src/share/vm/memory/blockOffsetTable.hpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 2314
f95d63e2154a
child 4037
da91efe96a93
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP
    26 #define SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP
    28 #include "memory/memRegion.hpp"
    29 #include "runtime/virtualspace.hpp"
    30 #include "utilities/globalDefinitions.hpp"
    32 // The CollectedHeap type requires subtypes to implement a method
    33 // "block_start".  For some subtypes, notably generational
    34 // systems using card-table-based write barriers, the efficiency of this
    35 // operation may be important.  Implementations of the "BlockOffsetArray"
    36 // class may be useful in providing such efficient implementations.
    37 //
    38 // BlockOffsetTable (abstract)
    39 //   - BlockOffsetArray (abstract)
    40 //     - BlockOffsetArrayNonContigSpace
    41 //     - BlockOffsetArrayContigSpace
    42 //
    44 class ContiguousSpace;
    45 class SerializeOopClosure;
    47 //////////////////////////////////////////////////////////////////////////
    48 // The BlockOffsetTable "interface"
    49 //////////////////////////////////////////////////////////////////////////
    50 class BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
    51   friend class VMStructs;
    52 protected:
    53   // These members describe the region covered by the table.
    55   // The space this table is covering.
    56   HeapWord* _bottom;    // == reserved.start
    57   HeapWord* _end;       // End of currently allocated region.
    59 public:
    60   // Initialize the table to cover the given space.
    61   // The contents of the initial table are undefined.
    62   BlockOffsetTable(HeapWord* bottom, HeapWord* end):
    63     _bottom(bottom), _end(end) {
    64     assert(_bottom <= _end, "arguments out of order");
    65   }
    67   // Note that the committed size of the covered space may have changed,
    68   // so the table size might also wish to change.
    69   virtual void resize(size_t new_word_size) = 0;
    71   virtual void set_bottom(HeapWord* new_bottom) {
    72     assert(new_bottom <= _end, "new_bottom > _end");
    73     _bottom = new_bottom;
    74     resize(pointer_delta(_end, _bottom));
    75   }
    77   // Requires "addr" to be contained by a block, and returns the address of
    78   // the start of that block.
    79   virtual HeapWord* block_start_unsafe(const void* addr) const = 0;
    81   // Returns the address of the start of the block containing "addr", or
    82   // else "null" if it is covered by no block.
    83   HeapWord* block_start(const void* addr) const;
    84 };
    86 //////////////////////////////////////////////////////////////////////////
    87 // One implementation of "BlockOffsetTable," the BlockOffsetArray,
    88 // divides the covered region into "N"-word subregions (where
    89 // "N" = 2^"LogN".  An array with an entry for each such subregion
    90 // indicates how far back one must go to find the start of the
    91 // chunk that includes the first word of the subregion.
    92 //
    93 // Each BlockOffsetArray is owned by a Space.  However, the actual array
    94 // may be shared by several BlockOffsetArrays; this is useful
    95 // when a single resizable area (such as a generation) is divided up into
    96 // several spaces in which contiguous allocation takes place.  (Consider,
    97 // for example, the garbage-first generation.)
    99 // Here is the shared array type.
   100 //////////////////////////////////////////////////////////////////////////
   101 // BlockOffsetSharedArray
   102 //////////////////////////////////////////////////////////////////////////
   103 class BlockOffsetSharedArray: public CHeapObj<mtGC> {
   104   friend class BlockOffsetArray;
   105   friend class BlockOffsetArrayNonContigSpace;
   106   friend class BlockOffsetArrayContigSpace;
   107   friend class VMStructs;
   109  private:
   110   enum SomePrivateConstants {
   111     LogN = 9,
   112     LogN_words = LogN - LogHeapWordSize,
   113     N_bytes = 1 << LogN,
   114     N_words = 1 << LogN_words
   115   };
   117   bool _init_to_zero;
   119   // The reserved region covered by the shared array.
   120   MemRegion _reserved;
   122   // End of the current committed region.
   123   HeapWord* _end;
   125   // Array for keeping offsets for retrieving object start fast given an
   126   // address.
   127   VirtualSpace _vs;
   128   u_char* _offset_array;          // byte array keeping backwards offsets
   130  protected:
   131   // Bounds checking accessors:
   132   // For performance these have to devolve to array accesses in product builds.
   133   u_char offset_array(size_t index) const {
   134     assert(index < _vs.committed_size(), "index out of range");
   135     return _offset_array[index];
   136   }
   137   // An assertion-checking helper method for the set_offset_array() methods below.
