src/share/vm/runtime/os.cpp

Wed, 02 Jul 2008 12:55:16 -0700

author
xdono
date
Wed, 02 Jul 2008 12:55:16 -0700
changeset 631
d1605aabd0a1
parent 496
5a76ab815e34
child 672
1fdb98a17101
permissions
-rw-r--r--

6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_os.cpp.incl"
    28 # include <signal.h>
    30 OSThread*         os::_starting_thread    = NULL;
    31 address           os::_polling_page       = NULL;
    32 volatile int32_t* os::_mem_serialize_page = NULL;
    33 uintptr_t         os::_serialize_page_mask = 0;
    34 long              os::_rand_seed          = 1;
    35 int               os::_processor_count    = 0;
    36 size_t            os::_page_sizes[os::page_sizes_max];
    38 #ifndef PRODUCT
    39 int os::num_mallocs = 0;            // # of calls to malloc/realloc
    40 size_t os::alloc_bytes = 0;         // # of bytes allocated
    41 int os::num_frees = 0;              // # of calls to free
    42 #endif
    44 // Fill in buffer with current local time as an ISO-8601 string.
    45 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
    46 // Returns buffer, or NULL if it failed.
    47 // This would mostly be a call to
    48 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
    49 // except that on Windows the %z behaves badly, so we do it ourselves.
    50 // Also, people wanted milliseconds on there,
    51 // and strftime doesn't do milliseconds.
    52 char* os::iso8601_time(char* buffer, size_t buffer_length) {
    53   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
    54   //                                      1         2
    55   //                             12345678901234567890123456789
    56   static const char* iso8601_format =
    57     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
    58   static const size_t needed_buffer = 29;
    60   // Sanity check the arguments
    61   if (buffer == NULL) {
    62     assert(false, "NULL buffer");
    63     return NULL;
    64   }
    65   if (buffer_length < needed_buffer) {
    66     assert(false, "buffer_length too small");
    67     return NULL;
    68   }
    69   // Get the current time
    70   jlong milliseconds_since_19700101 = javaTimeMillis();
    71   const int milliseconds_per_microsecond = 1000;
    72   const time_t seconds_since_19700101 =
    73     milliseconds_since_19700101 / milliseconds_per_microsecond;
    74   const int milliseconds_after_second =
    75     milliseconds_since_19700101 % milliseconds_per_microsecond;
    76   // Convert the time value to a tm and timezone variable
    77   const struct tm *time_struct_temp = localtime(&seconds_since_19700101);
    78   if (time_struct_temp == NULL) {
    79     assert(false, "Failed localtime");
    80     return NULL;
    81   }
    82   // Save the results of localtime
    83   const struct tm time_struct = *time_struct_temp;
    84   const time_t zone = timezone;
    86   // If daylight savings time is in effect,
    87   // we are 1 hour East of our time zone
    88   const time_t seconds_per_minute = 60;
    89   const time_t minutes_per_hour = 60;
    90   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
    91   time_t UTC_to_local = zone;
    92   if (time_struct.tm_isdst > 0) {
    93     UTC_to_local = UTC_to_local - seconds_per_hour;
    94   }
    95   // Compute the time zone offset.
    96   //    localtime(3C) sets timezone to the difference (in seconds)
    97   //    between UTC and and local time.
    98   //    ISO 8601 says we need the difference between local time and UTC,
    99   //    we change the sign of the localtime(3C) result.
   100   const time_t local_to_UTC = -(UTC_to_local);
   101   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
   102   char sign_local_to_UTC = '+';
   103   time_t abs_local_to_UTC = local_to_UTC;
   104   if (local_to_UTC < 0) {
   105     sign_local_to_UTC = '-';
   106     abs_local_to_UTC = -(abs_local_to_UTC);
   107   }
   108   // Convert time zone offset seconds to hours and minutes.
