src/share/vm/opto/block.hpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3447
cf407b7d3d78
child 4153
b9a9ed0f8eeb
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_BLOCK_HPP
    26 #define SHARE_VM_OPTO_BLOCK_HPP
    28 #include "opto/multnode.hpp"
    29 #include "opto/node.hpp"
    30 #include "opto/phase.hpp"
    32 // Optimization - Graph Style
    34 class Block;
    35 class CFGLoop;
    36 class MachCallNode;
    37 class Matcher;
    38 class RootNode;
    39 class VectorSet;
    40 struct Tarjan;
    42 //------------------------------Block_Array------------------------------------
    43 // Map dense integer indices to Blocks.  Uses classic doubling-array trick.
    44 // Abstractly provides an infinite array of Block*'s, initialized to NULL.
    45 // Note that the constructor just zeros things, and since I use Arena
    46 // allocation I do not need a destructor to reclaim storage.
    47 class Block_Array : public ResourceObj {
    48   friend class VMStructs;
    49   uint _size;                   // allocated size, as opposed to formal limit
    50   debug_only(uint _limit;)      // limit to formal domain
    51 protected:
    52   Block **_blocks;
    53   void grow( uint i );          // Grow array node to fit
    55 public:
    56   Arena *_arena;                // Arena to allocate in
    58   Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
    59     debug_only(_limit=0);
    60     _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
    61     for( int i = 0; i < OptoBlockListSize; i++ ) {
    62       _blocks[i] = NULL;
    63     }
    64   }
    65   Block *lookup( uint i ) const // Lookup, or NULL for not mapped
    66   { return (i<Max()) ? _blocks[i] : (Block*)NULL; }
    67   Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
    68   { assert( i < Max(), "oob" ); return _blocks[i]; }
    69   // Extend the mapping: index i maps to Block *n.
    70   void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
    71   uint Max() const { debug_only(return _limit); return _size; }
    72 };
    75 class Block_List : public Block_Array {
    76   friend class VMStructs;
    77 public:
    78   uint _cnt;
    79   Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
    80   void push( Block *b ) { map(_cnt++,b); }
    81   Block *pop() { return _blocks[--_cnt]; }
    82   Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
    83   void remove( uint i );
    84   void insert( uint i, Block *n );
    85   uint size() const { return _cnt; }
    86   void reset() { _cnt = 0; }
    87   void print();
    88 };
    91 class CFGElement : public ResourceObj {
    92   friend class VMStructs;
    93  public:
    94   float _freq; // Execution frequency (estimate)
    96   CFGElement() : _freq(0.0f) {}
    97   virtual bool is_block() { return false; }
    98   virtual bool is_loop()  { return false; }
    99   Block*   as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
   100   CFGLoop* as_CFGLoop()  { assert(is_loop(),  "must be loop");  return (CFGLoop*)this;  }
   101 };
   103 //------------------------------Block------------------------------------------
   104 // This class defines a Basic Block.
   105 // Basic blocks are used during the output routines, and are not used during
   106 // any optimization pass.  They are created late in the game.
   107 class Block : public CFGElement {
   108   friend class VMStructs;
   109  public:
   110   // Nodes in this block, in order
   111   Node_List _nodes;
   113   // Basic blocks have a Node which defines Control for all Nodes pinned in
   114   // this block.  This Node is a RegionNode.  Exception-causing Nodes
   115   // (division, subroutines) and Phi functions are always pinned.  Later,
   116   // every Node will get pinned to some block.
   117   Node *head() const { return _nodes[0]; }
   119   // CAUTION: num_preds() is ONE based, so that predecessor numbers match
   120   // input edges to Regions and Phis.
   121   uint num_preds() const { return head()->req(); }
   122   Node *pred(uint i) const { return head()->in(i); }
   124   // Array of successor blocks, same size as projs array
   125   Block_Array _succs;
   127   // Basic blocks have some number of Nodes which split control to all
   128   // following blocks.  These Nodes are always Projections.  The field in
   129   // the Projection and the block-ending Node determine which Block follows.
   130   uint _num_succs;
   132   // Basic blocks also carry all sorts of good old fashioned DFS information
   133   // used to find loops, loop nesting depth, dominators, etc.
