src/share/vm/gc_implementation/g1/concurrentMark.hpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3713
720b6a76dd9d
child 4123
988bf00cc564
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    28 #include "gc_implementation/g1/heapRegionSets.hpp"
    29 #include "utilities/taskqueue.hpp"
    31 class G1CollectedHeap;
    32 class CMTask;
    33 typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
    34 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
    36 // Closure used by CM during concurrent reference discovery
    37 // and reference processing (during remarking) to determine
    38 // if a particular object is alive. It is primarily used
    39 // to determine if referents of discovered reference objects
    40 // are alive. An instance is also embedded into the
    41 // reference processor as the _is_alive_non_header field
    42 class G1CMIsAliveClosure: public BoolObjectClosure {
    43   G1CollectedHeap* _g1;
    44  public:
    45   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
    47   void do_object(oop obj) {
    48     ShouldNotCallThis();
    49   }
    50   bool do_object_b(oop obj);
    51 };
    53 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    54 // class, with one bit per (1<<_shifter) HeapWords.
    56 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    57  protected:
    58   HeapWord* _bmStartWord;      // base address of range covered by map
    59   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    60   const int _shifter;          // map to char or bit
    61   VirtualSpace _virtual_space; // underlying the bit map
    62   BitMap    _bm;               // the bit map itself
    64  public:
    65   // constructor
    66   CMBitMapRO(ReservedSpace rs, int shifter);
    68   enum { do_yield = true };
    70   // inquiries
    71   HeapWord* startWord()   const { return _bmStartWord; }
    72   size_t    sizeInWords() const { return _bmWordSize;  }
    73   // the following is one past the last word in space
    74   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    76   // read marks
    78   bool isMarked(HeapWord* addr) const {
    79     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    80            "outside underlying space?");
    81     return _bm.at(heapWordToOffset(addr));
    82   }
    84   // iteration
    85   inline bool iterate(BitMapClosure* cl, MemRegion mr);
    86   inline bool iterate(BitMapClosure* cl);
    88   // Return the address corresponding to the next marked bit at or after
    89   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    90   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    91   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    92                                      HeapWord* limit = NULL) const;
    93   // Return the address corresponding to the next unmarked bit at or after
    94   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    95   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    96   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    97                                        HeapWord* limit = NULL) const;
    99   // conversion utilities
   100   // XXX Fix these so that offsets are size_t's...
   101   HeapWord* offsetToHeapWord(size_t offset) const {
   102     return _bmStartWord + (offset << _shifter);
   103   }
   104   size_t heapWordToOffset(HeapWord* addr) const {
   105     return pointer_delta(addr, _bmStartWord) >> _shifter;
   106   }
   107   int heapWordDiffToOffsetDiff(size_t diff) const;
   108   HeapWord* nextWord(HeapWord* addr) {
   109     return offsetToHeapWord(heapWordToOffset(addr) + 1);
   110   }
   112   // debugging
   113   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
   114 };
   116 class CMBitMap : public CMBitMapRO {
   118  public:
   119   // constructor
   120   CMBitMap(ReservedSpace rs, int shifter) :
   121     CMBitMapRO(rs, shifter) {}
   123   // write marks
   124   void mark(HeapWord* addr) {
   125     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   126            "outside underlying space?");
   127     _bm.set_bit(heapWordToOffset(addr));
   128   }
   129   void clear(HeapWord* addr) {
   130     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   131            "outside underlying space?");
   132     _bm.clear_bit(heapWordToOffset(addr));
   133   }
   134   bool parMark(HeapWord* addr) {
   135     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   136            "outside underlying space?");
   137     return _bm.par_set_bit(heapWordToOffset(addr));
   138   }
   139   bool parClear(HeapWord* addr) {
   140     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   141            "outside underlying space?");
   142     return _bm.par_clear_bit(heapWordToOffset(addr));
   143   }
   144   void markRange(MemRegion mr);
   145   void clearAll();
   146   void clearRange(MemRegion mr);
   148   // Starting at the bit corresponding to "addr" (inclusive), find the next
   149   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   150   // the end of this run (stopping at "end_addr").  Return the MemRegion
   151   // covering from the start of the region corresponding to the first bit
   152   // of the run to the end of the region corresponding to the last bit of
   153   // the run.  If there is no "1" bit at or after "addr", return an empty
   154   // MemRegion.
   155   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   156 };
   158 // Represents a marking stack used by the CM collector.
   159 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   160 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   161   ConcurrentMark* _cm;
   162   oop*   _base;        // bottom of stack
   163   jint   _index;       // one more than last occupied index
   164   jint   _capacity;    // max #elements
   165   jint   _saved_index; // value of _index saved at start of GC
   166   NOT_PRODUCT(jint _max_depth;)  // max depth plumbed during run
   168   bool   _overflow;
   169   DEBUG_ONLY(bool _drain_in_progress;)
   170   DEBUG_ONLY(bool _drain_in_progress_yields;)
   172  public:
   173   CMMarkStack(ConcurrentMark* cm);
   174   ~CMMarkStack();
   176   void allocate(size_t size);
   178   oop pop() {
   179     if (!isEmpty()) {
   180       return _base[--_index] ;
   181     }
   182     return NULL;
   183   }
   185   // If overflow happens, don't do the push, and record the overflow.
   186   // *Requires* that "ptr" is already marked.
   187   void push(oop ptr) {
   188     if (isFull()) {
   189       // Record overflow.
