src/share/vm/opto/addnode.cpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3241
a6eef545f1a2
child 4115
e626685e9f6c
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/cfgnode.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/machnode.hpp"
    31 #include "opto/mulnode.hpp"
    32 #include "opto/phaseX.hpp"
    33 #include "opto/subnode.hpp"
    35 // Portions of code courtesy of Clifford Click
    37 // Classic Add functionality.  This covers all the usual 'add' behaviors for
    38 // an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
    39 // all inherited from this class.  The various identity values are supplied
    40 // by virtual functions.
    43 //=============================================================================
    44 //------------------------------hash-------------------------------------------
    45 // Hash function over AddNodes.  Needs to be commutative; i.e., I swap
    46 // (commute) inputs to AddNodes willy-nilly so the hash function must return
    47 // the same value in the presence of edge swapping.
    48 uint AddNode::hash() const {
    49   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
    50 }
    52 //------------------------------Identity---------------------------------------
    53 // If either input is a constant 0, return the other input.
    54 Node *AddNode::Identity( PhaseTransform *phase ) {
    55   const Type *zero = add_id();  // The additive identity
    56   if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
    57   if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
    58   return this;
    59 }
    61 //------------------------------commute----------------------------------------
    62 // Commute operands to move loads and constants to the right.
    63 static bool commute( Node *add, int con_left, int con_right ) {
    64   Node *in1 = add->in(1);
    65   Node *in2 = add->in(2);
    67   // Convert "1+x" into "x+1".
    68   // Right is a constant; leave it
    69   if( con_right ) return false;
    70   // Left is a constant; move it right.
    71   if( con_left ) {
    72     add->swap_edges(1, 2);
    73     return true;
    74   }
    76   // Convert "Load+x" into "x+Load".
    77   // Now check for loads
    78   if (in2->is_Load()) {
    79     if (!in1->is_Load()) {
    80       // already x+Load to return
    81       return false;
    82     }
    83     // both are loads, so fall through to sort inputs by idx
    84   } else if( in1->is_Load() ) {
    85     // Left is a Load and Right is not; move it right.
    86     add->swap_edges(1, 2);
    87     return true;
    88   }
    90   PhiNode *phi;
    91   // Check for tight loop increments: Loop-phi of Add of loop-phi
    92   if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
    93     return false;
    94   if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
    95     add->swap_edges(1, 2);
    96     return true;
    97   }
    99   // Otherwise, sort inputs (commutativity) to help value numbering.
   100   if( in1->_idx > in2->_idx ) {
   101     add->swap_edges(1, 2);
   102     return true;
   103   }
   104   return false;
   105 }
   107 //------------------------------Idealize---------------------------------------
   108 // If we get here, we assume we are associative!
   109 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   110   const Type *t1 = phase->type( in(1) );
   111   const Type *t2 = phase->type( in(2) );
   112   int con_left  = t1->singleton();
   113   int con_right = t2->singleton();
   115   // Check for commutative operation desired
   116   if( commute(this,con_left,con_right) ) return this;
   118   AddNode *progress = NULL;             // Progress flag
   120   // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
   121   // constant, and the left input is an add of a constant, flatten the
   122   // expression tree.
   123   Node *add1 = in(1);
   124   Node *add2 = in(2);
   125   int add1_op = add1->Opcode();
   126   int this_op = Opcode();
   127   if( con_right && t2 != Type::TOP && // Right input is a constant?
   128       add1_op == this_op ) { // Left input is an Add?
   130     // Type of left _in right input
   131     const Type *t12 = phase->type( add1->in(2) );
   132     if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
   133       // Check for rare case of closed data cycle which can happen inside
   134       // unreachable loops. In these cases the computation is undefined.