   134   uint _pre_order;              // Pre-order DFS number
   136   // Dominator tree
   137   uint _dom_depth;              // Depth in dominator tree for fast LCA
   138   Block* _idom;                 // Immediate dominator block
   140   CFGLoop *_loop;               // Loop to which this block belongs
   141   uint _rpo;                    // Number in reverse post order walk
   143   virtual bool is_block() { return true; }
   144   float succ_prob(uint i);      // return probability of i'th successor
   145   int num_fall_throughs();      // How many fall-through candidate this block has
   146   void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
   147   bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
   148   Block* lone_fall_through();   // Return lone fall-through Block or null
   150   Block* dom_lca(Block* that);  // Compute LCA in dominator tree.
   151 #ifdef ASSERT
   152   bool dominates(Block* that) {
   153     int dom_diff = this->_dom_depth - that->_dom_depth;
   154     if (dom_diff > 0)  return false;
   155     for (; dom_diff < 0; dom_diff++)  that = that->_idom;
   156     return this == that;
   157   }
   158 #endif
   160   // Report the alignment required by this block.  Must be a power of 2.
   161   // The previous block will insert nops to get this alignment.
   162   uint code_alignment();
   163   uint compute_loop_alignment();
   165   // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
   166   // It is currently also used to scale such frequencies relative to
   167   // FreqCountInvocations relative to the old value of 1500.
   168 #define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations)
   170   // Register Pressure (estimate) for Splitting heuristic
   171   uint _reg_pressure;
   172   uint _ihrp_index;
   173   uint _freg_pressure;
   174   uint _fhrp_index;
   176   // Mark and visited bits for an LCA calculation in insert_anti_dependences.
   177   // Since they hold unique node indexes, they do not need reinitialization.
   178   node_idx_t _raise_LCA_mark;
   179   void    set_raise_LCA_mark(node_idx_t x)    { _raise_LCA_mark = x; }
   180   node_idx_t  raise_LCA_mark() const          { return _raise_LCA_mark; }
   181   node_idx_t _raise_LCA_visited;
   182   void    set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
   183   node_idx_t  raise_LCA_visited() const       { return _raise_LCA_visited; }
   185   // Estimated size in bytes of first instructions in a loop.
   186   uint _first_inst_size;
   187   uint first_inst_size() const     { return _first_inst_size; }
   188   void set_first_inst_size(uint s) { _first_inst_size = s; }
   190   // Compute the size of first instructions in this block.
   191   uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
   193   // Compute alignment padding if the block needs it.
   194   // Align a loop if loop's padding is less or equal to padding limit
   195   // or the size of first instructions in the loop > padding.
   196   uint alignment_padding(int current_offset) {
   197     int block_alignment = code_alignment();
   198     int max_pad = block_alignment-relocInfo::addr_unit();
   199     if( max_pad > 0 ) {
   200       assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
   201       int current_alignment = current_offset & max_pad;
   202       if( current_alignment != 0 ) {
   203         uint padding = (block_alignment-current_alignment) & max_pad;
   204         if( has_loop_alignment() &&
   205             padding > (uint)MaxLoopPad &&
   206             first_inst_size() <= padding ) {
   207           return 0;
   208         }
   209         return padding;
   210       }
   211     }
   212     return 0;
   213   }
   215   // Connector blocks. Connector blocks are basic blocks devoid of
   216   // instructions, but may have relevant non-instruction Nodes, such as
   217   // Phis or MergeMems. Such blocks are discovered and marked during the
   218   // RemoveEmpty phase, and elided during Output.
   219   bool _connector;
   220   void set_connector() { _connector = true; }
   221   bool is_connector() const { return _connector; };
   223   // Loop_alignment will be set for blocks which are at the top of loops.
   224   // The block layout pass may rotate loops such that the loop head may not
   225   // be the sequentially first block of the loop encountered in the linear
   226   // list of blocks.  If the layout pass is not run, loop alignment is set
   227   // for each block which is the head of a loop.
   228   uint _loop_alignment;
   229   void set_loop_alignment(Block *loop_top) {
   230     uint new_alignment = loop_top->compute_loop_alignment();
   231     if (new_alignment > _loop_alignment) {
   232       _loop_alignment = new_alignment;
   233     }
   234   }
   235   uint loop_alignment() const { return _loop_alignment; }
   236   bool has_loop_alignment() const { return loop_alignment() > 0; }
   238   // Create a new Block with given head Node.
   239   // Creates the (empty) predecessor arrays.
