src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3732
f69a5d43dc19
child 4037
da91efe96a93
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
    28 #include "gc_implementation/concurrentMarkSweep/promotionInfo.hpp"
    29 #include "memory/binaryTreeDictionary.hpp"
    30 #include "memory/blockOffsetTable.inline.hpp"
    31 #include "memory/freeList.hpp"
    32 #include "memory/space.hpp"
    34 // Classes in support of keeping track of promotions into a non-Contiguous
    35 // space, in this case a CompactibleFreeListSpace.
    37 // Forward declarations
    38 class CompactibleFreeListSpace;
    39 class BlkClosure;
    40 class BlkClosureCareful;
    41 class UpwardsObjectClosure;
    42 class ObjectClosureCareful;
    43 class Klass;
    45 class LinearAllocBlock VALUE_OBJ_CLASS_SPEC {
    46  public:
    47   LinearAllocBlock() : _ptr(0), _word_size(0), _refillSize(0),
    48     _allocation_size_limit(0) {}
    49   void set(HeapWord* ptr, size_t word_size, size_t refill_size,
    50     size_t allocation_size_limit) {
    51     _ptr = ptr;
    52     _word_size = word_size;
    53     _refillSize = refill_size;
    54     _allocation_size_limit = allocation_size_limit;
    55   }
    56   HeapWord* _ptr;
    57   size_t    _word_size;
    58   size_t    _refillSize;
    59   size_t    _allocation_size_limit;  // largest size that will be allocated
    61   void print_on(outputStream* st) const;
    62 };
    64 // Concrete subclass of CompactibleSpace that implements
    65 // a free list space, such as used in the concurrent mark sweep
    66 // generation.
    68 class CompactibleFreeListSpace: public CompactibleSpace {
    69   friend class VMStructs;
    70   friend class ConcurrentMarkSweepGeneration;
    71   friend class ASConcurrentMarkSweepGeneration;
    72   friend class CMSCollector;
    73   friend class CMSPermGenGen;
    74   // Local alloc buffer for promotion into this space.
    75   friend class CFLS_LAB;
    77   // "Size" of chunks of work (executed during parallel remark phases
    78   // of CMS collection); this probably belongs in CMSCollector, although
    79   // it's cached here because it's used in
    80   // initialize_sequential_subtasks_for_rescan() which modifies
    81   // par_seq_tasks which also lives in Space. XXX
    82   const size_t _rescan_task_size;
    83   const size_t _marking_task_size;
    85   // Yet another sequential tasks done structure. This supports
    86   // CMS GC, where we have threads dynamically
    87   // claiming sub-tasks from a larger parallel task.
    88   SequentialSubTasksDone _conc_par_seq_tasks;
    90   BlockOffsetArrayNonContigSpace _bt;
    92   CMSCollector* _collector;
    93   ConcurrentMarkSweepGeneration* _gen;
    95   // Data structures for free blocks (used during allocation/sweeping)
    97   // Allocation is done linearly from two different blocks depending on
    98   // whether the request is small or large, in an effort to reduce
    99   // fragmentation. We assume that any locking for allocation is done
   100   // by the containing generation. Thus, none of the methods in this
   101   // space are re-entrant.
   102   enum SomeConstants {
   103     SmallForLinearAlloc = 16,        // size < this then use _sLAB
   104     SmallForDictionary  = 257,       // size < this then use _indexedFreeList
   105     IndexSetSize        = SmallForDictionary  // keep this odd-sized
   106   };
   107   static size_t IndexSetStart;
   108   static size_t IndexSetStride;
   110  private:
   111   enum FitStrategyOptions {
   112     FreeBlockStrategyNone = 0,
   113     FreeBlockBestFitFirst
   114   };
   116   PromotionInfo _promoInfo;
   118   // helps to impose a global total order on freelistLock ranks;
   119   // assumes that CFLSpace's are allocated in global total order
   120   static int   _lockRank;
   122   // a lock protecting the free lists and free blocks;
   123   // mutable because of ubiquity of locking even for otherwise const methods
   124   mutable Mutex _freelistLock;
   125   // locking verifier convenience function
   126   void assert_locked() const PRODUCT_RETURN;
   127   void assert_locked(const Mutex* lock) const PRODUCT_RETURN;
   129   // Linear allocation blocks
   130   LinearAllocBlock _smallLinearAllocBlock;
   132   FreeBlockDictionary<FreeChunk>::DictionaryChoice _dictionaryChoice;
   133   FreeBlockDictionary<FreeChunk>* _dictionary;    // ptr to dictionary for large size blocks
   135   FreeList<FreeChunk> _indexedFreeList[IndexSetSize];
   136                                        // indexed array for small size blocks
   137   // allocation stategy
   138   bool       _fitStrategy;      // Use best fit strategy.