   190       _overflow = true;
   191       return;
   192     } else {
   193       _base[_index++] = ptr;
   194       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   195     }
   196   }
   197   // Non-block impl.  Note: concurrency is allowed only with other
   198   // "par_push" operations, not with "pop" or "drain".  We would need
   199   // parallel versions of them if such concurrency was desired.
   200   void par_push(oop ptr);
   202   // Pushes the first "n" elements of "ptr_arr" on the stack.
   203   // Non-block impl.  Note: concurrency is allowed only with other
   204   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   205   void par_adjoin_arr(oop* ptr_arr, int n);
   207   // Pushes the first "n" elements of "ptr_arr" on the stack.
   208   // Locking impl: concurrency is allowed only with
   209   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   210   // locking strategy.
   211   void par_push_arr(oop* ptr_arr, int n);
   213   // If returns false, the array was empty.  Otherwise, removes up to "max"
   214   // elements from the stack, and transfers them to "ptr_arr" in an
   215   // unspecified order.  The actual number transferred is given in "n" ("n
   216   // == 0" is deliberately redundant with the return value.)  Locking impl:
   217   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   218   // operations, which use the same locking strategy.
   219   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   221   // Drain the mark stack, applying the given closure to all fields of
   222   // objects on the stack.  (That is, continue until the stack is empty,
   223   // even if closure applications add entries to the stack.)  The "bm"
   224   // argument, if non-null, may be used to verify that only marked objects
   225   // are on the mark stack.  If "yield_after" is "true", then the
   226   // concurrent marker performing the drain offers to yield after
   227   // processing each object.  If a yield occurs, stops the drain operation
   228   // and returns false.  Otherwise, returns true.
   229   template<class OopClosureClass>
   230   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   232   bool isEmpty()    { return _index == 0; }
   233   bool isFull()     { return _index == _capacity; }
   234   int maxElems()    { return _capacity; }
   236   bool overflow() { return _overflow; }
   237   void clear_overflow() { _overflow = false; }
   239   int  size() { return _index; }
   241   void setEmpty()   { _index = 0; clear_overflow(); }
   243   // Record the current index.
   244   void note_start_of_gc();
   246   // Make sure that we have not added any entries to the stack during GC.
   247   void note_end_of_gc();
   249   // iterate over the oops in the mark stack, up to the bound recorded via
   250   // the call above.
   251   void oops_do(OopClosure* f);
   252 };
   254 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
   255 private:
   256 #ifndef PRODUCT
   257   uintx _num_remaining;
   258   bool _force;
   259 #endif // !defined(PRODUCT)
   261 public:
   262   void init() PRODUCT_RETURN;
   263   void update() PRODUCT_RETURN;
   264   bool should_force() PRODUCT_RETURN_( return false; );
   265 };
   267 // this will enable a variety of different statistics per GC task
   268 #define _MARKING_STATS_       0
   269 // this will enable the higher verbose levels
   270 #define _MARKING_VERBOSE_     0
   272 #if _MARKING_STATS_
   273 #define statsOnly(statement)  \
   274 do {                          \
   275   statement ;                 \
   276 } while (0)
   277 #else // _MARKING_STATS_
   278 #define statsOnly(statement)  \
   279 do {                          \
   280 } while (0)
   281 #endif // _MARKING_STATS_
   283 typedef enum {
   284   no_verbose  = 0,   // verbose turned off
   285   stats_verbose,     // only prints stats at the end of marking
   286   low_verbose,       // low verbose, mostly per region and per major event
   287   medium_verbose,    // a bit more detailed than low
   288   high_verbose       // per object verbose
   289 } CMVerboseLevel;
   291 class YoungList;
   293 // Root Regions are regions that are not empty at the beginning of a
   294 // marking cycle and which we might collect during an evacuation pause
   295 // while the cycle is active. Given that, during evacuation pauses, we
   296 // do not copy objects that are explicitly marked, what we have to do
   297 // for the root regions is to scan them and mark all objects reachable
   298 // from them. According to the SATB assumptions, we only need to visit
   299 // each object once during marking. So, as long as we finish this scan
   300 // before the next evacuation pause, we can copy the objects from the
   301 // root regions without having to mark them or do anything else to them.
   302 //
   303 // Currently, we only support root region scanning once (at the start
   304 // of the marking cycle) and the root regions are all the survivor
   305 // regions populated during the initial-mark pause.
   306 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
   307 private:
   308   YoungList*           _young_list;
   309   ConcurrentMark*      _cm;
   311   volatile bool        _scan_in_progress;
   312   volatile bool        _should_abort;
   313   HeapRegion* volatile _next_survivor;
   315 public:
   316   CMRootRegions();
   317   // We actually do most of the initialization in this method.
   318   void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
   320   // Reset the claiming / scanning of the root regions.
   321   void prepare_for_scan();
   323   // Forces get_next() to return NULL so that the iteration aborts early.
   324   void abort() { _should_abort = true; }
   326   // Return true if the CM thread are actively scanning root regions,
   327   // false otherwise.
   328   bool scan_in_progress() { return _scan_in_progress; }
   330   // Claim the next root region to scan atomically, or return NULL if
   331   // all have been claimed.
   332   HeapRegion* claim_next();
   334   // Flag that we're done with root region scanning and notify anyone
   335   // who's waiting on it. If aborted is false, assume that all regions
   336   // have been claimed.
   337   void scan_finished();
   339   // If CM threads are still scanning root regions, wait until they
   340   // are done. Return true if we had to wait, false otherwise.
