src/share/vm/opto/callGenerator.cpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3745
847da049d62f
child 3885
765ee2d1674b
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/bcEscapeAnalyzer.hpp"
    27 #include "ci/ciCallSite.hpp"
    28 #include "ci/ciCPCache.hpp"
    29 #include "ci/ciMethodHandle.hpp"
    30 #include "classfile/javaClasses.hpp"
    31 #include "compiler/compileLog.hpp"
    32 #include "opto/addnode.hpp"
    33 #include "opto/callGenerator.hpp"
    34 #include "opto/callnode.hpp"
    35 #include "opto/cfgnode.hpp"
    36 #include "opto/connode.hpp"
    37 #include "opto/parse.hpp"
    38 #include "opto/rootnode.hpp"
    39 #include "opto/runtime.hpp"
    40 #include "opto/subnode.hpp"
    42 CallGenerator::CallGenerator(ciMethod* method) {
    43   _method = method;
    44 }
    46 // Utility function.
    47 const TypeFunc* CallGenerator::tf() const {
    48   return TypeFunc::make(method());
    49 }
    51 //-----------------------------ParseGenerator---------------------------------
    52 // Internal class which handles all direct bytecode traversal.
    53 class ParseGenerator : public InlineCallGenerator {
    54 private:
    55   bool  _is_osr;
    56   float _expected_uses;
    58 public:
    59   ParseGenerator(ciMethod* method, float expected_uses, bool is_osr = false)
    60     : InlineCallGenerator(method)
    61   {
    62     _is_osr        = is_osr;
    63     _expected_uses = expected_uses;
    64     assert(InlineTree::check_can_parse(method) == NULL, "parse must be possible");
    65   }
    67   virtual bool      is_parse() const           { return true; }
    68   virtual JVMState* generate(JVMState* jvms);
    69   int is_osr() { return _is_osr; }
    71 };
    73 JVMState* ParseGenerator::generate(JVMState* jvms) {
    74   Compile* C = Compile::current();
    76   if (is_osr()) {
    77     // The JVMS for a OSR has a single argument (see its TypeFunc).
    78     assert(jvms->depth() == 1, "no inline OSR");
    79   }
    81   if (C->failing()) {
    82     return NULL;  // bailing out of the compile; do not try to parse
    83   }
    85   Parse parser(jvms, method(), _expected_uses);
    86   // Grab signature for matching/allocation
    87 #ifdef ASSERT
    88   if (parser.tf() != (parser.depth() == 1 ? C->tf() : tf())) {
    89     MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
    90     assert(C->env()->system_dictionary_modification_counter_changed(),
    91            "Must invalidate if TypeFuncs differ");
    92   }
    93 #endif
    95   GraphKit& exits = parser.exits();
    97   if (C->failing()) {
    98     while (exits.pop_exception_state() != NULL) ;
    99     return NULL;
   100   }
   102   assert(exits.jvms()->same_calls_as(jvms), "sanity");
   104   // Simply return the exit state of the parser,
   105   // augmented by any exceptional states.
   106   return exits.transfer_exceptions_into_jvms();
   107 }
   109 //---------------------------DirectCallGenerator------------------------------
   110 // Internal class which handles all out-of-line calls w/o receiver type checks.
   111 class DirectCallGenerator : public CallGenerator {
   112  private:
   113   CallStaticJavaNode* _call_node;
   114   // Force separate memory and I/O projections for the exceptional
   115   // paths to facilitate late inlinig.
   116   bool                _separate_io_proj;
   118  public:
   119   DirectCallGenerator(ciMethod* method, bool separate_io_proj)
   120     : CallGenerator(method),
   121       _separate_io_proj(separate_io_proj)
   122   {
   123   }
   124   virtual JVMState* generate(JVMState* jvms);
   126   CallStaticJavaNode* call_node() const { return _call_node; }
   127 };
   129 JVMState* DirectCallGenerator::generate(JVMState* jvms) {
   130   GraphKit kit(jvms);
   131   bool is_static = method()->is_static();
   132   address target = is_static ? SharedRuntime::get_resolve_static_call_stub()
   133                              : SharedRuntime::get_resolve_opt_virtual_call_stub();
   135   if (kit.C->log() != NULL) {
   136     kit.C->log()->elem("direct_call bci='%d'", jvms->bci());
   137   }
   139   CallStaticJavaNode *call = new (kit.C, tf()->domain()->cnt()) CallStaticJavaNode(tf(), target, method(), kit.bci());
   140   _call_node = call;  // Save the call node in case we need it later
   141   if (!is_static) {
   142     // Make an explicit receiver null_check as part of this call.
   143     // Since we share a map with the caller, his JVMS gets adjusted.
   144     kit.null_check_receiver(method());
   145     if (kit.stopped()) {
   146       // And dump it back to the caller, decorated with any exceptions:
   147       return kit.transfer_exceptions_into_jvms();
   148     }
   149     // Mark the call node as virtual, sort of:
   150     call->set_optimized_virtual(true);
   151     if (method()->is_method_handle_invoke()) {
   152       call->set_method_handle_invoke(true);
   153     }
   154   }
   155   kit.set_arguments_for_java_call(call);
   156   kit.set_edges_for_java_call(call, false, _separate_io_proj);
   157   Node* ret = kit.set_results_for_java_call(call, _separate_io_proj);
   158   kit.push_node(method()->return_type()->basic_type(), ret);
   159   return kit.transfer_exceptions_into_jvms();
   160 }
   162 //---------------------------DynamicCallGenerator-----------------------------
   163 // Internal class which handles all out-of-line invokedynamic calls.
   164 class DynamicCallGenerator : public CallGenerator {
   165 public:
   166   DynamicCallGenerator(ciMethod* method)
   167     : CallGenerator(method)
   168   {
   169   }
   170   virtual JVMState* generate(JVMState* jvms);
   171 };
   173 JVMState* DynamicCallGenerator::generate(JVMState* jvms) {
   174   GraphKit kit(jvms);
   176   if (kit.C->log() != NULL) {
   177     kit.C->log()->elem("dynamic_call bci='%d'", jvms->bci());
   178   }
   180   // Get the constant pool cache from the caller class.
