src/share/vm/opto/subnode.cpp

Wed, 02 Jul 2008 12:55:16 -0700

author
xdono
date
Wed, 02 Jul 2008 12:55:16 -0700
changeset 631
d1605aabd0a1
parent 548
ba764ed4b6f2
child 670
9c2ecc2ffb12
permissions
-rw-r--r--

6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_subnode.cpp.incl"
    31 #include "math.h"
    33 //=============================================================================
    34 //------------------------------Identity---------------------------------------
    35 // If right input is a constant 0, return the left input.
    36 Node *SubNode::Identity( PhaseTransform *phase ) {
    37   assert(in(1) != this, "Must already have called Value");
    38   assert(in(2) != this, "Must already have called Value");
    40   // Remove double negation
    41   const Type *zero = add_id();
    42   if( phase->type( in(1) )->higher_equal( zero ) &&
    43       in(2)->Opcode() == Opcode() &&
    44       phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
    45     return in(2)->in(2);
    46   }
    48   // Convert "(X+Y) - Y" into X
    49   if( in(1)->Opcode() == Op_AddI ) {
    50     if( phase->eqv(in(1)->in(2),in(2)) )
    51       return in(1)->in(1);
    52     // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
    53     // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
    54     // are originally used, although the optimizer sometimes jiggers things).
    55     // This folding through an O2 removes a loop-exit use of a loop-varying
    56     // value and generally lowers register pressure in and around the loop.
    57     if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
    58         phase->eqv(in(1)->in(2)->in(1),in(2)) )
    59       return in(1)->in(1);
    60   }
    62   return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
    63 }
    65 //------------------------------Value------------------------------------------
    66 // A subtract node differences it's two inputs.
    67 const Type *SubNode::Value( PhaseTransform *phase ) const {
    68   const Node* in1 = in(1);
    69   const Node* in2 = in(2);
    70   // Either input is TOP ==> the result is TOP
    71   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
    72   if( t1 == Type::TOP ) return Type::TOP;
    73   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
    74   if( t2 == Type::TOP ) return Type::TOP;
    76   // Not correct for SubFnode and AddFNode (must check for infinity)
    77   // Equal?  Subtract is zero
    78   if (phase->eqv_uncast(in1, in2))  return add_id();
    80   // Either input is BOTTOM ==> the result is the local BOTTOM
    81   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
    82     return bottom_type();
    84   return sub(t1,t2);            // Local flavor of type subtraction
    86 }
    88 //=============================================================================
    90 //------------------------------Helper function--------------------------------
    91 static bool ok_to_convert(Node* inc, Node* iv) {
    92     // Do not collapse (x+c0)-y if "+" is a loop increment, because the
    93     // "-" is loop invariant and collapsing extends the live-range of "x"
    94     // to overlap with the "+", forcing another register to be used in
    95     // the loop.
    96     // This test will be clearer with '&&' (apply DeMorgan's rule)
    97     // but I like the early cutouts that happen here.
    98     const PhiNode *phi;
    99     if( ( !inc->in(1)->is_Phi() ||
   100           !(phi=inc->in(1)->as_Phi()) ||
   101           phi->is_copy() ||
   102           !phi->region()->is_CountedLoop() ||
   103           inc != phi->region()->as_CountedLoop()->incr() )
   104        &&
   105         // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
   106         // because "x" maybe invariant.
   107         ( !iv->is_loop_iv() )
   108       ) {
   109       return true;
   110     } else {
   111       return false;
   112     }
   113 }
   114 //------------------------------Ideal------------------------------------------
   115 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
   116   Node *in1 = in(1);
   117   Node *in2 = in(2);
   118   uint op1 = in1->Opcode();
   119   uint op2 = in2->Opcode();
   121 #ifdef ASSERT
   122   // Check for dead loop
   123   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
   124       ( op1 == Op_AddI || op1 == Op_SubI ) &&
   125       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
   126         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1 ) ) )
   127     assert(false, "dead loop in SubINode::Ideal");
   128 #endif
   130   const Type *t2 = phase->type( in2 );
   131   if( t2 == Type::TOP ) return NULL;
   132   // Convert "x-c0" into "x+ -c0".
   133   if( t2->base() == Type::Int ){        // Might be bottom or top...
   134     const TypeInt *i = t2->is_int();
   135     if( i->is_con() )
   136       return new (phase->C, 3) AddINode(in1, phase->intcon(-i->get_con()));
   137   }
   139   // Convert "(x+c0) - y" into (x-y) + c0"
   140   // Do not collapse (x+c0)-y if "+" is a loop increment or
   141   // if "y" is a loop induction variable.
   142   if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
   143     const Type *tadd = phase->type( in1->in(2) );
   144     if( tadd->singleton() && tadd != Type::TOP ) {
   145       Node *sub2 = phase->transform( new (phase->C, 3) SubINode( in1->in(1), in2 ));
   146       return new (phase->C, 3) AddINode( sub2, in1->in(2) );
   147     }
   148   }
   151   // Convert "x - (y+c0)" into "(x-y) - c0"
   152   // Need the same check as in above optimization but reversed.
   153   if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
   154     Node* in21 = in2->in(1);
   155     Node* in22 = in2->in(2);
   156     const TypeInt* tcon = phase->type(in22)->isa_int();
   157     if (tcon != NULL && tcon->is_con()) {
   158       Node* sub2 = phase->transform( new (phase->C, 3) SubINode(in1, in21) );
   159       Node* neg_c0 = phase->intcon(- tcon->get_con());
   160       return new (phase->C, 3) AddINode(sub2, neg_c0);
   161     }
   162   }
   164   const Type *t1 = phase->type( in1 );
   165   if( t1 == Type::TOP ) return NULL;
   167 #ifdef ASSERT
   168   // Check for dead loop
   169   if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
   170       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
   171         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
   172     assert(false, "dead loop in SubINode::Ideal");
   173 #endif
   175   // Convert "x - (x+y)" into "-y"
   176   if( op2 == Op_AddI &&
   177       phase->eqv( in1, in2->in(1) ) )
   178     return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(2));
   179   // Convert "(x-y) - x" into "-y"
   180   if( op1 == Op_SubI &&
   181       phase->eqv( in1->in(1), in2 ) )
   182     return new (phase->C, 3) SubINode( phase->intcon(0),in1->in(2));
   183   // Convert "x - (y+x)" into "-y"
   184   if( op2 == Op_AddI &&
   185       phase->eqv( in1, in2->in(2) ) )
   186     return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(1));
   188   // Convert "0 - (x-y)" into "y-x"
   189   if( t1 == TypeInt::ZERO && op2 == Op_SubI )
   190     return new (phase->C, 3) SubINode( in2->in(2), in2->in(1) );
   192   // Convert "0 - (x+con)" into "-con-x"
   193   jint con;
   194   if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
   195       (con = in2->in(2)->find_int_con(0)) != 0 )
   196     return new (phase->C, 3) SubINode( phase->intcon(-con), in2->in(1) );
   198   // Convert "(X+A) - (X+B)" into "A - B"
   199   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
   200     return new (phase->C, 3) SubINode( in1->in(2), in2->in(2) );
   202   // Convert "(A+X) - (B+X)" into "A - B"
   203   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
   204     return new (phase->C, 3) SubINode( in1->in(1), in2->in(1) );
   206   // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
   207   // nicer to optimize than subtract.
