src/share/vm/runtime/deoptimization.cpp

Thu, 20 Jun 2013 16:30:44 -0700

author
goetz
date
Thu, 20 Jun 2013 16:30:44 -0700
changeset 6441
d2907f74462e
parent 4727
0094485b46c7
child 6442
b5c8a61d7fa0
permissions
-rw-r--r--

8016586: PPC64 (part 3): basic changes for PPC64
Summary: added #includes needed for ppc64 port. Renamed _MODEL_ppc to _MODEL_ppc_32 and renamed corresponding old _ppc files to _ppc_32.
Reviewed-by: dholmes, kvn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/debugInfoRec.hpp"
    28 #include "code/nmethod.hpp"
    29 #include "code/pcDesc.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "interpreter/bytecode.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/oopMapCache.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "memory/resourceArea.hpp"
    37 #include "oops/method.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/jvmtiThreadState.hpp"
    40 #include "runtime/biasedLocking.hpp"
    41 #include "runtime/compilationPolicy.hpp"
    42 #include "runtime/deoptimization.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/sharedRuntime.hpp"
    45 #include "runtime/signature.hpp"
    46 #include "runtime/stubRoutines.hpp"
    47 #include "runtime/thread.hpp"
    48 #include "runtime/vframe.hpp"
    49 #include "runtime/vframeArray.hpp"
    50 #include "runtime/vframe_hp.hpp"
    51 #include "utilities/events.hpp"
    52 #include "utilities/xmlstream.hpp"
    53 #ifdef TARGET_ARCH_x86
    54 # include "vmreg_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_sparc
    57 # include "vmreg_sparc.inline.hpp"
    58 #endif
    59 #ifdef TARGET_ARCH_zero
    60 # include "vmreg_zero.inline.hpp"
    61 #endif
    62 #ifdef TARGET_ARCH_arm
    63 # include "vmreg_arm.inline.hpp"
    64 #endif
    65 #ifdef TARGET_ARCH_ppc
    66 # include "vmreg_ppc.inline.hpp"
    67 #endif
    68 #ifdef COMPILER2
    69 #ifdef TARGET_ARCH_MODEL_x86_32
    70 # include "adfiles/ad_x86_32.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_MODEL_x86_64
    73 # include "adfiles/ad_x86_64.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_MODEL_sparc
    76 # include "adfiles/ad_sparc.hpp"
    77 #endif
    78 #ifdef TARGET_ARCH_MODEL_zero
    79 # include "adfiles/ad_zero.hpp"
    80 #endif
    81 #ifdef TARGET_ARCH_MODEL_arm
    82 # include "adfiles/ad_arm.hpp"
    83 #endif
    84 #ifdef TARGET_ARCH_MODEL_ppc_32
    85 # include "adfiles/ad_ppc_32.hpp"
    86 #endif
    87 #ifdef TARGET_ARCH_MODEL_ppc_64
    88 # include "adfiles/ad_ppc_64.hpp"
    89 #endif
    90 #endif // COMPILER2
    92 bool DeoptimizationMarker::_is_active = false;
    94 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
    95                                          int  caller_adjustment,
    96                                          int  caller_actual_parameters,
    97                                          int  number_of_frames,
    98                                          intptr_t* frame_sizes,
    99                                          address* frame_pcs,
   100                                          BasicType return_type) {
   101   _size_of_deoptimized_frame = size_of_deoptimized_frame;
   102   _caller_adjustment         = caller_adjustment;
   103   _caller_actual_parameters  = caller_actual_parameters;
   104   _number_of_frames          = number_of_frames;
   105   _frame_sizes               = frame_sizes;
   106   _frame_pcs                 = frame_pcs;
   107   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
   108   _return_type               = return_type;
   109   _initial_info              = 0;
   110   // PD (x86 only)
   111   _counter_temp              = 0;
   112   _unpack_kind               = 0;
   113   _sender_sp_temp            = 0;
   115   _total_frame_sizes         = size_of_frames();
   116 }
   119 Deoptimization::UnrollBlock::~UnrollBlock() {
   120   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes, mtCompiler);
   121   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs, mtCompiler);
   122   FREE_C_HEAP_ARRAY(intptr_t, _register_block, mtCompiler);
   123 }
   126 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
   127   assert(register_number < RegisterMap::reg_count, "checking register number");
   128   return &_register_block[register_number * 2];
   129 }
   133 int Deoptimization::UnrollBlock::size_of_frames() const {
   134   // Acount first for the adjustment of the initial frame
   135   int result = _caller_adjustment;
   136   for (int index = 0; index < number_of_frames(); index++) {
   137     result += frame_sizes()[index];
   138   }
   139   return result;
   140 }
   143 void Deoptimization::UnrollBlock::print() {
   144   ttyLocker ttyl;
   145   tty->print_cr("UnrollBlock");
   146   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
   147   tty->print(   "  frame_sizes: ");
   148   for (int index = 0; index < number_of_frames(); index++) {
   149     tty->print("%d ", frame_sizes()[index]);
   150   }
   151   tty->cr();
   152 }
   155 // In order to make fetch_unroll_info work properly with escape
   156 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
   157 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
   158 // of previously eliminated objects occurs in realloc_objects, which is
   159 // called from the method fetch_unroll_info_helper below.
   160 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
   161   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   162   // but makes the entry a little slower. There is however a little dance we have to
   163   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   165   // fetch_unroll_info() is called at the beginning of the deoptimization
   166   // handler. Note this fact before we start generating temporary frames
   167   // that can confuse an asynchronous stack walker. This counter is
   168   // decremented at the end of unpack_frames().
   169   thread->inc_in_deopt_handler();
   171   return fetch_unroll_info_helper(thread);
   172 JRT_END
   175 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
   176 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
   178   // Note: there is a safepoint safety issue here. No matter whether we enter
   179   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
   180   // the vframeArray is created.
   181   //
   183   // Allocate our special deoptimization ResourceMark
   184   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
   185   assert(thread->deopt_mark() == NULL, "Pending deopt!");
   186   thread->set_deopt_mark(dmark);
   188   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
   189   RegisterMap map(thread, true);
   190   RegisterMap dummy_map(thread, false);
   191   // Now get the deoptee with a valid map
   192   frame deoptee = stub_frame.sender(&map);
   193   // Set the deoptee nmethod
   194   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
   195   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
   197   if (VerifyStack) {
   198     thread->validate_frame_layout();
   199   }
   201   // Create a growable array of VFrames where each VFrame represents an inlined
   202   // Java frame.  This storage is allocated with the usual system arena.
   203   assert(deoptee.is_compiled_frame(), "Wrong frame type");
   204   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
   205   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
   206   while (!vf->is_top()) {
   207     assert(vf->is_compiled_frame(), "Wrong frame type");
   208     chunk->push(compiledVFrame::cast(vf));
   209     vf = vf->sender();
   210   }
   211   assert(vf->is_compiled_frame(), "Wrong frame type");
   212   chunk->push(compiledVFrame::cast(vf));
   214 #ifdef COMPILER2
   215   // Reallocate the non-escaping objects and restore their fields. Then
   216   // relock objects if synchronization on them was eliminated.
   217   if (DoEscapeAnalysis || EliminateNestedLocks) {
   218     if (EliminateAllocations) {
   219       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
   220       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
   222       // The flag return_oop() indicates call sites which return oop
   223       // in compiled code. Such sites include java method calls,
   224       // runtime calls (for example, used to allocate new objects/arrays
   225       // on slow code path) and any other calls generated in compiled code.
   226       // It is not guaranteed that we can get such information here only
   227       // by analyzing bytecode in deoptimized frames. This is why this flag
   228       // is set during method compilation (see Compile::Process_OopMap_Node()).
   229       bool save_oop_result = chunk->at(0)->scope()->return_oop();
   230       Handle return_value;
   231       if (save_oop_result) {
   232         // Reallocation may trigger GC. If deoptimization happened on return from
   233         // call which returns oop we need to save it since it is not in oopmap.