   135 #ifdef ASSERT
   136       Node *add11    = add1->in(1);
   137       int   add11_op = add11->Opcode();
   138       if( (add1 == add1->in(1))
   139          || (add11_op == this_op && add11->in(1) == add1) ) {
   140         assert(false, "dead loop in AddNode::Ideal");
   141       }
   142 #endif
   143       // The Add of the flattened expression
   144       Node *x1 = add1->in(1);
   145       Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
   146       PhaseIterGVN *igvn = phase->is_IterGVN();
   147       if( igvn ) {
   148         set_req_X(2,x2,igvn);
   149         set_req_X(1,x1,igvn);
   150       } else {
   151         set_req(2,x2);
   152         set_req(1,x1);
   153       }
   154       progress = this;            // Made progress
   155       add1 = in(1);
   156       add1_op = add1->Opcode();
   157     }
   158   }
   160   // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
   161   if( add1_op == this_op && !con_right ) {
   162     Node *a12 = add1->in(2);
   163     const Type *t12 = phase->type( a12 );
   164     if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
   165        !(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) {
   166       assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
   167       add2 = add1->clone();
   168       add2->set_req(2, in(2));
   169       add2 = phase->transform(add2);
   170       set_req(1, add2);
   171       set_req(2, a12);
   172       progress = this;
   173       add2 = a12;
   174     }
   175   }
   177   // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
   178   int add2_op = add2->Opcode();
   179   if( add2_op == this_op && !con_left ) {
   180     Node *a22 = add2->in(2);
   181     const Type *t22 = phase->type( a22 );
   182     if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
   183        !(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) {
   184       assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
   185       Node *addx = add2->clone();
   186       addx->set_req(1, in(1));
   187       addx->set_req(2, add2->in(1));
   188       addx = phase->transform(addx);
   189       set_req(1, addx);
   190       set_req(2, a22);
   191       progress = this;
   192     }
   193   }
   195   return progress;
   196 }
   198 //------------------------------Value-----------------------------------------
   199 // An add node sums it's two _in.  If one input is an RSD, we must mixin
   200 // the other input's symbols.
   201 const Type *AddNode::Value( PhaseTransform *phase ) const {
   202   // Either input is TOP ==> the result is TOP
   203   const Type *t1 = phase->type( in(1) );
   204   const Type *t2 = phase->type( in(2) );
   205   if( t1 == Type::TOP ) return Type::TOP;
   206   if( t2 == Type::TOP ) return Type::TOP;
   208   // Either input is BOTTOM ==> the result is the local BOTTOM
   209   const Type *bot = bottom_type();
   210   if( (t1 == bot) || (t2 == bot) ||
   211       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   212     return bot;
   214   // Check for an addition involving the additive identity
   215   const Type *tadd = add_of_identity( t1, t2 );
   216   if( tadd ) return tadd;
   218   return add_ring(t1,t2);               // Local flavor of type addition
   219 }
   221 //------------------------------add_identity-----------------------------------
   222 // Check for addition of the identity
   223 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   224   const Type *zero = add_id();  // The additive identity
   225   if( t1->higher_equal( zero ) ) return t2;
   226   if( t2->higher_equal( zero ) ) return t1;
   228   return NULL;
   229 }
   232 //=============================================================================
   233 //------------------------------Idealize---------------------------------------
   234 Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   235   Node* in1 = in(1);
   236   Node* in2 = in(2);
   237   int op1 = in1->Opcode();
   238   int op2 = in2->Opcode();
   239   // Fold (con1-x)+con2 into (con1+con2)-x
   240   if ( op1 == Op_AddI && op2 == Op_SubI ) {
   241     // Swap edges to try optimizations below
   242     in1 = in2;
   243     in2 = in(1);
   244     op1 = op2;
   245     op2 = in2->Opcode();
   246   }
   247   if( op1 == Op_SubI ) {