   341   bool wait_until_scan_finished();
   342 };
   344 class ConcurrentMarkThread;
   346 class ConcurrentMark: public CHeapObj<mtGC> {
   347   friend class ConcurrentMarkThread;
   348   friend class CMTask;
   349   friend class CMBitMapClosure;
   350   friend class CMGlobalObjectClosure;
   351   friend class CMRemarkTask;
   352   friend class CMConcurrentMarkingTask;
   353   friend class G1ParNoteEndTask;
   354   friend class CalcLiveObjectsClosure;
   355   friend class G1CMRefProcTaskProxy;
   356   friend class G1CMRefProcTaskExecutor;
   357   friend class G1CMParKeepAliveAndDrainClosure;
   358   friend class G1CMParDrainMarkingStackClosure;
   360 protected:
   361   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   362   G1CollectedHeap*      _g1h;        // the heap.
   363   uint                  _parallel_marking_threads; // the number of marking
   364                                                    // threads we're use
   365   uint                  _max_parallel_marking_threads; // max number of marking
   366                                                    // threads we'll ever use
   367   double                _sleep_factor; // how much we have to sleep, with
   368                                        // respect to the work we just did, to
   369                                        // meet the marking overhead goal
   370   double                _marking_task_overhead; // marking target overhead for
   371                                                 // a single task
   373   // same as the two above, but for the cleanup task
   374   double                _cleanup_sleep_factor;
   375   double                _cleanup_task_overhead;
   377   FreeRegionList        _cleanup_list;
   379   // Concurrent marking support structures
   380   CMBitMap                _markBitMap1;
   381   CMBitMap                _markBitMap2;
   382   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   383   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   385   BitMap                  _region_bm;
   386   BitMap                  _card_bm;
   388   // Heap bounds
   389   HeapWord*               _heap_start;
   390   HeapWord*               _heap_end;
   392   // Root region tracking and claiming.
   393   CMRootRegions           _root_regions;
   395   // For gray objects
   396   CMMarkStack             _markStack; // Grey objects behind global finger.
   397   HeapWord* volatile      _finger;  // the global finger, region aligned,
   398                                     // always points to the end of the
   399                                     // last claimed region
   401   // marking tasks
   402   uint                    _max_task_num; // maximum task number
   403   uint                    _active_tasks; // task num currently active
   404   CMTask**                _tasks;        // task queue array (max_task_num len)
   405   CMTaskQueueSet*         _task_queues;  // task queue set
   406   ParallelTaskTerminator  _terminator;   // for termination
   408   // Two sync barriers that are used to synchronise tasks when an
   409   // overflow occurs. The algorithm is the following. All tasks enter
   410   // the first one to ensure that they have all stopped manipulating
   411   // the global data structures. After they exit it, they re-initialise
   412   // their data structures and task 0 re-initialises the global data
   413   // structures. Then, they enter the second sync barrier. This
   414   // ensure, that no task starts doing work before all data
   415   // structures (local and global) have been re-initialised. When they
   416   // exit it, they are free to start working again.
   417   WorkGangBarrierSync     _first_overflow_barrier_sync;
   418   WorkGangBarrierSync     _second_overflow_barrier_sync;
   420   // this is set by any task, when an overflow on the global data
   421   // structures is detected.
   422   volatile bool           _has_overflown;
   423   // true: marking is concurrent, false: we're in remark
   424   volatile bool           _concurrent;
   425   // set at the end of a Full GC so that marking aborts
   426   volatile bool           _has_aborted;
   428   // used when remark aborts due to an overflow to indicate that
   429   // another concurrent marking phase should start
   430   volatile bool           _restart_for_overflow;
   432   // This is true from the very start of concurrent marking until the
   433   // point when all the tasks complete their work. It is really used
   434   // to determine the points between the end of concurrent marking and
   435   // time of remark.
   436   volatile bool           _concurrent_marking_in_progress;
   438   // verbose level
   439   CMVerboseLevel          _verbose_level;
   441   // All of these times are in ms.
   442   NumberSeq _init_times;
   443   NumberSeq _remark_times;
   444   NumberSeq   _remark_mark_times;
   445   NumberSeq   _remark_weak_ref_times;
   446   NumberSeq _cleanup_times;
   447   double    _total_counting_time;
   448   double    _total_rs_scrub_time;
   450   double*   _accum_task_vtime;   // accumulated task vtime
   452   FlexibleWorkGang* _parallel_workers;
   454   ForceOverflowSettings _force_overflow_conc;
   455   ForceOverflowSettings _force_overflow_stw;
   457   void weakRefsWork(bool clear_all_soft_refs);
   459   void swapMarkBitMaps();
   461   // It resets the global marking data structures, as well as the
   462   // task local ones; should be called during initial mark.
   463   void reset();
   464   // It resets all the marking data structures.
   465   void clear_marking_state(bool clear_overflow = true);
   467   // It should be called to indicate which phase we're in (concurrent
   468   // mark or remark) and how many threads are currently active.
   469   void set_phase(uint active_tasks, bool concurrent);
   470   // We do this after we're done with marking so that the marking data
   471   // structures are initialised to a sensible and predictable state.