   234         oop result = deoptee.saved_oop_result(&map);
   235         assert(result == NULL || result->is_oop(), "must be oop");
   236         return_value = Handle(thread, result);
   237         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
   238         if (TraceDeoptimization) {
   239           ttyLocker ttyl;
   240           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, result, thread);
   241         }
   242       }
   243       bool reallocated = false;
   244       if (objects != NULL) {
   245         JRT_BLOCK
   246           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
   247         JRT_END
   248       }
   249       if (reallocated) {
   250         reassign_fields(&deoptee, &map, objects);
   251 #ifndef PRODUCT
   252         if (TraceDeoptimization) {
   253           ttyLocker ttyl;
   254           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
   255           print_objects(objects);
   256         }
   257 #endif
   258       }
   259       if (save_oop_result) {
   260         // Restore result.
   261         deoptee.set_saved_oop_result(&map, return_value());
   262       }
   263     }
   264     if (EliminateLocks) {
   265 #ifndef PRODUCT
   266       bool first = true;
   267 #endif
   268       for (int i = 0; i < chunk->length(); i++) {
   269         compiledVFrame* cvf = chunk->at(i);
   270         assert (cvf->scope() != NULL,"expect only compiled java frames");
   271         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   272         if (monitors->is_nonempty()) {
   273           relock_objects(monitors, thread);
   274 #ifndef PRODUCT
   275           if (TraceDeoptimization) {
   276             ttyLocker ttyl;
   277             for (int j = 0; j < monitors->length(); j++) {
   278               MonitorInfo* mi = monitors->at(j);
   279               if (mi->eliminated()) {
   280                 if (first) {
   281                   first = false;
   282                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
   283                 }
   284                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
   285               }
   286             }
   287           }
   288 #endif
   289         }
   290       }
   291     }
   292   }
   293 #endif // COMPILER2
   294   // Ensure that no safepoint is taken after pointers have been stored
   295   // in fields of rematerialized objects.  If a safepoint occurs from here on
   296   // out the java state residing in the vframeArray will be missed.
   297   No_Safepoint_Verifier no_safepoint;
   299   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
   301   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
   302   thread->set_vframe_array_head(array);
   304   // Now that the vframeArray has been created if we have any deferred local writes
   305   // added by jvmti then we can free up that structure as the data is now in the
   306   // vframeArray
   308   if (thread->deferred_locals() != NULL) {
   309     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
   310     int i = 0;
   311     do {
   312       // Because of inlining we could have multiple vframes for a single frame
   313       // and several of the vframes could have deferred writes. Find them all.
   314       if (list->at(i)->id() == array->original().id()) {
   315         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
   316         list->remove_at(i);
   317         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
   318         delete dlv;
   319       } else {
   320         i++;
   321       }
   322     } while ( i < list->length() );
   323     if (list->length() == 0) {
   324       thread->set_deferred_locals(NULL);
   325       // free the list and elements back to C heap.
   326       delete list;
   327     }
   329   }
   331 #ifndef SHARK
   332   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
   333   CodeBlob* cb = stub_frame.cb();
   334   // Verify we have the right vframeArray
   335   assert(cb->frame_size() >= 0, "Unexpected frame size");
   336   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
   338   // If the deopt call site is a MethodHandle invoke call site we have
   339   // to adjust the unpack_sp.
   340   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
   341   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
   342     unpack_sp = deoptee.unextended_sp();
   344 #ifdef ASSERT
   345   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
   346 #endif
   347 #else
   348   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
   349 #endif // !SHARK
   351   // This is a guarantee instead of an assert because if vframe doesn't match
   352   // we will unpack the wrong deoptimized frame and wind up in strange places
   353   // where it will be very difficult to figure out what went wrong. Better
   354   // to die an early death here than some very obscure death later when the
   355   // trail is cold.
   356   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
   357   // in that it will fail to detect a problem when there is one. This needs
   358   // more work in tiger timeframe.
   359   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
   361   int number_of_frames = array->frames();
   363   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
   364   // virtual activation, which is the reverse of the elements in the vframes array.
   365   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
   366   // +1 because we always have an interpreter return address for the final slot.
   367   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
   368   int popframe_extra_args = 0;
   369   // Create an interpreter return address for the stub to use as its return
   370   // address so the skeletal frames are perfectly walkable
   371   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
   373   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
   374   // activation be put back on the expression stack of the caller for reexecution
   375   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   376     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
   377   }
   379   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
   380   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
   381   // than simply use array->sender.pc(). This requires us to walk the current set of frames
   382   //
   383   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
   384   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
   386   // It's possible that the number of paramters at the call site is
   387   // different than number of arguments in the callee when method
   388   // handles are used.  If the caller is interpreted get the real
   389   // value so that the proper amount of space can be added to it's
   390   // frame.
   391   bool caller_was_method_handle = false;
   392   if (deopt_sender.is_interpreted_frame()) {
   393     methodHandle method = deopt_sender.interpreter_frame_method();
   394     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
   395     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
   396       // Method handle invokes may involve fairly arbitrary chains of
   397       // calls so it's impossible to know how much actual space the
   398       // caller has for locals.
   399       caller_was_method_handle = true;
   400     }
   401   }
   403   //
   404   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
   405   // frame_sizes/frame_pcs[1] next oldest frame (int)
   406   // frame_sizes/frame_pcs[n] youngest frame (int)
   407   //
   408   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
   409   // owns the space for the return address to it's caller).  Confusing ain't it.
   410   //
   411   // The vframe array can address vframes with indices running from
   412   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
   413   // When we create the skeletal frames we need the oldest frame to be in the zero slot
   414   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
   415   // so things look a little strange in this loop.
   416   //
   417   int callee_parameters = 0;
   418   int callee_locals = 0;
   419   for (int index = 0; index < array->frames(); index++ ) {
   420     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
   421     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
   422     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
   423     int caller_parms = callee_parameters;
   424     if ((index == array->frames() - 1) && caller_was_method_handle) {
   425       caller_parms = 0;
   426     }
   427     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(caller_parms,
   428                                                                                                     callee_parameters,
   429                                                                                                     callee_locals,
   430                                                                                                     index == 0,
   431                                                                                                     index == array->frames() - 1,
   432                                                                                                     popframe_extra_args);
   433     // This pc doesn't have to be perfect just good enough to identify the frame
   434     // as interpreted so the skeleton frame will be walkable
   435     // The correct pc will be set when the skeleton frame is completely filled out
   436     // The final pc we store in the loop is wrong and will be overwritten below
   437     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
   439     callee_parameters = array->element(index)->method()->size_of_parameters();
   440     callee_locals = array->element(index)->method()->max_locals();
   441     popframe_extra_args = 0;
   442   }
   444   // Compute whether the root vframe returns a float or double value.
   445   BasicType return_type;
   446   {
   447     HandleMark hm;
   448     methodHandle method(thread, array->element(0)->method());
   449     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
   450     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
   451   }
   453   // Compute information for handling adapters and adjusting the frame size of the caller.
   454   int caller_adjustment = 0;
   456   // Compute the amount the oldest interpreter frame will have to adjust
   457   // its caller's stack by. If the caller is a compiled frame then
   458   // we pretend that the callee has no parameters so that the
   459   // extension counts for the full amount of locals and not just
   460   // locals-parms. This is because without a c2i adapter the parm
   461   // area as created by the compiled frame will not be usable by
   462   // the interpreter. (Depending on the calling convention there
   463   // may not even be enough space).
   465   // QQQ I'd rather see this pushed down into last_frame_adjust
   466   // and have it take the sender (aka caller).
   468   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
   469     caller_adjustment = last_frame_adjust(0, callee_locals);
   470   } else if (callee_locals > callee_parameters) {
   471     // The caller frame may need extending to accommodate
   472     // non-parameter locals of the first unpacked interpreted frame.
   473     // Compute that adjustment.
   474     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
   475   }
   477   // If the sender is deoptimized the we must retrieve the address of the handler
   478   // since the frame will "magically" show the original pc before the deopt
   479   // and we'd undo the deopt.
   481   frame_pcs[0] = deopt_sender.raw_pc();
   483 #ifndef SHARK
   484   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
   485 #endif // SHARK
   487   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
   488                                       caller_adjustment * BytesPerWord,
   489                                       caller_was_method_handle ? 0 : callee_parameters,
   490                                       number_of_frames,
   491                                       frame_sizes,
   492                                       frame_pcs,
   493                                       return_type);
   494   // On some platforms, we need a way to pass some platform dependent
   495   // information to the unpacking code so the skeletal frames come out
   496   // correct (initial fp value, unextended sp, ...)