   248     const Type *t_sub1 = phase->type( in1->in(1) );
   249     const Type *t_2    = phase->type( in2        );
   250     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
   251       return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
   252                               in1->in(2) );
   253     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
   254     if( op2 == Op_SubI ) {
   255       // Check for dead cycle: d = (a-b)+(c-d)
   256       assert( in1->in(2) != this && in2->in(2) != this,
   257               "dead loop in AddINode::Ideal" );
   258       Node *sub  = new (phase->C, 3) SubINode(NULL, NULL);
   259       sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in1->in(1), in2->in(1) ) ));
   260       sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in1->in(2), in2->in(2) ) ));
   261       return sub;
   262     }
   263     // Convert "(a-b)+(b+c)" into "(a+c)"
   264     if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) {
   265       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
   266       return new (phase->C, 3) AddINode(in1->in(1), in2->in(2));
   267     }
   268     // Convert "(a-b)+(c+b)" into "(a+c)"
   269     if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) {
   270       assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
   271       return new (phase->C, 3) AddINode(in1->in(1), in2->in(1));
   272     }
   273     // Convert "(a-b)+(b-c)" into "(a-c)"
   274     if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) {
   275       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
   276       return new (phase->C, 3) SubINode(in1->in(1), in2->in(2));
   277     }
   278     // Convert "(a-b)+(c-a)" into "(c-b)"
   279     if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) {
   280       assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
   281       return new (phase->C, 3) SubINode(in2->in(1), in1->in(2));
   282     }
   283   }
   285   // Convert "x+(0-y)" into "(x-y)"
   286   if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO )
   287     return new (phase->C, 3) SubINode(in1, in2->in(2) );
   289   // Convert "(0-y)+x" into "(x-y)"
   290   if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO )
   291     return new (phase->C, 3) SubINode( in2, in1->in(2) );
   293   // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
   294   // Helps with array allocation math constant folding
   295   // See 4790063:
   296   // Unrestricted transformation is unsafe for some runtime values of 'x'
   297   // ( x ==  0, z == 1, y == -1 ) fails
   298   // ( x == -5, z == 1, y ==  1 ) fails
   299   // Transform works for small z and small negative y when the addition
   300   // (x + (y << z)) does not cross zero.
   301   // Implement support for negative y and (x >= -(y << z))
   302   // Have not observed cases where type information exists to support
   303   // positive y and (x <= -(y << z))
   304   if( op1 == Op_URShiftI && op2 == Op_ConI &&
   305       in1->in(2)->Opcode() == Op_ConI ) {
   306     jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
   307     jint y = phase->type( in2 )->is_int()->get_con();
   309     if( z < 5 && -5 < y && y < 0 ) {
   310       const Type *t_in11 = phase->type(in1->in(1));
   311       if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
   312         Node *a = phase->transform( new (phase->C, 3) AddINode( in1->in(1), phase->intcon(y<<z) ) );
   313         return new (phase->C, 3) URShiftINode( a, in1->in(2) );
   314       }
   315     }
   316   }
   318   return AddNode::Ideal(phase, can_reshape);
   319 }
   322 //------------------------------Identity---------------------------------------
   323 // Fold (x-y)+y  OR  y+(x-y)  into  x
   324 Node *AddINode::Identity( PhaseTransform *phase ) {
   325   if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
   326     return in(1)->in(1);
   327   }
   328   else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
   329     return in(2)->in(1);
   330   }
   331   return AddNode::Identity(phase);
   332 }
   335 //------------------------------add_ring---------------------------------------
   336 // Supplied function returns the sum of the inputs.  Guaranteed never
   337 // to be passed a TOP or BOTTOM type, these are filtered out by
   338 // pre-check.