   109   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
   110   const time_t zone_min =
   111     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
   113   // Print an ISO 8601 date and time stamp into the buffer
   114   const int year = 1900 + time_struct.tm_year;
   115   const int month = 1 + time_struct.tm_mon;
   116   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
   117                                    year,
   118                                    month,
   119                                    time_struct.tm_mday,
   120                                    time_struct.tm_hour,
   121                                    time_struct.tm_min,
   122                                    time_struct.tm_sec,
   123                                    milliseconds_after_second,
   124                                    sign_local_to_UTC,
   125                                    zone_hours,
   126                                    zone_min);
   127   if (printed == 0) {
   128     assert(false, "Failed jio_printf");
   129     return NULL;
   130   }
   131   return buffer;
   132 }
   134 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
   135 #ifdef ASSERT
   136   if (!(!thread->is_Java_thread() ||
   137          Thread::current() == thread  ||
   138          Threads_lock->owned_by_self()
   139          || thread->is_Compiler_thread()
   140         )) {
   141     assert(false, "possibility of dangling Thread pointer");
   142   }
   143 #endif
   145   if (p >= MinPriority && p <= MaxPriority) {
   146     int priority = java_to_os_priority[p];
   147     return set_native_priority(thread, priority);
   148   } else {
   149     assert(false, "Should not happen");
   150     return OS_ERR;
   151   }
   152 }
   155 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
   156   int p;
   157   int os_prio;
   158   OSReturn ret = get_native_priority(thread, &os_prio);
   159   if (ret != OS_OK) return ret;
   161   for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
   162   priority = (ThreadPriority)p;
   163   return OS_OK;
   164 }
   167 // --------------------- sun.misc.Signal (optional) ---------------------
   170 // SIGBREAK is sent by the keyboard to query the VM state
   171 #ifndef SIGBREAK
   172 #define SIGBREAK SIGQUIT
   173 #endif
   175 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
   178 static void signal_thread_entry(JavaThread* thread, TRAPS) {
   179   os::set_priority(thread, NearMaxPriority);
   180   while (true) {
   181     int sig;
   182     {
   183       // FIXME : Currently we have not decieded what should be the status
   184       //         for this java thread blocked here. Once we decide about
   185       //         that we should fix this.
   186       sig = os::signal_wait();
   187     }
   188     if (sig == os::sigexitnum_pd()) {
   189        // Terminate the signal thread
   190        return;
   191     }
   193     switch (sig) {
   194       case SIGBREAK: {
   195         // Check if the signal is a trigger to start the Attach Listener - in that
   196         // case don't print stack traces.
   197         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
   198           continue;
   199         }
   200         // Print stack traces
   201         // Any SIGBREAK operations added here should make sure to flush
   202         // the output stream (e.g. tty->flush()) after output.  See 4803766.
   203         // Each module also prints an extra carriage return after its output.
   204         VM_PrintThreads op;
   205         VMThread::execute(&op);
   206         VM_PrintJNI jni_op;
   207         VMThread::execute(&jni_op);
   208         VM_FindDeadlocks op1(tty);
   209         VMThread::execute(&op1);
   210         Universe::print_heap_at_SIGBREAK();
   211         if (PrintClassHistogram) {
   212           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
   213           VMThread::execute(&op1);
   214         }
   215         if (JvmtiExport::should_post_data_dump()) {
   216           JvmtiExport::post_data_dump();
   217         }
   218         break;
   219       }
   220       default: {
   221         // Dispatch the signal to java
   222         HandleMark hm(THREAD);
   223         klassOop k = SystemDictionary::resolve_or_null(vmSymbolHandles::sun_misc_Signal(), THREAD);
   224         KlassHandle klass (THREAD, k);
   225         if (klass.not_null()) {
   226           JavaValue result(T_VOID);
   227           JavaCallArguments args;
   228           args.push_int(sig);
   229           JavaCalls::call_static(
   230             &result,
   231             klass,
   232             vmSymbolHandles::dispatch_name(),
   233             vmSymbolHandles::int_void_signature(),
   234             &args,
   235             THREAD
   236           );
   237         }
   238         if (HAS_PENDING_EXCEPTION) {
   239           // tty is initialized early so we don't expect it to be null, but
   240           // if it is we can't risk doing an initialization that might
   241           // trigger additional out-of-memory conditions
   242           if (tty != NULL) {
   243             char klass_name[256];
   244             char tmp_sig_name[16];
   245             const char* sig_name = "UNKNOWN";
   246             instanceKlass::cast(PENDING_EXCEPTION->klass())->
   247               name()->as_klass_external_name(klass_name, 256);
   248             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
   249               sig_name = tmp_sig_name;
   250             warning("Exception %s occurred dispatching signal %s to handler"
   251                     "- the VM may need to be forcibly terminated",
   252                     klass_name, sig_name );
   253           }
   254           CLEAR_PENDING_EXCEPTION;
   255         }
   256       }
   257     }
   258   }
   259 }
   262 void os::signal_init() {
   263   if (!ReduceSignalUsage) {
   264     // Setup JavaThread for processing signals
   265     EXCEPTION_MARK;
   266     klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
   267     instanceKlassHandle klass (THREAD, k);
   268     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
   270     const char thread_name[] = "Signal Dispatcher";
   271     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
   273     // Initialize thread_oop to put it into the system threadGroup
   274     Handle thread_group (THREAD, Universe::system_thread_group());
   275     JavaValue result(T_VOID);
   276     JavaCalls::call_special(&result, thread_oop,
   277                            klass,
   278                            vmSymbolHandles::object_initializer_name(),
   279                            vmSymbolHandles::threadgroup_string_void_signature(),
   280                            thread_group,
   281                            string,
   282                            CHECK);
   284     KlassHandle group(THREAD, SystemDictionary::threadGroup_klass());
   285     JavaCalls::call_special(&result,
   286                             thread_group,
   287                             group,
   288                             vmSymbolHandles::add_method_name(),
   289                             vmSymbolHandles::thread_void_signature(),
   290                             thread_oop,         // ARG 1
   291                             CHECK);
   293     os::signal_init_pd();
   295     { MutexLocker mu(Threads_lock);
   296       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
   298       // At this point it may be possible that no osthread was created for the
   299       // JavaThread due to lack of memory. We would have to throw an exception
   300       // in that case. However, since this must work and we do not allow
   301       // exceptions anyway, check and abort if this fails.
