src/share/vm/opto/cfgnode.cpp

Wed, 02 Jul 2008 12:55:16 -0700

author
xdono
date
Wed, 02 Jul 2008 12:55:16 -0700
changeset 631
d1605aabd0a1
parent 619
65fe2bd88839
child 670
9c2ecc2ffb12
permissions
-rw-r--r--

6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_cfgnode.cpp.incl"
    32 //=============================================================================
    33 //------------------------------Value------------------------------------------
    34 // Compute the type of the RegionNode.
    35 const Type *RegionNode::Value( PhaseTransform *phase ) const {
    36   for( uint i=1; i<req(); ++i ) {       // For all paths in
    37     Node *n = in(i);            // Get Control source
    38     if( !n ) continue;          // Missing inputs are TOP
    39     if( phase->type(n) == Type::CONTROL )
    40       return Type::CONTROL;
    41   }
    42   return Type::TOP;             // All paths dead?  Then so are we
    43 }
    45 //------------------------------Identity---------------------------------------
    46 // Check for Region being Identity.
    47 Node *RegionNode::Identity( PhaseTransform *phase ) {
    48   // Cannot have Region be an identity, even if it has only 1 input.
    49   // Phi users cannot have their Region input folded away for them,
    50   // since they need to select the proper data input
    51   return this;
    52 }
    54 //------------------------------merge_region-----------------------------------
    55 // If a Region flows into a Region, merge into one big happy merge.  This is
    56 // hard to do if there is stuff that has to happen
    57 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
    58   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
    59     return NULL;
    60   Node *progress = NULL;        // Progress flag
    61   PhaseIterGVN *igvn = phase->is_IterGVN();
    63   uint rreq = region->req();
    64   for( uint i = 1; i < rreq; i++ ) {
    65     Node *r = region->in(i);
    66     if( r && r->Opcode() == Op_Region && // Found a region?
    67         r->in(0) == r &&        // Not already collapsed?
    68         r != region &&          // Avoid stupid situations
    69         r->outcnt() == 2 ) {    // Self user and 'region' user only?
    70       assert(!r->as_Region()->has_phi(), "no phi users");
    71       if( !progress ) {         // No progress
    72         if (region->has_phi()) {
    73           return NULL;        // Only flatten if no Phi users
    74           // igvn->hash_delete( phi );
    75         }
    76         igvn->hash_delete( region );
    77         progress = region;      // Making progress
    78       }
    79       igvn->hash_delete( r );
    81       // Append inputs to 'r' onto 'region'
    82       for( uint j = 1; j < r->req(); j++ ) {
    83         // Move an input from 'r' to 'region'
    84         region->add_req(r->in(j));
    85         r->set_req(j, phase->C->top());
    86         // Update phis of 'region'
    87         //for( uint k = 0; k < max; k++ ) {
    88         //  Node *phi = region->out(k);
    89         //  if( phi->is_Phi() ) {
    90         //    phi->add_req(phi->in(i));
    91         //  }
    92         //}
    94         rreq++;                 // One more input to Region
    95       } // Found a region to merge into Region
    96       // Clobber pointer to the now dead 'r'
    97       region->set_req(i, phase->C->top());
    98     }
    99   }
   101   return progress;
   102 }
   106 //--------------------------------has_phi--------------------------------------
   107 // Helper function: Return any PhiNode that uses this region or NULL
   108 PhiNode* RegionNode::has_phi() const {
   109   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
   110     Node* phi = fast_out(i);
   111     if (phi->is_Phi()) {   // Check for Phi users
   112       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
   113       return phi->as_Phi();  // this one is good enough
   114     }
   115   }
   117   return NULL;
   118 }
   121 //-----------------------------has_unique_phi----------------------------------
   122 // Helper function: Return the only PhiNode that uses this region or NULL
   123 PhiNode* RegionNode::has_unique_phi() const {
   124   // Check that only one use is a Phi
   125   PhiNode* only_phi = NULL;
   126   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
   127     Node* phi = fast_out(i);
   128     if (phi->is_Phi()) {   // Check for Phi users
   129       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
   130       if (only_phi == NULL) {
   131         only_phi = phi->as_Phi();
   132       } else {
   133         return NULL;  // multiple phis
   134       }
   135     }
   136   }
   138   return only_phi;
   139 }
   142 //------------------------------check_phi_clipping-----------------------------
   143 // Helper function for RegionNode's identification of FP clipping
   144 // Check inputs to the Phi
   145 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
   146   min     = NULL;
   147   max     = NULL;
   148   val     = NULL;
   149   min_idx = 0;
   150   max_idx = 0;
   151   val_idx = 0;
   152   uint  phi_max = phi->req();
   153   if( phi_max == 4 ) {
   154     for( uint j = 1; j < phi_max; ++j ) {
   155       Node *n = phi->in(j);
   156       int opcode = n->Opcode();
   157       switch( opcode ) {
   158       case Op_ConI:
   159         {
   160           if( min == NULL ) {
   161             min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
   162             min_idx = j;
   163           } else {
   164             max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
   165             max_idx = j;