   138   void check_reducing_assertion(bool reducing);
   140   void set_offset_array(size_t index, u_char offset, bool reducing = false) {
   141     check_reducing_assertion(reducing);
   142     assert(index < _vs.committed_size(), "index out of range");
   143     assert(!reducing || _offset_array[index] >= offset, "Not reducing");
   144     _offset_array[index] = offset;
   145   }
   147   void set_offset_array(size_t index, HeapWord* high, HeapWord* low, bool reducing = false) {
   148     check_reducing_assertion(reducing);
   149     assert(index < _vs.committed_size(), "index out of range");
   150     assert(high >= low, "addresses out of order");
   151     assert(pointer_delta(high, low) <= N_words, "offset too large");
   152     assert(!reducing || _offset_array[index] >=  (u_char)pointer_delta(high, low),
   153            "Not reducing");
   154     _offset_array[index] = (u_char)pointer_delta(high, low);
   155   }
   157   void set_offset_array(HeapWord* left, HeapWord* right, u_char offset, bool reducing = false) {
   158     check_reducing_assertion(reducing);
   159     assert(index_for(right - 1) < _vs.committed_size(),
   160            "right address out of range");
   161     assert(left  < right, "Heap addresses out of order");
   162     size_t num_cards = pointer_delta(right, left) >> LogN_words;
   164     // Below, we may use an explicit loop instead of memset()
   165     // because on certain platforms memset() can give concurrent
   166     // readers "out-of-thin-air," phantom zeros; see 6948537.
   167     if (UseMemSetInBOT) {
   168       memset(&_offset_array[index_for(left)], offset, num_cards);
   169     } else {
   170       size_t i = index_for(left);
   171       const size_t end = i + num_cards;
   172       for (; i < end; i++) {
   173         // Elided until CR 6977974 is fixed properly.
   174         // assert(!reducing || _offset_array[i] >= offset, "Not reducing");
   175         _offset_array[i] = offset;
   176       }
   177     }
   178   }
   180   void set_offset_array(size_t left, size_t right, u_char offset, bool reducing = false) {
   181     check_reducing_assertion(reducing);
   182     assert(right < _vs.committed_size(), "right address out of range");
   183     assert(left  <= right, "indexes out of order");
   184     size_t num_cards = right - left + 1;
   186     // Below, we may use an explicit loop instead of memset
   187     // because on certain platforms memset() can give concurrent
   188     // readers "out-of-thin-air," phantom zeros; see 6948537.
   189     if (UseMemSetInBOT) {
   190       memset(&_offset_array[left], offset, num_cards);
   191     } else {
   192       size_t i = left;
   193       const size_t end = i + num_cards;
   194       for (; i < end; i++) {
   195         // Elided until CR 6977974 is fixed properly.
   196         // assert(!reducing || _offset_array[i] >= offset, "Not reducing");
   197         _offset_array[i] = offset;
   198       }
   199     }
   200   }
   202   void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
   203     assert(index < _vs.committed_size(), "index out of range");
   204     assert(high >= low, "addresses out of order");
   205     assert(pointer_delta(high, low) <= N_words, "offset too large");
   206     assert(_offset_array[index] == pointer_delta(high, low),
   207            "Wrong offset");
   208   }
   210   bool is_card_boundary(HeapWord* p) const;
   212   // Return the number of slots needed for an offset array
   213   // that covers mem_region_words words.
   214   // We always add an extra slot because if an object
   215   // ends on a card boundary we put a 0 in the next
   216   // offset array slot, so we want that slot always
   217   // to be reserved.
   219   size_t compute_size(size_t mem_region_words) {
   220     size_t number_of_slots = (mem_region_words / N_words) + 1;
   221     return ReservedSpace::allocation_align_size_up(number_of_slots);
   222   }
   224 public:
   225   // Initialize the table to cover from "base" to (at least)
   226   // "base + init_word_size".  In the future, the table may be expanded
   227   // (see "resize" below) up to the size of "_reserved" (which must be at
   228   // least "init_word_size".)  The contents of the initial table are
   229   // undefined; it is the responsibility of the constituent
   230   // BlockOffsetTable(s) to initialize cards.
   231   BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
   233   // Notes a change in the committed size of the region covered by the
   234   // table.  The "new_word_size" may not be larger than the size of the
   235   // reserved region this table covers.
   236   void resize(size_t new_word_size);
   238   void set_bottom(HeapWord* new_bottom);
   240   // Whether entries should be initialized to zero. Used currently only for
   241   // error checking.
   242   void set_init_to_zero(bool val) { _init_to_zero = val; }
   243   bool init_to_zero() { return _init_to_zero; }
   245   // Updates all the BlockOffsetArray's sharing this shared array to
   246   // reflect the current "top"'s of their spaces.