   472   void set_non_marking_state();
   474   // prints all gathered CM-related statistics
   475   void print_stats();
   477   bool cleanup_list_is_empty() {
   478     return _cleanup_list.is_empty();
   479   }
   481   // accessor methods
   482   uint parallel_marking_threads() { return _parallel_marking_threads; }
   483   uint max_parallel_marking_threads() { return _max_parallel_marking_threads;}
   484   double sleep_factor()             { return _sleep_factor; }
   485   double marking_task_overhead()    { return _marking_task_overhead;}
   486   double cleanup_sleep_factor()     { return _cleanup_sleep_factor; }
   487   double cleanup_task_overhead()    { return _cleanup_task_overhead;}
   489   HeapWord*               finger()        { return _finger;   }
   490   bool                    concurrent()    { return _concurrent; }
   491   uint                    active_tasks()  { return _active_tasks; }
   492   ParallelTaskTerminator* terminator()    { return &_terminator; }
   494   // It claims the next available region to be scanned by a marking
   495   // task. It might return NULL if the next region is empty or we have
   496   // run out of regions. In the latter case, out_of_regions()
   497   // determines whether we've really run out of regions or the task
   498   // should call claim_region() again.  This might seem a bit
   499   // awkward. Originally, the code was written so that claim_region()
   500   // either successfully returned with a non-empty region or there
   501   // were no more regions to be claimed. The problem with this was
   502   // that, in certain circumstances, it iterated over large chunks of
   503   // the heap finding only empty regions and, while it was working, it
   504   // was preventing the calling task to call its regular clock
   505   // method. So, this way, each task will spend very little time in
   506   // claim_region() and is allowed to call the regular clock method
   507   // frequently.
   508   HeapRegion* claim_region(int task);
   510   // It determines whether we've run out of regions to scan.
   511   bool        out_of_regions() { return _finger == _heap_end; }
   513   // Returns the task with the given id
   514   CMTask* task(int id) {
   515     assert(0 <= id && id < (int) _active_tasks,
   516            "task id not within active bounds");
   517     return _tasks[id];
   518   }
   520   // Returns the task queue with the given id
   521   CMTaskQueue* task_queue(int id) {
   522     assert(0 <= id && id < (int) _active_tasks,
   523            "task queue id not within active bounds");
   524     return (CMTaskQueue*) _task_queues->queue(id);
   525   }
   527   // Returns the task queue set
   528   CMTaskQueueSet* task_queues()  { return _task_queues; }
   530   // Access / manipulation of the overflow flag which is set to
   531   // indicate that the global stack has overflown
   532   bool has_overflown()           { return _has_overflown; }
   533   void set_has_overflown()       { _has_overflown = true; }
   534   void clear_has_overflown()     { _has_overflown = false; }
   535   bool restart_for_overflow()    { return _restart_for_overflow; }
   537   bool has_aborted()             { return _has_aborted; }
   539   // Methods to enter the two overflow sync barriers
   540   void enter_first_sync_barrier(int task_num);
   541   void enter_second_sync_barrier(int task_num);
   543   ForceOverflowSettings* force_overflow_conc() {
   544     return &_force_overflow_conc;
   545   }
   547   ForceOverflowSettings* force_overflow_stw() {
   548     return &_force_overflow_stw;
   549   }
   551   ForceOverflowSettings* force_overflow() {
   552     if (concurrent()) {
   553       return force_overflow_conc();
   554     } else {
   555       return force_overflow_stw();
   556     }
   557   }
   559   // Live Data Counting data structures...
   560   // These data structures are initialized at the start of
   561   // marking. They are written to while marking is active.
   562   // They are aggregated during remark; the aggregated values
   563   // are then used to populate the _region_bm, _card_bm, and
   564   // the total live bytes, which are then subsequently updated
   565   // during cleanup.
   567   // An array of bitmaps (one bit map per task). Each bitmap
   568   // is used to record the cards spanned by the live objects
   569   // marked by that task/worker.
   570   BitMap*  _count_card_bitmaps;
   572   // Used to record the number of marked live bytes
   573   // (for each region, by worker thread).
   574   size_t** _count_marked_bytes;
   576   // Card index of the bottom of the G1 heap. Used for biasing indices into
   577   // the card bitmaps.
   578   intptr_t _heap_bottom_card_num;
   580 public:
   581   // Manipulation of the global mark stack.
   582   // Notice that the first mark_stack_push is CAS-based, whereas the
   583   // two below are Mutex-based. This is OK since the first one is only
   584   // called during evacuation pauses and doesn't compete with the
   585   // other two (which are called by the marking tasks during
   586   // concurrent marking or remark).
   587   bool mark_stack_push(oop p) {
   588     _markStack.par_push(p);
   589     if (_markStack.overflow()) {
   590       set_has_overflown();
   591       return false;
   592     }
   593     return true;
   594   }
   595   bool mark_stack_push(oop* arr, int n) {
   596     _markStack.par_push_arr(arr, n);
   597     if (_markStack.overflow()) {
   598       set_has_overflown();
   599       return false;
   600     }
   601     return true;
   602   }
   603   void mark_stack_pop(oop* arr, int max, int* n) {
   604     _markStack.par_pop_arr(arr, max, n);
   605   }
   606   size_t mark_stack_size()                { return _markStack.size(); }
   607   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   608   bool mark_stack_overflow()              { return _markStack.overflow(); }
   609   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
   611   CMRootRegions* root_regions() { return &_root_regions; }
   613   bool concurrent_marking_in_progress() {
   614     return _concurrent_marking_in_progress;
   615   }
   616   void set_concurrent_marking_in_progress() {
   617     _concurrent_marking_in_progress = true;
   618   }
   619   void clear_concurrent_marking_in_progress() {
   620     _concurrent_marking_in_progress = false;
   621   }
   623   void update_accum_task_vtime(int i, double vtime) {
   624     _accum_task_vtime[i] += vtime;
   625   }
   627   double all_task_accum_vtime() {
   628     double ret = 0.0;
   629     for (int i = 0; i < (int)_max_task_num; ++i)
   630       ret += _accum_task_vtime[i];
   631     return ret;
   632   }
   634   // Attempts to steal an object from the task queues of other tasks
   635   bool try_stealing(int task_num, int* hash_seed, oop& obj) {
   636     return _task_queues->steal(task_num, hash_seed, obj);
   637   }
   639   ConcurrentMark(ReservedSpace rs, uint max_regions);
   640   ~ConcurrentMark();
   642   ConcurrentMarkThread* cmThread() { return _cmThread; }
   644   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   645   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   647   // Returns the number of GC threads to be used in a concurrent
   648   // phase based on the number of GC threads being used in a STW
   649   // phase.