   339 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
   340   const TypeInt *r0 = t0->is_int(); // Handy access
   341   const TypeInt *r1 = t1->is_int();
   342   int lo = r0->_lo + r1->_lo;
   343   int hi = r0->_hi + r1->_hi;
   344   if( !(r0->is_con() && r1->is_con()) ) {
   345     // Not both constants, compute approximate result
   346     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
   347       lo = min_jint; hi = max_jint; // Underflow on the low side
   348     }
   349     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
   350       lo = min_jint; hi = max_jint; // Overflow on the high side
   351     }
   352     if( lo > hi ) {               // Handle overflow
   353       lo = min_jint; hi = max_jint;
   354     }
   355   } else {
   356     // both constants, compute precise result using 'lo' and 'hi'
   357     // Semantics define overflow and underflow for integer addition
   358     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
   359   }
   360   return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
   361 }
   364 //=============================================================================
   365 //------------------------------Idealize---------------------------------------
   366 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   367   Node* in1 = in(1);
   368   Node* in2 = in(2);
   369   int op1 = in1->Opcode();
   370   int op2 = in2->Opcode();
   371   // Fold (con1-x)+con2 into (con1+con2)-x
   372   if ( op1 == Op_AddL && op2 == Op_SubL ) {
   373     // Swap edges to try optimizations below
   374     in1 = in2;
   375     in2 = in(1);
   376     op1 = op2;
   377     op2 = in2->Opcode();
   378   }
   379   // Fold (con1-x)+con2 into (con1+con2)-x
   380   if( op1 == Op_SubL ) {
   381     const Type *t_sub1 = phase->type( in1->in(1) );
   382     const Type *t_2    = phase->type( in2        );
   383     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
   384       return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
   385                               in1->in(2) );
   386     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
   387     if( op2 == Op_SubL ) {
   388       // Check for dead cycle: d = (a-b)+(c-d)
   389       assert( in1->in(2) != this && in2->in(2) != this,
   390               "dead loop in AddLNode::Ideal" );
   391       Node *sub  = new (phase->C, 3) SubLNode(NULL, NULL);
   392       sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in1->in(1), in2->in(1) ) ));
   393       sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in1->in(2), in2->in(2) ) ));
   394       return sub;
   395     }
   396     // Convert "(a-b)+(b+c)" into "(a+c)"
   397     if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) {
   398       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
   399       return new (phase->C, 3) AddLNode(in1->in(1), in2->in(2));
   400     }
   401     // Convert "(a-b)+(c+b)" into "(a+c)"
   402     if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) {
   403       assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
   404       return new (phase->C, 3) AddLNode(in1->in(1), in2->in(1));
   405     }
   406     // Convert "(a-b)+(b-c)" into "(a-c)"
   407     if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) {
   408       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
   409       return new (phase->C, 3) SubLNode(in1->in(1), in2->in(2));
   410     }
   411     // Convert "(a-b)+(c-a)" into "(c-b)"
   412     if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) {
   413       assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
   414       return new (phase->C, 3) SubLNode(in2->in(1), in1->in(2));
   415     }
   416   }
   418   // Convert "x+(0-y)" into "(x-y)"
   419   if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO )
   420     return new (phase->C, 3) SubLNode( in1, in2->in(2) );
   422   // Convert "(0-y)+x" into "(x-y)"
   423   if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO )
   424     return new (phase->C, 3) SubLNode( in2, in1->in(2) );
   426   // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
   427   // into "(X<<1)+Y" and let shift-folding happen.
   428   if( op2 == Op_AddL &&
   429       in2->in(1) == in1 &&
   430       op1 != Op_ConL &&
   431       0 ) {
   432     Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in1,phase->intcon(1)));
   433     return new (phase->C, 3) AddLNode(shift,in2->in(2));
   434   }
   436   return AddNode::Ideal(phase, can_reshape);
   437 }
   440 //------------------------------Identity---------------------------------------
   441 // Fold (x-y)+y  OR  y+(x-y)  into  x
   442 Node *AddLNode::Identity( PhaseTransform *phase ) {
   443   if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
   444     return in(1)->in(1);
   445   }
   446   else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
   447     return in(2)->in(1);
   448   }
   449   return AddNode::Identity(phase);
   450 }
   453 //------------------------------add_ring---------------------------------------
   454 // Supplied function returns the sum of the inputs.  Guaranteed never
   455 // to be passed a TOP or BOTTOM type, these are filtered out by
   456 // pre-check.
   457 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
   458   const TypeLong *r0 = t0->is_long(); // Handy access
   459   const TypeLong *r1 = t1->is_long();
   460   jlong lo = r0->_lo + r1->_lo;
   461   jlong hi = r0->_hi + r1->_hi;
   462   if( !(r0->is_con() && r1->is_con()) ) {
   463     // Not both constants, compute approximate result
   464     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
   465       lo =min_jlong; hi = max_jlong; // Underflow on the low side
   466     }
   467     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
   468       lo = min_jlong; hi = max_jlong; // Overflow on the high side
   469     }
   470     if( lo > hi ) {               // Handle overflow
   471       lo = min_jlong; hi = max_jlong;
   472     }
   473   } else {
   474     // both constants, compute precise result using 'lo' and 'hi'
   475     // Semantics define overflow and underflow for integer addition
   476     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
   477   }
   478   return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
   479 }
   482 //=============================================================================
   483 //------------------------------add_of_identity--------------------------------
   484 // Check for addition of the identity
   485 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   486   // x ADD 0  should return x unless 'x' is a -zero
   487   //
   488   // const Type *zero = add_id();     // The additive identity
   489   // jfloat f1 = t1->getf();
   490   // jfloat f2 = t2->getf();
   491   //
   492   // if( t1->higher_equal( zero ) ) return t2;
   493   // if( t2->higher_equal( zero ) ) return t1;
   495   return NULL;
   496 }
   498 //------------------------------add_ring---------------------------------------
   499 // Supplied function returns the sum of the inputs.