   302       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
   303         vm_exit_during_initialization("java.lang.OutOfMemoryError",
   304                                       "unable to create new native thread");
   305       }
   307       java_lang_Thread::set_thread(thread_oop(), signal_thread);
   308       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
   309       java_lang_Thread::set_daemon(thread_oop());
   311       signal_thread->set_threadObj(thread_oop());
   312       Threads::add(signal_thread);
   313       Thread::start(signal_thread);
   314     }
   315     // Handle ^BREAK
   316     os::signal(SIGBREAK, os::user_handler());
   317   }
   318 }
   321 void os::terminate_signal_thread() {
   322   if (!ReduceSignalUsage)
   323     signal_notify(sigexitnum_pd());
   324 }
   327 // --------------------- loading libraries ---------------------
   329 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
   330 extern struct JavaVM_ main_vm;
   332 static void* _native_java_library = NULL;
   334 void* os::native_java_library() {
   335   if (_native_java_library == NULL) {
   336     char buffer[JVM_MAXPATHLEN];
   337     char ebuf[1024];
   339     // Try to load verify dll first. In 1.3 java dll depends on it and is not always
   340     // able to find it when the loading executable is outside the JDK.
   341     // In order to keep working with 1.2 we ignore any loading errors.
   342     hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "verify");
   343     hpi::dll_load(buffer, ebuf, sizeof(ebuf));
   345     // Load java dll
   346     hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "java");
   347     _native_java_library = hpi::dll_load(buffer, ebuf, sizeof(ebuf));
   348     if (_native_java_library == NULL) {
   349       vm_exit_during_initialization("Unable to load native library", ebuf);
   350     }
   351     // The JNI_OnLoad handling is normally done by method load in java.lang.ClassLoader$NativeLibrary,
   352     // but the VM loads the base library explicitly so we have to check for JNI_OnLoad as well
   353     const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
   354     JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(JNI_OnLoad_t, hpi::dll_lookup(_native_java_library, onLoadSymbols[0]));
   355     if (JNI_OnLoad != NULL) {
   356       JavaThread* thread = JavaThread::current();
   357       ThreadToNativeFromVM ttn(thread);
   358       HandleMark hm(thread);
   359       jint ver = (*JNI_OnLoad)(&main_vm, NULL);
   360       if (!Threads::is_supported_jni_version_including_1_1(ver)) {
   361         vm_exit_during_initialization("Unsupported JNI version");
   362       }
   363     }
   364   }
   365   return _native_java_library;
   366 }
   368 // --------------------- heap allocation utilities ---------------------
   370 char *os::strdup(const char *str) {
   371   size_t size = strlen(str);
   372   char *dup_str = (char *)malloc(size + 1);
   373   if (dup_str == NULL) return NULL;
   374   strcpy(dup_str, str);
   375   return dup_str;
   376 }
   380 #ifdef ASSERT
   381 #define space_before             (MallocCushion + sizeof(double))
   382 #define space_after              MallocCushion
   383 #define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
   384 #define size_addr_from_obj(p)    ((size_t*)p - 1)
   385 // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
   386 // NB: cannot be debug variable, because these aren't set from the command line until
   387 // *after* the first few allocs already happened
   388 #define MallocCushion            16
   389 #else
   390 #define space_before             0
   391 #define space_after              0
   392 #define size_addr_from_base(p)   should not use w/o ASSERT
   393 #define size_addr_from_obj(p)    should not use w/o ASSERT
   394 #define MallocCushion            0
   395 #endif
   396 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
   398 #ifdef ASSERT
   399 inline size_t get_size(void* obj) {
   400   size_t size = *size_addr_from_obj(obj);
   401   if (size < 0 )
   402     fatal2("free: size field of object #%p was overwritten (%lu)", obj, size);