   650   uint scale_parallel_threads(uint n_par_threads);
   652   // Calculates the number of GC threads to be used in a concurrent phase.
   653   uint calc_parallel_marking_threads();
   655   // The following three are interaction between CM and
   656   // G1CollectedHeap
   658   // This notifies CM that a root during initial-mark needs to be
   659   // grayed. It is MT-safe. word_size is the size of the object in
   660   // words. It is passed explicitly as sometimes we cannot calculate
   661   // it from the given object because it might be in an inconsistent
   662   // state (e.g., in to-space and being copied). So the caller is
   663   // responsible for dealing with this issue (e.g., get the size from
   664   // the from-space image when the to-space image might be
   665   // inconsistent) and always passing the size. hr is the region that
   666   // contains the object and it's passed optionally from callers who
   667   // might already have it (no point in recalculating it).
   668   inline void grayRoot(oop obj, size_t word_size,
   669                        uint worker_id, HeapRegion* hr = NULL);
   671   // It iterates over the heap and for each object it comes across it
   672   // will dump the contents of its reference fields, as well as
   673   // liveness information for the object and its referents. The dump
   674   // will be written to a file with the following name:
   675   // G1PrintReachableBaseFile + "." + str.
   676   // vo decides whether the prev (vo == UsePrevMarking), the next
   677   // (vo == UseNextMarking) marking information, or the mark word
   678   // (vo == UseMarkWord) will be used to determine the liveness of
   679   // each object / referent.
   680   // If all is true, all objects in the heap will be dumped, otherwise
   681   // only the live ones. In the dump the following symbols / breviations
   682   // are used:
   683   //   M : an explicitly live object (its bitmap bit is set)
   684   //   > : an implicitly live object (over tams)
   685   //   O : an object outside the G1 heap (typically: in the perm gen)
   686   //   NOT : a reference field whose referent is not live
   687   //   AND MARKED : indicates that an object is both explicitly and
   688   //   implicitly live (it should be one or the other, not both)
   689   void print_reachable(const char* str,
   690                        VerifyOption vo, bool all) PRODUCT_RETURN;
   692   // Clear the next marking bitmap (will be called concurrently).
   693   void clearNextBitmap();
   695   // These two do the work that needs to be done before and after the
   696   // initial root checkpoint. Since this checkpoint can be done at two
   697   // different points (i.e. an explicit pause or piggy-backed on a
   698   // young collection), then it's nice to be able to easily share the
   699   // pre/post code. It might be the case that we can put everything in
   700   // the post method. TP
   701   void checkpointRootsInitialPre();
   702   void checkpointRootsInitialPost();
   704   // Scan all the root regions and mark everything reachable from
   705   // them.
   706   void scanRootRegions();
   708   // Scan a single root region and mark everything reachable from it.
   709   void scanRootRegion(HeapRegion* hr, uint worker_id);
   711   // Do concurrent phase of marking, to a tentative transitive closure.
   712   void markFromRoots();
   714   void checkpointRootsFinal(bool clear_all_soft_refs);
   715   void checkpointRootsFinalWork();
   716   void cleanup();
   717   void completeCleanup();
   719   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   720   // this carefully!
   721   inline void markPrev(oop p);
   723   // Clears marks for all objects in the given range, for the prev,
   724   // next, or both bitmaps.  NB: the previous bitmap is usually
   725   // read-only, so use this carefully!
   726   void clearRangePrevBitmap(MemRegion mr);
   727   void clearRangeNextBitmap(MemRegion mr);
   728   void clearRangeBothBitmaps(MemRegion mr);
   730   // Notify data structures that a GC has started.
   731   void note_start_of_gc() {
   732     _markStack.note_start_of_gc();
   733   }
   735   // Notify data structures that a GC is finished.
   736   void note_end_of_gc() {
   737     _markStack.note_end_of_gc();
   738   }
   740   // Verify that there are no CSet oops on the stacks (taskqueues /
   741   // global mark stack), enqueued SATB buffers, per-thread SATB
   742   // buffers, and fingers (global / per-task). The boolean parameters
   743   // decide which of the above data structures to verify. If marking
   744   // is not in progress, it's a no-op.
   745   void verify_no_cset_oops(bool verify_stacks,
   746                            bool verify_enqueued_buffers,
   747                            bool verify_thread_buffers,
   748                            bool verify_fingers) PRODUCT_RETURN;
   750   // It is called at the end of an evacuation pause during marking so
   751   // that CM is notified of where the new end of the heap is. It
   752   // doesn't do anything if concurrent_marking_in_progress() is false,
   753   // unless the force parameter is true.