   181   ciMethod* caller_method = jvms->method();
   182   ciBytecodeStream str(caller_method);
   183   str.force_bci(jvms->bci());  // Set the stream to the invokedynamic bci.
   184   assert(str.cur_bc() == Bytecodes::_invokedynamic, "wrong place to issue a dynamic call!");
   185   ciCPCache* cpcache = str.get_cpcache();
   187   // Get the offset of the CallSite from the constant pool cache
   188   // pointer.
   189   int index = str.get_method_index();
   190   size_t call_site_offset = cpcache->get_f1_offset(index);
   192   // Load the CallSite object from the constant pool cache.
   193   const TypeOopPtr* cpcache_ptr = TypeOopPtr::make_from_constant(cpcache);
   194   Node* cpcache_adr = kit.makecon(cpcache_ptr);
   195   Node* call_site_adr = kit.basic_plus_adr(cpcache_adr, cpcache_adr, call_site_offset);
   196   Node* call_site = kit.make_load(kit.control(), call_site_adr, TypeInstPtr::BOTTOM, T_OBJECT, Compile::AliasIdxRaw);
   198   // Load the target MethodHandle from the CallSite object.
   199   Node* target_mh_adr = kit.basic_plus_adr(call_site, call_site, java_lang_invoke_CallSite::target_offset_in_bytes());
   200   Node* target_mh = kit.make_load(kit.control(), target_mh_adr, TypeInstPtr::BOTTOM, T_OBJECT);
   202   address resolve_stub = SharedRuntime::get_resolve_opt_virtual_call_stub();
   204   CallStaticJavaNode *call = new (kit.C, tf()->domain()->cnt()) CallStaticJavaNode(tf(), resolve_stub, method(), kit.bci());
   205   // invokedynamic is treated as an optimized invokevirtual.
   206   call->set_optimized_virtual(true);
   207   // Take extra care (in the presence of argument motion) not to trash the SP:
   208   call->set_method_handle_invoke(true);
   210   // Pass the target MethodHandle as first argument and shift the
   211   // other arguments.
   212   call->init_req(0 + TypeFunc::Parms, target_mh);
   213   uint nargs = call->method()->arg_size();
   214   for (uint i = 1; i < nargs; i++) {
   215     Node* arg = kit.argument(i - 1);
   216     call->init_req(i + TypeFunc::Parms, arg);
   217   }
   219   kit.set_edges_for_java_call(call);
   220   Node* ret = kit.set_results_for_java_call(call);
   221   kit.push_node(method()->return_type()->basic_type(), ret);
   222   return kit.transfer_exceptions_into_jvms();
   223 }
   225 //--------------------------VirtualCallGenerator------------------------------
   226 // Internal class which handles all out-of-line calls checking receiver type.
   227 class VirtualCallGenerator : public CallGenerator {
   228 private:
   229   int _vtable_index;
   230 public:
   231   VirtualCallGenerator(ciMethod* method, int vtable_index)
   232     : CallGenerator(method), _vtable_index(vtable_index)
   233   {
   234     assert(vtable_index == methodOopDesc::invalid_vtable_index ||
   235            vtable_index >= 0, "either invalid or usable");
   236   }
   237   virtual bool      is_virtual() const          { return true; }
   238   virtual JVMState* generate(JVMState* jvms);
   239 };
   241 JVMState* VirtualCallGenerator::generate(JVMState* jvms) {
   242   GraphKit kit(jvms);
   243   Node* receiver = kit.argument(0);
   245   if (kit.C->log() != NULL) {
   246     kit.C->log()->elem("virtual_call bci='%d'", jvms->bci());
   247   }
   249   // If the receiver is a constant null, do not torture the system
   250   // by attempting to call through it.  The compile will proceed
   251   // correctly, but may bail out in final_graph_reshaping, because
   252   // the call instruction will have a seemingly deficient out-count.
   253   // (The bailout says something misleading about an "infinite loop".)
   254   if (kit.gvn().type(receiver)->higher_equal(TypePtr::NULL_PTR)) {
   255     kit.inc_sp(method()->arg_size());  // restore arguments
   256     kit.uncommon_trap(Deoptimization::Reason_null_check,
   257                       Deoptimization::Action_none,
   258                       NULL, "null receiver");
   259     return kit.transfer_exceptions_into_jvms();
   260   }
   262   // Ideally we would unconditionally do a null check here and let it
   263   // be converted to an implicit check based on profile information.
   264   // However currently the conversion to implicit null checks in
   265   // Block::implicit_null_check() only looks for loads and stores, not calls.
   266   ciMethod *caller = kit.method();
   267   ciMethodData *caller_md = (caller == NULL) ? NULL : caller->method_data();
   268   if (!UseInlineCaches || !ImplicitNullChecks ||
   269        ((ImplicitNullCheckThreshold > 0) && caller_md &&
   270        (caller_md->trap_count(Deoptimization::Reason_null_check)
   271        >= (uint)ImplicitNullCheckThreshold))) {
   272     // Make an explicit receiver null_check as part of this call.
   273     // Since we share a map with the caller, his JVMS gets adjusted.
   274     receiver = kit.null_check_receiver(method());
   275     if (kit.stopped()) {
   276       // And dump it back to the caller, decorated with any exceptions:
   277       return kit.transfer_exceptions_into_jvms();
   278     }
   279   }
   281   assert(!method()->is_static(), "virtual call must not be to static");
   282   assert(!method()->is_final(), "virtual call should not be to final");
   283   assert(!method()->is_private(), "virtual call should not be to private");
   284   assert(_vtable_index == methodOopDesc::invalid_vtable_index || !UseInlineCaches,
   285          "no vtable calls if +UseInlineCaches ");
   286   address target = SharedRuntime::get_resolve_virtual_call_stub();
   287   // Normal inline cache used for call
   288   CallDynamicJavaNode *call = new (kit.C, tf()->domain()->cnt()) CallDynamicJavaNode(tf(), target, method(), _vtable_index, kit.bci());
   289   kit.set_arguments_for_java_call(call);
   290   kit.set_edges_for_java_call(call);
   291   Node* ret = kit.set_results_for_java_call(call);
   292   kit.push_node(method()->return_type()->basic_type(), ret);
   294   // Represent the effect of an implicit receiver null_check
   295   // as part of this call.  Since we share a map with the caller,
   296   // his JVMS gets adjusted.