   208   if( op2 == Op_SubI && in2->outcnt() == 1) {
   209     Node *add1 = phase->transform( new (phase->C, 3) AddINode( in1, in2->in(2) ) );
   210     return new (phase->C, 3) SubINode( add1, in2->in(1) );
   211   }
   213   return NULL;
   214 }
   216 //------------------------------sub--------------------------------------------
   217 // A subtract node differences it's two inputs.
   218 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
   219   const TypeInt *r0 = t1->is_int(); // Handy access
   220   const TypeInt *r1 = t2->is_int();
   221   int32 lo = r0->_lo - r1->_hi;
   222   int32 hi = r0->_hi - r1->_lo;
   224   // We next check for 32-bit overflow.
   225   // If that happens, we just assume all integers are possible.
   226   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
   227        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
   228       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
   229        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
   230     return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
   231   else                          // Overflow; assume all integers
   232     return TypeInt::INT;
   233 }
   235 //=============================================================================
   236 //------------------------------Ideal------------------------------------------
   237 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   238   Node *in1 = in(1);
   239   Node *in2 = in(2);
   240   uint op1 = in1->Opcode();
   241   uint op2 = in2->Opcode();
   243 #ifdef ASSERT
   244   // Check for dead loop
   245   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
   246       ( op1 == Op_AddL || op1 == Op_SubL ) &&
   247       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
   248         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1  ) ) )
   249     assert(false, "dead loop in SubLNode::Ideal");
   250 #endif
   252   if( phase->type( in2 ) == Type::TOP ) return NULL;
   253   const TypeLong *i = phase->type( in2 )->isa_long();
   254   // Convert "x-c0" into "x+ -c0".
   255   if( i &&                      // Might be bottom or top...
   256       i->is_con() )
   257     return new (phase->C, 3) AddLNode(in1, phase->longcon(-i->get_con()));
   259   // Convert "(x+c0) - y" into (x-y) + c0"
   260   // Do not collapse (x+c0)-y if "+" is a loop increment or
   261   // if "y" is a loop induction variable.
   262   if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
   263     Node *in11 = in1->in(1);
   264     const Type *tadd = phase->type( in1->in(2) );
   265     if( tadd->singleton() && tadd != Type::TOP ) {
   266       Node *sub2 = phase->transform( new (phase->C, 3) SubLNode( in11, in2 ));
   267       return new (phase->C, 3) AddLNode( sub2, in1->in(2) );
   268     }
   269   }
   271   // Convert "x - (y+c0)" into "(x-y) - c0"
   272   // Need the same check as in above optimization but reversed.
   273   if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
   274     Node* in21 = in2->in(1);
   275     Node* in22 = in2->in(2);
   276     const TypeLong* tcon = phase->type(in22)->isa_long();
   277     if (tcon != NULL && tcon->is_con()) {
   278       Node* sub2 = phase->transform( new (phase->C, 3) SubLNode(in1, in21) );
   279       Node* neg_c0 = phase->longcon(- tcon->get_con());
   280       return new (phase->C, 3) AddLNode(sub2, neg_c0);
   281     }
   282   }
   284   const Type *t1 = phase->type( in1 );
   285   if( t1 == Type::TOP ) return NULL;
   287 #ifdef ASSERT
   288   // Check for dead loop
   289   if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
   290       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
   291         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
   292     assert(false, "dead loop in SubLNode::Ideal");
   293 #endif
   295   // Convert "x - (x+y)" into "-y"
   296   if( op2 == Op_AddL &&
   297       phase->eqv( in1, in2->in(1) ) )
   298     return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
   299   // Convert "x - (y+x)" into "-y"
   300   if( op2 == Op_AddL &&
   301       phase->eqv( in1, in2->in(2) ) )
   302     return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
   304   // Convert "0 - (x-y)" into "y-x"
   305   if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
   306     return new (phase->C, 3) SubLNode( in2->in(2), in2->in(1) );
   308   // Convert "(X+A) - (X+B)" into "A - B"
   309   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
   310     return new (phase->C, 3) SubLNode( in1->in(2), in2->in(2) );
   312   // Convert "(A+X) - (B+X)" into "A - B"
   313   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
   314     return new (phase->C, 3) SubLNode( in1->in(1), in2->in(1) );
   316   // Convert "A-(B-C)" into (A+C)-B"
   317   if( op2 == Op_SubL && in2->outcnt() == 1) {
   318     Node *add1 = phase->transform( new (phase->C, 3) AddLNode( in1, in2->in(2) ) );
   319     return new (phase->C, 3) SubLNode( add1, in2->in(1) );
   320   }
   322   return NULL;
   323 }
   325 //------------------------------sub--------------------------------------------
   326 // A subtract node differences it's two inputs.
   327 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
   328   const TypeLong *r0 = t1->is_long(); // Handy access
   329   const TypeLong *r1 = t2->is_long();
   330   jlong lo = r0->_lo - r1->_hi;
   331   jlong hi = r0->_hi - r1->_lo;
   333   // We next check for 32-bit overflow.
   334   // If that happens, we just assume all integers are possible.
   335   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
   336        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
   337       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
   338        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
   339     return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
   340   else                          // Overflow; assume all integers
   341     return TypeLong::LONG;
   342 }
   344 //=============================================================================
   345 //------------------------------Value------------------------------------------
   346 // A subtract node differences its two inputs.