   497   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
   499   if (array->frames() > 1) {
   500     if (VerifyStack && TraceDeoptimization) {
   501       ttyLocker ttyl;
   502       tty->print_cr("Deoptimizing method containing inlining");
   503     }
   504   }
   506   array->set_unroll_block(info);
   507   return info;
   508 }
   510 // Called to cleanup deoptimization data structures in normal case
   511 // after unpacking to stack and when stack overflow error occurs
   512 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
   513                                         vframeArray *array) {
   515   // Get array if coming from exception
   516   if (array == NULL) {
   517     array = thread->vframe_array_head();
   518   }
   519   thread->set_vframe_array_head(NULL);
   521   // Free the previous UnrollBlock
   522   vframeArray* old_array = thread->vframe_array_last();
   523   thread->set_vframe_array_last(array);
   525   if (old_array != NULL) {
   526     UnrollBlock* old_info = old_array->unroll_block();
   527     old_array->set_unroll_block(NULL);
   528     delete old_info;
   529     delete old_array;
   530   }
   532   // Deallocate any resource creating in this routine and any ResourceObjs allocated
   533   // inside the vframeArray (StackValueCollections)
   535   delete thread->deopt_mark();
   536   thread->set_deopt_mark(NULL);
   537   thread->set_deopt_nmethod(NULL);
   540   if (JvmtiExport::can_pop_frame()) {
   541 #ifndef CC_INTERP
   542     // Regardless of whether we entered this routine with the pending
   543     // popframe condition bit set, we should always clear it now
   544     thread->clear_popframe_condition();
   545 #else
   546     // C++ interpeter will clear has_pending_popframe when it enters
   547     // with method_resume. For deopt_resume2 we clear it now.
   548     if (thread->popframe_forcing_deopt_reexecution())
   549         thread->clear_popframe_condition();
   550 #endif /* CC_INTERP */
   551   }
   553   // unpack_frames() is called at the end of the deoptimization handler
   554   // and (in C2) at the end of the uncommon trap handler. Note this fact
   555   // so that an asynchronous stack walker can work again. This counter is
   556   // incremented at the beginning of fetch_unroll_info() and (in C2) at
   557   // the beginning of uncommon_trap().
   558   thread->dec_in_deopt_handler();
   559 }
   562 // Return BasicType of value being returned
   563 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
   565   // We are already active int he special DeoptResourceMark any ResourceObj's we
   566   // allocate will be freed at the end of the routine.
   568   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   569   // but makes the entry a little slower. There is however a little dance we have to
   570   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   571   ResetNoHandleMark rnhm; // No-op in release/product versions
   572   HandleMark hm;
   574   frame stub_frame = thread->last_frame();
   576   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
   577   // must point to the vframeArray for the unpack frame.
   578   vframeArray* array = thread->vframe_array_head();
   580 #ifndef PRODUCT
   581   if (TraceDeoptimization) {
   582     ttyLocker ttyl;
   583     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
   584   }
   585 #endif
   586   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
   587               stub_frame.pc(), stub_frame.sp(), exec_mode);
   589   UnrollBlock* info = array->unroll_block();
   591   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
   592   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
   594   BasicType bt = info->return_type();
   596   // If we have an exception pending, claim that the return type is an oop
   597   // so the deopt_blob does not overwrite the exception_oop.
   599   if (exec_mode == Unpack_exception)
   600     bt = T_OBJECT;
   602   // Cleanup thread deopt data
   603   cleanup_deopt_info(thread, array);
   605 #ifndef PRODUCT
   606   if (VerifyStack) {
   607     ResourceMark res_mark;
   609     thread->validate_frame_layout();
   611     // Verify that the just-unpacked frames match the interpreter's
   612     // notions of expression stack and locals
   613     vframeArray* cur_array = thread->vframe_array_last();
   614     RegisterMap rm(thread, false);
   615     rm.set_include_argument_oops(false);
   616     bool is_top_frame = true;
   617     int callee_size_of_parameters = 0;
   618     int callee_max_locals = 0;
   619     for (int i = 0; i < cur_array->frames(); i++) {
   620       vframeArrayElement* el = cur_array->element(i);
   621       frame* iframe = el->iframe();
   622       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
   624       // Get the oop map for this bci
   625       InterpreterOopMap mask;
   626       int cur_invoke_parameter_size = 0;
   627       bool try_next_mask = false;
   628       int next_mask_expression_stack_size = -1;
   629       int top_frame_expression_stack_adjustment = 0;
   630       methodHandle mh(thread, iframe->interpreter_frame_method());
   631       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
   632       BytecodeStream str(mh);
   633       str.set_start(iframe->interpreter_frame_bci());
   634       int max_bci = mh->code_size();
   635       // Get to the next bytecode if possible
   636       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
   637       // Check to see if we can grab the number of outgoing arguments
   638       // at an uncommon trap for an invoke (where the compiler
   639       // generates debug info before the invoke has executed)
   640       Bytecodes::Code cur_code = str.next();
   641       if (cur_code == Bytecodes::_invokevirtual ||
   642           cur_code == Bytecodes::_invokespecial ||
   643           cur_code == Bytecodes::_invokestatic  ||
   644           cur_code == Bytecodes::_invokeinterface) {
   645         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
   646         Symbol* signature = invoke.signature();
   647         ArgumentSizeComputer asc(signature);
   648         cur_invoke_parameter_size = asc.size();
   649         if (cur_code != Bytecodes::_invokestatic) {
   650           // Add in receiver
   651           ++cur_invoke_parameter_size;
   652         }
   653       }
   654       if (str.bci() < max_bci) {
   655         Bytecodes::Code bc = str.next();
   656         if (bc >= 0) {
   657           // The interpreter oop map generator reports results before
   658           // the current bytecode has executed except in the case of
   659           // calls. It seems to be hard to tell whether the compiler
   660           // has emitted debug information matching the "state before"
   661           // a given bytecode or the state after, so we try both
   662           switch (cur_code) {
   663             case Bytecodes::_invokevirtual:
   664             case Bytecodes::_invokespecial:
   665             case Bytecodes::_invokestatic:
   666             case Bytecodes::_invokeinterface:
   667             case Bytecodes::_athrow:
   668               break;
   669             default: {
   670               InterpreterOopMap next_mask;
   671               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
   672               next_mask_expression_stack_size = next_mask.expression_stack_size();
   673               // Need to subtract off the size of the result type of
   674               // the bytecode because this is not described in the
   675               // debug info but returned to the interpreter in the TOS
   676               // caching register
   677               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
   678               if (bytecode_result_type != T_ILLEGAL) {
   679                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
   680               }
   681               assert(top_frame_expression_stack_adjustment >= 0, "");
   682               try_next_mask = true;
   683               break;
   684             }
   685           }
   686         }
   687       }
   689       // Verify stack depth and oops in frame
   690       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
   691       if (!(
   692             /* SPARC */
   693             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
   694             /* x86 */
   695             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
   696             (try_next_mask &&
   697              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
   698                                                                     top_frame_expression_stack_adjustment))) ||
   699             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
   700             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
   701              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
   702             )) {
   703         ttyLocker ttyl;
   705         // Print out some information that will help us debug the problem
   706         tty->print_cr("Wrong number of expression stack elements during deoptimization");
   707         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
   708         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
   709                       iframe->interpreter_frame_expression_stack_size());
   710         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
   711         tty->print_cr("  try_next_mask = %d", try_next_mask);
   712         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
   713         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
   714         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
   715         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
   716         tty->print_cr("  exec_mode = %d", exec_mode);
   717         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
   718         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
   719         tty->print_cr("  Interpreted frames:");
   720         for (int k = 0; k < cur_array->frames(); k++) {
   721           vframeArrayElement* el = cur_array->element(k);
   722           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
   723         }
   724         cur_array->print_on_2(tty);
   725         guarantee(false, "wrong number of expression stack elements during deopt");
   726       }
   727       VerifyOopClosure verify;
   728       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
   729       callee_size_of_parameters = mh->size_of_parameters();
   730       callee_max_locals = mh->max_locals();
   731       is_top_frame = false;
   732     }
   733   }
   734 #endif /* !PRODUCT */
   737   return bt;
   738 JRT_END
   741 int Deoptimization::deoptimize_dependents() {
   742   Threads::deoptimized_wrt_marked_nmethods();
   743   return 0;
   744 }
   747 #ifdef COMPILER2
   748 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
   749   Handle pending_exception(thread->pending_exception());
   750   const char* exception_file = thread->exception_file();
   751   int exception_line = thread->exception_line();
   752   thread->clear_pending_exception();
   754   for (int i = 0; i < objects->length(); i++) {
   755     assert(objects->at(i)->is_object(), "invalid debug information");
   756     ObjectValue* sv = (ObjectValue*) objects->at(i);
   758     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   759     oop obj = NULL;
   761     if (k->oop_is_instance()) {
   762       InstanceKlass* ik = InstanceKlass::cast(k());
   763       obj = ik->allocate_instance(CHECK_(false));
   764     } else if (k->oop_is_typeArray()) {
   765       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
   766       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
   767       int len = sv->field_size() / type2size[ak->element_type()];
   768       obj = ak->allocate(len, CHECK_(false));
   769     } else if (k->oop_is_objArray()) {
   770       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
   771       obj = ak->allocate(sv->field_size(), CHECK_(false));
   772     }
   774     assert(obj != NULL, "allocation failed");
   775     assert(sv->value().is_null(), "redundant reallocation");
   776     sv->set_value(obj);
   777   }
   779   if (pending_exception.not_null()) {
   780     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
   781   }
   783   return true;
   784 }
   786 // This assumes that the fields are stored in ObjectValue in the same order
   787 // they are yielded by do_nonstatic_fields.