   139   bool       _adaptive_freelists; // Use adaptive freelists
   141   // This is an address close to the largest free chunk in the heap.
   142   // It is currently assumed to be at the end of the heap.  Free
   143   // chunks with addresses greater than nearLargestChunk are coalesced
   144   // in an effort to maintain a large chunk at the end of the heap.
   145   HeapWord*  _nearLargestChunk;
   147   // Used to keep track of limit of sweep for the space
   148   HeapWord* _sweep_limit;
   150   // Support for compacting cms
   151   HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   152   HeapWord* forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top);
   154   // Initialization helpers.
   155   void initializeIndexedFreeListArray();
   157   // Extra stuff to manage promotion parallelism.
   159   // a lock protecting the dictionary during par promotion allocation.
   160   mutable Mutex _parDictionaryAllocLock;
   161   Mutex* parDictionaryAllocLock() const { return &_parDictionaryAllocLock; }
   163   // Locks protecting the exact lists during par promotion allocation.
   164   Mutex* _indexedFreeListParLocks[IndexSetSize];
   166   // Attempt to obtain up to "n" blocks of the size "word_sz" (which is
   167   // required to be smaller than "IndexSetSize".)  If successful,
   168   // adds them to "fl", which is required to be an empty free list.
   169   // If the count of "fl" is negative, it's absolute value indicates a
   170   // number of free chunks that had been previously "borrowed" from global
   171   // list of size "word_sz", and must now be decremented.
   172   void par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList<FreeChunk>* fl);
   174   // Allocation helper functions
   175   // Allocate using a strategy that takes from the indexed free lists
   176   // first.  This allocation strategy assumes a companion sweeping
   177   // strategy that attempts to keep the needed number of chunks in each
   178   // indexed free lists.
   179   HeapWord* allocate_adaptive_freelists(size_t size);
   180   // Allocate from the linear allocation buffers first.  This allocation
   181   // strategy assumes maximal coalescing can maintain chunks large enough
   182   // to be used as linear allocation buffers.
   183   HeapWord* allocate_non_adaptive_freelists(size_t size);
   185   // Gets a chunk from the linear allocation block (LinAB).  If there
   186   // is not enough space in the LinAB, refills it.
   187   HeapWord*  getChunkFromLinearAllocBlock(LinearAllocBlock* blk, size_t size);
   188   HeapWord*  getChunkFromSmallLinearAllocBlock(size_t size);
   189   // Get a chunk from the space remaining in the linear allocation block.  Do
   190   // not attempt to refill if the space is not available, return NULL.  Do the
   191   // repairs on the linear allocation block as appropriate.
   192   HeapWord*  getChunkFromLinearAllocBlockRemainder(LinearAllocBlock* blk, size_t size);
   193   inline HeapWord*  getChunkFromSmallLinearAllocBlockRemainder(size_t size);
   195   // Helper function for getChunkFromIndexedFreeList.
   196   // Replenish the indexed free list for this "size".  Do not take from an
   197   // underpopulated size.
   198   FreeChunk*  getChunkFromIndexedFreeListHelper(size_t size, bool replenish = true);
   200   // Get a chunk from the indexed free list.  If the indexed free list
   201   // does not have a free chunk, try to replenish the indexed free list
   202   // then get the free chunk from the replenished indexed free list.
   203   inline FreeChunk* getChunkFromIndexedFreeList(size_t size);
   205   // The returned chunk may be larger than requested (or null).