   500 // This also type-checks the inputs for sanity.  Guaranteed never to
   501 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   502 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
   503   // We must be adding 2 float constants.
   504   return TypeF::make( t0->getf() + t1->getf() );
   505 }
   507 //------------------------------Ideal------------------------------------------
   508 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   509   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   510     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
   511   }
   513   // Floating point additions are not associative because of boundary conditions (infinity)
   514   return commute(this,
   515                  phase->type( in(1) )->singleton(),
   516                  phase->type( in(2) )->singleton() ) ? this : NULL;
   517 }
   520 //=============================================================================
   521 //------------------------------add_of_identity--------------------------------
   522 // Check for addition of the identity
   523 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   524   // x ADD 0  should return x unless 'x' is a -zero
   525   //
   526   // const Type *zero = add_id();     // The additive identity
   527   // jfloat f1 = t1->getf();
   528   // jfloat f2 = t2->getf();
   529   //
   530   // if( t1->higher_equal( zero ) ) return t2;
   531   // if( t2->higher_equal( zero ) ) return t1;
   533   return NULL;
   534 }
   535 //------------------------------add_ring---------------------------------------
   536 // Supplied function returns the sum of the inputs.
   537 // This also type-checks the inputs for sanity.  Guaranteed never to
   538 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   539 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
   540   // We must be adding 2 double constants.
   541   return TypeD::make( t0->getd() + t1->getd() );
   542 }
   544 //------------------------------Ideal------------------------------------------
   545 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   546   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   547     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
   548   }
   550   // Floating point additions are not associative because of boundary conditions (infinity)
   551   return commute(this,
   552                  phase->type( in(1) )->singleton(),
   553                  phase->type( in(2) )->singleton() ) ? this : NULL;
   554 }
   557 //=============================================================================
   558 //------------------------------Identity---------------------------------------
   559 // If one input is a constant 0, return the other input.
   560 Node *AddPNode::Identity( PhaseTransform *phase ) {
   561   return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
   562 }
   564 //------------------------------Idealize---------------------------------------
   565 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   566   // Bail out if dead inputs
   567   if( phase->type( in(Address) ) == Type::TOP ) return NULL;
   569   // If the left input is an add of a constant, flatten the expression tree.
   570   const Node *n = in(Address);
   571   if (n->is_AddP() && n->in(Base) == in(Base)) {
   572     const AddPNode *addp = n->as_AddP(); // Left input is an AddP
   573     assert( !addp->in(Address)->is_AddP() ||
   574              addp->in(Address)->as_AddP() != addp,
   575             "dead loop in AddPNode::Ideal" );
   576     // Type of left input's right input
   577     const Type *t = phase->type( addp->in(Offset) );
   578     if( t == Type::TOP ) return NULL;
   579     const TypeX *t12 = t->is_intptr_t();
   580     if( t12->is_con() ) {       // Left input is an add of a constant?
