src/share/vm/opto/callGenerator.hpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3313
a04a201f0f5a
child 3969
1d7922586cf6
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_CALLGENERATOR_HPP
    26 #define SHARE_VM_OPTO_CALLGENERATOR_HPP
    28 #include "opto/callnode.hpp"
    29 #include "opto/compile.hpp"
    30 #include "opto/type.hpp"
    31 #include "runtime/deoptimization.hpp"
    33 //---------------------------CallGenerator-------------------------------------
    34 // The subclasses of this class handle generation of ideal nodes for
    35 // call sites and method entry points.
    37 class CallGenerator : public ResourceObj {
    38  public:
    39   enum {
    40     xxxunusedxxx
    41   };
    43  private:
    44   ciMethod*             _method;                // The method being called.
    46  protected:
    47   CallGenerator(ciMethod* method);
    49  public:
    50   // Accessors
    51   ciMethod*         method() const              { return _method; }
    53   // is_inline: At least some code implementing the method is copied here.
    54   virtual bool      is_inline() const           { return false; }
    55   // is_intrinsic: There's a method-specific way of generating the inline code.
    56   virtual bool      is_intrinsic() const        { return false; }
    57   // is_parse: Bytecodes implementing the specific method are copied here.
    58   virtual bool      is_parse() const            { return false; }
    59   // is_virtual: The call uses the receiver type to select or check the method.
    60   virtual bool      is_virtual() const          { return false; }
    61   // is_deferred: The decision whether to inline or not is deferred.
    62   virtual bool      is_deferred() const         { return false; }
    63   // is_predicted: Uses an explicit check against a predicted type.
    64   virtual bool      is_predicted() const        { return false; }
    65   // is_trap: Does not return to the caller.  (E.g., uncommon trap.)
    66   virtual bool      is_trap() const             { return false; }
    68   // is_late_inline: supports conversion of call into an inline
    69   virtual bool      is_late_inline() const      { return false; }
    70   // Replace the call with an inline version of the code
    71   virtual void do_late_inline() { ShouldNotReachHere(); }
    73   virtual CallStaticJavaNode* call_node() const { ShouldNotReachHere(); return NULL; }
    75   // Note:  It is possible for a CG to be both inline and virtual.
    76   // (The hashCode intrinsic does a vtable check and an inlined fast path.)
    78   // Utilities:
    79   const TypeFunc*   tf() const;
    81   // The given jvms has state and arguments for a call to my method.
    82   // Edges after jvms->argoff() carry all (pre-popped) argument values.
    83   //
    84   // Update the map with state and return values (if any) and return it.
    85   // The return values (0, 1, or 2) must be pushed on the map's stack,
    86   // and the sp of the jvms incremented accordingly.
    87   //
    88   // The jvms is returned on success.  Alternatively, a copy of the
    89   // given jvms, suitably updated, may be returned, in which case the
    90   // caller should discard the original jvms.
    91   //
    92   // The non-Parm edges of the returned map will contain updated global state,
    93   // and one or two edges before jvms->sp() will carry any return values.
    94   // Other map edges may contain locals or monitors, and should not
    95   // be changed in meaning.
    96   //
    97   // If the call traps, the returned map must have a control edge of top.
    98   // If the call can throw, the returned map must report has_exceptions().
    99   //
   100   // If the result is NULL, it means that this CallGenerator was unable
   101   // to handle the given call, and another CallGenerator should be consulted.
   102   virtual JVMState* generate(JVMState* jvms) = 0;
   104   // How to generate a call site that is inlined:
   105   static CallGenerator* for_inline(ciMethod* m, float expected_uses = -1);
   106   // How to generate code for an on-stack replacement handler.