   247   void update_offset_arrays();   // Not yet implemented!
   249   // Return the appropriate index into "_offset_array" for "p".
   250   size_t index_for(const void* p) const;
   252   // Return the address indicating the start of the region corresponding to
   253   // "index" in "_offset_array".
   254   HeapWord* address_for_index(size_t index) const;
   256   // Return the address "p" incremented by the size of
   257   // a region.  This method does not align the address
   258   // returned to the start of a region.  It is a simple
   259   // primitive.
   260   HeapWord* inc_by_region_size(HeapWord* p) const { return p + N_words; }
   262   // Shared space support
   263   void serialize(SerializeOopClosure* soc, HeapWord* start, HeapWord* end);
   264 };
   266 //////////////////////////////////////////////////////////////////////////
   267 // The BlockOffsetArray whose subtypes use the BlockOffsetSharedArray.
   268 //////////////////////////////////////////////////////////////////////////
   269 class BlockOffsetArray: public BlockOffsetTable {
   270   friend class VMStructs;
   271   friend class G1BlockOffsetArray; // temp. until we restructure and cleanup
   272  protected:
   273   // The following enums are used by do_block_internal() below
   274   enum Action {
   275     Action_single,      // BOT records a single block (see single_block())
   276     Action_mark,        // BOT marks the start of a block (see mark_block())
   277     Action_check        // Check that BOT records block correctly
   278                         // (see verify_single_block()).
   279   };
   281   enum SomePrivateConstants {
   282     N_words = BlockOffsetSharedArray::N_words,
   283     LogN    = BlockOffsetSharedArray::LogN,
   284     // entries "e" of at least N_words mean "go back by Base^(e-N_words)."
   285     // All entries are less than "N_words + N_powers".
   286     LogBase = 4,
   287     Base = (1 << LogBase),
   288     N_powers = 14
   289   };
   291   static size_t power_to_cards_back(uint i) {
   292     return (size_t)(1 << (LogBase * i));
   293   }
   294   static size_t power_to_words_back(uint i) {
   295     return power_to_cards_back(i) * N_words;
   296   }
   297   static size_t entry_to_cards_back(u_char entry) {
   298     assert(entry >= N_words, "Precondition");
   299     return power_to_cards_back(entry - N_words);
   300   }
   301   static size_t entry_to_words_back(u_char entry) {
   302     assert(entry >= N_words, "Precondition");
   303     return power_to_words_back(entry - N_words);
   304   }
   306   // The shared array, which is shared with other BlockOffsetArray's
   307   // corresponding to different spaces within a generation or span of
   308   // memory.
   309   BlockOffsetSharedArray* _array;
   311   // The space that owns this subregion.
   312   Space* _sp;
   314   // If true, array entries are initialized to 0; otherwise, they are
   315   // initialized to point backwards to the beginning of the covered region.
   316   bool _init_to_zero;
   318   // An assertion-checking helper method for the set_remainder*() methods below.
   319   void check_reducing_assertion(bool reducing) { _array->check_reducing_assertion(reducing); }
   321   // Sets the entries
   322   // corresponding to the cards starting at "start" and ending at "end"
   323   // to point back to the card before "start": the interval [start, end)
   324   // is right-open. The last parameter, reducing, indicates whether the
   325   // updates to individual entries always reduce the entry from a higher
   326   // to a lower value. (For example this would hold true during a temporal
   327   // regime during which only block splits were updating the BOT.
   328   void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing = false);
   329   // Same as above, except that the args here are a card _index_ interval
   330   // that is closed: [start_index, end_index]
   331   void set_remainder_to_point_to_start_incl(size_t start, size_t end, bool reducing = false);
   333   // A helper function for BOT adjustment/verification work
   334   void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action, bool reducing = false);
   336  public:
   337   // The space may not have its bottom and top set yet, which is why the
   338   // region is passed as a parameter.  If "init_to_zero" is true, the
   339   // elements of the array are initialized to zero.  Otherwise, they are
   340   // initialized to point backwards to the beginning.
   341   BlockOffsetArray(BlockOffsetSharedArray* array, MemRegion mr,
   342                    bool init_to_zero_);
   344   // Note: this ought to be part of the constructor, but that would require
   345   // "this" to be passed as a parameter to a member constructor for
   346   // the containing concrete subtype of Space.
   347   // This would be legal C++, but MS VC++ doesn't allow it.
   348   void set_space(Space* sp) { _sp = sp; }
   350   // Resets the covered region to the given "mr".