   297   kit.cast_not_null(receiver);
   298   return kit.transfer_exceptions_into_jvms();
   299 }
   301 CallGenerator* CallGenerator::for_inline(ciMethod* m, float expected_uses) {
   302   if (InlineTree::check_can_parse(m) != NULL)  return NULL;
   303   return new ParseGenerator(m, expected_uses);
   304 }
   306 // As a special case, the JVMS passed to this CallGenerator is
   307 // for the method execution already in progress, not just the JVMS
   308 // of the caller.  Thus, this CallGenerator cannot be mixed with others!
   309 CallGenerator* CallGenerator::for_osr(ciMethod* m, int osr_bci) {
   310   if (InlineTree::check_can_parse(m) != NULL)  return NULL;
   311   float past_uses = m->interpreter_invocation_count();
   312   float expected_uses = past_uses;
   313   return new ParseGenerator(m, expected_uses, true);
   314 }
   316 CallGenerator* CallGenerator::for_direct_call(ciMethod* m, bool separate_io_proj) {
   317   assert(!m->is_abstract(), "for_direct_call mismatch");
   318   return new DirectCallGenerator(m, separate_io_proj);
   319 }
   321 CallGenerator* CallGenerator::for_virtual_call(ciMethod* m, int vtable_index) {
   322   assert(!m->is_static(), "for_virtual_call mismatch");
   323   assert(!m->is_method_handle_invoke(), "should be a direct call");
   324   return new VirtualCallGenerator(m, vtable_index);
   325 }
   327 CallGenerator* CallGenerator::for_dynamic_call(ciMethod* m) {
   328   assert(m->is_method_handle_invoke() || m->is_method_handle_adapter(), "for_dynamic_call mismatch");
   329   return new DynamicCallGenerator(m);
   330 }
   332 // Allow inlining decisions to be delayed
   333 class LateInlineCallGenerator : public DirectCallGenerator {
   334   CallGenerator* _inline_cg;
   336  public:
   337   LateInlineCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
   338     DirectCallGenerator(method, true), _inline_cg(inline_cg) {}
   340   virtual bool      is_late_inline() const { return true; }
   342   // Convert the CallStaticJava into an inline
   343   virtual void do_late_inline();
   345   JVMState* generate(JVMState* jvms) {
   346     // Record that this call site should be revisited once the main
   347     // parse is finished.
   348     Compile::current()->add_late_inline(this);
   350     // Emit the CallStaticJava and request separate projections so
   351     // that the late inlining logic can distinguish between fall
   352     // through and exceptional uses of the memory and io projections
   353     // as is done for allocations and macro expansion.
   354     return DirectCallGenerator::generate(jvms);
   355   }
   357 };
   360 void LateInlineCallGenerator::do_late_inline() {
   361   // Can't inline it
   362   if (call_node() == NULL || call_node()->outcnt() == 0 ||
   363       call_node()->in(0) == NULL || call_node()->in(0)->is_top())
   364     return;
   366   CallStaticJavaNode* call = call_node();
   368   // Make a clone of the JVMState that appropriate to use for driving a parse
   369   Compile* C = Compile::current();
   370   JVMState* jvms     = call->jvms()->clone_shallow(C);
   371   uint size = call->req();
   372   SafePointNode* map = new (C, size) SafePointNode(size, jvms);
   373   for (uint i1 = 0; i1 < size; i1++) {
   374     map->init_req(i1, call->in(i1));
   375   }
   377   // Make sure the state is a MergeMem for parsing.
   378   if (!map->in(TypeFunc::Memory)->is_MergeMem()) {
   379     map->set_req(TypeFunc::Memory, MergeMemNode::make(C, map->in(TypeFunc::Memory)));
   380   }
   382   // Make enough space for the expression stack and transfer the incoming arguments
   383   int nargs    = method()->arg_size();
   384   jvms->set_map(map);
   385   map->ensure_stack(jvms, jvms->method()->max_stack());
   386   if (nargs > 0) {
   387     for (int i1 = 0; i1 < nargs; i1++) {
   388       map->set_req(i1 + jvms->argoff(), call->in(TypeFunc::Parms + i1));
   389     }
   390   }
   392   CompileLog* log = C->log();
   393   if (log != NULL) {
   394     log->head("late_inline method='%d'", log->identify(method()));
   395     JVMState* p = jvms;
   396     while (p != NULL) {
   397       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
   398       p = p->caller();
   399     }
   400     log->tail("late_inline");
   401   }
   403   // Setup default node notes to be picked up by the inlining
   404   Node_Notes* old_nn = C->default_node_notes();
   405   if (old_nn != NULL) {
   406     Node_Notes* entry_nn = old_nn->clone(C);
   407     entry_nn->set_jvms(jvms);
   408     C->set_default_node_notes(entry_nn);
   409   }
   411   // Now perform the inling using the synthesized JVMState
   412   JVMState* new_jvms = _inline_cg->generate(jvms);
   413   if (new_jvms == NULL)  return;  // no change
   414   if (C->failing())      return;
   416   // Capture any exceptional control flow
   417   GraphKit kit(new_jvms);
   419   // Find the result object
   420   Node* result = C->top();
   421   int   result_size = method()->return_type()->size();
   422   if (result_size != 0 && !kit.stopped()) {
   423     result = (result_size == 1) ? kit.pop() : kit.pop_pair();
   424   }
   426   kit.replace_call(call, result);
   427 }
   430 CallGenerator* CallGenerator::for_late_inline(ciMethod* method, CallGenerator* inline_cg) {
   431   return new LateInlineCallGenerator(method, inline_cg);
   432 }
   435 //---------------------------WarmCallGenerator--------------------------------
   436 // Internal class which handles initial deferral of inlining decisions.