   107   static CallGenerator* for_osr(ciMethod* m, int osr_bci);
   109   // How to generate vanilla out-of-line call sites:
   110   static CallGenerator* for_direct_call(ciMethod* m, bool separate_io_projs = false);   // static, special
   111   static CallGenerator* for_virtual_call(ciMethod* m, int vtable_index);  // virtual, interface
   112   static CallGenerator* for_dynamic_call(ciMethod* m);   // invokedynamic
   114   static CallGenerator* for_method_handle_call(Node* method_handle, JVMState* jvms, ciMethod* caller, ciMethod* callee, ciCallProfile profile);
   115   static CallGenerator* for_invokedynamic_call(                     JVMState* jvms, ciMethod* caller, ciMethod* callee, ciCallProfile profile);
   117   static CallGenerator* for_method_handle_inline(Node* method_handle,   JVMState* jvms, ciMethod* caller, ciMethod* callee, ciCallProfile profile);
   118   static CallGenerator* for_invokedynamic_inline(ciCallSite* call_site, JVMState* jvms, ciMethod* caller, ciMethod* callee, ciCallProfile profile);
   120   // How to generate a replace a direct call with an inline version
   121   static CallGenerator* for_late_inline(ciMethod* m, CallGenerator* inline_cg);
   123   // How to make a call but defer the decision whether to inline or not.
   124   static CallGenerator* for_warm_call(WarmCallInfo* ci,
   125                                       CallGenerator* if_cold,
   126                                       CallGenerator* if_hot);
   128   // How to make a call that optimistically assumes a receiver type:
   129   static CallGenerator* for_predicted_call(ciKlass* predicted_receiver,
   130                                            CallGenerator* if_missed,
   131                                            CallGenerator* if_hit,
   132                                            float hit_prob);
   134   // How to make a call that optimistically assumes a MethodHandle target:
   135   static CallGenerator* for_predicted_dynamic_call(ciMethodHandle* predicted_method_handle,
   136                                                    CallGenerator* if_missed,
   137                                                    CallGenerator* if_hit,
   138                                                    float hit_prob);
   140   // How to make a call that gives up and goes back to the interpreter:
   141   static CallGenerator* for_uncommon_trap(ciMethod* m,
   142                                           Deoptimization::DeoptReason reason,
   143                                           Deoptimization::DeoptAction action);
   145   // Registry for intrinsics:
   146   static CallGenerator* for_intrinsic(ciMethod* m);
   147   static void register_intrinsic(ciMethod* m, CallGenerator* cg);
   148 };
   150 class InlineCallGenerator : public CallGenerator {
   151   virtual bool      is_inline() const           { return true; }
   153  protected:
   154   InlineCallGenerator(ciMethod* method) : CallGenerator(method) { }
   155 };
   158 //---------------------------WarmCallInfo--------------------------------------
   159 // A struct to collect information about a given call site.
   160 // Helps sort call sites into "hot", "medium", and "cold".
   161 // Participates in the queueing of "medium" call sites for possible inlining.
   162 class WarmCallInfo : public ResourceObj {
   163  private:
   165   CallNode*     _call;   // The CallNode which may be inlined.
   166   CallGenerator* _hot_cg;// CG for expanding the call node
   168   // These are the metrics we use to evaluate call sites:
   170   float         _count;  // How often do we expect to reach this site?
   171   float         _profit; // How much time do we expect to save by inlining?
   172   float         _work;   // How long do we expect the average call to take?
   173   float         _size;   // How big do we expect the inlined code to be?
   175   float         _heat;   // Combined score inducing total order on call sites.
   176   WarmCallInfo* _next;   // Next cooler call info in pending queue.
   178   // Count is the number of times this call site is expected to be executed.
   179   // Large count is favorable for inlining, because the extra compilation
   180   // work will be amortized more completely.
   182   // Profit is a rough measure of the amount of time we expect to save
   183   // per execution of this site if we inline it.  (1.0 == call overhead)
   184   // Large profit favors inlining.  Negative profit disables inlining.
   186   // Work is a rough measure of the amount of time a typical out-of-line
   187   // call from this site is expected to take.  (1.0 == call, no-op, return)
   188   // Small work is somewhat favorable for inlining, since methods with
   189   // short "hot" traces are more likely to inline smoothly.
   191   // Size is the number of graph nodes we expect this method to produce,
   192   // not counting the inlining of any further warm calls it may include.
   193   // Small size favors inlining, since small methods are more likely to
   194   // inline smoothly.  The size is estimated by examining the native code
   195   // if available.  The method bytecodes are also examined, assuming
   196   // empirically observed node counts for each kind of bytecode.