   403   return size;
   404 }
   406 u_char* find_cushion_backwards(u_char* start) {
   407   u_char* p = start;
   408   while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
   409          p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
   410   // ok, we have four consecutive marker bytes; find start
   411   u_char* q = p - 4;
   412   while (*q == badResourceValue) q--;
   413   return q + 1;
   414 }
   416 u_char* find_cushion_forwards(u_char* start) {
   417   u_char* p = start;
   418   while (p[0] != badResourceValue || p[1] != badResourceValue ||
   419          p[2] != badResourceValue || p[3] != badResourceValue) p++;
   420   // ok, we have four consecutive marker bytes; find end of cushion
   421   u_char* q = p + 4;
   422   while (*q == badResourceValue) q++;
   423   return q - MallocCushion;
   424 }
   426 void print_neighbor_blocks(void* ptr) {
   427   // find block allocated before ptr (not entirely crash-proof)
   428   if (MallocCushion < 4) {
   429     tty->print_cr("### cannot find previous block (MallocCushion < 4)");
   430     return;
   431   }
   432   u_char* start_of_this_block = (u_char*)ptr - space_before;
   433   u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
   434   // look for cushion in front of prev. block
   435   u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
   436   ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
   437   u_char* obj = start_of_prev_block + space_before;
   438   if (size <= 0 ) {
   439     // start is bad; mayhave been confused by OS data inbetween objects
   440     // search one more backwards
   441     start_of_prev_block = find_cushion_backwards(start_of_prev_block);
   442     size = *size_addr_from_base(start_of_prev_block);
   443     obj = start_of_prev_block + space_before;
   444   }
   446   if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
   447     tty->print_cr("### previous object: %p (%ld bytes)", obj, size);
   448   } else {
   449     tty->print_cr("### previous object (not sure if correct): %p (%ld bytes)", obj, size);
   450   }
   452   // now find successor block
   453   u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
   454   start_of_next_block = find_cushion_forwards(start_of_next_block);
   455   u_char* next_obj = start_of_next_block + space_before;
   456   ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
   457   if (start_of_next_block[0] == badResourceValue &&
   458       start_of_next_block[1] == badResourceValue &&
   459       start_of_next_block[2] == badResourceValue &&
   460       start_of_next_block[3] == badResourceValue) {
   461     tty->print_cr("### next object: %p (%ld bytes)", next_obj, next_size);
   462   } else {
   463     tty->print_cr("### next object (not sure if correct): %p (%ld bytes)", next_obj, next_size);
   464   }
   465 }
   468 void report_heap_error(void* memblock, void* bad, const char* where) {
   469   tty->print_cr("## nof_mallocs = %d, nof_frees = %d", os::num_mallocs, os::num_frees);
   470   tty->print_cr("## memory stomp: byte at %p %s object %p", bad, where, memblock);
   471   print_neighbor_blocks(memblock);
   472   fatal("memory stomping error");
   473 }
   475 void verify_block(void* memblock) {
   476   size_t size = get_size(memblock);
   477   if (MallocCushion) {
   478     u_char* ptr = (u_char*)memblock - space_before;
   479     for (int i = 0; i < MallocCushion; i++) {
   480       if (ptr[i] != badResourceValue) {
   481         report_heap_error(memblock, ptr+i, "in front of");
   482       }
   483     }
   484     u_char* end = (u_char*)memblock + size + space_after;
   485     for (int j = -MallocCushion; j < 0; j++) {
   486       if (end[j] != badResourceValue) {
   487         report_heap_error(memblock, end+j, "after");
   488       }
   489     }
   490   }
   491 }
   492 #endif
   494 void* os::malloc(size_t size) {
   495   NOT_PRODUCT(num_mallocs++);
   496   NOT_PRODUCT(alloc_bytes += size);
   498   if (size == 0) {
   499     // return a valid pointer if size is zero
   500     // if NULL is returned the calling functions assume out of memory.