   437 class WarmCallGenerator : public CallGenerator {
   438   WarmCallInfo*   _call_info;
   439   CallGenerator*  _if_cold;
   440   CallGenerator*  _if_hot;
   441   bool            _is_virtual;   // caches virtuality of if_cold
   442   bool            _is_inline;    // caches inline-ness of if_hot
   444 public:
   445   WarmCallGenerator(WarmCallInfo* ci,
   446                     CallGenerator* if_cold,
   447                     CallGenerator* if_hot)
   448     : CallGenerator(if_cold->method())
   449   {
   450     assert(method() == if_hot->method(), "consistent choices");
   451     _call_info  = ci;
   452     _if_cold    = if_cold;
   453     _if_hot     = if_hot;
   454     _is_virtual = if_cold->is_virtual();
   455     _is_inline  = if_hot->is_inline();
   456   }
   458   virtual bool      is_inline() const           { return _is_inline; }
   459   virtual bool      is_virtual() const          { return _is_virtual; }
   460   virtual bool      is_deferred() const         { return true; }
   462   virtual JVMState* generate(JVMState* jvms);
   463 };
   466 CallGenerator* CallGenerator::for_warm_call(WarmCallInfo* ci,
   467                                             CallGenerator* if_cold,
   468                                             CallGenerator* if_hot) {
   469   return new WarmCallGenerator(ci, if_cold, if_hot);
   470 }
   472 JVMState* WarmCallGenerator::generate(JVMState* jvms) {
   473   Compile* C = Compile::current();
   474   if (C->log() != NULL) {
   475     C->log()->elem("warm_call bci='%d'", jvms->bci());
   476   }
   477   jvms = _if_cold->generate(jvms);
   478   if (jvms != NULL) {
   479     Node* m = jvms->map()->control();
   480     if (m->is_CatchProj()) m = m->in(0);  else m = C->top();
   481     if (m->is_Catch())     m = m->in(0);  else m = C->top();
   482     if (m->is_Proj())      m = m->in(0);  else m = C->top();
   483     if (m->is_CallJava()) {
   484       _call_info->set_call(m->as_Call());
   485       _call_info->set_hot_cg(_if_hot);
   486 #ifndef PRODUCT
   487       if (PrintOpto || PrintOptoInlining) {
   488         tty->print_cr("Queueing for warm inlining at bci %d:", jvms->bci());
   489         tty->print("WCI: ");
   490         _call_info->print();
   491       }
   492 #endif
   493       _call_info->set_heat(_call_info->compute_heat());
   494       C->set_warm_calls(_call_info->insert_into(C->warm_calls()));
   495     }
   496   }
   497   return jvms;
   498 }
   500 void WarmCallInfo::make_hot() {
   501   Unimplemented();
   502 }
   504 void WarmCallInfo::make_cold() {
   505   // No action:  Just dequeue.
   506 }
   509 //------------------------PredictedCallGenerator------------------------------
   510 // Internal class which handles all out-of-line calls checking receiver type.
   511 class PredictedCallGenerator : public CallGenerator {
   512   ciKlass*       _predicted_receiver;
   513   CallGenerator* _if_missed;
   514   CallGenerator* _if_hit;
   515   float          _hit_prob;
   517 public:
   518   PredictedCallGenerator(ciKlass* predicted_receiver,
   519                          CallGenerator* if_missed,
   520                          CallGenerator* if_hit, float hit_prob)
   521     : CallGenerator(if_missed->method())
   522   {
   523     // The call profile data may predict the hit_prob as extreme as 0 or 1.
   524     // Remove the extremes values from the range.
   525     if (hit_prob > PROB_MAX)   hit_prob = PROB_MAX;
   526     if (hit_prob < PROB_MIN)   hit_prob = PROB_MIN;
   528     _predicted_receiver = predicted_receiver;
   529     _if_missed          = if_missed;
   530     _if_hit             = if_hit;
   531     _hit_prob           = hit_prob;
   532   }
   534   virtual bool      is_virtual()   const    { return true; }
   535   virtual bool      is_inline()    const    { return _if_hit->is_inline(); }
   536   virtual bool      is_deferred()  const    { return _if_hit->is_deferred(); }
   538   virtual JVMState* generate(JVMState* jvms);
   539 };
   542 CallGenerator* CallGenerator::for_predicted_call(ciKlass* predicted_receiver,
   543                                                  CallGenerator* if_missed,
   544                                                  CallGenerator* if_hit,
   545                                                  float hit_prob) {
   546   return new PredictedCallGenerator(predicted_receiver, if_missed, if_hit, hit_prob);
   547 }
   550 JVMState* PredictedCallGenerator::generate(JVMState* jvms) {
   551   GraphKit kit(jvms);
   552   PhaseGVN& gvn = kit.gvn();
   553   // We need an explicit receiver null_check before checking its type.
   554   // We share a map with the caller, so his JVMS gets adjusted.
   555   Node* receiver = kit.argument(0);
   557   CompileLog* log = kit.C->log();
   558   if (log != NULL) {
   559     log->elem("predicted_call bci='%d' klass='%d'",
   560               jvms->bci(), log->identify(_predicted_receiver));
   561   }
   563   receiver = kit.null_check_receiver(method());
   564   if (kit.stopped()) {
   565     return kit.transfer_exceptions_into_jvms();
   566   }
   568   Node* exact_receiver = receiver;  // will get updated in place...
   569   Node* slow_ctl = kit.type_check_receiver(receiver,
   570                                            _predicted_receiver, _hit_prob,
   571                                            &exact_receiver);
   573   SafePointNode* slow_map = NULL;
   574   JVMState* slow_jvms;
   575   { PreserveJVMState pjvms(&kit);
   576     kit.set_control(slow_ctl);
   577     if (!kit.stopped()) {
   578       slow_jvms = _if_missed->generate(kit.sync_jvms());
   579       if (kit.failing())
   580         return NULL;  // might happen because of NodeCountInliningCutoff
   581       assert(slow_jvms != NULL, "must be");
   582       kit.add_exception_states_from(slow_jvms);
   583       kit.set_map(slow_jvms->map());
   584       if (!kit.stopped())
   585         slow_map = kit.stop();
   586     }
   587   }
   589   if (kit.stopped()) {
   590     // Instance exactly does not matches the desired type.