   206   FreeChunk* getChunkFromDictionary(size_t size);
   207   // The returned chunk is the exact size requested (or null).
   208   FreeChunk* getChunkFromDictionaryExact(size_t size);
   210   // Find a chunk in the indexed free list that is the best
   211   // fit for size "numWords".
   212   FreeChunk* bestFitSmall(size_t numWords);
   213   // For free list "fl" of chunks of size > numWords,
   214   // remove a chunk, split off a chunk of size numWords
   215   // and return it.  The split off remainder is returned to
   216   // the free lists.  The old name for getFromListGreater
   217   // was lookInListGreater.
   218   FreeChunk* getFromListGreater(FreeList<FreeChunk>* fl, size_t numWords);
   219   // Get a chunk in the indexed free list or dictionary,
   220   // by considering a larger chunk and splitting it.
   221   FreeChunk* getChunkFromGreater(size_t numWords);
   222   //  Verify that the given chunk is in the indexed free lists.
   223   bool verifyChunkInIndexedFreeLists(FreeChunk* fc) const;
   224   // Remove the specified chunk from the indexed free lists.
   225   void       removeChunkFromIndexedFreeList(FreeChunk* fc);
   226   // Remove the specified chunk from the dictionary.
   227   void       removeChunkFromDictionary(FreeChunk* fc);
   228   // Split a free chunk into a smaller free chunk of size "new_size".
   229   // Return the smaller free chunk and return the remainder to the
   230   // free lists.
   231   FreeChunk* splitChunkAndReturnRemainder(FreeChunk* chunk, size_t new_size);
   232   // Add a chunk to the free lists.
   233   void       addChunkToFreeLists(HeapWord* chunk, size_t size);
   234   // Add a chunk to the free lists, preferring to suffix it
   235   // to the last free chunk at end of space if possible, and
   236   // updating the block census stats as well as block offset table.
   237   // Take any locks as appropriate if we are multithreaded.
   238   void       addChunkToFreeListsAtEndRecordingStats(HeapWord* chunk, size_t size);
   239   // Add a free chunk to the indexed free lists.
   240   void       returnChunkToFreeList(FreeChunk* chunk);
   241   // Add a free chunk to the dictionary.
   242   void       returnChunkToDictionary(FreeChunk* chunk);
   244   // Functions for maintaining the linear allocation buffers (LinAB).
   245   // Repairing a linear allocation block refers to operations
   246   // performed on the remainder of a LinAB after an allocation
   247   // has been made from it.
   248   void       repairLinearAllocationBlocks();
   249   void       repairLinearAllocBlock(LinearAllocBlock* blk);
   250   void       refillLinearAllocBlock(LinearAllocBlock* blk);
   251   void       refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk);
   252   void       refillLinearAllocBlocksIfNeeded();
   254   void       verify_objects_initialized() const;
   256   // Statistics reporting helper functions
   257   void       reportFreeListStatistics() const;
   258   void       reportIndexedFreeListStatistics() const;
   259   size_t     maxChunkSizeInIndexedFreeLists() const;
   260   size_t     numFreeBlocksInIndexedFreeLists() const;
   261   // Accessor
   262   HeapWord* unallocated_block() const {
   263     if (BlockOffsetArrayUseUnallocatedBlock) {
   264       HeapWord* ub = _bt.unallocated_block();
   265       assert(ub >= bottom() &&
   266              ub <= end(), "space invariant");
   267       return ub;
   268     } else {
   269       return end();
   270     }
   271   }
   272   void freed(HeapWord* start, size_t size) {
   273     _bt.freed(start, size);
   274   }
   276  protected:
   277   // reset the indexed free list to its initial empty condition.
   278   void resetIndexedFreeListArray();
   279   // reset to an initial state with a single free block described
   280   // by the MemRegion parameter.
   281   void reset(MemRegion mr);
   282   // Return the total number of words in the indexed free lists.
   283   size_t     totalSizeInIndexedFreeLists() const;
   285  public:
   286   // Constructor...