   240   Block( Arena *a, Node *headnode )
   241     : CFGElement(),
   242       _nodes(a),
   243       _succs(a),
   244       _num_succs(0),
   245       _pre_order(0),
   246       _idom(0),
   247       _loop(NULL),
   248       _reg_pressure(0),
   249       _ihrp_index(1),
   250       _freg_pressure(0),
   251       _fhrp_index(1),
   252       _raise_LCA_mark(0),
   253       _raise_LCA_visited(0),
   254       _first_inst_size(999999),
   255       _connector(false),
   256       _loop_alignment(0) {
   257     _nodes.push(headnode);
   258   }
   260   // Index of 'end' Node
   261   uint end_idx() const {
   262     // %%%%% add a proj after every goto
   263     // so (last->is_block_proj() != last) always, then simplify this code
   264     // This will not give correct end_idx for block 0 when it only contains root.
   265     int last_idx = _nodes.size() - 1;
   266     Node *last  = _nodes[last_idx];
   267     assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
   268     return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
   269   }
   271   // Basic blocks have a Node which ends them.  This Node determines which
   272   // basic block follows this one in the program flow.  This Node is either an
   273   // IfNode, a GotoNode, a JmpNode, or a ReturnNode.
   274   Node *end() const { return _nodes[end_idx()]; }
   276   // Add an instruction to an existing block.  It must go after the head
   277   // instruction and before the end instruction.
   278   void add_inst( Node *n ) { _nodes.insert(end_idx(),n); }
   279   // Find node in block
   280   uint find_node( const Node *n ) const;
   281   // Find and remove n from block list
   282   void find_remove( const Node *n );
   284   // helper function that adds caller save registers to MachProjNode
   285   void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe);
   286   // Schedule a call next in the block
   287   uint sched_call(Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call);
   289   // Perform basic-block local scheduling
   290   Node *select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot);
   291   void set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs );
   292   void needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs);
   293   bool schedule_local(PhaseCFG *cfg, Matcher &m, GrowableArray<int> &ready_cnt, VectorSet &next_call);
   294   // Cleanup if any code lands between a Call and his Catch
   295   void call_catch_cleanup(Block_Array &bbs);
   296   // Detect implicit-null-check opportunities.  Basically, find NULL checks
   297   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
   298   // I can generate a memory op if there is not one nearby.
   299   void implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons);
   301   // Return the empty status of a block
   302   enum { not_empty, empty_with_goto, completely_empty };
   303   int is_Empty() const;
   305   // Forward through connectors
   306   Block* non_connector() {
   307     Block* s = this;
   308     while (s->is_connector()) {
   309       s = s->_succs[0];
   310     }
   311     return s;
   312   }
   314   // Return true if b is a successor of this block
   315   bool has_successor(Block* b) const {
   316     for (uint i = 0; i < _num_succs; i++ ) {
   317       if (non_connector_successor(i) == b) {
   318         return true;
   319       }
   320     }
   321     return false;
   322   }
   324   // Successor block, after forwarding through connectors
   325   Block* non_connector_successor(int i) const {
   326     return _succs[i]->non_connector();
   327   }
   329   // Examine block's code shape to predict if it is not commonly executed.
   330   bool has_uncommon_code() const;
   332   // Use frequency calculations and code shape to predict if the block
   333   // is uncommon.
   334   bool is_uncommon( Block_Array &bbs ) const;
   336 #ifndef PRODUCT
   337   // Debugging print of basic block
   338   void dump_bidx(const Block* orig, outputStream* st = tty) const;
   339   void dump_pred(const Block_Array *bbs, Block* orig, outputStream* st = tty) const;
   340   void dump_head( const Block_Array *bbs, outputStream* st = tty ) const;
   341   void dump() const;
   342   void dump( const Block_Array *bbs ) const;
   343 #endif
   344 };
   347 //------------------------------PhaseCFG---------------------------------------
   348 // Build an array of Basic Block pointers, one per Node.
   349 class PhaseCFG : public Phase {
   350   friend class VMStructs;
   351  private:
   352   // Build a proper looking cfg.  Return count of basic blocks
   353   uint build_cfg();
   355   // Perform DFS search.
   356   // Setup 'vertex' as DFS to vertex mapping.
   357   // Setup 'semi' as vertex to DFS mapping.
   358   // Set 'parent' to DFS parent.
   359   uint DFS( Tarjan *tarjan );
   361   // Helper function to insert a node into a block
   362   void schedule_node_into_block( Node *n, Block *b );
   364   void replace_block_proj_ctrl( Node *n );
   366   // Set the basic block for pinned Nodes
   367   void schedule_pinned_nodes( VectorSet &visited );
   369   // I'll need a few machine-specific GotoNodes.  Clone from this one.
   370   MachNode *_goto;
   372   Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
   373   void verify_anti_dependences(Block* LCA, Node* load) {
   374     assert(LCA == _bbs[load->_idx], "should already be scheduled");
   375     insert_anti_dependences(LCA, load, true);
   376   }
   378  public:
   379   PhaseCFG( Arena *a, RootNode *r, Matcher &m );
   381   uint _num_blocks;             // Count of basic blocks
   382   Block_List _blocks;           // List of basic blocks
   383   RootNode *_root;              // Root of whole program
   384   Block_Array _bbs;             // Map Nodes to owning Basic Block
   385   Block *_broot;                // Basic block of root
   386   uint _rpo_ctr;
   387   CFGLoop* _root_loop;
   388   float _outer_loop_freq;       // Outmost loop frequency
   390   // Per node latency estimation, valid only during GCM
   391   GrowableArray<uint> *_node_latency;
   393 #ifndef PRODUCT
   394   bool _trace_opto_pipelining;  // tracing flag
   395 #endif
   397 #ifdef ASSERT
   398   Unique_Node_List _raw_oops;
   399 #endif
   401   // Build dominators
   402   void Dominators();
   404   // Estimate block frequencies based on IfNode probabilities
   405   void Estimate_Block_Frequency();
   407   // Global Code Motion.  See Click's PLDI95 paper.  Place Nodes in specific
   408   // basic blocks; i.e. _bbs now maps _idx for all Nodes to some Block.
   409   void GlobalCodeMotion( Matcher &m, uint unique, Node_List &proj_list );
   411   // Compute the (backwards) latency of a node from the uses
   412   void latency_from_uses(Node *n);
   414   // Compute the (backwards) latency of a node from a single use
   415   int latency_from_use(Node *n, const Node *def, Node *use);
   417   // Compute the (backwards) latency of a node from the uses of this instruction
   418   void partial_latency_of_defs(Node *n);
   420   // Schedule Nodes early in their basic blocks.
   421   bool schedule_early(VectorSet &visited, Node_List &roots);
   423   // For each node, find the latest block it can be scheduled into
   424   // and then select the cheapest block between the latest and earliest
   425   // block to place the node.
   426   void schedule_late(VectorSet &visited, Node_List &stack);
   428   // Pick a block between early and late that is a cheaper alternative
   429   // to late. Helper for schedule_late.
   430   Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
   432   // Compute the instruction global latency with a backwards walk
   433   void ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack);
   435   // Set loop alignment
   436   void set_loop_alignment();
   438   // Remove empty basic blocks
   439   void remove_empty();
   440   void fixup_flow();
   441   bool move_to_next(Block* bx, uint b_index);
   442   void move_to_end(Block* bx, uint b_index);
   443   void insert_goto_at(uint block_no, uint succ_no);
   445   // Check for NeverBranch at block end.  This needs to become a GOTO to the
   446   // true target.  NeverBranch are treated as a conditional branch that always
   447   // goes the same direction for most of the optimizer and are used to give a
   448   // fake exit path to infinite loops.  At this late stage they need to turn
   449   // into Goto's so that when you enter the infinite loop you indeed hang.
   450   void convert_NeverBranch_to_Goto(Block *b);
   452   CFGLoop* create_loop_tree();
   454   // Insert a node into a block, and update the _bbs
   455   void insert( Block *b, uint idx, Node *n ) {
   456     b->_nodes.insert( idx, n );
   457     _bbs.map( n->_idx, b );
   458   }
   460 #ifndef PRODUCT
   461   bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
   463   // Debugging print of CFG
   464   void dump( ) const;           // CFG only
   465   void _dump_cfg( const Node *end, VectorSet &visited  ) const;
   466   void verify() const;
   467   void dump_headers();
   468 #else
   469   bool trace_opto_pipelining() const { return false; }
   470 #endif
   471 };
   474 //------------------------------UnionFind--------------------------------------
   475 // Map Block indices to a block-index for a cfg-cover.
   476 // Array lookup in the optimized case.
   477 class UnionFind : public ResourceObj {
   478   uint _cnt, _max;
   479   uint* _indices;
   480   ReallocMark _nesting;  // assertion check for reallocations
   481 public:
   482   UnionFind( uint max );
   483   void reset( uint max );  // Reset to identity map for [0..max]
   485   uint lookup( uint nidx ) const {
   486     return _indices[nidx];
   487   }
   488   uint operator[] (uint nidx) const { return lookup(nidx); }
   490   void map( uint from_idx, uint to_idx ) {
   491     assert( from_idx < _cnt, "oob" );
   492     _indices[from_idx] = to_idx;
   493   }
   494   void extend( uint from_idx, uint to_idx );
   496   uint Size() const { return _cnt; }
   498   uint Find( uint idx ) {
   499     assert( idx < 65536, "Must fit into uint");
   500     uint uf_idx = lookup(idx);
   501     return (uf_idx == idx) ? uf_idx : Find_compress(idx);
   502   }
   503   uint Find_compress( uint idx );
   504   uint Find_const( uint idx ) const;
   505   void Union( uint idx1, uint idx2 );
   507 };
   509 //----------------------------BlockProbPair---------------------------
   510 // Ordered pair of Node*.
   511 class BlockProbPair VALUE_OBJ_CLASS_SPEC {
   512 protected:
   513   Block* _target;      // block target
   514   float  _prob;        // probability of edge to block
   515 public:
   516   BlockProbPair() : _target(NULL), _prob(0.0) {}
   517   BlockProbPair(Block* b, float p) : _target(b), _prob(p) {}
   519   Block* get_target() const { return _target; }
   520   float get_prob() const { return _prob; }
   521 };
   523 //------------------------------CFGLoop-------------------------------------------
   524 class CFGLoop : public CFGElement {
   525   friend class VMStructs;
   526   int _id;
   527   int _depth;
   528   CFGLoop *_parent;      // root of loop tree is the method level "pseudo" loop, it's parent is null
   529   CFGLoop *_sibling;     // null terminated list
   530   CFGLoop *_child;       // first child, use child's sibling to visit all immediately nested loops
   531   GrowableArray<CFGElement*> _members; // list of members of loop
   532   GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
   533   float _exit_prob;       // probability any loop exit is taken on a single loop iteration
   534   void update_succ_freq(Block* b, float freq);
   536  public:
   537   CFGLoop(int id) :
   538     CFGElement(),
   539     _id(id),
   540     _depth(0),
   541     _parent(NULL),
   542     _sibling(NULL),
   543     _child(NULL),
   544     _exit_prob(1.0f) {}
   545   CFGLoop* parent() { return _parent; }
   546   void push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk);
   547   void add_member(CFGElement *s) { _members.push(s); }
   548   void add_nested_loop(CFGLoop* cl);
   549   Block* head() {
   550     assert(_members.at(0)->is_block(), "head must be a block");
   551     Block* hd = _members.at(0)->as_Block();
   552     assert(hd->_loop == this, "just checking");
   553     assert(hd->head()->is_Loop(), "must begin with loop head node");
   554     return hd;
   555   }
   556   Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
   557   void compute_loop_depth(int depth);
   558   void compute_freq(); // compute frequency with loop assuming head freq 1.0f
   559   void scale_freq();   // scale frequency by loop trip count (including outer loops)
   560   float outer_loop_freq() const; // frequency of outer loop
   561   bool in_loop_nest(Block* b);
   562   float trip_count() const { return 1.0f / _exit_prob; }
   563   virtual bool is_loop()  { return true; }
   564   int id() { return _id; }
   566 #ifndef PRODUCT
   567   void dump( ) const;
   568   void dump_tree() const;
   569 #endif
   570 };
   573 //----------------------------------CFGEdge------------------------------------
   574 // A edge between two basic blocks that will be embodied by a branch or a
   575 // fall-through.
   576 class CFGEdge : public ResourceObj {
   577   friend class VMStructs;
   578  private:
   579   Block * _from;        // Source basic block
   580   Block * _to;          // Destination basic block
   581   float _freq;          // Execution frequency (estimate)
   582   int   _state;
   583   bool  _infrequent;
   584   int   _from_pct;
   585   int   _to_pct;
   587   // Private accessors
   588   int  from_pct() const { return _from_pct; }
   589   int  to_pct()   const { return _to_pct;   }
   590   int  from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
   591   int  to_infrequent()   const { return to_pct()   < BlockLayoutMinDiamondPercentage; }
   593  public:
   594   enum {
   595     open,               // initial edge state; unprocessed
   596     connected,          // edge used to connect two traces together
   597     interior            // edge is interior to trace (could be backedge)
   598   };
   600   CFGEdge(Block *from, Block *to, float freq, int from_pct, int to_pct) :
   601     _from(from), _to(to), _freq(freq),
   602     _from_pct(from_pct), _to_pct(to_pct), _state(open) {
   603     _infrequent = from_infrequent() || to_infrequent();
   604   }
   606   float  freq() const { return _freq; }
   607   Block* from() const { return _from; }
   608   Block* to  () const { return _to;   }
   609   int  infrequent() const { return _infrequent; }
   610   int state() const { return _state; }
   612   void set_state(int state) { _state = state; }
   614 #ifndef PRODUCT
   615   void dump( ) const;
   616 #endif
   617 };
   620 //-----------------------------------Trace-------------------------------------
   621 // An ordered list of basic blocks.
   622 class Trace : public ResourceObj {
   623  private:
   624   uint _id;             // Unique Trace id (derived from initial block)
   625   Block ** _next_list;  // Array mapping index to next block
   626   Block ** _prev_list;  // Array mapping index to previous block
   627   Block * _first;       // First block in the trace
   628   Block * _last;        // Last block in the trace
   630   // Return the block that follows "b" in the trace.
   631   Block * next(Block *b) const { return _next_list[b->_pre_order]; }
   632   void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }
   634   // Return the block that precedes "b" in the trace.
   635   Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
   636   void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }
   638   // We've discovered a loop in this trace. Reset last to be "b", and first as
   639   // the block following "b
   640   void break_loop_after(Block *b) {
   641     _last = b;
   642     _first = next(b);
   643     set_prev(_first, NULL);
   644     set_next(_last, NULL);
   645   }
   647  public:
   649   Trace(Block *b, Block **next_list, Block **prev_list) :
   650     _first(b),
   651     _last(b),
   652     _next_list(next_list),
   653     _prev_list(prev_list),
   654     _id(b->_pre_order) {
   655     set_next(b, NULL);
   656     set_prev(b, NULL);
   657   };
   659   // Return the id number
   660   uint id() const { return _id; }
   661   void set_id(uint id) { _id = id; }
   663   // Return the first block in the trace
   664   Block * first_block() const { return _first; }
   666   // Return the last block in the trace
   667   Block * last_block() const { return _last; }
   669   // Insert a trace in the middle of this one after b
   670   void insert_after(Block *b, Trace *tr) {
   671     set_next(tr->last_block(), next(b));
   672     if (next(b) != NULL) {
   673       set_prev(next(b), tr->last_block());
   674     }
   676     set_next(b, tr->first_block());
   677     set_prev(tr->first_block(), b);
   679     if (b == _last) {
   680       _last = tr->last_block();
   681     }
   682   }
   684   void insert_before(Block *b, Trace *tr) {
   685     Block *p = prev(b);
   686     assert(p != NULL, "use append instead");
   687     insert_after(p, tr);
   688   }
   690   // Append another trace to this one.
   691   void append(Trace *tr) {
   692     insert_after(_last, tr);
   693   }
   695   // Append a block at the end of this trace
   696   void append(Block *b) {
   697     set_next(_last, b);
   698     set_prev(b, _last);
   699     _last = b;
   700   }
   702   // Adjust the the blocks in this trace
   703   void fixup_blocks(PhaseCFG &cfg);
   704   bool backedge(CFGEdge *e);
   706 #ifndef PRODUCT
   707   void dump( ) const;
   708 #endif
   709 };
   711 //------------------------------PhaseBlockLayout-------------------------------
   712 // Rearrange blocks into some canonical order, based on edges and their frequencies
   713 class PhaseBlockLayout : public Phase {
   714   friend class VMStructs;
   715   PhaseCFG &_cfg;               // Control flow graph
   717   GrowableArray<CFGEdge *> *edges;
   718   Trace **traces;
   719   Block **next;
   720   Block **prev;
   721   UnionFind *uf;
   723   // Given a block, find its encompassing Trace
   724   Trace * trace(Block *b) {
   725     return traces[uf->Find_compress(b->_pre_order)];
   726   }
   727  public:
   728   PhaseBlockLayout(PhaseCFG &cfg);
   730   void find_edges();
   731   void grow_traces();
   732   void merge_traces(bool loose_connections);
   733   void reorder_traces(int count);
   734   void union_traces(Trace* from, Trace* to);
   735 };
   737 #endif // SHARE_VM_OPTO_BLOCK_HPP

mercurial