   591     kit.set_jvms(slow_jvms);
   592     return kit.transfer_exceptions_into_jvms();
   593   }
   595   // fall through if the instance exactly matches the desired type
   596   kit.replace_in_map(receiver, exact_receiver);
   598   // Make the hot call:
   599   JVMState* new_jvms = _if_hit->generate(kit.sync_jvms());
   600   if (new_jvms == NULL) {
   601     // Inline failed, so make a direct call.
   602     assert(_if_hit->is_inline(), "must have been a failed inline");
   603     CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method());
   604     new_jvms = cg->generate(kit.sync_jvms());
   605   }
   606   kit.add_exception_states_from(new_jvms);
   607   kit.set_jvms(new_jvms);
   609   // Need to merge slow and fast?
   610   if (slow_map == NULL) {
   611     // The fast path is the only path remaining.
   612     return kit.transfer_exceptions_into_jvms();
   613   }
   615   if (kit.stopped()) {
   616     // Inlined method threw an exception, so it's just the slow path after all.
   617     kit.set_jvms(slow_jvms);
   618     return kit.transfer_exceptions_into_jvms();
   619   }
   621   // Finish the diamond.
   622   kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
   623   RegionNode* region = new (kit.C, 3) RegionNode(3);
   624   region->init_req(1, kit.control());
   625   region->init_req(2, slow_map->control());
   626   kit.set_control(gvn.transform(region));
   627   Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
   628   iophi->set_req(2, slow_map->i_o());
   629   kit.set_i_o(gvn.transform(iophi));
   630   kit.merge_memory(slow_map->merged_memory(), region, 2);
   631   uint tos = kit.jvms()->stkoff() + kit.sp();
   632   uint limit = slow_map->req();
   633   for (uint i = TypeFunc::Parms; i < limit; i++) {
   634     // Skip unused stack slots; fast forward to monoff();
   635     if (i == tos) {
   636       i = kit.jvms()->monoff();
   637       if( i >= limit ) break;
   638     }
   639     Node* m = kit.map()->in(i);
   640     Node* n = slow_map->in(i);
   641     if (m != n) {
   642       const Type* t = gvn.type(m)->meet(gvn.type(n));
   643       Node* phi = PhiNode::make(region, m, t);
   644       phi->set_req(2, n);
   645       kit.map()->set_req(i, gvn.transform(phi));
   646     }
   647   }
   648   return kit.transfer_exceptions_into_jvms();
   649 }
   652 //------------------------PredictedDynamicCallGenerator-----------------------
   653 // Internal class which handles all out-of-line calls checking receiver type.
   654 class PredictedDynamicCallGenerator : public CallGenerator {
   655   ciMethodHandle* _predicted_method_handle;
   656   CallGenerator*  _if_missed;
   657   CallGenerator*  _if_hit;
   658   float           _hit_prob;
   660 public:
   661   PredictedDynamicCallGenerator(ciMethodHandle* predicted_method_handle,
   662                                 CallGenerator* if_missed,
   663                                 CallGenerator* if_hit,
   664                                 float hit_prob)
   665     : CallGenerator(if_missed->method()),
   666       _predicted_method_handle(predicted_method_handle),
   667       _if_missed(if_missed),
   668       _if_hit(if_hit),
   669       _hit_prob(hit_prob)
   670   {}
   672   virtual bool is_inline()   const { return _if_hit->is_inline(); }
   673   virtual bool is_deferred() const { return _if_hit->is_deferred(); }
   675   virtual JVMState* generate(JVMState* jvms);
   676 };
   679 CallGenerator* CallGenerator::for_predicted_dynamic_call(ciMethodHandle* predicted_method_handle,
   680                                                          CallGenerator* if_missed,
   681                                                          CallGenerator* if_hit,
   682                                                          float hit_prob) {
   683   return new PredictedDynamicCallGenerator(predicted_method_handle, if_missed, if_hit, hit_prob);
   684 }
   687 CallGenerator* CallGenerator::for_method_handle_call(Node* method_handle, JVMState* jvms,
   688                                                      ciMethod* caller, ciMethod* callee, ciCallProfile profile) {
   689   assert(callee->is_method_handle_invoke() || callee->is_method_handle_adapter(), "for_method_handle_call mismatch");
   690   CallGenerator* cg = CallGenerator::for_method_handle_inline(method_handle, jvms, caller, callee, profile);
   691   if (cg != NULL)
   692     return cg;
   693   return CallGenerator::for_direct_call(callee);
   694 }
   696 CallGenerator* CallGenerator::for_method_handle_inline(Node* method_handle, JVMState* jvms,
   697                                                        ciMethod* caller, ciMethod* callee, ciCallProfile profile) {
   698   if (method_handle->Opcode() == Op_ConP) {
   699     const TypeOopPtr* oop_ptr = method_handle->bottom_type()->is_oopptr();
   700     ciObject* const_oop = oop_ptr->const_oop();
   701     ciMethodHandle* method_handle = const_oop->as_method_handle();
   703     // Set the callee to have access to the class and signature in
   704     // the MethodHandleCompiler.
   705     method_handle->set_callee(callee);
   706     method_handle->set_caller(caller);
   707     method_handle->set_call_profile(profile);
   709     // Get an adapter for the MethodHandle.
   710     ciMethod* target_method = method_handle->get_method_handle_adapter();
   711     if (target_method != NULL) {
   712       CallGenerator* cg = Compile::current()->call_generator(target_method, -1, false, jvms, true, PROB_ALWAYS);
   713       if (cg != NULL && cg->is_inline())
   714         return cg;
   715     }
   716   } else if (method_handle->Opcode() == Op_Phi && method_handle->req() == 3 &&
   717              method_handle->in(1)->Opcode() == Op_ConP && method_handle->in(2)->Opcode() == Op_ConP) {
   718     float prob = PROB_FAIR;
   719     Node* meth_region = method_handle->in(0);
   720     if (meth_region->is_Region() &&
   721         meth_region->in(1)->is_Proj() && meth_region->in(2)->is_Proj() &&
   722         meth_region->in(1)->in(0) == meth_region->in(2)->in(0) &&
   723         meth_region->in(1)->in(0)->is_If()) {
   724       // If diamond, so grab the probability of the test to drive the inlining below
   725       prob = meth_region->in(1)->in(0)->as_If()->_prob;
   726       if (meth_region->in(1)->is_IfTrue()) {
   727         prob = 1 - prob;
   728       }
   729     }
   731     // selectAlternative idiom merging two constant MethodHandles.