   198   // Heat is the combined "goodness" of a site's inlining.  If we were
   199   // omniscient, it would be the difference of two sums of future execution
   200   // times of code emitted for this site (amortized across multiple sites if
   201   // sharing applies).  The two sums are for versions of this call site with
   202   // and without inlining.
   204   // We approximate this mythical quantity by playing with averages,
   205   // rough estimates, and assumptions that history repeats itself.
   206   // The basic formula count * profit is heuristically adjusted
   207   // by looking at the expected compilation and execution times of
   208   // of the inlined call.
   210   // Note:  Some of these metrics may not be present in the final product,
   211   // but exist in development builds to experiment with inline policy tuning.
   213   // This heuristic framework does not model well the very significant
   214   // effects of multiple-level inlining.  It is possible to see no immediate
   215   // profit from inlining X->Y, but to get great profit from a subsequent
   216   // inlining X->Y->Z.
   218   // This framework does not take well into account the problem of N**2 code
   219   // size in a clique of mutually inlinable methods.
   221   WarmCallInfo*  next() const          { return _next; }
   222   void       set_next(WarmCallInfo* n) { _next = n; }
   224   static WarmCallInfo _always_hot;
   225   static WarmCallInfo _always_cold;
   227   // Constructor intitialization of always_hot and always_cold
   228   WarmCallInfo(float c, float p, float w, float s) {
   229     _call = NULL;
   230     _hot_cg = NULL;
   231     _next = NULL;
   232     _count = c;
   233     _profit = p;
   234     _work = w;
   235     _size = s;
   236     _heat = 0;
   237   }
   239  public:
   240   // Because WarmInfo objects live over the entire lifetime of the
   241   // Compile object, they are allocated into the comp_arena, which
   242   // does not get resource marked or reset during the compile process
   243   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
   244   void operator delete( void * ) { } // fast deallocation
   246   static WarmCallInfo* always_hot();
   247   static WarmCallInfo* always_cold();
   249   WarmCallInfo() {
   250     _call = NULL;
   251     _hot_cg = NULL;
   252     _next = NULL;
   253     _count = _profit = _work = _size = _heat = 0;
   254   }
   256   CallNode* call() const { return _call; }
   257   float count()    const { return _count; }
   258   float size()     const { return _size; }
   259   float work()     const { return _work; }
   260   float profit()   const { return _profit; }
   261   float heat()     const { return _heat; }
   263   void set_count(float x)     { _count = x; }
   264   void set_size(float x)      { _size = x; }
   265   void set_work(float x)      { _work = x; }
   266   void set_profit(float x)    { _profit = x; }
   267   void set_heat(float x)      { _heat = x; }
   269   // Load initial heuristics from profiles, etc.
   270   // The heuristics can be tweaked further by the caller.
   271   void init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor);
   273   static float MAX_VALUE() { return +1.0e10; }
   274   static float MIN_VALUE() { return -1.0e10; }
   276   float compute_heat() const;
   278   void set_call(CallNode* call)      { _call = call; }
   279   void set_hot_cg(CallGenerator* cg) { _hot_cg = cg; }
   281   // Do not queue very hot or very cold calls.
   282   // Make very cold ones out of line immediately.
   283   // Inline very hot ones immediately.
   284   // These queries apply various tunable limits
   285   // to the above metrics in a systematic way.
   286   // Test for coldness before testing for hotness.
   287   bool is_cold() const;
   288   bool is_hot() const;
   290   // Force a warm call to be hot.  This worklists the call node for inlining.
   291   void make_hot();
   293   // Force a warm call to be cold.  This worklists the call node for out-of-lining.
   294   void make_cold();
   296   // A reproducible total ordering, in which heat is the major key.
   297   bool warmer_than(WarmCallInfo* that);
   299   // List management.  These methods are called with the list head,
   300   // and return the new list head, inserting or removing the receiver.
   301   WarmCallInfo* insert_into(WarmCallInfo* head);
   302   WarmCallInfo* remove_from(WarmCallInfo* head);
   304 #ifndef PRODUCT
   305   void print() const;
   306   void print_all() const;
   307   int count_all() const;
   308 #endif
   309 };
   311 #endif // SHARE_VM_OPTO_CALLGENERATOR_HPP

mercurial