   347 const Type *SubFPNode::Value( PhaseTransform *phase ) const {
   348   const Node* in1 = in(1);
   349   const Node* in2 = in(2);
   350   // Either input is TOP ==> the result is TOP
   351   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
   352   if( t1 == Type::TOP ) return Type::TOP;
   353   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
   354   if( t2 == Type::TOP ) return Type::TOP;
   356   // if both operands are infinity of same sign, the result is NaN; do
   357   // not replace with zero
   358   if( (t1->is_finite() && t2->is_finite()) ) {
   359     if( phase->eqv(in1, in2) ) return add_id();
   360   }
   362   // Either input is BOTTOM ==> the result is the local BOTTOM
   363   const Type *bot = bottom_type();
   364   if( (t1 == bot) || (t2 == bot) ||
   365       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   366     return bot;
   368   return sub(t1,t2);            // Local flavor of type subtraction
   369 }
   372 //=============================================================================
   373 //------------------------------Ideal------------------------------------------
   374 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   375   const Type *t2 = phase->type( in(2) );
   376   // Convert "x-c0" into "x+ -c0".
   377   if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
   378     // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
   379   }
   381   // Not associative because of boundary conditions (infinity)
   382   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   383     // Convert "x - (x+y)" into "-y"
   384     if( in(2)->is_Add() &&
   385         phase->eqv(in(1),in(2)->in(1) ) )
   386       return new (phase->C, 3) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
   387   }
   389   // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
   390   // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
   391   //if( phase->type(in(1)) == TypeF::ZERO )
   392   //return new (phase->C, 2) NegFNode(in(2));
   394   return NULL;
   395 }
   397 //------------------------------sub--------------------------------------------
   398 // A subtract node differences its two inputs.
   399 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
   400   // no folding if one of operands is infinity or NaN, do not do constant folding
   401   if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
   402     return TypeF::make( t1->getf() - t2->getf() );
   403   }
   404   else if( g_isnan(t1->getf()) ) {
   405     return t1;
   406   }
   407   else if( g_isnan(t2->getf()) ) {
   408     return t2;
   409   }
   410   else {
   411     return Type::FLOAT;
   412   }
   413 }
   415 //=============================================================================
   416 //------------------------------Ideal------------------------------------------
   417 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
   418   const Type *t2 = phase->type( in(2) );
   419   // Convert "x-c0" into "x+ -c0".
   420   if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
   421     // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
   422   }
   424   // Not associative because of boundary conditions (infinity)
   425   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   426     // Convert "x - (x+y)" into "-y"
   427     if( in(2)->is_Add() &&
   428         phase->eqv(in(1),in(2)->in(1) ) )
   429       return new (phase->C, 3) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
   430   }
   432   // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
   433   // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
   434   //if( phase->type(in(1)) == TypeD::ZERO )
   435   //return new (phase->C, 2) NegDNode(in(2));
   437   return NULL;
   438 }
   440 //------------------------------sub--------------------------------------------
   441 // A subtract node differences its two inputs.
   442 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
   443   // no folding if one of operands is infinity or NaN, do not do constant folding
   444   if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
   445     return TypeD::make( t1->getd() - t2->getd() );
   446   }
   447   else if( g_isnan(t1->getd()) ) {
   448     return t1;
   449   }
   450   else if( g_isnan(t2->getd()) ) {
   451     return t2;
   452   }
   453   else {
   454     return Type::DOUBLE;
   455   }
   456 }
   458 //=============================================================================
   459 //------------------------------Idealize---------------------------------------
   460 // Unlike SubNodes, compare must still flatten return value to the
   461 // range -1, 0, 1.
   462 // And optimizations like those for (X + Y) - X fail if overflow happens.
   463 Node *CmpNode::Identity( PhaseTransform *phase ) {
   464   return this;
   465 }
   467 //=============================================================================
   468 //------------------------------cmp--------------------------------------------
   469 // Simplify a CmpI (compare 2 integers) node, based on local information.
   470 // If both inputs are constants, compare them.
   471 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
   472   const TypeInt *r0 = t1->is_int(); // Handy access
   473   const TypeInt *r1 = t2->is_int();
   475   if( r0->_hi < r1->_lo )       // Range is always low?
   476     return TypeInt::CC_LT;
   477   else if( r0->_lo > r1->_hi )  // Range is always high?
   478     return TypeInt::CC_GT;
   480   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
   481     assert(r0->get_con() == r1->get_con(), "must be equal");
   482     return TypeInt::CC_EQ;      // Equal results.
   483   } else if( r0->_hi == r1->_lo ) // Range is never high?
   484     return TypeInt::CC_LE;
   485   else if( r0->_lo == r1->_hi ) // Range is never low?
   486     return TypeInt::CC_GE;
   487   return TypeInt::CC;           // else use worst case results
   488 }
   490 // Simplify a CmpU (compare 2 integers) node, based on local information.
   491 // If both inputs are constants, compare them.
   492 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
   493   assert(!t1->isa_ptr(), "obsolete usage of CmpU");
   495   // comparing two unsigned ints
   496   const TypeInt *r0 = t1->is_int();   // Handy access
   497   const TypeInt *r1 = t2->is_int();
   499   // Current installed version
   500   // Compare ranges for non-overlap
   501   juint lo0 = r0->_lo;
   502   juint hi0 = r0->_hi;
   503   juint lo1 = r1->_lo;
   504   juint hi1 = r1->_hi;
   506   // If either one has both negative and positive values,
   507   // it therefore contains both 0 and -1, and since [0..-1] is the
   508   // full unsigned range, the type must act as an unsigned bottom.
   509   bool bot0 = ((jint)(lo0 ^ hi0) < 0);
   510   bool bot1 = ((jint)(lo1 ^ hi1) < 0);
   512   if (bot0 || bot1) {
   513     // All unsigned values are LE -1 and GE 0.
   514     if (lo0 == 0 && hi0 == 0) {
   515       return TypeInt::CC_LE;            //   0 <= bot
   516     } else if (lo1 == 0 && hi1 == 0) {
   517       return TypeInt::CC_GE;            // bot >= 0
   518     }
   519   } else {
   520     // We can use ranges of the form [lo..hi] if signs are the same.