   581       // If the right input is a constant, combine constants
   582       const Type *temp_t2 = phase->type( in(Offset) );
   583       if( temp_t2 == Type::TOP ) return NULL;
   584       const TypeX *t2 = temp_t2->is_intptr_t();
   585       Node* address;
   586       Node* offset;
   587       if( t2->is_con() ) {
   588         // The Add of the flattened expression
   589         address = addp->in(Address);
   590         offset  = phase->MakeConX(t2->get_con() + t12->get_con());
   591       } else {
   592         // Else move the constant to the right.  ((A+con)+B) into ((A+B)+con)
   593         address = phase->transform(new (phase->C, 4) AddPNode(in(Base),addp->in(Address),in(Offset)));
   594         offset  = addp->in(Offset);
   595       }
   596       PhaseIterGVN *igvn = phase->is_IterGVN();
   597       if( igvn ) {
   598         set_req_X(Address,address,igvn);
   599         set_req_X(Offset,offset,igvn);
   600       } else {
   601         set_req(Address,address);
   602         set_req(Offset,offset);
   603       }
   604       return this;
   605     }
   606   }
   608   // Raw pointers?
   609   if( in(Base)->bottom_type() == Type::TOP ) {
   610     // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
   611     if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
   612       Node* offset = in(Offset);
   613       return new (phase->C, 2) CastX2PNode(offset);
   614     }
   615   }
   617   // If the right is an add of a constant, push the offset down.
   618   // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
   619   // The idea is to merge array_base+scaled_index groups together,
   620   // and only have different constant offsets from the same base.
   621   const Node *add = in(Offset);
   622   if( add->Opcode() == Op_AddX && add->in(1) != add ) {
   623     const Type *t22 = phase->type( add->in(2) );
   624     if( t22->singleton() && (t22 != Type::TOP) ) {  // Right input is an add of a constant?
   625       set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),in(Address),add->in(1))));
   626       set_req(Offset, add->in(2));
   627       return this;              // Made progress
   628     }
   629   }
   631   return NULL;                  // No progress
   632 }
   634 //------------------------------bottom_type------------------------------------
   635 // Bottom-type is the pointer-type with unknown offset.
   636 const Type *AddPNode::bottom_type() const {
   637   if (in(Address) == NULL)  return TypePtr::BOTTOM;
   638   const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
   639   if( !tp ) return Type::TOP;   // TOP input means TOP output
   640   assert( in(Offset)->Opcode() != Op_ConP, "" );
   641   const Type *t = in(Offset)->bottom_type();
   642   if( t == Type::TOP )
   643     return tp->add_offset(Type::OffsetTop);
   644   const TypeX *tx = t->is_intptr_t();
   645   intptr_t txoffset = Type::OffsetBot;
   646   if (tx->is_con()) {   // Left input is an add of a constant?
   647     txoffset = tx->get_con();
   648   }
   649   return tp->add_offset(txoffset);
   650 }
   652 //------------------------------Value------------------------------------------
   653 const Type *AddPNode::Value( PhaseTransform *phase ) const {
   654   // Either input is TOP ==> the result is TOP
   655   const Type *t1 = phase->type( in(Address) );
   656   const Type *t2 = phase->type( in(Offset) );
   657   if( t1 == Type::TOP ) return Type::TOP;
   658   if( t2 == Type::TOP ) return Type::TOP;
   660   // Left input is a pointer
   661   const TypePtr *p1 = t1->isa_ptr();
   662   // Right input is an int
   663   const TypeX *p2 = t2->is_intptr_t();
   664   // Add 'em
   665   intptr_t p2offset = Type::OffsetBot;
   666   if (p2->is_con()) {   // Left input is an add of a constant?
   667     p2offset = p2->get_con();
   668   }
   669   return p1->add_offset(p2offset);
   670 }
   672 //------------------------Ideal_base_and_offset--------------------------------
   673 // Split an oop pointer into a base and offset.
   674 // (The offset might be Type::OffsetBot in the case of an array.)
   675 // Return the base, or NULL if failure.
   676 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
   677                                       // second return value:
   678                                       intptr_t& offset) {
   679   if (ptr->is_AddP()) {
   680     Node* base = ptr->in(AddPNode::Base);
   681     Node* addr = ptr->in(AddPNode::Address);
   682     Node* offs = ptr->in(AddPNode::Offset);
   683     if (base == addr || base->is_top()) {
   684       offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
   685       if (offset != Type::OffsetBot) {
   686         return addr;
   687       }
   688     }
   689   }
   690   offset = Type::OffsetBot;
   691   return NULL;
   692 }
   694 //------------------------------unpack_offsets----------------------------------
   695 // Collect the AddP offset values into the elements array, giving up
   696 // if there are more than length.