   287   CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
   288                            bool use_adaptive_freelists,
   289                            FreeBlockDictionary<FreeChunk>::DictionaryChoice);
   290   // accessors
   291   bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
   292   FreeBlockDictionary<FreeChunk>* dictionary() const { return _dictionary; }
   293   HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
   294   void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
   296   // Set CMS global values
   297   static void set_cms_values();
   299   // Return the free chunk at the end of the space.  If no such
   300   // chunk exists, return NULL.
   301   FreeChunk* find_chunk_at_end();
   303   bool adaptive_freelists() const { return _adaptive_freelists; }
   305   void set_collector(CMSCollector* collector) { _collector = collector; }
   307   // Support for parallelization of rescan and marking
   308   const size_t rescan_task_size()  const { return _rescan_task_size;  }
   309   const size_t marking_task_size() const { return _marking_task_size; }
   310   SequentialSubTasksDone* conc_par_seq_tasks() {return &_conc_par_seq_tasks; }
   311   void initialize_sequential_subtasks_for_rescan(int n_threads);
   312   void initialize_sequential_subtasks_for_marking(int n_threads,
   313          HeapWord* low = NULL);
   315   // Space enquiries
   316   size_t used() const;
   317   size_t free() const;
   318   size_t max_alloc_in_words() const;
   319   // XXX: should have a less conservative used_region() than that of
   320   // Space; we could consider keeping track of highest allocated
   321   // address and correcting that at each sweep, as the sweeper
   322   // goes through the entire allocated part of the generation. We
   323   // could also use that information to keep the sweeper from
   324   // sweeping more than is necessary. The allocator and sweeper will
   325   // of course need to synchronize on this, since the sweeper will
   326   // try to bump down the address and the allocator will try to bump it up.
   327   // For now, however, we'll just use the default used_region()
   328   // which overestimates the region by returning the entire
   329   // committed region (this is safe, but inefficient).
   331   // Returns a subregion of the space containing all the objects in
   332   // the space.
   333   MemRegion used_region() const {
   334     return MemRegion(bottom(),
   335                      BlockOffsetArrayUseUnallocatedBlock ?
   336                      unallocated_block() : end());
   337   }
   339   bool is_in(const void* p) const {
   340     return used_region().contains(p);
   341   }
   343   virtual bool is_free_block(const HeapWord* p) const;
   345   // Resizing support
   346   void set_end(HeapWord* value);  // override
   348   // mutual exclusion support
   349   Mutex* freelistLock() const { return &_freelistLock; }
   351   // Iteration support
   352   void oop_iterate(MemRegion mr, OopClosure* cl);
   353   void oop_iterate(OopClosure* cl);
   355   void object_iterate(ObjectClosure* blk);
   356   // Apply the closure to each object in the space whose references
   357   // point to objects in the heap.  The usage of CompactibleFreeListSpace
   358   // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
   359   // objects in the space with references to objects that are no longer
   360   // valid.  For example, an object may reference another object
   361   // that has already been sweep up (collected).  This method uses
   362   // obj_is_alive() to determine whether it is safe to iterate of
   363   // an object.
   364   void safe_object_iterate(ObjectClosure* blk);
   365   void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
   367   // Requires that "mr" be entirely within the space.
   368   // Apply "cl->do_object" to all objects that intersect with "mr".
   369   // If the iteration encounters an unparseable portion of the region,
   370   // terminate the iteration and return the address of the start of the
   371   // subregion that isn't done.  Return of "NULL" indicates that the
   372   // interation completed.
   373   virtual HeapWord*
   374        object_iterate_careful_m(MemRegion mr,
   375                                 ObjectClosureCareful* cl);
   376   virtual HeapWord*
   377        object_iterate_careful(ObjectClosureCareful* cl);
   379   // Override: provides a DCTO_CL specific to this kind of space.