   521     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
   522     // results are reversed, '-' > '+' for unsigned compare
   523     if (hi0 < lo1) {
   524       return TypeInt::CC_LT;            // smaller
   525     } else if (lo0 > hi1) {
   526       return TypeInt::CC_GT;            // greater
   527     } else if (hi0 == lo1 && lo0 == hi1) {
   528       return TypeInt::CC_EQ;            // Equal results
   529     } else if (lo0 >= hi1) {
   530       return TypeInt::CC_GE;
   531     } else if (hi0 <= lo1) {
   532       // Check for special case in Hashtable::get.  (See below.)
   533       if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
   534           in(1)->Opcode() == Op_ModI &&
   535           in(1)->in(2) == in(2) )
   536         return TypeInt::CC_LT;
   537       return TypeInt::CC_LE;
   538     }
   539   }
   540   // Check for special case in Hashtable::get - the hash index is
   541   // mod'ed to the table size so the following range check is useless.
   542   // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
   543   // to be positive.
   544   // (This is a gross hack, since the sub method never
   545   // looks at the structure of the node in any other case.)
   546   if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
   547       in(1)->Opcode() == Op_ModI &&
   548       in(1)->in(2)->uncast() == in(2)->uncast())
   549     return TypeInt::CC_LT;
   550   return TypeInt::CC;                   // else use worst case results
   551 }
   553 //------------------------------Idealize---------------------------------------
   554 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
   555   if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
   556     switch (in(1)->Opcode()) {
   557     case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
   558       return new (phase->C, 3) CmpLNode(in(1)->in(1),in(1)->in(2));
   559     case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
   560       return new (phase->C, 3) CmpFNode(in(1)->in(1),in(1)->in(2));
   561     case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
   562       return new (phase->C, 3) CmpDNode(in(1)->in(1),in(1)->in(2));
   563     //case Op_SubI:
   564       // If (x - y) cannot overflow, then ((x - y) <?> 0)
   565       // can be turned into (x <?> y).
   566       // This is handled (with more general cases) by Ideal_sub_algebra.
   567     }
   568   }
   569   return NULL;                  // No change
   570 }
   573 //=============================================================================
   574 // Simplify a CmpL (compare 2 longs ) node, based on local information.
   575 // If both inputs are constants, compare them.
   576 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
   577   const TypeLong *r0 = t1->is_long(); // Handy access
   578   const TypeLong *r1 = t2->is_long();
   580   if( r0->_hi < r1->_lo )       // Range is always low?
   581     return TypeInt::CC_LT;
   582   else if( r0->_lo > r1->_hi )  // Range is always high?
   583     return TypeInt::CC_GT;
   585   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
   586     assert(r0->get_con() == r1->get_con(), "must be equal");
   587     return TypeInt::CC_EQ;      // Equal results.
   588   } else if( r0->_hi == r1->_lo ) // Range is never high?
   589     return TypeInt::CC_LE;
   590   else if( r0->_lo == r1->_hi ) // Range is never low?
   591     return TypeInt::CC_GE;
   592   return TypeInt::CC;           // else use worst case results
   593 }
   595 //=============================================================================
   596 //------------------------------sub--------------------------------------------
   597 // Simplify an CmpP (compare 2 pointers) node, based on local information.
   598 // If both inputs are constants, compare them.
   599 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
   600   const TypePtr *r0 = t1->is_ptr(); // Handy access
   601   const TypePtr *r1 = t2->is_ptr();
   603   // Undefined inputs makes for an undefined result
   604   if( TypePtr::above_centerline(r0->_ptr) ||
   605       TypePtr::above_centerline(r1->_ptr) )
   606     return Type::TOP;
   608   if (r0 == r1 && r0->singleton()) {
   609     // Equal pointer constants (klasses, nulls, etc.)
   610     return TypeInt::CC_EQ;
   611   }
   613   // See if it is 2 unrelated classes.
   614   const TypeOopPtr* p0 = r0->isa_oopptr();
   615   const TypeOopPtr* p1 = r1->isa_oopptr();
   616   if (p0 && p1) {
   617     Node* in1 = in(1)->uncast();
   618     Node* in2 = in(2)->uncast();
   619     AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
   620     AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
   621     if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
   622       return TypeInt::CC_GT;  // different pointers
   623     }
   624     ciKlass* klass0 = p0->klass();
   625     bool    xklass0 = p0->klass_is_exact();
   626     ciKlass* klass1 = p1->klass();
   627     bool    xklass1 = p1->klass_is_exact();
   628     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
   629     if (klass0 && klass1 &&
   630         kps != 1 &&             // both or neither are klass pointers
   631         !klass0->is_interface() && // do not trust interfaces
   632         !klass1->is_interface()) {
   633       // See if neither subclasses the other, or if the class on top
   634       // is precise.  In either of these cases, the compare must fail.
   635       if (klass0->equals(klass1)   ||   // if types are unequal but klasses are
   636           !klass0->is_java_klass() ||   // types not part of Java language?
   637           !klass1->is_java_klass()) {   // types not part of Java language?
   638         // Do nothing; we know nothing for imprecise types
   639       } else if (klass0->is_subtype_of(klass1)) {
   640         // If klass1's type is PRECISE, then we can fail.
   641         if (xklass1)  return TypeInt::CC_GT;
   642       } else if (klass1->is_subtype_of(klass0)) {
   643         // If klass0's type is PRECISE, then we can fail.
   644         if (xklass0)  return TypeInt::CC_GT;
   645       } else {                  // Neither subtypes the other
   646         return TypeInt::CC_GT;  // ...so always fail
   647       }
   648     }
   649   }
   651   // Known constants can be compared exactly
   652   // Null can be distinguished from any NotNull pointers
   653   // Unknown inputs makes an unknown result
   654   if( r0->singleton() ) {
   655     intptr_t bits0 = r0->get_con();
   656     if( r1->singleton() )
   657       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
   658     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
   659   } else if( r1->singleton() ) {
   660     intptr_t bits1 = r1->get_con();
   661     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
   662   } else
   663     return TypeInt::CC;
   664 }
   666 //------------------------------Ideal------------------------------------------
   667 // Check for the case of comparing an unknown klass loaded from the primary
   668 // super-type array vs a known klass with no subtypes.  This amounts to
   669 // checking to see an unknown klass subtypes a known klass with no subtypes;
   670 // this only happens on an exact match.  We can shorten this test by 1 load.