   501     size = 1;
   502   }
   504   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   505   u_char* ptr = (u_char*)::malloc(size + space_before + space_after);
   506 #ifdef ASSERT
   507   if (ptr == NULL) return NULL;
   508   if (MallocCushion) {
   509     for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
   510     u_char* end = ptr + space_before + size;
   511     for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
   512     for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
   513   }
   514   // put size just before data
   515   *size_addr_from_base(ptr) = size;
   516 #endif
   517   u_char* memblock = ptr + space_before;
   518   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   519     tty->print_cr("os::malloc caught, %lu bytes --> %p", size, memblock);
   520     breakpoint();
   521   }
   522   debug_only(if (paranoid) verify_block(memblock));
   523   if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc %lu bytes --> %p", size, memblock);
   524   return memblock;
   525 }
   528 void* os::realloc(void *memblock, size_t size) {
   529   NOT_PRODUCT(num_mallocs++);
   530   NOT_PRODUCT(alloc_bytes += size);
   531 #ifndef ASSERT
   532   return ::realloc(memblock, size);
   533 #else
   534   if (memblock == NULL) {
   535     return os::malloc(size);
   536   }
   537   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   538     tty->print_cr("os::realloc caught %p", memblock);
   539     breakpoint();
   540   }
   541   verify_block(memblock);
   542   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   543   if (size == 0) return NULL;
   544   // always move the block
   545   void* ptr = malloc(size);
   546   if (PrintMalloc) tty->print_cr("os::remalloc %lu bytes, %p --> %p", size, memblock, ptr);
   547   // Copy to new memory if malloc didn't fail
   548   if ( ptr != NULL ) {
   549     memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
   550     if (paranoid) verify_block(ptr);
   551     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
   552       tty->print_cr("os::realloc caught, %lu bytes --> %p", size, ptr);
   553       breakpoint();
   554     }
   555     free(memblock);
   556   }
   557   return ptr;
   558 #endif
   559 }
   562 void  os::free(void *memblock) {
   563   NOT_PRODUCT(num_frees++);
   564 #ifdef ASSERT
   565   if (memblock == NULL) return;
   566   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   567     if (tty != NULL) tty->print_cr("os::free caught %p", memblock);
   568     breakpoint();
   569   }
   570   verify_block(memblock);
   571   if (PrintMalloc && tty != NULL)
   572     // tty->print_cr("os::free %p", memblock);
   573     fprintf(stderr, "os::free %p\n", memblock);
   574   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   575   // Added by detlefs.
   576   if (MallocCushion) {
   577     u_char* ptr = (u_char*)memblock - space_before;
   578     for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
   579       guarantee(*p == badResourceValue,
   580                 "Thing freed should be malloc result.");
   581       *p = (u_char)freeBlockPad;
   582     }
   583     size_t size = get_size(memblock);
   584     u_char* end = ptr + space_before + size;
   585     for (u_char* q = end; q < end + MallocCushion; q++) {
   586       guarantee(*q == badResourceValue,
   587                 "Thing freed should be malloc result.");
   588       *q = (u_char)freeBlockPad;
   589     }
   590   }
   591 #endif
   592   ::free((char*)memblock - space_before);
   593 }
   595 void os::init_random(long initval) {
   596   _rand_seed = initval;
   597 }
   600 long os::random() {
   601   /* standard, well-known linear congruential random generator with
   602    * next_rand = (16807*seed) mod (2**31-1)
   603    * see
   604    * (1) "Random Number Generators: Good Ones Are Hard to Find",
   605    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
   606    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
   607    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
   608   */
   609   const long a = 16807;
   610   const unsigned long m = 2147483647;
   611   const long q = m / a;        assert(q == 127773, "weird math");
   612   const long r = m % a;        assert(r == 2836, "weird math");
   614   // compute az=2^31p+q
   615   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
   616   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
   617   lo += (hi & 0x7FFF) << 16;
   619   // if q overflowed, ignore the overflow and increment q
   620   if (lo > m) {
   621     lo &= m;
   622     ++lo;
   623   }
   624   lo += hi >> 15;
   626   // if (p+q) overflowed, ignore the overflow and increment (p+q)
   627   if (lo > m) {
   628     lo &= m;
   629     ++lo;
   630   }
   631   return (_rand_seed = lo);
   632 }
   634 // The INITIALIZED state is distinguished from the SUSPENDED state because the
   635 // conditions in which a thread is first started are different from those in which
   636 // a suspension is resumed.  These differences make it hard for us to apply the
   637 // tougher checks when starting threads that we want to do when resuming them.
   638 // However, when start_thread is called as a result of Thread.start, on a Java
   639 // thread, the operation is synchronized on the Java Thread object.  So there
   640 // cannot be a race to start the thread and hence for the thread to exit while
   641 // we are working on it.  Non-Java threads that start Java threads either have
   642 // to do so in a context in which races are impossible, or should do appropriate
   643 // locking.