   754   void update_g1_committed(bool force = false);
   756   bool isMarked(oop p) const {
   757     assert(p != NULL && p->is_oop(), "expected an oop");
   758     HeapWord* addr = (HeapWord*)p;
   759     assert(addr >= _nextMarkBitMap->startWord() ||
   760            addr < _nextMarkBitMap->endWord(), "in a region");
   762     return _nextMarkBitMap->isMarked(addr);
   763   }
   765   inline bool not_yet_marked(oop p) const;
   767   // XXX Debug code
   768   bool containing_card_is_marked(void* p);
   769   bool containing_cards_are_marked(void* start, void* last);
   771   bool isPrevMarked(oop p) const {
   772     assert(p != NULL && p->is_oop(), "expected an oop");
   773     HeapWord* addr = (HeapWord*)p;
   774     assert(addr >= _prevMarkBitMap->startWord() ||
   775            addr < _prevMarkBitMap->endWord(), "in a region");
   777     return _prevMarkBitMap->isMarked(addr);
   778   }
   780   inline bool do_yield_check(uint worker_i = 0);
   781   inline bool should_yield();
   783   // Called to abort the marking cycle after a Full GC takes palce.
   784   void abort();
   786   // This prints the global/local fingers. It is used for debugging.
   787   NOT_PRODUCT(void print_finger();)
   789   void print_summary_info();
   791   void print_worker_threads_on(outputStream* st) const;
   793   // The following indicate whether a given verbose level has been
   794   // set. Notice that anything above stats is conditional to
   795   // _MARKING_VERBOSE_ having been set to 1
   796   bool verbose_stats() {
   797     return _verbose_level >= stats_verbose;
   798   }
   799   bool verbose_low() {
   800     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
   801   }
   802   bool verbose_medium() {
   803     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
   804   }
   805   bool verbose_high() {
   806     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
   807   }
   809   // Counting data structure accessors
   811   // Returns the card number of the bottom of the G1 heap.
   812   // Used in biasing indices into accounting card bitmaps.
   813   intptr_t heap_bottom_card_num() const {
   814     return _heap_bottom_card_num;
   815   }
   817   // Returns the card bitmap for a given task or worker id.
   818   BitMap* count_card_bitmap_for(uint worker_id) {
   819     assert(0 <= worker_id && worker_id < _max_task_num, "oob");
   820     assert(_count_card_bitmaps != NULL, "uninitialized");
   821     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
   822     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
   823     return task_card_bm;
   824   }
   826   // Returns the array containing the marked bytes for each region,
   827   // for the given worker or task id.
   828   size_t* count_marked_bytes_array_for(uint worker_id) {
   829     assert(0 <= worker_id && worker_id < _max_task_num, "oob");
   830     assert(_count_marked_bytes != NULL, "uninitialized");
   831     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
   832     assert(marked_bytes_array != NULL, "uninitialized");
   833     return marked_bytes_array;
   834   }
   836   // Returns the index in the liveness accounting card table bitmap
   837   // for the given address
   838   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
   840   // Counts the size of the given memory region in the the given
   841   // marked_bytes array slot for the given HeapRegion.
   842   // Sets the bits in the given card bitmap that are associated with the
   843   // cards that are spanned by the memory region.
   844   inline void count_region(MemRegion mr, HeapRegion* hr,
   845                            size_t* marked_bytes_array,
   846                            BitMap* task_card_bm);
   848   // Counts the given memory region in the task/worker counting
   849   // data structures for the given worker id.
   850   inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
   852   // Counts the given memory region in the task/worker counting
   853   // data structures for the given worker id.
   854   inline void count_region(MemRegion mr, uint worker_id);
   856   // Counts the given object in the given task/worker counting
   857   // data structures.
   858   inline void count_object(oop obj, HeapRegion* hr,
   859                            size_t* marked_bytes_array,
   860                            BitMap* task_card_bm);
   862   // Counts the given object in the task/worker counting data
   863   // structures for the given worker id.
   864   inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
   866   // Attempts to mark the given object and, if successful, counts
   867   // the object in the given task/worker counting structures.
   868   inline bool par_mark_and_count(oop obj, HeapRegion* hr,
   869                                  size_t* marked_bytes_array,
   870                                  BitMap* task_card_bm);
   872   // Attempts to mark the given object and, if successful, counts
   873   // the object in the task/worker counting structures for the
   874   // given worker id.
   875   inline bool par_mark_and_count(oop obj, size_t word_size,
   876                                  HeapRegion* hr, uint worker_id);
   878   // Attempts to mark the given object and, if successful, counts
   879   // the object in the task/worker counting structures for the
   880   // given worker id.
   881   inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
   883   // Similar to the above routine but we don't know the heap region that
   884   // contains the object to be marked/counted, which this routine looks up.
   885   inline bool par_mark_and_count(oop obj, uint worker_id);
   887   // Similar to the above routine but there are times when we cannot
   888   // safely calculate the size of obj due to races and we, therefore,
   889   // pass the size in as a parameter. It is the caller's reponsibility
   890   // to ensure that the size passed in for obj is valid.
   891   inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
   893   // Unconditionally mark the given object, and unconditinally count
   894   // the object in the counting structures for worker id 0.
   895   // Should *not* be called from parallel code.
   896   inline bool mark_and_count(oop obj, HeapRegion* hr);
   898   // Similar to the above routine but we don't know the heap region that
   899   // contains the object to be marked/counted, which this routine looks up.
   900   // Should *not* be called from parallel code.
   901   inline bool mark_and_count(oop obj);
   903 protected:
   904   // Clear all the per-task bitmaps and arrays used to store the
   905   // counting data.
   906   void clear_all_count_data();
   908   // Aggregates the counting data for each worker/task
   909   // that was constructed while marking. Also sets
   910   // the amount of marked bytes for each region and
   911   // the top at concurrent mark count.
   912   void aggregate_count_data();
   914   // Verification routine
   915   void verify_count_data();
   916 };
   918 // A class representing a marking task.