   788 class FieldReassigner: public FieldClosure {
   789   frame* _fr;
   790   RegisterMap* _reg_map;
   791   ObjectValue* _sv;
   792   InstanceKlass* _ik;
   793   oop _obj;
   795   int _i;
   796 public:
   797   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
   798     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
   800   int i() const { return _i; }
   803   void do_field(fieldDescriptor* fd) {
   804     intptr_t val;
   805     StackValue* value =
   806       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
   807     int offset = fd->offset();
   808     switch (fd->field_type()) {
   809     case T_OBJECT: case T_ARRAY:
   810       assert(value->type() == T_OBJECT, "Agreement.");
   811       _obj->obj_field_put(offset, value->get_obj()());
   812       break;
   814     case T_LONG: case T_DOUBLE: {
   815       assert(value->type() == T_INT, "Agreement.");
   816       StackValue* low =
   817         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
   818 #ifdef _LP64
   819       jlong res = (jlong)low->get_int();
   820 #else
   821 #ifdef SPARC
   822       // For SPARC we have to swap high and low words.
   823       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   824 #else
   825       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   826 #endif //SPARC
   827 #endif
   828       _obj->long_field_put(offset, res);
   829       break;
   830     }
   831     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   832     case T_INT: case T_FLOAT: // 4 bytes.
   833       assert(value->type() == T_INT, "Agreement.");
   834       val = value->get_int();
   835       _obj->int_field_put(offset, (jint)*((jint*)&val));
   836       break;
   838     case T_SHORT: case T_CHAR: // 2 bytes
   839       assert(value->type() == T_INT, "Agreement.");
   840       val = value->get_int();
   841       _obj->short_field_put(offset, (jshort)*((jint*)&val));
   842       break;
   844     case T_BOOLEAN: case T_BYTE: // 1 byte
   845       assert(value->type() == T_INT, "Agreement.");
   846       val = value->get_int();
   847       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
   848       break;
   850     default:
   851       ShouldNotReachHere();
   852     }
   853     _i++;
   854   }
   855 };
   857 // restore elements of an eliminated type array
   858 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
   859   int index = 0;
   860   intptr_t val;
   862   for (int i = 0; i < sv->field_size(); i++) {
   863     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   864     switch(type) {
   865     case T_LONG: case T_DOUBLE: {
   866       assert(value->type() == T_INT, "Agreement.");
   867       StackValue* low =
   868         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
   869 #ifdef _LP64
   870       jlong res = (jlong)low->get_int();
   871 #else
   872 #ifdef SPARC
   873       // For SPARC we have to swap high and low words.
   874       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   875 #else
   876       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   877 #endif //SPARC
   878 #endif
   879       obj->long_at_put(index, res);
   880       break;
   881     }
   883     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   884     case T_INT: case T_FLOAT: // 4 bytes.
   885       assert(value->type() == T_INT, "Agreement.");
   886       val = value->get_int();
   887       obj->int_at_put(index, (jint)*((jint*)&val));
   888       break;
   890     case T_SHORT: case T_CHAR: // 2 bytes
   891       assert(value->type() == T_INT, "Agreement.");
   892       val = value->get_int();
   893       obj->short_at_put(index, (jshort)*((jint*)&val));
   894       break;
   896     case T_BOOLEAN: case T_BYTE: // 1 byte
   897       assert(value->type() == T_INT, "Agreement.");
   898       val = value->get_int();
   899       obj->bool_at_put(index, (jboolean)*((jint*)&val));
   900       break;
   902       default:
   903         ShouldNotReachHere();
   904     }
   905     index++;
   906   }
   907 }
   910 // restore fields of an eliminated object array
   911 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
   912   for (int i = 0; i < sv->field_size(); i++) {
   913     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   914     assert(value->type() == T_OBJECT, "object element expected");
   915     obj->obj_at_put(i, value->get_obj()());
   916   }
   917 }
   920 // restore fields of all eliminated objects and arrays
   921 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
   922   for (int i = 0; i < objects->length(); i++) {
   923     ObjectValue* sv = (ObjectValue*) objects->at(i);
   924     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   925     Handle obj = sv->value();
   926     assert(obj.not_null(), "reallocation was missed");
   928     if (k->oop_is_instance()) {
   929       InstanceKlass* ik = InstanceKlass::cast(k());
   930       FieldReassigner reassign(fr, reg_map, sv, obj());
   931       ik->do_nonstatic_fields(&reassign);
   932     } else if (k->oop_is_typeArray()) {
   933       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
   934       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
   935     } else if (k->oop_is_objArray()) {
   936       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
   937     }
   938   }
   939 }
   942 // relock objects for which synchronization was eliminated
   943 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
   944   for (int i = 0; i < monitors->length(); i++) {
   945     MonitorInfo* mon_info = monitors->at(i);
   946     if (mon_info->eliminated()) {
   947       assert(mon_info->owner() != NULL, "reallocation was missed");
   948       Handle obj = Handle(mon_info->owner());
   949       markOop mark = obj->mark();
   950       if (UseBiasedLocking && mark->has_bias_pattern()) {
   951         // New allocated objects may have the mark set to anonymously biased.
   952         // Also the deoptimized method may called methods with synchronization
   953         // where the thread-local object is bias locked to the current thread.
   954         assert(mark->is_biased_anonymously() ||
   955                mark->biased_locker() == thread, "should be locked to current thread");
   956         // Reset mark word to unbiased prototype.
   957         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
   958         obj->set_mark(unbiased_prototype);
   959       }
   960       BasicLock* lock = mon_info->lock();
   961       ObjectSynchronizer::slow_enter(obj, lock, thread);
   962     }
   963     assert(mon_info->owner()->is_locked(), "object must be locked now");
   964   }
   965 }
   968 #ifndef PRODUCT
   969 // print information about reallocated objects
   970 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
   971   fieldDescriptor fd;
   973   for (int i = 0; i < objects->length(); i++) {
   974     ObjectValue* sv = (ObjectValue*) objects->at(i);
   975     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   976     Handle obj = sv->value();
   978     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
   979     k->print_value();
   980     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
   981     tty->cr();
   983     if (Verbose) {
   984       k->oop_print_on(obj(), tty);
   985     }
   986   }
   987 }
   988 #endif
   989 #endif // COMPILER2
   991 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
   992   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
   994 #ifndef PRODUCT
   995   if (TraceDeoptimization) {
   996     ttyLocker ttyl;
   997     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
   998     fr.print_on(tty);
   999     tty->print_cr("     Virtual frames (innermost first):");
  1000     for (int index = 0; index < chunk->length(); index++) {
  1001       compiledVFrame* vf = chunk->at(index);
  1002       tty->print("       %2d - ", index);
  1003       vf->print_value();
  1004       int bci = chunk->at(index)->raw_bci();
  1005       const char* code_name;
  1006       if (bci == SynchronizationEntryBCI) {
  1007         code_name = "sync entry";
  1008       } else {
  1009         Bytecodes::Code code = vf->method()->code_at(bci);
  1010         code_name = Bytecodes::name(code);
  1012       tty->print(" - %s", code_name);
  1013       tty->print_cr(" @ bci %d ", bci);
  1014       if (Verbose) {
  1015         vf->print();
  1016         tty->cr();
  1020 #endif
  1022   // Register map for next frame (used for stack crawl).  We capture
  1023   // the state of the deopt'ing frame's caller.  Thus if we need to
  1024   // stuff a C2I adapter we can properly fill in the callee-save
  1025   // register locations.