   380   DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
   381                                      CardTableModRefBS::PrecisionStyle precision,
   382                                      HeapWord* boundary);
   384   void blk_iterate(BlkClosure* cl);
   385   void blk_iterate_careful(BlkClosureCareful* cl);
   386   HeapWord* block_start_const(const void* p) const;
   387   HeapWord* block_start_careful(const void* p) const;
   388   size_t block_size(const HeapWord* p) const;
   389   size_t block_size_no_stall(HeapWord* p, const CMSCollector* c) const;
   390   bool block_is_obj(const HeapWord* p) const;
   391   bool obj_is_alive(const HeapWord* p) const;
   392   size_t block_size_nopar(const HeapWord* p) const;
   393   bool block_is_obj_nopar(const HeapWord* p) const;
   395   // iteration support for promotion
   396   void save_marks();
   397   bool no_allocs_since_save_marks();
   398   void object_iterate_since_last_GC(ObjectClosure* cl);
   400   // iteration support for sweeping
   401   void save_sweep_limit() {
   402     _sweep_limit = BlockOffsetArrayUseUnallocatedBlock ?
   403                    unallocated_block() : end();
   404     if (CMSTraceSweeper) {
   405       gclog_or_tty->print_cr(">>>>> Saving sweep limit " PTR_FORMAT
   406                              "  for space [" PTR_FORMAT "," PTR_FORMAT ") <<<<<<",
   407                              _sweep_limit, bottom(), end());
   408     }
   409   }
   410   NOT_PRODUCT(
   411     void clear_sweep_limit() { _sweep_limit = NULL; }
   412   )
   413   HeapWord* sweep_limit() { return _sweep_limit; }
   415   // Apply "blk->do_oop" to the addresses of all reference fields in objects
   416   // promoted into this generation since the most recent save_marks() call.
   417   // Fields in objects allocated by applications of the closure
   418   // *are* included in the iteration. Thus, when the iteration completes
   419   // there should be no further such objects remaining.
   420   #define CFLS_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   421     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
   422   ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DECL)
   423   #undef CFLS_OOP_SINCE_SAVE_MARKS_DECL
   425   // Allocation support
   426   HeapWord* allocate(size_t size);
   427   HeapWord* par_allocate(size_t size);
   429   oop       promote(oop obj, size_t obj_size);
   430   void      gc_prologue();
   431   void      gc_epilogue();
   433   // This call is used by a containing CMS generation / collector
   434   // to inform the CFLS space that a sweep has been completed
   435   // and that the space can do any related house-keeping functions.
   436   void      sweep_completed();
   438   // For an object in this space, the mark-word's two
   439   // LSB's having the value [11] indicates that it has been
   440   // promoted since the most recent call to save_marks() on
   441   // this generation and has not subsequently been iterated
   442   // over (using oop_since_save_marks_iterate() above).
   443   // This property holds only for single-threaded collections,
   444   // and is typically used for Cheney scans; for MT scavenges,
   445   // the property holds for all objects promoted during that
   446   // scavenge for the duration of the scavenge and is used
   447   // by card-scanning to avoid scanning objects (being) promoted
   448   // during that scavenge.
   449   bool obj_allocated_since_save_marks(const oop obj) const {
   450     assert(is_in_reserved(obj), "Wrong space?");
   451     return ((PromotedObject*)obj)->hasPromotedMark();
   452   }
   454   // A worst-case estimate of the space required (in HeapWords) to expand the
   455   // heap when promoting an obj of size obj_size.
   456   size_t expansionSpaceRequired(size_t obj_size) const;
   458   FreeChunk* allocateScratch(size_t size);
   460   // returns true if either the small or large linear allocation buffer is empty.
   461   bool       linearAllocationWouldFail() const;
   463   // Adjust the chunk for the minimum size.  This version is called in
   464   // most cases in CompactibleFreeListSpace methods.
   465   inline static size_t adjustObjectSize(size_t size) {
   466     return (size_t) align_object_size(MAX2(size, (size_t)MinChunkSize));
   467   }
   468   // This is a virtual version of adjustObjectSize() that is called
   469   // only occasionally when the compaction space changes and the type
   470   // of the new compaction space is is only known to be CompactibleSpace.
   471   size_t adjust_object_size_v(size_t size) const {
   472     return adjustObjectSize(size);
   473   }
   474   // Minimum size of a free block.