   351   void set_region(MemRegion mr) {
   352     _bottom = mr.start();
   353     _end = mr.end();
   354   }
   356   // Note that the committed size of the covered space may have changed,
   357   // so the table size might also wish to change.
   358   virtual void resize(size_t new_word_size) {
   359     HeapWord* new_end = _bottom + new_word_size;
   360     if (_end < new_end && !init_to_zero()) {
   361       // verify that the old and new boundaries are also card boundaries
   362       assert(_array->is_card_boundary(_end),
   363              "_end not a card boundary");
   364       assert(_array->is_card_boundary(new_end),
   365              "new _end would not be a card boundary");
   366       // set all the newly added cards
   367       _array->set_offset_array(_end, new_end, N_words);
   368     }
   369     _end = new_end;  // update _end
   370   }
   372   // Adjust the BOT to show that it has a single block in the
   373   // range [blk_start, blk_start + size). All necessary BOT
   374   // cards are adjusted, but _unallocated_block isn't.
   375   void single_block(HeapWord* blk_start, HeapWord* blk_end);
   376   void single_block(HeapWord* blk, size_t size) {
   377     single_block(blk, blk + size);
   378   }
   380   // When the alloc_block() call returns, the block offset table should
   381   // have enough information such that any subsequent block_start() call
   382   // with an argument equal to an address that is within the range
   383   // [blk_start, blk_end) would return the value blk_start, provided
   384   // there have been no calls in between that reset this information
   385   // (e.g. see BlockOffsetArrayNonContigSpace::single_block() call
   386   // for an appropriate range covering the said interval).
   387   // These methods expect to be called with [blk_start, blk_end)
   388   // representing a block of memory in the heap.
   389   virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
   390   void alloc_block(HeapWord* blk, size_t size) {
   391     alloc_block(blk, blk + size);
   392   }
   394   // If true, initialize array slots with no allocated blocks to zero.
   395   // Otherwise, make them point back to the front.
   396   bool init_to_zero() { return _init_to_zero; }
   397   // Corresponding setter
   398   void set_init_to_zero(bool val) {
   399     _init_to_zero = val;
   400     assert(_array != NULL, "_array should be non-NULL");
   401     _array->set_init_to_zero(val);
   402   }
   404   // Debugging
   405   // Return the index of the last entry in the "active" region.
   406   virtual size_t last_active_index() const = 0;
   407   // Verify the block offset table
   408   void verify() const;
   409   void check_all_cards(size_t left_card, size_t right_card) const;
   410 };
   412 ////////////////////////////////////////////////////////////////////////////
   413 // A subtype of BlockOffsetArray that takes advantage of the fact
   414 // that its underlying space is a NonContiguousSpace, so that some
   415 // specialized interfaces can be made available for spaces that
   416 // manipulate the table.
   417 ////////////////////////////////////////////////////////////////////////////
   418 class BlockOffsetArrayNonContigSpace: public BlockOffsetArray {
   419   friend class VMStructs;
   420  private:
   421   // The portion [_unallocated_block, _sp.end()) of the space that
   422   // is a single block known not to contain any objects.
   423   // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
   424   HeapWord* _unallocated_block;
   426  public:
   427   BlockOffsetArrayNonContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
   428     BlockOffsetArray(array, mr, false),
   429     _unallocated_block(_bottom) { }
   431   // accessor
   432   HeapWord* unallocated_block() const {
   433     assert(BlockOffsetArrayUseUnallocatedBlock,
   434            "_unallocated_block is not being maintained");
   435     return _unallocated_block;
   436   }
   438   void set_unallocated_block(HeapWord* block) {
   439     assert(BlockOffsetArrayUseUnallocatedBlock,
   440            "_unallocated_block is not being maintained");
   441     assert(block >= _bottom && block <= _end, "out of range");
   442     _unallocated_block = block;
   443   }
   445   // These methods expect to be called with [blk_start, blk_end)
   446   // representing a block of memory in the heap.
   447   void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
   448   void alloc_block(HeapWord* blk, size_t size) {
   449     alloc_block(blk, blk + size);
   450   }
   452   // The following methods are useful and optimized for a
   453   // non-contiguous space.
   455   // Given a block [blk_start, blk_start + full_blk_size), and
   456   // a left_blk_size < full_blk_size, adjust the BOT to show two
   457   // blocks [blk_start, blk_start + left_blk_size) and
   458   // [blk_start + left_blk_size, blk_start + full_blk_size).
   459   // It is assumed (and verified in the non-product VM) that the
   460   // BOT was correct for the original block.