  1026   frame caller = fr.sender(reg_map);
  1027   int frame_size = caller.sp() - fr.sp();
  1029   frame sender = caller;
  1031   // Since the Java thread being deoptimized will eventually adjust it's own stack,
  1032   // the vframeArray containing the unpacking information is allocated in the C heap.
  1033   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
  1034   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
  1036   // Compare the vframeArray to the collected vframes
  1037   assert(array->structural_compare(thread, chunk), "just checking");
  1039 #ifndef PRODUCT
  1040   if (TraceDeoptimization) {
  1041     ttyLocker ttyl;
  1042     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
  1044 #endif // PRODUCT
  1046   return array;
  1050 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
  1051   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
  1052   for (int i = 0; i < monitors->length(); i++) {
  1053     MonitorInfo* mon_info = monitors->at(i);
  1054     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
  1055       objects_to_revoke->append(Handle(mon_info->owner()));
  1061 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
  1062   if (!UseBiasedLocking) {
  1063     return;
  1066   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1068   // Unfortunately we don't have a RegisterMap available in most of
  1069   // the places we want to call this routine so we need to walk the
  1070   // stack again to update the register map.
  1071   if (map == NULL || !map->update_map()) {
  1072     StackFrameStream sfs(thread, true);
  1073     bool found = false;
  1074     while (!found && !sfs.is_done()) {
  1075       frame* cur = sfs.current();
  1076       sfs.next();
  1077       found = cur->id() == fr.id();
  1079     assert(found, "frame to be deoptimized not found on target thread's stack");
  1080     map = sfs.register_map();
  1083   vframe* vf = vframe::new_vframe(&fr, map, thread);
  1084   compiledVFrame* cvf = compiledVFrame::cast(vf);
  1085   // Revoke monitors' biases in all scopes
  1086   while (!cvf->is_top()) {
  1087     collect_monitors(cvf, objects_to_revoke);
  1088     cvf = compiledVFrame::cast(cvf->sender());
  1090   collect_monitors(cvf, objects_to_revoke);
  1092   if (SafepointSynchronize::is_at_safepoint()) {
  1093     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1094   } else {
  1095     BiasedLocking::revoke(objects_to_revoke);
  1100 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
  1101   if (!UseBiasedLocking) {
  1102     return;
  1105   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
  1106   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1107   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
  1108     if (jt->has_last_Java_frame()) {
  1109       StackFrameStream sfs(jt, true);
  1110       while (!sfs.is_done()) {
  1111         frame* cur = sfs.current();
  1112         if (cb->contains(cur->pc())) {
  1113           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
  1114           compiledVFrame* cvf = compiledVFrame::cast(vf);
  1115           // Revoke monitors' biases in all scopes
  1116           while (!cvf->is_top()) {
  1117             collect_monitors(cvf, objects_to_revoke);
  1118             cvf = compiledVFrame::cast(cvf->sender());
  1120           collect_monitors(cvf, objects_to_revoke);
  1122         sfs.next();
  1126   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1130 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
  1131   assert(fr.can_be_deoptimized(), "checking frame type");
  1133   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
  1135   // Patch the nmethod so that when execution returns to it we will
  1136   // deopt the execution state and return to the interpreter.
  1137   fr.deoptimize(thread);
  1140 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
  1141   // Deoptimize only if the frame comes from compile code.
  1142   // Do not deoptimize the frame which is already patched
  1143   // during the execution of the loops below.
  1144   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
  1145     return;
  1147   ResourceMark rm;
  1148   DeoptimizationMarker dm;
  1149   if (UseBiasedLocking) {
  1150     revoke_biases_of_monitors(thread, fr, map);
  1152   deoptimize_single_frame(thread, fr);
  1157 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
  1158   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
  1159          "can only deoptimize other thread at a safepoint");
  1160   // Compute frame and register map based on thread and sp.
  1161   RegisterMap reg_map(thread, UseBiasedLocking);
  1162   frame fr = thread->last_frame();
  1163   while (fr.id() != id) {
  1164     fr = fr.sender(&reg_map);
  1166   deoptimize(thread, fr, &reg_map);
  1170 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
  1171   if (thread == Thread::current()) {
  1172     Deoptimization::deoptimize_frame_internal(thread, id);
  1173   } else {
  1174     VM_DeoptimizeFrame deopt(thread, id);
  1175     VMThread::execute(&deopt);
  1180 // JVMTI PopFrame support
  1181 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
  1183   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
  1185 JRT_END
  1188 #if defined(COMPILER2) || defined(SHARK)
  1189 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
  1190   // in case of an unresolved klass entry, load the class.
  1191   if (constant_pool->tag_at(index).is_unresolved_klass()) {
  1192     Klass* tk = constant_pool->klass_at(index, CHECK);
  1193     return;
  1196   if (!constant_pool->tag_at(index).is_symbol()) return;
  1198   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
  1199   Symbol*  symbol  = constant_pool->symbol_at(index);
  1201   // class name?
  1202   if (symbol->byte_at(0) != '(') {
  1203     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
  1204     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
  1205     return;
  1208   // then it must be a signature!
  1209   ResourceMark rm(THREAD);
  1210   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
  1211     if (ss.is_object()) {
  1212       Symbol* class_name = ss.as_symbol(CHECK);
  1213       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
  1214       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
  1220 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
  1221   EXCEPTION_MARK;
  1222   load_class_by_index(constant_pool, index, THREAD);
  1223   if (HAS_PENDING_EXCEPTION) {
  1224     // Exception happened during classloading. We ignore the exception here, since it
  1225     // is going to be rethrown since the current activation is going to be deoptimzied and
  1226     // the interpreter will re-execute the bytecode.
  1227     CLEAR_PENDING_EXCEPTION;
  1231 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
  1232   HandleMark hm;
  1234   // uncommon_trap() is called at the beginning of the uncommon trap
  1235   // handler. Note this fact before we start generating temporary frames
  1236   // that can confuse an asynchronous stack walker. This counter is
  1237   // decremented at the end of unpack_frames().
  1238   thread->inc_in_deopt_handler();
  1240   // We need to update the map if we have biased locking.
  1241   RegisterMap reg_map(thread, UseBiasedLocking);
  1242   frame stub_frame = thread->last_frame();
  1243   frame fr = stub_frame.sender(&reg_map);
  1244   // Make sure the calling nmethod is not getting deoptimized and removed
  1245   // before we are done with it.
  1246   nmethodLocker nl(fr.pc());
  1248   // Log a message
  1249   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
  1250               trap_request, fr.pc());
  1253     ResourceMark rm;
  1255     // Revoke biases of any monitors in the frame to ensure we can migrate them
  1256     revoke_biases_of_monitors(thread, fr, &reg_map);
  1258     DeoptReason reason = trap_request_reason(trap_request);
  1259     DeoptAction action = trap_request_action(trap_request);
  1260     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
  1262     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
  1263     compiledVFrame* cvf = compiledVFrame::cast(vf);
  1265     nmethod* nm = cvf->code();
  1267     ScopeDesc*      trap_scope  = cvf->scope();
  1268     methodHandle    trap_method = trap_scope->method();
  1269     int             trap_bci    = trap_scope->bci();
  1270     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
  1272     // Record this event in the histogram.
  1273     gather_statistics(reason, action, trap_bc);
  1275     // Ensure that we can record deopt. history:
  1276     bool create_if_missing = ProfileTraps;
  1278     MethodData* trap_mdo =
  1279       get_method_data(thread, trap_method, create_if_missing);
  1281     // Log a message
  1282     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
  1283                               trap_reason_name(reason), trap_action_name(action), fr.pc(),
  1284                               trap_method->name_and_sig_as_C_string(), trap_bci);
  1286     // Print a bunch of diagnostics, if requested.