   475   virtual size_t minimum_free_block_size() const { return MinChunkSize; }
   476   void      removeFreeChunkFromFreeLists(FreeChunk* chunk);
   477   void      addChunkAndRepairOffsetTable(HeapWord* chunk, size_t size,
   478               bool coalesced);
   480   // Support for decisions regarding concurrent collection policy
   481   bool should_concurrent_collect() const;
   483   // Support for compaction
   484   void prepare_for_compaction(CompactPoint* cp);
   485   void adjust_pointers();
   486   void compact();
   487   // reset the space to reflect the fact that a compaction of the
   488   // space has been done.
   489   virtual void reset_after_compaction();
   491   // Debugging support
   492   void print()                            const;
   493   void print_on(outputStream* st)         const;
   494   void prepare_for_verify();
   495   void verify()                           const;
   496   void verifyFreeLists()                  const PRODUCT_RETURN;
   497   void verifyIndexedFreeLists()           const;
   498   void verifyIndexedFreeList(size_t size) const;
   499   // Verify that the given chunk is in the free lists:
   500   // i.e. either the binary tree dictionary, the indexed free lists
   501   // or the linear allocation block.
   502   bool verify_chunk_in_free_list(FreeChunk* fc) const;
   503   // Verify that the given chunk is the linear allocation block
   504   bool verify_chunk_is_linear_alloc_block(FreeChunk* fc) const;
   505   // Do some basic checks on the the free lists.
   506   void check_free_list_consistency()      const PRODUCT_RETURN;
   508   // Printing support
   509   void dump_at_safepoint_with_locks(CMSCollector* c, outputStream* st);
   510   void print_indexed_free_lists(outputStream* st) const;
   511   void print_dictionary_free_lists(outputStream* st) const;
   512   void print_promo_info_blocks(outputStream* st) const;
   514   NOT_PRODUCT (
   515     void initializeIndexedFreeListArrayReturnedBytes();
   516     size_t sumIndexedFreeListArrayReturnedBytes();
   517     // Return the total number of chunks in the indexed free lists.
   518     size_t totalCountInIndexedFreeLists() const;
   519     // Return the total numberof chunks in the space.
   520     size_t totalCount();
   521   )
   523   // The census consists of counts of the quantities such as
   524   // the current count of the free chunks, number of chunks
   525   // created as a result of the split of a larger chunk or
   526   // coalescing of smaller chucks, etc.  The counts in the
   527   // census is used to make decisions on splitting and
   528   // coalescing of chunks during the sweep of garbage.
   530   // Print the statistics for the free lists.
   531   void printFLCensus(size_t sweep_count) const;
   533   // Statistics functions
   534   // Initialize census for lists before the sweep.
   535   void beginSweepFLCensus(float inter_sweep_current,
   536                           float inter_sweep_estimate,
   537                           float intra_sweep_estimate);
   538   // Set the surplus for each of the free lists.
   539   void setFLSurplus();
   540   // Set the hint for each of the free lists.
   541   void setFLHints();
   542   // Clear the census for each of the free lists.
   543   void clearFLCensus();
   544   // Perform functions for the census after the end of the sweep.
   545   void endSweepFLCensus(size_t sweep_count);
   546   // Return true if the count of free chunks is greater
   547   // than the desired number of free chunks.
   548   bool coalOverPopulated(size_t size);
   550 // Record (for each size):
   551 //
   552 //   split-births = #chunks added due to splits in (prev-sweep-end,
   553 //      this-sweep-start)
   554 //   split-deaths = #chunks removed for splits in (prev-sweep-end,
   555 //      this-sweep-start)
   556 //   num-curr     = #chunks at start of this sweep
   557 //   num-prev     = #chunks at end of previous sweep
   558 //
   559 // The above are quantities that are measured. Now define:
   560 //
   561 //   num-desired := num-prev + split-births - split-deaths - num-curr
   562 //
   563 // Roughly, num-prev + split-births is the supply,
   564 // split-deaths is demand due to other sizes
   565 // and num-curr is what we have left.