   671 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
   672   // Constant pointer on right?
   673   const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
   674   if (t2 == NULL || !t2->klass_is_exact())
   675     return NULL;
   676   // Get the constant klass we are comparing to.
   677   ciKlass* superklass = t2->klass();
   679   // Now check for LoadKlass on left.
   680   Node* ldk1 = in(1);
   681   if (ldk1->Opcode() != Op_LoadKlass)
   682     return NULL;
   683   // Take apart the address of the LoadKlass:
   684   Node* adr1 = ldk1->in(MemNode::Address);
   685   intptr_t con2 = 0;
   686   Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
   687   if (ldk2 == NULL)
   688     return NULL;
   689   if (con2 == oopDesc::klass_offset_in_bytes()) {
   690     // We are inspecting an object's concrete class.
   691     // Short-circuit the check if the query is abstract.
   692     if (superklass->is_interface() ||
   693         superklass->is_abstract()) {
   694       // Make it come out always false:
   695       this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
   696       return this;
   697     }
   698   }
   700   // Check for a LoadKlass from primary supertype array.
   701   // Any nested loadklass from loadklass+con must be from the p.s. array.
   702   if (ldk2->Opcode() != Op_LoadKlass)
   703     return NULL;
   705   // Verify that we understand the situation
   706   if (con2 != (intptr_t) superklass->super_check_offset())
   707     return NULL;                // Might be element-klass loading from array klass
   709   // If 'superklass' has no subklasses and is not an interface, then we are
   710   // assured that the only input which will pass the type check is
   711   // 'superklass' itself.
   712   //
   713   // We could be more liberal here, and allow the optimization on interfaces
   714   // which have a single implementor.  This would require us to increase the
   715   // expressiveness of the add_dependency() mechanism.
   716   // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
   718   // Object arrays must have their base element have no subtypes
   719   while (superklass->is_obj_array_klass()) {
   720     ciType* elem = superklass->as_obj_array_klass()->element_type();
   721     superklass = elem->as_klass();
   722   }
   723   if (superklass->is_instance_klass()) {
   724     ciInstanceKlass* ik = superklass->as_instance_klass();
   725     if (ik->has_subklass() || ik->is_interface())  return NULL;
   726     // Add a dependency if there is a chance that a subclass will be added later.
   727     if (!ik->is_final()) {
   728       phase->C->dependencies()->assert_leaf_type(ik);
   729     }
   730   }
   732   // Bypass the dependent load, and compare directly
   733   this->set_req(1,ldk2);
   735   return this;
   736 }
   738 //=============================================================================
   739 //------------------------------sub--------------------------------------------
   740 // Simplify an CmpN (compare 2 pointers) node, based on local information.
   741 // If both inputs are constants, compare them.
   742 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
   743   const TypePtr *r0 = t1->is_narrowoop()->make_oopptr(); // Handy access
   744   const TypePtr *r1 = t2->is_narrowoop()->make_oopptr();
   746   // Undefined inputs makes for an undefined result
   747   if( TypePtr::above_centerline(r0->_ptr) ||
   748       TypePtr::above_centerline(r1->_ptr) )
   749     return Type::TOP;
   751   if (r0 == r1 && r0->singleton()) {
   752     // Equal pointer constants (klasses, nulls, etc.)
   753     return TypeInt::CC_EQ;
   754   }
   756   // See if it is 2 unrelated classes.
   757   const TypeOopPtr* p0 = r0->isa_oopptr();
   758   const TypeOopPtr* p1 = r1->isa_oopptr();
   759   if (p0 && p1) {
   760     ciKlass* klass0 = p0->klass();
   761     bool    xklass0 = p0->klass_is_exact();
   762     ciKlass* klass1 = p1->klass();
   763     bool    xklass1 = p1->klass_is_exact();
   764     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
   765     if (klass0 && klass1 &&
   766         kps != 1 &&             // both or neither are klass pointers
   767         !klass0->is_interface() && // do not trust interfaces
   768         !klass1->is_interface()) {
   769       // See if neither subclasses the other, or if the class on top
   770       // is precise.  In either of these cases, the compare must fail.
   771       if (klass0->equals(klass1)   ||   // if types are unequal but klasses are
   772           !klass0->is_java_klass() ||   // types not part of Java language?
   773           !klass1->is_java_klass()) {   // types not part of Java language?
   774         // Do nothing; we know nothing for imprecise types
   775       } else if (klass0->is_subtype_of(klass1)) {
   776         // If klass1's type is PRECISE, then we can fail.
   777         if (xklass1)  return TypeInt::CC_GT;
   778       } else if (klass1->is_subtype_of(klass0)) {
   779         // If klass0's type is PRECISE, then we can fail.
   780         if (xklass0)  return TypeInt::CC_GT;
   781       } else {                  // Neither subtypes the other
   782         return TypeInt::CC_GT;  // ...so always fail
   783       }
   784     }
   785   }
   787   // Known constants can be compared exactly
   788   // Null can be distinguished from any NotNull pointers
   789   // Unknown inputs makes an unknown result
   790   if( r0->singleton() ) {
   791     intptr_t bits0 = r0->get_con();
   792     if( r1->singleton() )
   793       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
   794     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
   795   } else if( r1->singleton() ) {
   796     intptr_t bits1 = r1->get_con();
   797     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
   798   } else
   799     return TypeInt::CC;
   800 }
   802 //------------------------------Ideal------------------------------------------
   803 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
   804   return NULL;
   805 }
   807 //=============================================================================
   808 //------------------------------Value------------------------------------------
   809 // Simplify an CmpF (compare 2 floats ) node, based on local information.
   810 // If both inputs are constants, compare them.
   811 const Type *CmpFNode::Value( PhaseTransform *phase ) const {
   812   const Node* in1 = in(1);
   813   const Node* in2 = in(2);
   814   // Either input is TOP ==> the result is TOP
   815   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
   816   if( t1 == Type::TOP ) return Type::TOP;
   817   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
   818   if( t2 == Type::TOP ) return Type::TOP;
   820   // Not constants?  Don't know squat - even if they are the same
   821   // value!  If they are NaN's they compare to LT instead of EQ.
   822   const TypeF *tf1 = t1->isa_float_constant();
   823   const TypeF *tf2 = t2->isa_float_constant();
   824   if( !tf1 || !tf2 ) return TypeInt::CC;
   826   // This implements the Java bytecode fcmpl, so unordered returns -1.