   461   void split_block(HeapWord* blk_start, size_t full_blk_size,
   462                            size_t left_blk_size);
   464   // Adjust BOT to show that it has a block in the range
   465   // [blk_start, blk_start + size). Only the first card
   466   // of BOT is touched. It is assumed (and verified in the
   467   // non-product VM) that the remaining cards of the block
   468   // are correct.
   469   void mark_block(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false);
   470   void mark_block(HeapWord* blk, size_t size, bool reducing = false) {
   471     mark_block(blk, blk + size, reducing);
   472   }
   474   // Adjust _unallocated_block to indicate that a particular
   475   // block has been newly allocated or freed. It is assumed (and
   476   // verified in the non-product VM) that the BOT is correct for
   477   // the given block.
   478   void allocated(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false) {
   479     // Verify that the BOT shows [blk, blk + blk_size) to be one block.
   480     verify_single_block(blk_start, blk_end);
   481     if (BlockOffsetArrayUseUnallocatedBlock) {
   482       _unallocated_block = MAX2(_unallocated_block, blk_end);
   483     }
   484   }
   486   void allocated(HeapWord* blk, size_t size, bool reducing = false) {
   487     allocated(blk, blk + size, reducing);
   488   }
   490   void freed(HeapWord* blk_start, HeapWord* blk_end);
   491   void freed(HeapWord* blk, size_t size);
   493   HeapWord* block_start_unsafe(const void* addr) const;
   495   // Requires "addr" to be the start of a card and returns the
   496   // start of the block that contains the given address.
   497   HeapWord* block_start_careful(const void* addr) const;
   499   // Verification & debugging: ensure that the offset table reflects
   500   // the fact that the block [blk_start, blk_end) or [blk, blk + size)
   501   // is a single block of storage. NOTE: can't const this because of
   502   // call to non-const do_block_internal() below.
   503   void verify_single_block(HeapWord* blk_start, HeapWord* blk_end)
   504     PRODUCT_RETURN;
   505   void verify_single_block(HeapWord* blk, size_t size) PRODUCT_RETURN;
   507   // Verify that the given block is before _unallocated_block
   508   void verify_not_unallocated(HeapWord* blk_start, HeapWord* blk_end)
   509     const PRODUCT_RETURN;
   510   void verify_not_unallocated(HeapWord* blk, size_t size)
   511     const PRODUCT_RETURN;
   513   // Debugging support
   514   virtual size_t last_active_index() const;
   515 };
   517 ////////////////////////////////////////////////////////////////////////////
   518 // A subtype of BlockOffsetArray that takes advantage of the fact
   519 // that its underlying space is a ContiguousSpace, so that its "active"
   520 // region can be more efficiently tracked (than for a non-contiguous space).
   521 ////////////////////////////////////////////////////////////////////////////
   522 class BlockOffsetArrayContigSpace: public BlockOffsetArray {
   523   friend class VMStructs;
   524  private:
   525   // allocation boundary at which offset array must be updated
   526   HeapWord* _next_offset_threshold;
   527   size_t    _next_offset_index;      // index corresponding to that boundary
   529   // Work function when allocation start crosses threshold.
   530   void alloc_block_work(HeapWord* blk_start, HeapWord* blk_end);
   532  public:
   533   BlockOffsetArrayContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
   534     BlockOffsetArray(array, mr, true) {
   535     _next_offset_threshold = NULL;
   536     _next_offset_index = 0;
   537   }
   539   void set_contig_space(ContiguousSpace* sp) { set_space((Space*)sp); }
   541   // Initialize the threshold for an empty heap.
   542   HeapWord* initialize_threshold();
   543   // Zero out the entry for _bottom (offset will be zero)
   544   void      zero_bottom_entry();
   546   // Return the next threshold, the point at which the table should be
   547   // updated.
   548   HeapWord* threshold() const { return _next_offset_threshold; }
   550   // In general, these methods expect to be called with
   551   // [blk_start, blk_end) representing a block of memory in the heap.
   552   // In this implementation, however, we are OK even if blk_start and/or
   553   // blk_end are NULL because NULL is represented as 0, and thus
   554   // never exceeds the "_next_offset_threshold".
   555   void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
   556     if (blk_end > _next_offset_threshold) {
   557       alloc_block_work(blk_start, blk_end);
   558     }
   559   }
   560   void alloc_block(HeapWord* blk, size_t size) {
   561     alloc_block(blk, blk + size);
   562   }
   564   HeapWord* block_start_unsafe(const void* addr) const;
   566   void serialize(SerializeOopClosure* soc);
   568   // Debugging support
   569   virtual size_t last_active_index() const;
   570 };
   572 #endif // SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP

mercurial