   566 //
   567 // Thus, num-desired is roughly speaking the "legitimate demand"
   568 // for blocks of this size and what we are striving to reach at the
   569 // end of the current sweep.
   570 //
   571 // For a given list, let num-len be its current population.
   572 // Define, for a free list of a given size:
   573 //
   574 //   coal-overpopulated := num-len >= num-desired * coal-surplus
   575 // (coal-surplus is set to 1.05, i.e. we allow a little slop when
   576 // coalescing -- we do not coalesce unless we think that the current
   577 // supply has exceeded the estimated demand by more than 5%).
   578 //
   579 // For the set of sizes in the binary tree, which is neither dense nor
   580 // closed, it may be the case that for a particular size we have never
   581 // had, or do not now have, or did not have at the previous sweep,
   582 // chunks of that size. We need to extend the definition of
   583 // coal-overpopulated to such sizes as well:
   584 //
   585 //   For a chunk in/not in the binary tree, extend coal-overpopulated
   586 //   defined above to include all sizes as follows:
   587 //
   588 //   . a size that is non-existent is coal-overpopulated
   589 //   . a size that has a num-desired <= 0 as defined above is
   590 //     coal-overpopulated.
   591 //
   592 // Also define, for a chunk heap-offset C and mountain heap-offset M:
   593 //
   594 //   close-to-mountain := C >= 0.99 * M
   595 //
   596 // Now, the coalescing strategy is:
   597 //
   598 //    Coalesce left-hand chunk with right-hand chunk if and
   599 //    only if:
   600 //
   601 //      EITHER
   602 //        . left-hand chunk is of a size that is coal-overpopulated
   603 //      OR
   604 //        . right-hand chunk is close-to-mountain
   605   void smallCoalBirth(size_t size);
   606   void smallCoalDeath(size_t size);
   607   void coalBirth(size_t size);
   608   void coalDeath(size_t size);
   609   void smallSplitBirth(size_t size);
   610   void smallSplitDeath(size_t size);
   611   void split_birth(size_t size);
   612   void splitDeath(size_t size);
   613   void split(size_t from, size_t to1);
   615   double flsFrag() const;
   616 };
   618 // A parallel-GC-thread-local allocation buffer for allocation into a
   619 // CompactibleFreeListSpace.
   620 class CFLS_LAB : public CHeapObj<mtGC> {
   621   // The space that this buffer allocates into.
   622   CompactibleFreeListSpace* _cfls;
   624   // Our local free lists.
   625   FreeList<FreeChunk> _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
   627   // Initialized from a command-line arg.
   629   // Allocation statistics in support of dynamic adjustment of
   630   // #blocks to claim per get_from_global_pool() call below.
   631   static AdaptiveWeightedAverage
   632                  _blocks_to_claim  [CompactibleFreeListSpace::IndexSetSize];
   633   static size_t _global_num_blocks [CompactibleFreeListSpace::IndexSetSize];
   634   static uint   _global_num_workers[CompactibleFreeListSpace::IndexSetSize];
   635   size_t        _num_blocks        [CompactibleFreeListSpace::IndexSetSize];
   637   // Internal work method
   638   void get_from_global_pool(size_t word_sz, FreeList<FreeChunk>* fl);
   640 public:
   641   CFLS_LAB(CompactibleFreeListSpace* cfls);
   643   // Allocate and return a block of the given size, or else return NULL.
   644   HeapWord* alloc(size_t word_sz);
   646   // Return any unused portions of the buffer to the global pool.
   647   void retire(int tid);
   649   // Dynamic OldPLABSize sizing
   650   static void compute_desired_plab_size();
   651   // When the settings are modified from default static initialization
   652   static void modify_initialization(size_t n, unsigned wt);
   653 };
   655 size_t PromotionInfo::refillSize() const {
   656   const size_t CMSSpoolBlockSize = 256;
   657   const size_t sz = heap_word_size(sizeof(SpoolBlock) + sizeof(markOop)
   658                                    * CMSSpoolBlockSize);
   659   return CompactibleFreeListSpace::adjustObjectSize(sz);
   660 }
   662 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP

mercurial