   827   if( tf1->is_nan() || tf2->is_nan() )
   828     return TypeInt::CC_LT;
   830   if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
   831   if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
   832   assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
   833   return TypeInt::CC_EQ;
   834 }
   837 //=============================================================================
   838 //------------------------------Value------------------------------------------
   839 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
   840 // If both inputs are constants, compare them.
   841 const Type *CmpDNode::Value( PhaseTransform *phase ) const {
   842   const Node* in1 = in(1);
   843   const Node* in2 = in(2);
   844   // Either input is TOP ==> the result is TOP
   845   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
   846   if( t1 == Type::TOP ) return Type::TOP;
   847   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
   848   if( t2 == Type::TOP ) return Type::TOP;
   850   // Not constants?  Don't know squat - even if they are the same
   851   // value!  If they are NaN's they compare to LT instead of EQ.
   852   const TypeD *td1 = t1->isa_double_constant();
   853   const TypeD *td2 = t2->isa_double_constant();
   854   if( !td1 || !td2 ) return TypeInt::CC;
   856   // This implements the Java bytecode dcmpl, so unordered returns -1.
   857   if( td1->is_nan() || td2->is_nan() )
   858     return TypeInt::CC_LT;
   860   if( td1->_d < td2->_d ) return TypeInt::CC_LT;
   861   if( td1->_d > td2->_d ) return TypeInt::CC_GT;
   862   assert( td1->_d == td2->_d, "do not understand FP behavior" );
   863   return TypeInt::CC_EQ;
   864 }
   866 //------------------------------Ideal------------------------------------------
   867 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
   868   // Check if we can change this to a CmpF and remove a ConvD2F operation.
   869   // Change  (CMPD (F2D (float)) (ConD value))
   870   // To      (CMPF      (float)  (ConF value))
   871   // Valid when 'value' does not lose precision as a float.
   872   // Benefits: eliminates conversion, does not require 24-bit mode
   874   // NaNs prevent commuting operands.  This transform works regardless of the
   875   // order of ConD and ConvF2D inputs by preserving the original order.
   876   int idx_f2d = 1;              // ConvF2D on left side?
   877   if( in(idx_f2d)->Opcode() != Op_ConvF2D )
   878     idx_f2d = 2;                // No, swap to check for reversed args
   879   int idx_con = 3-idx_f2d;      // Check for the constant on other input
   881   if( ConvertCmpD2CmpF &&
   882       in(idx_f2d)->Opcode() == Op_ConvF2D &&
   883       in(idx_con)->Opcode() == Op_ConD ) {
   884     const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
   885     double t2_value_as_double = t2->_d;
   886     float  t2_value_as_float  = (float)t2_value_as_double;
   887     if( t2_value_as_double == (double)t2_value_as_float ) {
   888       // Test value can be represented as a float
   889       // Eliminate the conversion to double and create new comparison
   890       Node *new_in1 = in(idx_f2d)->in(1);
   891       Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
   892       if( idx_f2d != 1 ) {      // Must flip args to match original order
   893         Node *tmp = new_in1;
   894         new_in1 = new_in2;
   895         new_in2 = tmp;
   896       }
   897       CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
   898         ? new (phase->C, 3) CmpF3Node( new_in1, new_in2 )
   899         : new (phase->C, 3) CmpFNode ( new_in1, new_in2 ) ;
   900       return new_cmp;           // Changed to CmpFNode
   901     }
   902     // Testing value required the precision of a double
   903   }
   904   return NULL;                  // No change
   905 }
   908 //=============================================================================
   909 //------------------------------cc2logical-------------------------------------
   910 // Convert a condition code type to a logical type
   911 const Type *BoolTest::cc2logical( const Type *CC ) const {
   912   if( CC == Type::TOP ) return Type::TOP;
   913   if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
   914   const TypeInt *ti = CC->is_int();
   915   if( ti->is_con() ) {          // Only 1 kind of condition codes set?
   916     // Match low order 2 bits
   917     int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
   918     if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
   919     return TypeInt::make(tmp);       // Boolean result
   920   }
   922   if( CC == TypeInt::CC_GE ) {
   923     if( _test == ge ) return TypeInt::ONE;
   924     if( _test == lt ) return TypeInt::ZERO;
   925   }
   926   if( CC == TypeInt::CC_LE ) {
   927     if( _test == le ) return TypeInt::ONE;
   928     if( _test == gt ) return TypeInt::ZERO;
   929   }
   931   return TypeInt::BOOL;
   932 }
   934 //------------------------------dump_spec-------------------------------------
   935 // Print special per-node info
   936 #ifndef PRODUCT
   937 void BoolTest::dump_on(outputStream *st) const {
   938   const char *msg[] = {"eq","gt","??","lt","ne","le","??","ge"};
   939   st->print(msg[_test]);
   940 }
   941 #endif
   943 //=============================================================================
   944 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
   945 uint BoolNode::size_of() const { return sizeof(BoolNode); }
   947 //------------------------------operator==-------------------------------------
   948 uint BoolNode::cmp( const Node &n ) const {
   949   const BoolNode *b = (const BoolNode *)&n; // Cast up
   950   return (_test._test == b->_test._test);
   951 }
   953 //------------------------------clone_cmp--------------------------------------
   954 // Clone a compare/bool tree
   955 static Node *clone_cmp( Node *cmp, Node *cmp1, Node *cmp2, PhaseGVN *gvn, BoolTest::mask test ) {
   956   Node *ncmp = cmp->clone();
   957   ncmp->set_req(1,cmp1);
   958   ncmp->set_req(2,cmp2);
   959   ncmp = gvn->transform( ncmp );
   960   return new (gvn->C, 2) BoolNode( ncmp, test );
   961 }
   963 //-------------------------------make_predicate--------------------------------
   964 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
   965   if (test_value->is_Con())   return test_value;
   966   if (test_value->is_Bool())  return test_value;
   967   Compile* C = phase->C;
   968   if (test_value->is_CMove() &&
   969       test_value->in(CMoveNode::Condition)->is_Bool()) {
   970     BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
   971     const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
   972     const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
   973     if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
   974       return bol;
   975     } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
   976       return phase->transform( bol->negate(phase) );
   977     }
   978     // Else fall through.  The CMove gets in the way of the test.