   697 int AddPNode::unpack_offsets(Node* elements[], int length) {
   698   int count = 0;
   699   Node* addr = this;
   700   Node* base = addr->in(AddPNode::Base);
   701   while (addr->is_AddP()) {
   702     if (addr->in(AddPNode::Base) != base) {
   703       // give up
   704       return -1;
   705     }
   706     elements[count++] = addr->in(AddPNode::Offset);
   707     if (count == length) {
   708       // give up
   709       return -1;
   710     }
   711     addr = addr->in(AddPNode::Address);
   712   }
   713   if (addr != base) {
   714     return -1;
   715   }
   716   return count;
   717 }
   719 //------------------------------match_edge-------------------------------------
   720 // Do we Match on this edge index or not?  Do not match base pointer edge
   721 uint AddPNode::match_edge(uint idx) const {
   722   return idx > Base;
   723 }
   725 //=============================================================================
   726 //------------------------------Identity---------------------------------------
   727 Node *OrINode::Identity( PhaseTransform *phase ) {
   728   // x | x => x
   729   if (phase->eqv(in(1), in(2))) {
   730     return in(1);
   731   }
   733   return AddNode::Identity(phase);
   734 }
   736 //------------------------------add_ring---------------------------------------
   737 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
   738 // the logical operations the ring's ADD is really a logical OR function.
   739 // This also type-checks the inputs for sanity.  Guaranteed never to
   740 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   741 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
   742   const TypeInt *r0 = t0->is_int(); // Handy access
   743   const TypeInt *r1 = t1->is_int();
   745   // If both args are bool, can figure out better types
   746   if ( r0 == TypeInt::BOOL ) {
   747     if ( r1 == TypeInt::ONE) {
   748       return TypeInt::ONE;
   749     } else if ( r1 == TypeInt::BOOL ) {
   750       return TypeInt::BOOL;
   751     }
   752   } else if ( r0 == TypeInt::ONE ) {
   753     if ( r1 == TypeInt::BOOL ) {
   754       return TypeInt::ONE;
   755     }
   756   }
   758   // If either input is not a constant, just return all integers.
   759   if( !r0->is_con() || !r1->is_con() )
   760     return TypeInt::INT;        // Any integer, but still no symbols.
   762   // Otherwise just OR them bits.
   763   return TypeInt::make( r0->get_con() | r1->get_con() );
   764 }
   766 //=============================================================================
   767 //------------------------------Identity---------------------------------------
   768 Node *OrLNode::Identity( PhaseTransform *phase ) {
   769   // x | x => x
   770   if (phase->eqv(in(1), in(2))) {
   771     return in(1);
   772   }
   774   return AddNode::Identity(phase);
   775 }
   777 //------------------------------add_ring---------------------------------------
   778 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
   779   const TypeLong *r0 = t0->is_long(); // Handy access
   780   const TypeLong *r1 = t1->is_long();
   782   // If either input is not a constant, just return all integers.
   783   if( !r0->is_con() || !r1->is_con() )
   784     return TypeLong::LONG;      // Any integer, but still no symbols.
   786   // Otherwise just OR them bits.
   787   return TypeLong::make( r0->get_con() | r1->get_con() );
   788 }
   790 //=============================================================================
   791 //------------------------------add_ring---------------------------------------
   792 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
   793 // the logical operations the ring's ADD is really a logical OR function.
   794 // This also type-checks the inputs for sanity.  Guaranteed never to
   795 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   796 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
   797   const TypeInt *r0 = t0->is_int(); // Handy access
   798   const TypeInt *r1 = t1->is_int();
   800   // Complementing a boolean?
   801   if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
   802                                || r1 == TypeInt::BOOL))
   803     return TypeInt::BOOL;
   805   if( !r0->is_con() || !r1->is_con() ) // Not constants
   806     return TypeInt::INT;        // Any integer, but still no symbols.
   808   // Otherwise just XOR them bits.