   919 class CMTask : public TerminatorTerminator {
   920 private:
   921   enum PrivateConstants {
   922     // the regular clock call is called once the scanned words reaches
   923     // this limit
   924     words_scanned_period          = 12*1024,
   925     // the regular clock call is called once the number of visited
   926     // references reaches this limit
   927     refs_reached_period           = 384,
   928     // initial value for the hash seed, used in the work stealing code
   929     init_hash_seed                = 17,
   930     // how many entries will be transferred between global stack and
   931     // local queues
   932     global_stack_transfer_size    = 16
   933   };
   935   int                         _task_id;
   936   G1CollectedHeap*            _g1h;
   937   ConcurrentMark*             _cm;
   938   CMBitMap*                   _nextMarkBitMap;
   939   // the task queue of this task
   940   CMTaskQueue*                _task_queue;
   941 private:
   942   // the task queue set---needed for stealing
   943   CMTaskQueueSet*             _task_queues;
   944   // indicates whether the task has been claimed---this is only  for
   945   // debugging purposes
   946   bool                        _claimed;
   948   // number of calls to this task
   949   int                         _calls;
   951   // when the virtual timer reaches this time, the marking step should
   952   // exit
   953   double                      _time_target_ms;
   954   // the start time of the current marking step
   955   double                      _start_time_ms;
   957   // the oop closure used for iterations over oops
   958   G1CMOopClosure*             _cm_oop_closure;
   960   // the region this task is scanning, NULL if we're not scanning any
   961   HeapRegion*                 _curr_region;
   962   // the local finger of this task, NULL if we're not scanning a region
   963   HeapWord*                   _finger;
   964   // limit of the region this task is scanning, NULL if we're not scanning one
   965   HeapWord*                   _region_limit;
   967   // the number of words this task has scanned
   968   size_t                      _words_scanned;
   969   // When _words_scanned reaches this limit, the regular clock is
   970   // called. Notice that this might be decreased under certain
   971   // circumstances (i.e. when we believe that we did an expensive
   972   // operation).
   973   size_t                      _words_scanned_limit;
   974   // the initial value of _words_scanned_limit (i.e. what it was
   975   // before it was decreased).
   976   size_t                      _real_words_scanned_limit;
   978   // the number of references this task has visited
   979   size_t                      _refs_reached;
   980   // When _refs_reached reaches this limit, the regular clock is
   981   // called. Notice this this might be decreased under certain
   982   // circumstances (i.e. when we believe that we did an expensive
   983   // operation).
   984   size_t                      _refs_reached_limit;
   985   // the initial value of _refs_reached_limit (i.e. what it was before
   986   // it was decreased).
   987   size_t                      _real_refs_reached_limit;
   989   // used by the work stealing stuff
   990   int                         _hash_seed;
   991   // if this is true, then the task has aborted for some reason
   992   bool                        _has_aborted;
   993   // set when the task aborts because it has met its time quota
   994   bool                        _has_timed_out;
   995   // true when we're draining SATB buffers; this avoids the task
   996   // aborting due to SATB buffers being available (as we're already
   997   // dealing with them)
   998   bool                        _draining_satb_buffers;
  1000   // number sequence of past step times
  1001   NumberSeq                   _step_times_ms;
  1002   // elapsed time of this task
  1003   double                      _elapsed_time_ms;
  1004   // termination time of this task
  1005   double                      _termination_time_ms;
  1006   // when this task got into the termination protocol
  1007   double                      _termination_start_time_ms;
  1009   // true when the task is during a concurrent phase, false when it is
  1010   // in the remark phase (so, in the latter case, we do not have to
  1011   // check all the things that we have to check during the concurrent
  1012   // phase, i.e. SATB buffer availability...)
  1013   bool                        _concurrent;
  1015   TruncatedSeq                _marking_step_diffs_ms;
  1017   // Counting data structures. Embedding the task's marked_bytes_array
  1018   // and card bitmap into the actual task saves having to go through
  1019   // the ConcurrentMark object.
  1020   size_t*                     _marked_bytes_array;
  1021   BitMap*                     _card_bm;
  1023   // LOTS of statistics related with this task
  1024 #if _MARKING_STATS_
  1025   NumberSeq                   _all_clock_intervals_ms;
  1026   double                      _interval_start_time_ms;
  1028   int                         _aborted;
  1029   int                         _aborted_overflow;
  1030   int                         _aborted_cm_aborted;
  1031   int                         _aborted_yield;
  1032   int                         _aborted_timed_out;
  1033   int                         _aborted_satb;
  1034   int                         _aborted_termination;
  1036   int                         _steal_attempts;
  1037   int                         _steals;
  1039   int                         _clock_due_to_marking;
  1040   int                         _clock_due_to_scanning;
  1042   int                         _local_pushes;
  1043   int                         _local_pops;
  1044   int                         _local_max_size;
  1045   int                         _objs_scanned;
  1047   int                         _global_pushes;
  1048   int                         _global_pops;
  1049   int                         _global_max_size;
  1051   int                         _global_transfers_to;
  1052   int                         _global_transfers_from;
  1054   int                         _regions_claimed;
  1055   int                         _objs_found_on_bitmap;
  1057   int                         _satb_buffers_processed;
  1058 #endif // _MARKING_STATS_
  1060   // it updates the local fields after this task has claimed
  1061   // a new region to scan
  1062   void setup_for_region(HeapRegion* hr);
  1063   // it brings up-to-date the limit of the region
  1064   void update_region_limit();
  1066   // called when either the words scanned or the refs visited limit
  1067   // has been reached
  1068   void reached_limit();
  1069   // recalculates the words scanned and refs visited limits
  1070   void recalculate_limits();
  1071   // decreases the words scanned and refs visited limits when we reach
  1072   // an expensive operation
  1073   void decrease_limits();
  1074   // it checks whether the words scanned or refs visited reached their
  1075   // respective limit and calls reached_limit() if they have
  1076   void check_limits() {
  1077     if (_words_scanned >= _words_scanned_limit ||
  1078         _refs_reached >= _refs_reached_limit) {
  1079       reached_limit();
  1082   // this is supposed to be called regularly during a marking step as
  1083   // it checks a bunch of conditions that might cause the marking step
  1084   // to abort
  1085   void regular_clock_call();
  1086   bool concurrent() { return _concurrent; }
  1088 public:
  1089   // It resets the task; it should be called right at the beginning of
  1090   // a marking phase.