   979     // It should be the case that make_predicate(bol->as_int_value()) == bol.
   980   }
   981   Node* cmp = new (C, 3) CmpINode(test_value, phase->intcon(0));
   982   cmp = phase->transform(cmp);
   983   Node* bol = new (C, 2) BoolNode(cmp, BoolTest::ne);
   984   return phase->transform(bol);
   985 }
   987 //--------------------------------as_int_value---------------------------------
   988 Node* BoolNode::as_int_value(PhaseGVN* phase) {
   989   // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
   990   Node* cmov = CMoveNode::make(phase->C, NULL, this,
   991                                phase->intcon(0), phase->intcon(1),
   992                                TypeInt::BOOL);
   993   return phase->transform(cmov);
   994 }
   996 //----------------------------------negate-------------------------------------
   997 BoolNode* BoolNode::negate(PhaseGVN* phase) {
   998   Compile* C = phase->C;
   999   return new (C, 2) BoolNode(in(1), _test.negate());
  1003 //------------------------------Ideal------------------------------------------
  1004 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1005   // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
  1006   // This moves the constant to the right.  Helps value-numbering.
  1007   Node *cmp = in(1);
  1008   if( !cmp->is_Sub() ) return NULL;
  1009   int cop = cmp->Opcode();
  1010   if( cop == Op_FastLock || cop == Op_FastUnlock ) return NULL;
  1011   Node *cmp1 = cmp->in(1);
  1012   Node *cmp2 = cmp->in(2);
  1013   if( !cmp1 ) return NULL;
  1015   // Constant on left?
  1016   Node *con = cmp1;
  1017   uint op2 = cmp2->Opcode();
  1018   // Move constants to the right of compare's to canonicalize.
  1019   // Do not muck with Opaque1 nodes, as this indicates a loop
  1020   // guard that cannot change shape.
  1021   if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
  1022       // Because of NaN's, CmpD and CmpF are not commutative
  1023       cop != Op_CmpD && cop != Op_CmpF &&
  1024       // Protect against swapping inputs to a compare when it is used by a
  1025       // counted loop exit, which requires maintaining the loop-limit as in(2)
  1026       !is_counted_loop_exit_test() ) {
  1027     // Ok, commute the constant to the right of the cmp node.
  1028     // Clone the Node, getting a new Node of the same class
  1029     cmp = cmp->clone();
  1030     // Swap inputs to the clone
  1031     cmp->swap_edges(1, 2);
  1032     cmp = phase->transform( cmp );
  1033     return new (phase->C, 2) BoolNode( cmp, _test.commute() );
  1036   // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
  1037   // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
  1038   // test instead.
  1039   int cmp1_op = cmp1->Opcode();
  1040   const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
  1041   if (cmp2_type == NULL)  return NULL;
  1042   Node* j_xor = cmp1;
  1043   if( cmp2_type == TypeInt::ZERO &&
  1044       cmp1_op == Op_XorI &&
  1045       j_xor->in(1) != j_xor &&          // An xor of itself is dead
  1046       phase->type( j_xor->in(2) ) == TypeInt::ONE &&
  1047       (_test._test == BoolTest::eq ||
  1048        _test._test == BoolTest::ne) ) {
  1049     Node *ncmp = phase->transform(new (phase->C, 3) CmpINode(j_xor->in(1),cmp2));
  1050     return new (phase->C, 2) BoolNode( ncmp, _test.negate() );
  1053   // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
  1054   // This is a standard idiom for branching on a boolean value.
  1055   Node *c2b = cmp1;
  1056   if( cmp2_type == TypeInt::ZERO &&
  1057       cmp1_op == Op_Conv2B &&
  1058       (_test._test == BoolTest::eq ||
  1059        _test._test == BoolTest::ne) ) {
  1060     Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
  1061        ? (Node*)new (phase->C, 3) CmpINode(c2b->in(1),cmp2)
  1062        : (Node*)new (phase->C, 3) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
  1063     );
  1064     return new (phase->C, 2) BoolNode( ncmp, _test._test );
  1067   // Comparing a SubI against a zero is equal to comparing the SubI
  1068   // arguments directly.  This only works for eq and ne comparisons
  1069   // due to possible integer overflow.
  1070   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
  1071         (cop == Op_CmpI) &&
  1072         (cmp1->Opcode() == Op_SubI) &&
  1073         ( cmp2_type == TypeInt::ZERO ) ) {
  1074     Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(1),cmp1->in(2)));
  1075     return new (phase->C, 2) BoolNode( ncmp, _test._test );
  1078   // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
  1079   // most general case because negating 0x80000000 does nothing.  Needed for
  1080   // the CmpF3/SubI/CmpI idiom.
  1081   if( cop == Op_CmpI &&
  1082       cmp1->Opcode() == Op_SubI &&
  1083       cmp2_type == TypeInt::ZERO &&
  1084       phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
  1085       phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
  1086     Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(2),cmp2));
  1087     return new (phase->C, 2) BoolNode( ncmp, _test.commute() );
  1090   //  The transformation below is not valid for either signed or unsigned
  1091   //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
  1092   //  This transformation can be resurrected when we are able to
  1093   //  make inferences about the range of values being subtracted from
  1094   //  (or added to) relative to the wraparound point.
  1095   //
  1096   //    // Remove +/-1's if possible.
  1097   //    // "X <= Y-1" becomes "X <  Y"
  1098   //    // "X+1 <= Y" becomes "X <  Y"
  1099   //    // "X <  Y+1" becomes "X <= Y"
  1100   //    // "X-1 <  Y" becomes "X <= Y"
  1101   //    // Do not this to compares off of the counted-loop-end.  These guys are
  1102   //    // checking the trip counter and they want to use the post-incremented
  1103   //    // counter.  If they use the PRE-incremented counter, then the counter has
  1104   //    // to be incremented in a private block on a loop backedge.
  1105   //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
  1106   //      return NULL;
  1107   //  #ifndef PRODUCT
  1108   //    // Do not do this in a wash GVN pass during verification.
  1109   //    // Gets triggered by too many simple optimizations to be bothered with
  1110   //    // re-trying it again and again.
  1111   //    if( !phase->allow_progress() ) return NULL;
  1112   //  #endif
  1113   //    // Not valid for unsigned compare because of corner cases in involving zero.
  1114   //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
  1115   //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
  1116   //    // "0 <=u Y" is always true).