   732     // Generate a guard so that each can be inlined.  We might want to
   733     // do more inputs at later point but this gets the most common
   734     // case.
   735     CallGenerator* cg1 = for_method_handle_call(method_handle->in(1), jvms, caller, callee, profile.rescale(1.0 - prob));
   736     CallGenerator* cg2 = for_method_handle_call(method_handle->in(2), jvms, caller, callee, profile.rescale(prob));
   737     if (cg1 != NULL && cg2 != NULL) {
   738       const TypeOopPtr* oop_ptr = method_handle->in(1)->bottom_type()->is_oopptr();
   739       ciObject* const_oop = oop_ptr->const_oop();
   740       ciMethodHandle* mh = const_oop->as_method_handle();
   741       return new PredictedDynamicCallGenerator(mh, cg2, cg1, prob);
   742     }
   743   }
   744   return NULL;
   745 }
   747 CallGenerator* CallGenerator::for_invokedynamic_call(JVMState* jvms, ciMethod* caller, ciMethod* callee, ciCallProfile profile) {
   748   assert(callee->is_method_handle_invoke() || callee->is_method_handle_adapter(), "for_invokedynamic_call mismatch");
   749   // Get the CallSite object.
   750   ciBytecodeStream str(caller);
   751   str.force_bci(jvms->bci());  // Set the stream to the invokedynamic bci.
   752   ciCallSite* call_site = str.get_call_site();
   753   CallGenerator* cg = CallGenerator::for_invokedynamic_inline(call_site, jvms, caller, callee, profile);
   754   if (cg != NULL)
   755     return cg;
   756   return CallGenerator::for_dynamic_call(callee);
   757 }
   759 CallGenerator* CallGenerator::for_invokedynamic_inline(ciCallSite* call_site, JVMState* jvms,
   760                                                        ciMethod* caller, ciMethod* callee, ciCallProfile profile) {
   761   ciMethodHandle* method_handle = call_site->get_target();
   763   // Set the callee to have access to the class and signature in the
   764   // MethodHandleCompiler.
   765   method_handle->set_callee(callee);
   766   method_handle->set_caller(caller);
   767   method_handle->set_call_profile(profile);
   769   // Get an adapter for the MethodHandle.
   770   ciMethod* target_method = method_handle->get_invokedynamic_adapter();
   771   if (target_method != NULL) {
   772     Compile *C = Compile::current();
   773     CallGenerator* cg = C->call_generator(target_method, -1, false, jvms, true, PROB_ALWAYS);
   774     if (cg != NULL && cg->is_inline()) {
   775       // Add a dependence for invalidation of the optimization.
   776       if (!call_site->is_constant_call_site()) {
   777         C->dependencies()->assert_call_site_target_value(call_site, method_handle);
   778       }
   779       return cg;
   780     }
   781   }
   782   return NULL;
   783 }
   786 JVMState* PredictedDynamicCallGenerator::generate(JVMState* jvms) {
   787   GraphKit kit(jvms);
   788   PhaseGVN& gvn = kit.gvn();
   790   CompileLog* log = kit.C->log();
   791   if (log != NULL) {
   792     log->elem("predicted_dynamic_call bci='%d'", jvms->bci());
   793   }
   795   const TypeOopPtr* predicted_mh_ptr = TypeOopPtr::make_from_constant(_predicted_method_handle, true);
   796   Node* predicted_mh = kit.makecon(predicted_mh_ptr);
   798   Node* bol = NULL;
   799   int bc = jvms->method()->java_code_at_bci(jvms->bci());
   800   if (bc != Bytecodes::_invokedynamic) {
   801     // This is the selectAlternative idiom for guardWithTest or
   802     // similar idioms.
   803     Node* receiver = kit.argument(0);
   805     // Check if the MethodHandle is the expected one
   806     Node* cmp = gvn.transform(new(kit.C, 3) CmpPNode(receiver, predicted_mh));
   807     bol = gvn.transform(new(kit.C, 2) BoolNode(cmp, BoolTest::eq) );
   808   } else {
   809     // Get the constant pool cache from the caller class.
   810     ciMethod* caller_method = jvms->method();
   811     ciBytecodeStream str(caller_method);
   812     str.force_bci(jvms->bci());  // Set the stream to the invokedynamic bci.
   813     ciCPCache* cpcache = str.get_cpcache();
   815     // Get the offset of the CallSite from the constant pool cache
   816     // pointer.
   817     int index = str.get_method_index();
   818     size_t call_site_offset = cpcache->get_f1_offset(index);
   820     // Load the CallSite object from the constant pool cache.
   821     const TypeOopPtr* cpcache_ptr = TypeOopPtr::make_from_constant(cpcache);
   822     Node* cpcache_adr   = kit.makecon(cpcache_ptr);
   823     Node* call_site_adr = kit.basic_plus_adr(cpcache_adr, cpcache_adr, call_site_offset);
   824     Node* call_site     = kit.make_load(kit.control(), call_site_adr, TypeInstPtr::BOTTOM, T_OBJECT, Compile::AliasIdxRaw);
   826     // Load the target MethodHandle from the CallSite object.
   827     Node* target_adr = kit.basic_plus_adr(call_site, call_site, java_lang_invoke_CallSite::target_offset_in_bytes());
   828     Node* target_mh  = kit.make_load(kit.control(), target_adr, TypeInstPtr::BOTTOM, T_OBJECT);
   830     // Check if the MethodHandle is still the same.
   831     Node* cmp = gvn.transform(new(kit.C, 3) CmpPNode(target_mh, predicted_mh));
   832     bol = gvn.transform(new(kit.C, 2) BoolNode(cmp, BoolTest::eq) );
   833   }
   834   IfNode* iff = kit.create_and_xform_if(kit.control(), bol, _hit_prob, COUNT_UNKNOWN);
   835   kit.set_control( gvn.transform(new(kit.C, 1) IfTrueNode (iff)));
   836   Node* slow_ctl = gvn.transform(new(kit.C, 1) IfFalseNode(iff));
   838   SafePointNode* slow_map = NULL;
   839   JVMState* slow_jvms;
   840   { PreserveJVMState pjvms(&kit);
   841     kit.set_control(slow_ctl);
   842     if (!kit.stopped()) {
   843       slow_jvms = _if_missed->generate(kit.sync_jvms());
   844       if (kit.failing())
   845         return NULL;  // might happen because of NodeCountInliningCutoff
   846       assert(slow_jvms != NULL, "must be");
   847       kit.add_exception_states_from(slow_jvms);
   848       kit.set_map(slow_jvms->map());
   849       if (!kit.stopped())
   850         slow_map = kit.stop();
   851     }
   852   }
   854   if (kit.stopped()) {
   855     // Instance exactly does not matches the desired type.
   856     kit.set_jvms(slow_jvms);
   857     return kit.transfer_exceptions_into_jvms();
   858   }
   860   // Make the hot call:
   861   JVMState* new_jvms = _if_hit->generate(kit.sync_jvms());
   862   if (new_jvms == NULL) {
   863     // Inline failed, so make a direct call.
   864     assert(_if_hit->is_inline(), "must have been a failed inline");
   865     CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method());
   866     new_jvms = cg->generate(kit.sync_jvms());
   867   }
   868   kit.add_exception_states_from(new_jvms);
   869   kit.set_jvms(new_jvms);
   871   // Need to merge slow and fast?
   872   if (slow_map == NULL) {
   873     // The fast path is the only path remaining.
   874     return kit.transfer_exceptions_into_jvms();
   875   }
   877   if (kit.stopped()) {
   878     // Inlined method threw an exception, so it's just the slow path after all.
   879     kit.set_jvms(slow_jvms);
   880     return kit.transfer_exceptions_into_jvms();
   881   }
   883   // Finish the diamond.
   884   kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
   885   RegionNode* region = new (kit.C, 3) RegionNode(3);
   886   region->init_req(1, kit.control());
   887   region->init_req(2, slow_map->control());
   888   kit.set_control(gvn.transform(region));
   889   Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
   890   iophi->set_req(2, slow_map->i_o());
   891   kit.set_i_o(gvn.transform(iophi));
   892   kit.merge_memory(slow_map->merged_memory(), region, 2);
   893   uint tos = kit.jvms()->stkoff() + kit.sp();
   894   uint limit = slow_map->req();
   895   for (uint i = TypeFunc::Parms; i < limit; i++) {
   896     // Skip unused stack slots; fast forward to monoff();
   897     if (i == tos) {
   898       i = kit.jvms()->monoff();
   899       if( i >= limit ) break;
   900     }
   901     Node* m = kit.map()->in(i);
   902     Node* n = slow_map->in(i);
   903     if (m != n) {
   904       const Type* t = gvn.type(m)->meet(gvn.type(n));
   905       Node* phi = PhiNode::make(region, m, t);
   906       phi->set_req(2, n);
   907       kit.map()->set_req(i, gvn.transform(phi));
   908     }
   909   }
   910   return kit.transfer_exceptions_into_jvms();
   911 }
   914 //-------------------------UncommonTrapCallGenerator-----------------------------
   915 // Internal class which handles all out-of-line calls checking receiver type.
   916 class UncommonTrapCallGenerator : public CallGenerator {
   917   Deoptimization::DeoptReason _reason;
   918   Deoptimization::DeoptAction _action;
   920 public:
   921   UncommonTrapCallGenerator(ciMethod* m,
   922                             Deoptimization::DeoptReason reason,
   923                             Deoptimization::DeoptAction action)
   924     : CallGenerator(m)
   925   {
   926     _reason = reason;
   927     _action = action;
   928   }
   930   virtual bool      is_virtual() const          { ShouldNotReachHere(); return false; }
   931   virtual bool      is_trap() const             { return true; }
   933   virtual JVMState* generate(JVMState* jvms);
   934 };
   937 CallGenerator*
   938 CallGenerator::for_uncommon_trap(ciMethod* m,
   939                                  Deoptimization::DeoptReason reason,
   940                                  Deoptimization::DeoptAction action) {
   941   return new UncommonTrapCallGenerator(m, reason, action);
   942 }
   945 JVMState* UncommonTrapCallGenerator::generate(JVMState* jvms) {
   946   GraphKit kit(jvms);
   947   // Take the trap with arguments pushed on the stack.  (Cf. null_check_receiver).
   948   int nargs = method()->arg_size();
   949   kit.inc_sp(nargs);
   950   assert(nargs <= kit.sp() && kit.sp() <= jvms->stk_size(), "sane sp w/ args pushed");
   951   if (_reason == Deoptimization::Reason_class_check &&
   952       _action == Deoptimization::Action_maybe_recompile) {
   953     // Temp fix for 6529811
   954     // Don't allow uncommon_trap to override our decision to recompile in the event
   955     // of a class cast failure for a monomorphic call as it will never let us convert
   956     // the call to either bi-morphic or megamorphic and can lead to unc-trap loops
   957     bool keep_exact_action = true;
   958     kit.uncommon_trap(_reason, _action, NULL, "monomorphic vcall checkcast", false, keep_exact_action);
   959   } else {
   960     kit.uncommon_trap(_reason, _action);
   961   }
   962   return kit.transfer_exceptions_into_jvms();
   963 }
   965 // (Note:  Moved hook_up_call to GraphKit::set_edges_for_java_call.)
   967 // (Node:  Merged hook_up_exits into ParseGenerator::generate.)
   969 #define NODES_OVERHEAD_PER_METHOD (30.0)
   970 #define NODES_PER_BYTECODE (9.5)
   972 void WarmCallInfo::init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor) {
   973   int call_count = profile.count();
   974   int code_size = call_method->code_size();
   976   // Expected execution count is based on the historical count:
   977   _count = call_count < 0 ? 1 : call_site->method()->scale_count(call_count, prof_factor);
   979   // Expected profit from inlining, in units of simple call-overheads.
   980   _profit = 1.0;
   982   // Expected work performed by the call in units of call-overheads.
   983   // %%% need an empirical curve fit for "work" (time in call)
   984   float bytecodes_per_call = 3;
   985   _work = 1.0 + code_size / bytecodes_per_call;
   987   // Expected size of compilation graph:
   988   // -XX:+PrintParseStatistics once reported:
   989   //  Methods seen: 9184  Methods parsed: 9184  Nodes created: 1582391
   990   //  Histogram of 144298 parsed bytecodes:
   991   // %%% Need an better predictor for graph size.
   992   _size = NODES_OVERHEAD_PER_METHOD + (NODES_PER_BYTECODE * code_size);
   993 }
   995 // is_cold:  Return true if the node should never be inlined.
   996 // This is true if any of the key metrics are extreme.
   997 bool WarmCallInfo::is_cold() const {
   998   if (count()  <  WarmCallMinCount)        return true;
   999   if (profit() <  WarmCallMinProfit)       return true;
  1000   if (work()   >  WarmCallMaxWork)         return true;
  1001   if (size()   >  WarmCallMaxSize)         return true;
  1002   return false;
  1005 // is_hot:  Return true if the node should be inlined immediately.
  1006 // This is true if any of the key metrics are extreme.
  1007 bool WarmCallInfo::is_hot() const {
  1008   assert(!is_cold(), "eliminate is_cold cases before testing is_hot");
  1009   if (count()  >= HotCallCountThreshold)   return true;
  1010   if (profit() >= HotCallProfitThreshold)  return true;
  1011   if (work()   <= HotCallTrivialWork)      return true;
  1012   if (size()   <= HotCallTrivialSize)      return true;
  1013   return false;
  1016 // compute_heat:
  1017 float WarmCallInfo::compute_heat() const {
  1018   assert(!is_cold(), "compute heat only on warm nodes");
  1019   assert(!is_hot(),  "compute heat only on warm nodes");
  1020   int min_size = MAX2(0,   (int)HotCallTrivialSize);
  1021   int max_size = MIN2(500, (int)WarmCallMaxSize);
  1022   float method_size = (size() - min_size) / MAX2(1, max_size - min_size);
  1023   float size_factor;
  1024   if      (method_size < 0.05)  size_factor = 4;   // 2 sigmas better than avg.
  1025   else if (method_size < 0.15)  size_factor = 2;   // 1 sigma better than avg.
  1026   else if (method_size < 0.5)   size_factor = 1;   // better than avg.
  1027   else                          size_factor = 0.5; // worse than avg.
  1028   return (count() * profit() * size_factor);
  1031 bool WarmCallInfo::warmer_than(WarmCallInfo* that) {
  1032   assert(this != that, "compare only different WCIs");
  1033   assert(this->heat() != 0 && that->heat() != 0, "call compute_heat 1st");
  1034   if (this->heat() > that->heat())   return true;
  1035   if (this->heat() < that->heat())   return false;
  1036   assert(this->heat() == that->heat(), "no NaN heat allowed");
  1037   // Equal heat.  Break the tie some other way.
  1038   if (!this->call() || !that->call())  return (address)this > (address)that;
  1039   return this->call()->_idx > that->call()->_idx;
  1042 //#define UNINIT_NEXT ((WarmCallInfo*)badAddress)
  1043 #define UNINIT_NEXT ((WarmCallInfo*)NULL)
  1045 WarmCallInfo* WarmCallInfo::insert_into(WarmCallInfo* head) {
  1046   assert(next() == UNINIT_NEXT, "not yet on any list");
  1047   WarmCallInfo* prev_p = NULL;
  1048   WarmCallInfo* next_p = head;
  1049   while (next_p != NULL && next_p->warmer_than(this)) {
  1050     prev_p = next_p;
  1051     next_p = prev_p->next();
  1053   // Install this between prev_p and next_p.
  1054   this->set_next(next_p);
  1055   if (prev_p == NULL)
  1056     head = this;
  1057   else
  1058     prev_p->set_next(this);
  1059   return head;
  1062 WarmCallInfo* WarmCallInfo::remove_from(WarmCallInfo* head) {
  1063   WarmCallInfo* prev_p = NULL;
  1064   WarmCallInfo* next_p = head;
  1065   while (next_p != this) {
  1066     assert(next_p != NULL, "this must be in the list somewhere");
  1067     prev_p = next_p;
  1068     next_p = prev_p->next();
  1070   next_p = this->next();
  1071   debug_only(this->set_next(UNINIT_NEXT));
  1072   // Remove this from between prev_p and next_p.
  1073   if (prev_p == NULL)
  1074     head = next_p;
  1075   else
  1076     prev_p->set_next(next_p);
  1077   return head;
  1080 WarmCallInfo WarmCallInfo::_always_hot(WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE(),
  1081                                        WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE());
  1082 WarmCallInfo WarmCallInfo::_always_cold(WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE(),
  1083                                         WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE());
  1085 WarmCallInfo* WarmCallInfo::always_hot() {
  1086   assert(_always_hot.is_hot(), "must always be hot");
  1087   return &_always_hot;
  1090 WarmCallInfo* WarmCallInfo::always_cold() {
  1091   assert(_always_cold.is_cold(), "must always be cold");
  1092   return &_always_cold;
  1096 #ifndef PRODUCT
  1098 void WarmCallInfo::print() const {
  1099   tty->print("%s : C=%6.1f P=%6.1f W=%6.1f S=%6.1f H=%6.1f -> %p",
  1100              is_cold() ? "cold" : is_hot() ? "hot " : "warm",
  1101              count(), profit(), work(), size(), compute_heat(), next());
  1102   tty->cr();
  1103   if (call() != NULL)  call()->dump();
  1106 void print_wci(WarmCallInfo* ci) {
  1107   ci->print();
  1110 void WarmCallInfo::print_all() const {
  1111   for (const WarmCallInfo* p = this; p != NULL; p = p->next())
  1112     p->print();
  1115 int WarmCallInfo::count_all() const {
  1116   int cnt = 0;
  1117   for (const WarmCallInfo* p = this; p != NULL; p = p->next())
  1118     cnt++;
  1119   return cnt;
  1122 #endif //PRODUCT

mercurial