  1287     if (TraceDeoptimization || LogCompilation) {
  1288       ResourceMark rm;
  1289       ttyLocker ttyl;
  1290       char buf[100];
  1291       if (xtty != NULL) {
  1292         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
  1293                          os::current_thread_id(),
  1294                          format_trap_request(buf, sizeof(buf), trap_request));
  1295         nm->log_identity(xtty);
  1297       Symbol* class_name = NULL;
  1298       bool unresolved = false;
  1299       if (unloaded_class_index >= 0) {
  1300         constantPoolHandle constants (THREAD, trap_method->constants());
  1301         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
  1302           class_name = constants->klass_name_at(unloaded_class_index);
  1303           unresolved = true;
  1304           if (xtty != NULL)
  1305             xtty->print(" unresolved='1'");
  1306         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
  1307           class_name = constants->symbol_at(unloaded_class_index);
  1309         if (xtty != NULL)
  1310           xtty->name(class_name);
  1312       if (xtty != NULL && trap_mdo != NULL) {
  1313         // Dump the relevant MDO state.
  1314         // This is the deopt count for the current reason, any previous
  1315         // reasons or recompiles seen at this point.
  1316         int dcnt = trap_mdo->trap_count(reason);
  1317         if (dcnt != 0)
  1318           xtty->print(" count='%d'", dcnt);
  1319         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
  1320         int dos = (pdata == NULL)? 0: pdata->trap_state();
  1321         if (dos != 0) {
  1322           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
  1323           if (trap_state_is_recompiled(dos)) {
  1324             int recnt2 = trap_mdo->overflow_recompile_count();
  1325             if (recnt2 != 0)
  1326               xtty->print(" recompiles2='%d'", recnt2);
  1330       if (xtty != NULL) {
  1331         xtty->stamp();
  1332         xtty->end_head();
  1334       if (TraceDeoptimization) {  // make noise on the tty
  1335         tty->print("Uncommon trap occurred in");
  1336         nm->method()->print_short_name(tty);
  1337         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
  1338                    fr.pc(),
  1339                    os::current_thread_id(),
  1340                    trap_reason_name(reason),
  1341                    trap_action_name(action),
  1342                    unloaded_class_index);
  1343         if (class_name != NULL) {
  1344           tty->print(unresolved ? " unresolved class: " : " symbol: ");
  1345           class_name->print_symbol_on(tty);
  1347         tty->cr();
  1349       if (xtty != NULL) {
  1350         // Log the precise location of the trap.
  1351         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
  1352           xtty->begin_elem("jvms bci='%d'", sd->bci());
  1353           xtty->method(sd->method());
  1354           xtty->end_elem();
  1355           if (sd->is_top())  break;
  1357         xtty->tail("uncommon_trap");
  1360     // (End diagnostic printout.)
  1362     // Load class if necessary
  1363     if (unloaded_class_index >= 0) {
  1364       constantPoolHandle constants(THREAD, trap_method->constants());
  1365       load_class_by_index(constants, unloaded_class_index);
  1368     // Flush the nmethod if necessary and desirable.
  1369     //
  1370     // We need to avoid situations where we are re-flushing the nmethod
  1371     // because of a hot deoptimization site.  Repeated flushes at the same
  1372     // point need to be detected by the compiler and avoided.  If the compiler
  1373     // cannot avoid them (or has a bug and "refuses" to avoid them), this
  1374     // module must take measures to avoid an infinite cycle of recompilation
  1375     // and deoptimization.  There are several such measures:
  1376     //
  1377     //   1. If a recompilation is ordered a second time at some site X
  1378     //   and for the same reason R, the action is adjusted to 'reinterpret',
  1379     //   to give the interpreter time to exercise the method more thoroughly.
  1380     //   If this happens, the method's overflow_recompile_count is incremented.
  1381     //
  1382     //   2. If the compiler fails to reduce the deoptimization rate, then
  1383     //   the method's overflow_recompile_count will begin to exceed the set
  1384     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
  1385     //   is adjusted to 'make_not_compilable', and the method is abandoned
  1386     //   to the interpreter.  This is a performance hit for hot methods,
  1387     //   but is better than a disastrous infinite cycle of recompilations.
  1388     //   (Actually, only the method containing the site X is abandoned.)
  1389     //
  1390     //   3. In parallel with the previous measures, if the total number of
  1391     //   recompilations of a method exceeds the much larger set limit
  1392     //   PerMethodRecompilationCutoff, the method is abandoned.
  1393     //   This should only happen if the method is very large and has
  1394     //   many "lukewarm" deoptimizations.  The code which enforces this
  1395     //   limit is elsewhere (class nmethod, class Method).
  1396     //
  1397     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
  1398     // to recompile at each bytecode independently of the per-BCI cutoff.
  1399     //
  1400     // The decision to update code is up to the compiler, and is encoded
  1401     // in the Action_xxx code.  If the compiler requests Action_none
  1402     // no trap state is changed, no compiled code is changed, and the
  1403     // computation suffers along in the interpreter.
  1404     //
  1405     // The other action codes specify various tactics for decompilation
  1406     // and recompilation.  Action_maybe_recompile is the loosest, and
  1407     // allows the compiled code to stay around until enough traps are seen,
  1408     // and until the compiler gets around to recompiling the trapping method.
  1409     //
  1410     // The other actions cause immediate removal of the present code.
  1412     bool update_trap_state = true;
  1413     bool make_not_entrant = false;
  1414     bool make_not_compilable = false;
  1415     bool reprofile = false;
  1416     switch (action) {
  1417     case Action_none:
  1418       // Keep the old code.
  1419       update_trap_state = false;
  1420       break;
  1421     case Action_maybe_recompile:
  1422       // Do not need to invalidate the present code, but we can
  1423       // initiate another
  1424       // Start compiler without (necessarily) invalidating the nmethod.
  1425       // The system will tolerate the old code, but new code should be
  1426       // generated when possible.
  1427       break;
  1428     case Action_reinterpret:
  1429       // Go back into the interpreter for a while, and then consider
  1430       // recompiling form scratch.
  1431       make_not_entrant = true;
  1432       // Reset invocation counter for outer most method.
  1433       // This will allow the interpreter to exercise the bytecodes
  1434       // for a while before recompiling.
  1435       // By contrast, Action_make_not_entrant is immediate.
  1436       //
  1437       // Note that the compiler will track null_check, null_assert,
  1438       // range_check, and class_check events and log them as if they
  1439       // had been traps taken from compiled code.  This will update
  1440       // the MDO trap history so that the next compilation will
  1441       // properly detect hot trap sites.
  1442       reprofile = true;
  1443       break;
  1444     case Action_make_not_entrant:
  1445       // Request immediate recompilation, and get rid of the old code.
  1446       // Make them not entrant, so next time they are called they get
  1447       // recompiled.  Unloaded classes are loaded now so recompile before next
  1448       // time they are called.  Same for uninitialized.  The interpreter will
  1449       // link the missing class, if any.
  1450       make_not_entrant = true;
  1451       break;
  1452     case Action_make_not_compilable:
  1453       // Give up on compiling this method at all.
  1454       make_not_entrant = true;
  1455       make_not_compilable = true;
  1456       break;
  1457     default:
  1458       ShouldNotReachHere();
  1461     // Setting +ProfileTraps fixes the following, on all platforms:
  1462     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
  1463     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
  1464     // recompile relies on a MethodData* to record heroic opt failures.
  1466     // Whether the interpreter is producing MDO data or not, we also need
  1467     // to use the MDO to detect hot deoptimization points and control
  1468     // aggressive optimization.
  1469     bool inc_recompile_count = false;
  1470     ProfileData* pdata = NULL;
  1471     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
  1472       assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
  1473       uint this_trap_count = 0;
  1474       bool maybe_prior_trap = false;
  1475       bool maybe_prior_recompile = false;
  1476       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
  1477                                    //outputs:
  1478                                    this_trap_count,
  1479                                    maybe_prior_trap,
  1480                                    maybe_prior_recompile);
  1481       // Because the interpreter also counts null, div0, range, and class
  1482       // checks, these traps from compiled code are double-counted.
  1483       // This is harmless; it just means that the PerXTrapLimit values
  1484       // are in effect a little smaller than they look.