   645 void os::start_thread(Thread* thread) {
   646   // guard suspend/resume
   647   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
   648   OSThread* osthread = thread->osthread();
   649   osthread->set_state(RUNNABLE);
   650   pd_start_thread(thread);
   651 }
   653 //---------------------------------------------------------------------------
   654 // Helper functions for fatal error handler
   656 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
   657   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
   659   int cols = 0;
   660   int cols_per_line = 0;
   661   switch (unitsize) {
   662     case 1: cols_per_line = 16; break;
   663     case 2: cols_per_line = 8;  break;
   664     case 4: cols_per_line = 4;  break;
   665     case 8: cols_per_line = 2;  break;
   666     default: return;
   667   }
   669   address p = start;
   670   st->print(PTR_FORMAT ":   ", start);
   671   while (p < end) {
   672     switch (unitsize) {
   673       case 1: st->print("%02x", *(u1*)p); break;
   674       case 2: st->print("%04x", *(u2*)p); break;
   675       case 4: st->print("%08x", *(u4*)p); break;
   676       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
   677     }
   678     p += unitsize;
   679     cols++;
   680     if (cols >= cols_per_line && p < end) {
   681        cols = 0;
   682        st->cr();
   683        st->print(PTR_FORMAT ":   ", p);
   684     } else {
   685        st->print(" ");
   686     }
   687   }
   688   st->cr();
   689 }
   691 void os::print_environment_variables(outputStream* st, const char** env_list,
   692                                      char* buffer, int len) {
   693   if (env_list) {
   694     st->print_cr("Environment Variables:");
   696     for (int i = 0; env_list[i] != NULL; i++) {
   697       if (getenv(env_list[i], buffer, len)) {
   698         st->print(env_list[i]);
   699         st->print("=");
   700         st->print_cr(buffer);
   701       }
   702     }
   703   }
   704 }
   706 void os::print_cpu_info(outputStream* st) {
   707   // cpu
   708   st->print("CPU:");
   709   st->print("total %d", os::processor_count());
   710   // It's not safe to query number of active processors after crash
   711   // st->print("(active %d)", os::active_processor_count());
   712   st->print(" %s", VM_Version::cpu_features());
   713   st->cr();
   714 }
   716 void os::print_date_and_time(outputStream *st) {
   717   time_t tloc;
   718   (void)time(&tloc);
   719   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
   721   double t = os::elapsedTime();
   722   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
   723   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
   724   //       before printf. We lost some precision, but who cares?
   725   st->print_cr("elapsed time: %d seconds", (int)t);
   726 }
   729 // Looks like all platforms except IA64 can use the same function to check
   730 // if C stack is walkable beyond current frame. The check for fp() is not
   731 // necessary on Sparc, but it's harmless.
   732 bool os::is_first_C_frame(frame* fr) {
   733 #ifdef IA64
   734   // In order to walk native frames on Itanium, we need to access the unwind
   735   // table, which is inside ELF. We don't want to parse ELF after fatal error,
   736   // so return true for IA64. If we need to support C stack walking on IA64,
   737   // this function needs to be moved to CPU specific files, as fp() on IA64
   738   // is register stack, which grows towards higher memory address.
   739   return true;
   740 #endif
   742   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
   743   // Check usp first, because if that's bad the other accessors may fault
   744   // on some architectures.  Ditto ufp second, etc.
   745   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
   746   // sp on amd can be 32 bit aligned.
   747   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
   749   uintptr_t usp    = (uintptr_t)fr->sp();
   750   if ((usp & sp_align_mask) != 0) return true;
   752   uintptr_t ufp    = (uintptr_t)fr->fp();
   753   if ((ufp & fp_align_mask) != 0) return true;
   755   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
   756   if ((old_sp & sp_align_mask) != 0) return true;
   757   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
   759   uintptr_t old_fp = (uintptr_t)fr->link();
   760   if ((old_fp & fp_align_mask) != 0) return true;
   761   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
   763   // stack grows downwards; if old_fp is below current fp or if the stack
   764   // frame is too large, either the stack is corrupted or fp is not saved
   765   // on stack (i.e. on x86, ebp may be used as general register). The stack
   766   // is not walkable beyond current frame.