  1117   //    if( cmp->Opcode() == Op_CmpU ) return NULL;
  1118   //    int cmp2_op = cmp2->Opcode();
  1119   //    if( _test._test == BoolTest::le ) {
  1120   //      if( cmp1_op == Op_AddI &&
  1121   //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
  1122   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
  1123   //      else if( cmp2_op == Op_AddI &&
  1124   //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
  1125   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
  1126   //    } else if( _test._test == BoolTest::lt ) {
  1127   //      if( cmp1_op == Op_AddI &&
  1128   //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
  1129   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
  1130   //      else if( cmp2_op == Op_AddI &&
  1131   //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
  1132   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
  1133   //    }
  1135   return NULL;
  1138 //------------------------------Value------------------------------------------
  1139 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
  1140 // based on local information.   If the input is constant, do it.
  1141 const Type *BoolNode::Value( PhaseTransform *phase ) const {
  1142   return _test.cc2logical( phase->type( in(1) ) );
  1145 //------------------------------dump_spec--------------------------------------
  1146 // Dump special per-node info
  1147 #ifndef PRODUCT
  1148 void BoolNode::dump_spec(outputStream *st) const {
  1149   st->print("[");
  1150   _test.dump_on(st);
  1151   st->print("]");
  1153 #endif
  1155 //------------------------------is_counted_loop_exit_test--------------------------------------
  1156 // Returns true if node is used by a counted loop node.
  1157 bool BoolNode::is_counted_loop_exit_test() {
  1158   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
  1159     Node* use = fast_out(i);
  1160     if (use->is_CountedLoopEnd()) {
  1161       return true;
  1164   return false;
  1167 //=============================================================================
  1168 //------------------------------NegNode----------------------------------------
  1169 Node *NegFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1170   if( in(1)->Opcode() == Op_SubF )
  1171     return new (phase->C, 3) SubFNode( in(1)->in(2), in(1)->in(1) );
  1172   return NULL;
  1175 Node *NegDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1176   if( in(1)->Opcode() == Op_SubD )
  1177     return new (phase->C, 3) SubDNode( in(1)->in(2), in(1)->in(1) );
  1178   return NULL;
  1182 //=============================================================================
  1183 //------------------------------Value------------------------------------------
  1184 // Compute sqrt
  1185 const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
  1186   const Type *t1 = phase->type( in(1) );
  1187   if( t1 == Type::TOP ) return Type::TOP;
  1188   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1189   double d = t1->getd();
  1190   if( d < 0.0 ) return Type::DOUBLE;
  1191   return TypeD::make( sqrt( d ) );
  1194 //=============================================================================
  1195 //------------------------------Value------------------------------------------
  1196 // Compute cos
  1197 const Type *CosDNode::Value( PhaseTransform *phase ) const {
  1198   const Type *t1 = phase->type( in(1) );
  1199   if( t1 == Type::TOP ) return Type::TOP;
  1200   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1201   double d = t1->getd();
  1202   if( d < 0.0 ) return Type::DOUBLE;
  1203   return TypeD::make( SharedRuntime::dcos( d ) );
  1206 //=============================================================================
  1207 //------------------------------Value------------------------------------------
  1208 // Compute sin
  1209 const Type *SinDNode::Value( PhaseTransform *phase ) const {
  1210   const Type *t1 = phase->type( in(1) );
  1211   if( t1 == Type::TOP ) return Type::TOP;
  1212   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1213   double d = t1->getd();
  1214   if( d < 0.0 ) return Type::DOUBLE;
  1215   return TypeD::make( SharedRuntime::dsin( d ) );
  1218 //=============================================================================
  1219 //------------------------------Value------------------------------------------
  1220 // Compute tan
  1221 const Type *TanDNode::Value( PhaseTransform *phase ) const {
  1222   const Type *t1 = phase->type( in(1) );
  1223   if( t1 == Type::TOP ) return Type::TOP;
  1224   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1225   double d = t1->getd();
  1226   if( d < 0.0 ) return Type::DOUBLE;
  1227   return TypeD::make( SharedRuntime::dtan( d ) );
  1230 //=============================================================================
  1231 //------------------------------Value------------------------------------------
  1232 // Compute log
  1233 const Type *LogDNode::Value( PhaseTransform *phase ) const {
  1234   const Type *t1 = phase->type( in(1) );
  1235   if( t1 == Type::TOP ) return Type::TOP;
  1236   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1237   double d = t1->getd();
  1238   if( d < 0.0 ) return Type::DOUBLE;
  1239   return TypeD::make( SharedRuntime::dlog( d ) );
  1242 //=============================================================================
  1243 //------------------------------Value------------------------------------------
  1244 // Compute log10
  1245 const Type *Log10DNode::Value( PhaseTransform *phase ) const {
  1246   const Type *t1 = phase->type( in(1) );
  1247   if( t1 == Type::TOP ) return Type::TOP;
  1248   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1249   double d = t1->getd();
  1250   if( d < 0.0 ) return Type::DOUBLE;
  1251   return TypeD::make( SharedRuntime::dlog10( d ) );
  1254 //=============================================================================
  1255 //------------------------------Value------------------------------------------
  1256 // Compute exp
  1257 const Type *ExpDNode::Value( PhaseTransform *phase ) const {
  1258   const Type *t1 = phase->type( in(1) );
  1259   if( t1 == Type::TOP ) return Type::TOP;
  1260   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1261   double d = t1->getd();
  1262   if( d < 0.0 ) return Type::DOUBLE;
  1263   return TypeD::make( SharedRuntime::dexp( d ) );
  1267 //=============================================================================
  1268 //------------------------------Value------------------------------------------
  1269 // Compute pow
  1270 const Type *PowDNode::Value( PhaseTransform *phase ) const {
  1271   const Type *t1 = phase->type( in(1) );
  1272   if( t1 == Type::TOP ) return Type::TOP;
  1273   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1274   const Type *t2 = phase->type( in(2) );
  1275   if( t2 == Type::TOP ) return Type::TOP;
  1276   if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
  1277   double d1 = t1->getd();
  1278   double d2 = t2->getd();
  1279   if( d1 < 0.0 ) return Type::DOUBLE;
  1280   if( d2 < 0.0 ) return Type::DOUBLE;
  1281   return TypeD::make( SharedRuntime::dpow( d1, d2 ) );

mercurial