   809   return TypeInt::make( r0->get_con() ^ r1->get_con() );
   810 }
   812 //=============================================================================
   813 //------------------------------add_ring---------------------------------------
   814 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
   815   const TypeLong *r0 = t0->is_long(); // Handy access
   816   const TypeLong *r1 = t1->is_long();
   818   // If either input is not a constant, just return all integers.
   819   if( !r0->is_con() || !r1->is_con() )
   820     return TypeLong::LONG;      // Any integer, but still no symbols.
   822   // Otherwise just OR them bits.
   823   return TypeLong::make( r0->get_con() ^ r1->get_con() );
   824 }
   826 //=============================================================================
   827 //------------------------------add_ring---------------------------------------
   828 // Supplied function returns the sum of the inputs.
   829 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
   830   const TypeInt *r0 = t0->is_int(); // Handy access
   831   const TypeInt *r1 = t1->is_int();
   833   // Otherwise just MAX them bits.
   834   return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
   835 }
   837 //=============================================================================
   838 //------------------------------Idealize---------------------------------------
   839 // MINs show up in range-check loop limit calculations.  Look for
   840 // "MIN2(x+c0,MIN2(y,x+c1))".  Pick the smaller constant: "MIN2(x+c0,y)"
   841 Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   842   Node *progress = NULL;
   843   // Force a right-spline graph
   844   Node *l = in(1);
   845   Node *r = in(2);
   846   // Transform  MinI1( MinI2(a,b), c)  into  MinI1( a, MinI2(b,c) )
   847   // to force a right-spline graph for the rest of MinINode::Ideal().
   848   if( l->Opcode() == Op_MinI ) {
   849     assert( l != l->in(1), "dead loop in MinINode::Ideal" );
   850     r = phase->transform(new (phase->C, 3) MinINode(l->in(2),r));
   851     l = l->in(1);
   852     set_req(1, l);
   853     set_req(2, r);
   854     return this;
   855   }
   857   // Get left input & constant
   858   Node *x = l;
   859   int x_off = 0;
   860   if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
   861       x->in(2)->is_Con() ) {
   862     const Type *t = x->in(2)->bottom_type();
   863     if( t == Type::TOP ) return NULL;  // No progress
   864     x_off = t->is_int()->get_con();
   865     x = x->in(1);
   866   }
   868   // Scan a right-spline-tree for MINs
   869   Node *y = r;
   870   int y_off = 0;
   871   // Check final part of MIN tree
   872   if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
   873       y->in(2)->is_Con() ) {
   874     const Type *t = y->in(2)->bottom_type();
   875     if( t == Type::TOP ) return NULL;  // No progress
   876     y_off = t->is_int()->get_con();
   877     y = y->in(1);
   878   }
   879   if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
   880     swap_edges(1, 2);
   881     return this;
   882   }
   885   if( r->Opcode() == Op_MinI ) {
   886     assert( r != r->in(2), "dead loop in MinINode::Ideal" );
   887     y = r->in(1);
   888     // Check final part of MIN tree
   889     if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
   890         y->in(2)->is_Con() ) {
   891       const Type *t = y->in(2)->bottom_type();
   892       if( t == Type::TOP ) return NULL;  // No progress
   893       y_off = t->is_int()->get_con();
   894       y = y->in(1);
   895     }
   897     if( x->_idx > y->_idx )
   898       return new (phase->C, 3) MinINode(r->in(1),phase->transform(new (phase->C, 3) MinINode(l,r->in(2))));
   900     // See if covers: MIN2(x+c0,MIN2(y+c1,z))
   901     if( !phase->eqv(x,y) ) return NULL;
   902     // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
   903     // MIN2(x+c0 or x+c1 which less, z).
   904     return new (phase->C, 3) MinINode(phase->transform(new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
   905   } else {
   906     // See if covers: MIN2(x+c0,y+c1)
   907     if( !phase->eqv(x,y) ) return NULL;
   908     // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
   909     return new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
   910   }
   912 }
   914 //------------------------------add_ring---------------------------------------
   915 // Supplied function returns the sum of the inputs.
   916 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
   917   const TypeInt *r0 = t0->is_int(); // Handy access
   918   const TypeInt *r1 = t1->is_int();
   920   // Otherwise just MIN them bits.
   921   return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
   922 }

mercurial