  1091   void reset(CMBitMap* _nextMarkBitMap);
  1092   // it clears all the fields that correspond to a claimed region.
  1093   void clear_region_fields();
  1095   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
  1097   // The main method of this class which performs a marking step
  1098   // trying not to exceed the given duration. However, it might exit
  1099   // prematurely, according to some conditions (i.e. SATB buffers are
  1100   // available for processing).
  1101   void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
  1103   // These two calls start and stop the timer
  1104   void record_start_time() {
  1105     _elapsed_time_ms = os::elapsedTime() * 1000.0;
  1107   void record_end_time() {
  1108     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
  1111   // returns the task ID
  1112   int task_id() { return _task_id; }
  1114   // From TerminatorTerminator. It determines whether this task should
  1115   // exit the termination protocol after it's entered it.
  1116   virtual bool should_exit_termination();
  1118   // Resets the local region fields after a task has finished scanning a
  1119   // region; or when they have become stale as a result of the region
  1120   // being evacuated.
  1121   void giveup_current_region();
  1123   HeapWord* finger()            { return _finger; }
  1125   bool has_aborted()            { return _has_aborted; }
  1126   void set_has_aborted()        { _has_aborted = true; }
  1127   void clear_has_aborted()      { _has_aborted = false; }
  1128   bool has_timed_out()          { return _has_timed_out; }
  1129   bool claimed()                { return _claimed; }
  1131   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
  1133   // It grays the object by marking it and, if necessary, pushing it
  1134   // on the local queue
  1135   inline void deal_with_reference(oop obj);
  1137   // It scans an object and visits its children.
  1138   void scan_object(oop obj);
  1140   // It pushes an object on the local queue.
  1141   inline void push(oop obj);
  1143   // These two move entries to/from the global stack.
  1144   void move_entries_to_global_stack();
  1145   void get_entries_from_global_stack();
  1147   // It pops and scans objects from the local queue. If partially is
  1148   // true, then it stops when the queue size is of a given limit. If
  1149   // partially is false, then it stops when the queue is empty.
  1150   void drain_local_queue(bool partially);
  1151   // It moves entries from the global stack to the local queue and
  1152   // drains the local queue. If partially is true, then it stops when
  1153   // both the global stack and the local queue reach a given size. If
  1154   // partially if false, it tries to empty them totally.
  1155   void drain_global_stack(bool partially);
  1156   // It keeps picking SATB buffers and processing them until no SATB
  1157   // buffers are available.
  1158   void drain_satb_buffers();
  1160   // moves the local finger to a new location
  1161   inline void move_finger_to(HeapWord* new_finger) {
  1162     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1163     _finger = new_finger;
  1166   CMTask(int task_num, ConcurrentMark *cm,
  1167          size_t* marked_bytes, BitMap* card_bm,
  1168          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1170   // it prints statistics associated with this task
  1171   void print_stats();
  1173 #if _MARKING_STATS_
  1174   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1175 #endif // _MARKING_STATS_
  1176 };
  1178 // Class that's used to to print out per-region liveness
  1179 // information. It's currently used at the end of marking and also
  1180 // after we sort the old regions at the end of the cleanup operation.
  1181 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
  1182 private:
  1183   outputStream* _out;
  1185   // Accumulators for these values.
  1186   size_t _total_used_bytes;
  1187   size_t _total_capacity_bytes;
  1188   size_t _total_prev_live_bytes;
  1189   size_t _total_next_live_bytes;
  1191   // These are set up when we come across a "stars humongous" region
  1192   // (as this is where most of this information is stored, not in the
  1193   // subsequent "continues humongous" regions). After that, for every
  1194   // region in a given humongous region series we deduce the right
  1195   // values for it by simply subtracting the appropriate amount from
  1196   // these fields. All these values should reach 0 after we've visited
  1197   // the last region in the series.
  1198   size_t _hum_used_bytes;
  1199   size_t _hum_capacity_bytes;
  1200   size_t _hum_prev_live_bytes;
  1201   size_t _hum_next_live_bytes;
  1203   static double perc(size_t val, size_t total) {
  1204     if (total == 0) {
  1205       return 0.0;
  1206     } else {
  1207       return 100.0 * ((double) val / (double) total);
  1211   static double bytes_to_mb(size_t val) {
  1212     return (double) val / (double) M;
  1215   // See the .cpp file.
  1216   size_t get_hum_bytes(size_t* hum_bytes);
  1217   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
  1218                      size_t* prev_live_bytes, size_t* next_live_bytes);
  1220 public:
  1221   // The header and footer are printed in the constructor and
  1222   // destructor respectively.
  1223   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
  1224   virtual bool doHeapRegion(HeapRegion* r);
  1225   ~G1PrintRegionLivenessInfoClosure();
  1226 };
  1228 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial