382 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
  1383                                             GrowableArray<AbstractLockNode*> &lock_ops) {
  1384   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
  1385   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
  1386     Node *n = ctrl_proj->in(0);
  1387     if (n != NULL && n->is_Unlock()) {
  1388       UnlockNode *unlock = n->as_Unlock();
  1389       if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
  1390           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
  1391           !unlock->is_eliminated()) {
  1392         lock_ops.append(unlock);
  1393         return true;
  1397   return false;
  1400 //
  1401 // Find the lock matching an unlock.  Returns null if a safepoint
  1402 // or complicated control is encountered first.
  1403 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
  1404   LockNode *lock_result = NULL;
  1405   // find the matching lock, or an intervening safepoint
  1406   Node *ctrl = next_control(unlock->in(0));
  1407   while (1) {
  1408     assert(ctrl != NULL, "invalid control graph");
  1409     assert(!ctrl->is_Start(), "missing lock for unlock");
  1410     if (ctrl->is_top()) break;  // dead control path
  1411     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
  1412     if (ctrl->is_SafePoint()) {
  1413         break;  // found a safepoint (may be the lock we are searching for)
  1414     } else if (ctrl->is_Region()) {
  1415       // Check for a simple diamond pattern.  Punt on anything more complicated
  1416       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
  1417         Node *in1 = next_control(ctrl->in(1));
  1418         Node *in2 = next_control(ctrl->in(2));
  1419         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
  1420              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
  1421           ctrl = next_control(in1->in(0)->in(0));
  1422         } else {
  1423           break;
  1425       } else {
  1426         break;
  1428     } else {
  1429       ctrl = next_control(ctrl->in(0));  // keep searching
  1432   if (ctrl->is_Lock()) {
  1433     LockNode *lock = ctrl->as_Lock();
  1434     if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
  1435         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
  1436       lock_result = lock;
  1439   return lock_result;
  1442 // This code corresponds to case 3 above.
  1444 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
  1445                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
  1446   Node* if_node = node->in(0);
  1447   bool  if_true = node->is_IfTrue();
  1449   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
  1450     Node *lock_ctrl = next_control(if_node->in(0));
  1451     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
  1452       Node* lock1_node = NULL;
  1453       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
  1454       if (if_true) {
  1455         if (proj->is_IfFalse() && proj->outcnt() == 1) {
  1456           lock1_node = proj->unique_out();
  1458       } else {
  1459         if (proj->is_IfTrue() && proj->outcnt() == 1) {
  1460           lock1_node = proj->unique_out();
  1463       if (lock1_node != NULL && lock1_node->is_Lock()) {
  1464         LockNode *lock1 = lock1_node->as_Lock();
  1465         if (lock->obj_node()->eqv_uncast(lock1->obj_node()) &&
  1466             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
  1467             !lock1->is_eliminated()) {
  1468           lock_ops.append(lock1);
  1469           return true;
  1475   lock_ops.trunc_to(0);
  1476   return false;
  1479 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
  1480                                GrowableArray<AbstractLockNode*> &lock_ops) {
  1481   // check each control merging at this point for a matching unlock.
  1482   // in(0) should be self edge so skip it.
  1483   for (int i = 1; i < (int)region->req(); i++) {
  1484     Node *in_node = next_control(region->in(i));
  1485     if (in_node != NULL) {
  1486       if (find_matching_unlock(in_node, lock, lock_ops)) {
  1487         // found a match so keep on checking.
  1488         continue;
  1489       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
  1490         continue;
  1493       // If we fall through to here then it was some kind of node we
  1494       // don't understand or there wasn't a matching unlock, so give
  1495       // up trying to merge locks.
  1496       lock_ops.trunc_to(0);
  1497       return false;
  1500   return true;
  1504 #ifndef PRODUCT
  1505 //
  1506 // Create a counter which counts the number of times this lock is acquired
  1507 //
  1508 void AbstractLockNode::create_lock_counter(JVMState* state) {
  1509   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
  1512 void AbstractLockNode::set_eliminated_lock_counter() {
  1513   if (_counter) {
  1514     // Update the counter to indicate that this lock was eliminated.
  1515     // The counter update code will stay around even though the
  1516     // optimizer will eliminate the lock operation itself.
  1517     _counter->set_tag(NamedCounter::EliminatedLockCounter);
  1520 #endif
  1522 //=============================================================================
  1523 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1525   // perform any generic optimizations first (returns 'this' or NULL)
  1526   Node *result = SafePointNode::Ideal(phase, can_reshape);
  1527   if (result != NULL)  return result;
  1528   // Don't bother trying to transform a dead node
  1529   if (in(0) && in(0)->is_top())  return NULL;
  1531   // Now see if we can optimize away this lock.  We don't actually
  1532   // remove the locking here, we simply set the _eliminate flag which
  1533   // prevents macro expansion from expanding the lock.  Since we don't
  1534   // modify the graph, the value returned from this function is the
  1535   // one computed above.
  1536   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
  1537     //
  1538     // If we are locking an unescaped object, the lock/unlock is unnecessary
  1539     //
  1540     ConnectionGraph *cgr = phase->C->congraph();
  1541     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
  1542       assert(!is_eliminated() || is_coarsened(), "sanity");
  1543       // The lock could be marked eliminated by lock coarsening
  1544       // code during first IGVN before EA. Replace coarsened flag
  1545       // to eliminate all associated locks/unlocks.
  1546       this->set_non_esc_obj();
  1547       return result;
  1550     //
  1551     // Try lock coarsening
  1552     //
  1553     PhaseIterGVN* iter = phase->is_IterGVN();
  1554     if (iter != NULL && !is_eliminated()) {
  1556       GrowableArray<AbstractLockNode*>   lock_ops;
  1558       Node *ctrl = next_control(in(0));
  1560       // now search back for a matching Unlock
  1561       if (find_matching_unlock(ctrl, this, lock_ops)) {
  1562         // found an unlock directly preceding this lock.  This is the
  1563         // case of single unlock directly control dependent on a
  1564         // single lock which is the trivial version of case 1 or 2.
  1565       } else if (ctrl->is_Region() ) {
  1566         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
  1567         // found lock preceded by multiple unlocks along all paths
  1568         // joining at this point which is case 3 in description above.
  1570       } else {
  1571         // see if this lock comes from either half of an if and the
  1572         // predecessors merges unlocks and the other half of the if
  1573         // performs a lock.
  1574         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
  1575           // found unlock splitting to an if with locks on both branches.
  1579       if (lock_ops.length() > 0) {
  1580         // add ourselves to the list of locks to be eliminated.
  1581         lock_ops.append(this);
  1583   #ifndef PRODUCT
  1584         if (PrintEliminateLocks) {
  1585           int locks = 0;
  1586           int unlocks = 0;
  1587           for (int i = 0; i < lock_ops.length(); i++) {
  1588             AbstractLockNode* lock = lock_ops.at(i);
  1589             if (lock->Opcode() == Op_Lock)
  1590               locks++;
  1591             else
  1592               unlocks++;
  1593             if (Verbose) {
  1594               lock->dump(1);
  1597           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
  1599   #endif
  1601         // for each of the identified locks, mark them
  1602         // as eliminatable
  1603         for (int i = 0; i < lock_ops.length(); i++) {
  1604           AbstractLockNode* lock = lock_ops.at(i);
  1606           // Mark it eliminated by coarsening and update any counters
  1607           lock->set_coarsened();
  1609       } else if (ctrl->is_Region() &&
  1610                  iter->_worklist.member(ctrl)) {
  1611         // We weren't able to find any opportunities but the region this
  1612         // lock is control dependent on hasn't been processed yet so put
  1613         // this lock back on the worklist so we can check again once any
  1614         // region simplification has occurred.
  1615         iter->_worklist.push(this);
  1620   return result;
  1623 //=============================================================================
  1624 bool LockNode::is_nested_lock_region() {
  1625   BoxLockNode* box = box_node()->as_BoxLock();
  1626   int stk_slot = box->stack_slot();
  1627   if (stk_slot <= 0)
  1628     return false; // External lock or it is not Box (Phi node).
  1630   // Ignore complex cases: merged locks or multiple locks.
  1631   Node* obj = obj_node();
  1632   LockNode* unique_lock = NULL;
  1633   if (!box->is_simple_lock_region(&unique_lock, obj) ||
  1634       (unique_lock != this)) {
  1635     return false;
  1638   // Look for external lock for the same object.
  1639   SafePointNode* sfn = this->as_SafePoint();
  1640   JVMState* youngest_jvms = sfn->jvms();
  1641   int max_depth = youngest_jvms->depth();
  1642   for (int depth = 1; depth <= max_depth; depth++) {
  1643     JVMState* jvms = youngest_jvms->of_depth(depth);
  1644     int num_mon  = jvms->nof_monitors();
  1645     // Loop over monitors
  1646     for (int idx = 0; idx < num_mon; idx++) {
  1647       Node* obj_node = sfn->monitor_obj(jvms, idx);
  1648       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
  1649       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
  1650         return true;
  1654   return false;
  1657 //=============================================================================
  1658 uint UnlockNode::size_of() const { return sizeof(*this); }
  1660 //=============================================================================
  1661 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1663   // perform any generic optimizations first (returns 'this' or NULL)
  1664   Node *result = SafePointNode::Ideal(phase, can_reshape);
  1665   if (result != NULL)  return result;
  1666   // Don't bother trying to transform a dead node
  1667   if (in(0) && in(0)->is_top())  return NULL;
  1669   // Now see if we can optimize away this unlock.  We don't actually
  1670   // remove the unlocking here, we simply set the _eliminate flag which
  1671   // prevents macro expansion from expanding the unlock.  Since we don't
  1672   // modify the graph, the value returned from this function is the
  1673   // one computed above.
  1674   // Escape state is defined after Parse phase.
  1675   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
  1676     //
  1677     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
  1678     //
  1679     ConnectionGraph *cgr = phase->C->congraph();
  1680     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
  1681       assert(!is_eliminated() || is_coarsened(), "sanity");
  1682       // The lock could be marked eliminated by lock coarsening
  1683       // code during first IGVN before EA. Replace coarsened flag
  1684       // to eliminate all associated locks/unlocks.
  1685       this->set_non_esc_obj();
  1688   return result;

mercurial