   767   if (old_fp < ufp) return true;
   768   if (old_fp - ufp > 64 * K) return true;
   770   return false;
   771 }
   773 #ifdef ASSERT
   774 extern "C" void test_random() {
   775   const double m = 2147483647;
   776   double mean = 0.0, variance = 0.0, t;
   777   long reps = 10000;
   778   unsigned long seed = 1;
   780   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
   781   os::init_random(seed);
   782   long num;
   783   for (int k = 0; k < reps; k++) {
   784     num = os::random();
   785     double u = (double)num / m;
   786     assert(u >= 0.0 && u <= 1.0, "bad random number!");
   788     // calculate mean and variance of the random sequence
   789     mean += u;
   790     variance += (u*u);
   791   }
   792   mean /= reps;
   793   variance /= (reps - 1);
   795   assert(num == 1043618065, "bad seed");
   796   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
   797   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
   798   const double eps = 0.0001;
   799   t = fabsd(mean - 0.5018);
   800   assert(t < eps, "bad mean");
   801   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
   802   assert(t < eps, "bad variance");
   803 }
   804 #endif
   807 // Set up the boot classpath.
   809 char* os::format_boot_path(const char* format_string,
   810                            const char* home,
   811                            int home_len,
   812                            char fileSep,
   813                            char pathSep) {
   814     assert((fileSep == '/' && pathSep == ':') ||
   815            (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
   817     // Scan the format string to determine the length of the actual
   818     // boot classpath, and handle platform dependencies as well.
   819     int formatted_path_len = 0;
   820     const char* p;
   821     for (p = format_string; *p != 0; ++p) {
   822         if (*p == '%') formatted_path_len += home_len - 1;
   823         ++formatted_path_len;
   824     }
   826     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1);
   827     if (formatted_path == NULL) {
   828         return NULL;
   829     }
   831     // Create boot classpath from format, substituting separator chars and
   832     // java home directory.
   833     char* q = formatted_path;
   834     for (p = format_string; *p != 0; ++p) {
   835         switch (*p) {
   836         case '%':
   837             strcpy(q, home);
   838             q += home_len;
   839             break;
   840         case '/':
   841             *q++ = fileSep;
   842             break;
   843         case ':':
   844             *q++ = pathSep;
   845             break;
   846         default:
   847             *q++ = *p;
   848         }
   849     }
   850     *q = '\0';
   852     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
   853     return formatted_path;
   854 }
   857 bool os::set_boot_path(char fileSep, char pathSep) {
   859     const char* home = Arguments::get_java_home();
   860     int home_len = (int)strlen(home);
   862     static const char* meta_index_dir_format = "%/lib/";
   863     static const char* meta_index_format = "%/lib/meta-index";
   864     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
   865     if (meta_index == NULL) return false;
   866     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
   867     if (meta_index_dir == NULL) return false;
   868     Arguments::set_meta_index_path(meta_index, meta_index_dir);
   870     // Any modification to the JAR-file list, for the boot classpath must be
   871     // aligned with install/install/make/common/Pack.gmk. Note: boot class
   872     // path class JARs, are stripped for StackMapTable to reduce download size.
   873     static const char classpath_format[] =
   874         "%/lib/resources.jar:"
   875         "%/lib/rt.jar:"
   876         "%/lib/sunrsasign.jar:"
   877         "%/lib/jsse.jar:"
   878         "%/lib/jce.jar:"
   879         "%/lib/charsets.jar:"
   880         "%/classes";
   881     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
   882     if (sysclasspath == NULL) return false;
   883     Arguments::set_sysclasspath(sysclasspath);
   885     return true;
   886 }
   888 void os::set_memory_serialize_page(address page) {
   889   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
   890   _mem_serialize_page = (volatile int32_t *)page;
   891   // We initialize the serialization page shift count here
   892   // We assume a cache line size of 64 bytes
   893   assert(SerializePageShiftCount == count,
   894          "thread size changed, fix SerializePageShiftCount constant");
   895   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
   896 }
   898 static volatile intptr_t SerializePageLock = 0;
   900 // This method is called from signal handler when SIGSEGV occurs while the current
   901 // thread tries to store to the "read-only" memory serialize page during state
   902 // transition.
   903 void os::block_on_serialize_page_trap() {
   904   if (TraceSafepoint) {
   905     tty->print_cr("Block until the serialize page permission restored");
   906   }
   907   // When VMThread is holding the SerializePageLock during modifying the
   908   // access permission of the memory serialize page, the following call
   909   // will block until the permission of that page is restored to rw.
   910   // Generally, it is unsafe to manipulate locks in signal handlers, but in
   911   // this case, it's OK as the signal is synchronous and we know precisely when
   912   // it can occur.