  1486       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1487       if (per_bc_reason != Reason_none) {
  1488         // Now take action based on the partially known per-BCI history.
  1489         if (maybe_prior_trap
  1490             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
  1491           // If there are too many traps at this BCI, force a recompile.
  1492           // This will allow the compiler to see the limit overflow, and
  1493           // take corrective action, if possible.  The compiler generally
  1494           // does not use the exact PerBytecodeTrapLimit value, but instead
  1495           // changes its tactics if it sees any traps at all.  This provides
  1496           // a little hysteresis, delaying a recompile until a trap happens
  1497           // several times.
  1498           //
  1499           // Actually, since there is only one bit of counter per BCI,
  1500           // the possible per-BCI counts are {0,1,(per-method count)}.
  1501           // This produces accurate results if in fact there is only
  1502           // one hot trap site, but begins to get fuzzy if there are
  1503           // many sites.  For example, if there are ten sites each
  1504           // trapping two or more times, they each get the blame for
  1505           // all of their traps.
  1506           make_not_entrant = true;
  1509         // Detect repeated recompilation at the same BCI, and enforce a limit.
  1510         if (make_not_entrant && maybe_prior_recompile) {
  1511           // More than one recompile at this point.
  1512           inc_recompile_count = maybe_prior_trap;
  1514       } else {
  1515         // For reasons which are not recorded per-bytecode, we simply
  1516         // force recompiles unconditionally.
  1517         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
  1518         make_not_entrant = true;
  1521       // Go back to the compiler if there are too many traps in this method.
  1522       if (this_trap_count >= (uint)PerMethodTrapLimit) {
  1523         // If there are too many traps in this method, force a recompile.
  1524         // This will allow the compiler to see the limit overflow, and
  1525         // take corrective action, if possible.
  1526         // (This condition is an unlikely backstop only, because the
  1527         // PerBytecodeTrapLimit is more likely to take effect first,
  1528         // if it is applicable.)
  1529         make_not_entrant = true;
  1532       // Here's more hysteresis:  If there has been a recompile at
  1533       // this trap point already, run the method in the interpreter
  1534       // for a while to exercise it more thoroughly.
  1535       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
  1536         reprofile = true;
  1541     // Take requested actions on the method:
  1543     // Recompile
  1544     if (make_not_entrant) {
  1545       if (!nm->make_not_entrant()) {
  1546         return; // the call did not change nmethod's state
  1549       if (pdata != NULL) {
  1550         // Record the recompilation event, if any.
  1551         int tstate0 = pdata->trap_state();
  1552         int tstate1 = trap_state_set_recompiled(tstate0, true);
  1553         if (tstate1 != tstate0)
  1554           pdata->set_trap_state(tstate1);
  1558     if (inc_recompile_count) {
  1559       trap_mdo->inc_overflow_recompile_count();
  1560       if ((uint)trap_mdo->overflow_recompile_count() >
  1561           (uint)PerBytecodeRecompilationCutoff) {
  1562         // Give up on the method containing the bad BCI.
  1563         if (trap_method() == nm->method()) {
  1564           make_not_compilable = true;
  1565         } else {
  1566           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
  1567           // But give grace to the enclosing nm->method().
  1572     // Reprofile
  1573     if (reprofile) {
  1574       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
  1577     // Give up compiling
  1578     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
  1579       assert(make_not_entrant, "consistent");
  1580       nm->method()->set_not_compilable(CompLevel_full_optimization);
  1583   } // Free marked resources
  1586 JRT_END
  1588 MethodData*
  1589 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
  1590                                 bool create_if_missing) {
  1591   Thread* THREAD = thread;
  1592   MethodData* mdo = m()->method_data();
  1593   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
  1594     // Build an MDO.  Ignore errors like OutOfMemory;
  1595     // that simply means we won't have an MDO to update.
  1596     Method::build_interpreter_method_data(m, THREAD);
  1597     if (HAS_PENDING_EXCEPTION) {
  1598       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
  1599       CLEAR_PENDING_EXCEPTION;
  1601     mdo = m()->method_data();
  1603   return mdo;
  1606 ProfileData*
  1607 Deoptimization::query_update_method_data(MethodData* trap_mdo,
  1608                                          int trap_bci,
  1609                                          Deoptimization::DeoptReason reason,
  1610                                          //outputs:
  1611                                          uint& ret_this_trap_count,
  1612                                          bool& ret_maybe_prior_trap,
  1613                                          bool& ret_maybe_prior_recompile) {
  1614   uint prior_trap_count = trap_mdo->trap_count(reason);
  1615   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
  1617   // If the runtime cannot find a place to store trap history,
  1618   // it is estimated based on the general condition of the method.
  1619   // If the method has ever been recompiled, or has ever incurred
  1620   // a trap with the present reason , then this BCI is assumed
  1621   // (pessimistically) to be the culprit.
  1622   bool maybe_prior_trap      = (prior_trap_count != 0);
  1623   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
  1624   ProfileData* pdata = NULL;
  1627   // For reasons which are recorded per bytecode, we check per-BCI data.
  1628   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1629   if (per_bc_reason != Reason_none) {
  1630     // Find the profile data for this BCI.  If there isn't one,
  1631     // try to allocate one from the MDO's set of spares.
  1632     // This will let us detect a repeated trap at this point.
  1633     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
  1635     if (pdata != NULL) {
  1636       // Query the trap state of this profile datum.
  1637       int tstate0 = pdata->trap_state();
  1638       if (!trap_state_has_reason(tstate0, per_bc_reason))
  1639         maybe_prior_trap = false;
  1640       if (!trap_state_is_recompiled(tstate0))
  1641         maybe_prior_recompile = false;
  1643       // Update the trap state of this profile datum.
  1644       int tstate1 = tstate0;
  1645       // Record the reason.
  1646       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
  1647       // Store the updated state on the MDO, for next time.
  1648       if (tstate1 != tstate0)
  1649         pdata->set_trap_state(tstate1);
  1650     } else {
  1651       if (LogCompilation && xtty != NULL) {
  1652         ttyLocker ttyl;
  1653         // Missing MDP?  Leave a small complaint in the log.
  1654         xtty->elem("missing_mdp bci='%d'", trap_bci);
  1659   // Return results:
  1660   ret_this_trap_count = this_trap_count;
  1661   ret_maybe_prior_trap = maybe_prior_trap;
  1662   ret_maybe_prior_recompile = maybe_prior_recompile;
  1663   return pdata;
  1666 void
  1667 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
  1668   ResourceMark rm;
  1669   // Ignored outputs:
  1670   uint ignore_this_trap_count;
  1671   bool ignore_maybe_prior_trap;
  1672   bool ignore_maybe_prior_recompile;
  1673   query_update_method_data(trap_mdo, trap_bci,
  1674                            (DeoptReason)reason,
  1675                            ignore_this_trap_count,
  1676                            ignore_maybe_prior_trap,
  1677                            ignore_maybe_prior_recompile);
  1680 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
  1682   // Still in Java no safepoints
  1684     // This enters VM and may safepoint
  1685     uncommon_trap_inner(thread, trap_request);
  1687   return fetch_unroll_info_helper(thread);
  1690 // Local derived constants.
  1691 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
  1692 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
  1693 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
  1695 //---------------------------trap_state_reason---------------------------------
  1696 Deoptimization::DeoptReason
  1697 Deoptimization::trap_state_reason(int trap_state) {
  1698   // This assert provides the link between the width of DataLayout::trap_bits
  1699   // and the encoding of "recorded" reasons.  It ensures there are enough
  1700   // bits to store all needed reasons in the per-BCI MDO profile.