   913   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
   914   Thread::muxRelease(&SerializePageLock);
   915 }
   917 // Serialize all thread state variables
   918 void os::serialize_thread_states() {
   919   // On some platforms such as Solaris & Linux, the time duration of the page
   920   // permission restoration is observed to be much longer than expected  due to
   921   // scheduler starvation problem etc. To avoid the long synchronization
   922   // time and expensive page trap spinning, 'SerializePageLock' is used to block
   923   // the mutator thread if such case is encountered. See bug 6546278 for details.
   924   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
   925   os::protect_memory( (char *)os::get_memory_serialize_page(), os::vm_page_size() );
   926   os::unguard_memory( (char *)os::get_memory_serialize_page(), os::vm_page_size() );
   927   Thread::muxRelease(&SerializePageLock);
   928 }
   930 // Returns true if the current stack pointer is above the stack shadow
   931 // pages, false otherwise.
   933 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
   934   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
   935   address sp = current_stack_pointer();
   936   // Check if we have StackShadowPages above the yellow zone.  This parameter
   937   // is dependant on the depth of the maximum VM call stack possible from
   938   // the handler for stack overflow.  'instanceof' in the stack overflow
   939   // handler or a println uses at least 8k stack of VM and native code
   940   // respectively.
   941   const int framesize_in_bytes =
   942     Interpreter::size_top_interpreter_activation(method()) * wordSize;
   943   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
   944                       * vm_page_size()) + framesize_in_bytes;
   945   // The very lower end of the stack
   946   address stack_limit = thread->stack_base() - thread->stack_size();
   947   return (sp > (stack_limit + reserved_area));
   948 }
   950 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
   951                                 uint min_pages)
   952 {
   953   assert(min_pages > 0, "sanity");
   954   if (UseLargePages) {
   955     const size_t max_page_size = region_max_size / min_pages;
   957     for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
   958       const size_t sz = _page_sizes[i];
   959       const size_t mask = sz - 1;
   960       if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
   961         // The largest page size with no fragmentation.
   962         return sz;
   963       }
   965       if (sz <= max_page_size) {
   966         // The largest page size that satisfies the min_pages requirement.
   967         return sz;
   968       }
   969     }
   970   }
   972   return vm_page_size();
   973 }
   975 #ifndef PRODUCT
   976 void os::trace_page_sizes(const char* str, const size_t region_min_size,
   977                           const size_t region_max_size, const size_t page_size,
   978                           const char* base, const size_t size)
   979 {
   980   if (TracePageSizes) {
   981     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
   982                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
   983                   " size=" SIZE_FORMAT,
   984                   str, region_min_size, region_max_size,
   985                   page_size, base, size);
   986   }
   987 }
   988 #endif  // #ifndef PRODUCT
   990 // This is the working definition of a server class machine:
   991 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
   992 // because the graphics memory (?) sometimes masks physical memory.
   993 // If you want to change the definition of a server class machine
   994 // on some OS or platform, e.g., >=4GB on Windohs platforms,
   995 // then you'll have to parameterize this method based on that state,
   996 // as was done for logical processors here, or replicate and
   997 // specialize this method for each platform.  (Or fix os to have
   998 // some inheritance structure and use subclassing.  Sigh.)
   999 // If you want some platform to always or never behave as a server
  1000 // class machine, change the setting of AlwaysActAsServerClassMachine
  1001 // and NeverActAsServerClassMachine in globals*.hpp.
  1002 bool os::is_server_class_machine() {
  1003   // First check for the early returns
  1004   if (NeverActAsServerClassMachine) {
  1005     return false;
  1007   if (AlwaysActAsServerClassMachine) {
  1008     return true;
  1010   // Then actually look at the machine
  1011   bool         result            = false;
  1012   const unsigned int    server_processors = 2;
  1013   const julong server_memory     = 2UL * G;
  1014   // We seem not to get our full complement of memory.
  1015   //     We allow some part (1/8?) of the memory to be "missing",
  1016   //     based on the sizes of DIMMs, and maybe graphics cards.
  1017   const julong missing_memory   = 256UL * M;
  1019   /* Is this a server class machine? */
  1020   if ((os::active_processor_count() >= (int)server_processors) &&
  1021       (os::physical_memory() >= (server_memory - missing_memory))) {
  1022     const unsigned int logical_processors =
  1023       VM_Version::logical_processors_per_package();
  1024     if (logical_processors > 1) {
  1025       const unsigned int physical_packages =
  1026         os::active_processor_count() / logical_processors;
  1027       if (physical_packages > server_processors) {
  1028         result = true;
  1030     } else {
  1031       result = true;
  1034   return result;

mercurial