  1701   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1702   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1703   trap_state -= recompile_bit;
  1704   if (trap_state == DS_REASON_MASK) {
  1705     return Reason_many;
  1706   } else {
  1707     assert((int)Reason_none == 0, "state=0 => Reason_none");
  1708     return (DeoptReason)trap_state;
  1711 //-------------------------trap_state_has_reason-------------------------------
  1712 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1713   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
  1714   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1715   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1716   trap_state -= recompile_bit;
  1717   if (trap_state == DS_REASON_MASK) {
  1718     return -1;  // true, unspecifically (bottom of state lattice)
  1719   } else if (trap_state == reason) {
  1720     return 1;   // true, definitely
  1721   } else if (trap_state == 0) {
  1722     return 0;   // false, definitely (top of state lattice)
  1723   } else {
  1724     return 0;   // false, definitely
  1727 //-------------------------trap_state_add_reason-------------------------------
  1728 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
  1729   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
  1730   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1731   trap_state -= recompile_bit;
  1732   if (trap_state == DS_REASON_MASK) {
  1733     return trap_state + recompile_bit;     // already at state lattice bottom
  1734   } else if (trap_state == reason) {
  1735     return trap_state + recompile_bit;     // the condition is already true
  1736   } else if (trap_state == 0) {
  1737     return reason + recompile_bit;          // no condition has yet been true
  1738   } else {
  1739     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
  1742 //-----------------------trap_state_is_recompiled------------------------------
  1743 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1744   return (trap_state & DS_RECOMPILE_BIT) != 0;
  1746 //-----------------------trap_state_set_recompiled-----------------------------
  1747 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
  1748   if (z)  return trap_state |  DS_RECOMPILE_BIT;
  1749   else    return trap_state & ~DS_RECOMPILE_BIT;
  1751 //---------------------------format_trap_state---------------------------------
  1752 // This is used for debugging and diagnostics, including hotspot.log output.
  1753 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1754                                               int trap_state) {
  1755   DeoptReason reason      = trap_state_reason(trap_state);
  1756   bool        recomp_flag = trap_state_is_recompiled(trap_state);
  1757   // Re-encode the state from its decoded components.
  1758   int decoded_state = 0;
  1759   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
  1760     decoded_state = trap_state_add_reason(decoded_state, reason);
  1761   if (recomp_flag)
  1762     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
  1763   // If the state re-encodes properly, format it symbolically.
  1764   // Because this routine is used for debugging and diagnostics,
  1765   // be robust even if the state is a strange value.
  1766   size_t len;
  1767   if (decoded_state != trap_state) {
  1768     // Random buggy state that doesn't decode??
  1769     len = jio_snprintf(buf, buflen, "#%d", trap_state);
  1770   } else {
  1771     len = jio_snprintf(buf, buflen, "%s%s",
  1772                        trap_reason_name(reason),
  1773                        recomp_flag ? " recompiled" : "");
  1775   if (len >= buflen)
  1776     buf[buflen-1] = '\0';
  1777   return buf;
  1781 //--------------------------------statics--------------------------------------
  1782 Deoptimization::DeoptAction Deoptimization::_unloaded_action
  1783   = Deoptimization::Action_reinterpret;
  1784 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
  1785   // Note:  Keep this in sync. with enum DeoptReason.
  1786   "none",
  1787   "null_check",
  1788   "null_assert",
  1789   "range_check",
  1790   "class_check",
  1791   "array_check",
  1792   "intrinsic",
  1793   "bimorphic",
  1794   "unloaded",
  1795   "uninitialized",
  1796   "unreached",
  1797   "unhandled",
  1798   "constraint",
  1799   "div0_check",
  1800   "age",
  1801   "predicate",
  1802   "loop_limit_check"
  1803 };
  1804 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
  1805   // Note:  Keep this in sync. with enum DeoptAction.
  1806   "none",
  1807   "maybe_recompile",
  1808   "reinterpret",
  1809   "make_not_entrant",
  1810   "make_not_compilable"
  1811 };
  1813 const char* Deoptimization::trap_reason_name(int reason) {
  1814   if (reason == Reason_many)  return "many";
  1815   if ((uint)reason < Reason_LIMIT)
  1816     return _trap_reason_name[reason];
  1817   static char buf[20];
  1818   sprintf(buf, "reason%d", reason);
  1819   return buf;
  1821 const char* Deoptimization::trap_action_name(int action) {
  1822   if ((uint)action < Action_LIMIT)
  1823     return _trap_action_name[action];
  1824   static char buf[20];
  1825   sprintf(buf, "action%d", action);
  1826   return buf;
  1829 // This is used for debugging and diagnostics, including hotspot.log output.
  1830 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
  1831                                                 int trap_request) {
  1832   jint unloaded_class_index = trap_request_index(trap_request);
  1833   const char* reason = trap_reason_name(trap_request_reason(trap_request));
  1834   const char* action = trap_action_name(trap_request_action(trap_request));
  1835   size_t len;
  1836   if (unloaded_class_index < 0) {
  1837     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
  1838                        reason, action);
  1839   } else {
  1840     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
  1841                        reason, action, unloaded_class_index);
  1843   if (len >= buflen)
  1844     buf[buflen-1] = '\0';
  1845   return buf;
  1848 juint Deoptimization::_deoptimization_hist
  1849         [Deoptimization::Reason_LIMIT]
  1850     [1 + Deoptimization::Action_LIMIT]
  1851         [Deoptimization::BC_CASE_LIMIT]
  1852   = {0};
  1854 enum {
  1855   LSB_BITS = 8,
  1856   LSB_MASK = right_n_bits(LSB_BITS)
  1857 };
  1859 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1860                                        Bytecodes::Code bc) {
  1861   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1862   assert(action >= 0 && action < Action_LIMIT, "oob");
  1863   _deoptimization_hist[Reason_none][0][0] += 1;  // total
  1864   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
  1865   juint* cases = _deoptimization_hist[reason][1+action];
  1866   juint* bc_counter_addr = NULL;
  1867   juint  bc_counter      = 0;
  1868   // Look for an unused counter, or an exact match to this BC.
  1869   if (bc != Bytecodes::_illegal) {
  1870     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1871       juint* counter_addr = &cases[bc_case];
  1872       juint  counter = *counter_addr;
  1873       if ((counter == 0 && bc_counter_addr == NULL)
  1874           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
  1875         // this counter is either free or is already devoted to this BC
  1876         bc_counter_addr = counter_addr;
  1877         bc_counter = counter | bc;
  1881   if (bc_counter_addr == NULL) {
  1882     // Overflow, or no given bytecode.
  1883     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
  1884     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
  1886   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
  1889 jint Deoptimization::total_deoptimization_count() {
  1890   return _deoptimization_hist[Reason_none][0][0];
  1893 jint Deoptimization::deoptimization_count(DeoptReason reason) {
  1894   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1895   return _deoptimization_hist[reason][0][0];
  1898 void Deoptimization::print_statistics() {
  1899   juint total = total_deoptimization_count();
  1900   juint account = total;
  1901   if (total != 0) {
  1902     ttyLocker ttyl;
  1903     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
  1904     tty->print_cr("Deoptimization traps recorded:");
  1905     #define PRINT_STAT_LINE(name, r) \
  1906       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
  1907     PRINT_STAT_LINE("total", total);
  1908     // For each non-zero entry in the histogram, print the reason,
  1909     // the action, and (if specifically known) the type of bytecode.
  1910     for (int reason = 0; reason < Reason_LIMIT; reason++) {
  1911       for (int action = 0; action < Action_LIMIT; action++) {
  1912         juint* cases = _deoptimization_hist[reason][1+action];
  1913         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1914           juint counter = cases[bc_case];
  1915           if (counter != 0) {
  1916             char name[1*K];
  1917             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
  1918             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
  1919               bc = Bytecodes::_illegal;
  1920             sprintf(name, "%s/%s/%s",
  1921                     trap_reason_name(reason),
  1922                     trap_action_name(action),
  1923                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
  1924             juint r = counter >> LSB_BITS;
  1925             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
  1926             account -= r;
  1931     if (account != 0) {
  1932       PRINT_STAT_LINE("unaccounted", account);
  1934     #undef PRINT_STAT_LINE
  1935     if (xtty != NULL)  xtty->tail("statistics");
  1938 #else // COMPILER2 || SHARK
  1941 // Stubs for C1 only system.
  1942 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1943   return false;
  1946 const char* Deoptimization::trap_reason_name(int reason) {
  1947   return "unknown";
  1950 void Deoptimization::print_statistics() {
  1951   // no output
  1954 void
  1955 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
  1956   // no udpate
  1959 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1960   return 0;
  1963 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1964                                        Bytecodes::Code bc) {
  1965   // no update
  1968 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1969                                               int trap_state) {
  1970   jio_snprintf(buf, buflen, "#%d", trap_state);
  1971   return buf;
  1974 #endif // COMPILER2 || SHARK

mercurial