   166             if( min->get_int() > max->get_int() ) {
   167               // Swap min and max
   168               ConNode *temp;
   169               uint     temp_idx;
   170               temp     = min;     min     = max;     max     = temp;
   171               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
   172             }
   173           }
   174         }
   175         break;
   176       default:
   177         {
   178           val = n;
   179           val_idx = j;
   180         }
   181         break;
   182       }
   183     }
   184   }
   185   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
   186 }
   189 //------------------------------check_if_clipping------------------------------
   190 // Helper function for RegionNode's identification of FP clipping
   191 // Check that inputs to Region come from two IfNodes,
   192 //
   193 //            If
   194 //      False    True
   195 //       If        |
   196 //  False  True    |
   197 //    |      |     |
   198 //  RegionNode_inputs
   199 //
   200 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
   201   top_if = NULL;
   202   bot_if = NULL;
   204   // Check control structure above RegionNode for (if  ( if  ) )
   205   Node *in1 = region->in(1);
   206   Node *in2 = region->in(2);
   207   Node *in3 = region->in(3);
   208   // Check that all inputs are projections
   209   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
   210     Node *in10 = in1->in(0);
   211     Node *in20 = in2->in(0);
   212     Node *in30 = in3->in(0);
   213     // Check that #1 and #2 are ifTrue and ifFalse from same If
   214     if( in10 != NULL && in10->is_If() &&
   215         in20 != NULL && in20->is_If() &&
   216         in30 != NULL && in30->is_If() && in10 == in20 &&
   217         (in1->Opcode() != in2->Opcode()) ) {
   218       Node  *in100 = in10->in(0);
   219       Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
   220       // Check that control for in10 comes from other branch of IF from in3
   221       if( in1000 != NULL && in1000->is_If() &&
   222           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
   223         // Control pattern checks
   224         top_if = (IfNode*)in1000;
   225         bot_if = (IfNode*)in10;
   226       }
   227     }
   228   }
   230   return (top_if != NULL);
   231 }
   234 //------------------------------check_convf2i_clipping-------------------------
   235 // Helper function for RegionNode's identification of FP clipping
   236 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
   237 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
   238   convf2i = NULL;
   240   // Check for the RShiftNode
   241   Node *rshift = phi->in(idx);
   242   assert( rshift, "Previous checks ensure phi input is present");
   243   if( rshift->Opcode() != Op_RShiftI )  { return false; }
   245   // Check for the LShiftNode
   246   Node *lshift = rshift->in(1);
   247   assert( lshift, "Previous checks ensure phi input is present");
   248   if( lshift->Opcode() != Op_LShiftI )  { return false; }
   250   // Check for the ConvF2INode
   251   Node *conv = lshift->in(1);
   252   if( conv->Opcode() != Op_ConvF2I ) { return false; }
   254   // Check that shift amounts are only to get sign bits set after F2I
   255   jint max_cutoff     = max->get_int();
   256   jint min_cutoff     = min->get_int();
   257   jint left_shift     = lshift->in(2)->get_int();
   258   jint right_shift    = rshift->in(2)->get_int();
   259   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
   260   if( left_shift != right_shift ||
   261       0 > left_shift || left_shift >= BitsPerJavaInteger ||
   262       max_post_shift < max_cutoff ||
   263       max_post_shift < -min_cutoff ) {
   264     // Shifts are necessary but current transformation eliminates them
   265     return false;
   266   }
   268   // OK to return the result of ConvF2I without shifting
   269   convf2i = (ConvF2INode*)conv;
   270   return true;
   271 }
   274 //------------------------------check_compare_clipping-------------------------
   275 // Helper function for RegionNode's identification of FP clipping
   276 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
   277   Node *i1 = iff->in(1);
   278   if ( !i1->is_Bool() ) { return false; }
   279   BoolNode *bool1 = i1->as_Bool();
   280   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
   281   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
   282   const Node *cmpF = bool1->in(1);
   283   if( cmpF->Opcode() != Op_CmpF )      { return false; }
   284   // Test that the float value being compared against
   285   // is equivalent to the int value used as a limit
   286   Node *nodef = cmpF->in(2);
   287   if( nodef->Opcode() != Op_ConF ) { return false; }
   288   jfloat conf = nodef->getf();
   289   jint   coni = limit->get_int();
   290   if( ((int)conf) != coni )        { return false; }
   291   input = cmpF->in(1);
   292   return true;
   293 }
   295 //------------------------------is_unreachable_region--------------------------
   296 // Find if the Region node is reachable from the root.
   297 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
   298   assert(req() == 2, "");
   300   // First, cut the simple case of fallthrough region when NONE of
   301   // region's phis references itself directly or through a data node.
   302   uint max = outcnt();
   303   uint i;
   304   for (i = 0; i < max; i++) {
   305     Node* phi = raw_out(i);
   306     if (phi != NULL && phi->is_Phi()) {
   307       assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
   308       if (phi->outcnt() == 0)
   309         continue; // Safe case - no loops
   310       if (phi->outcnt() == 1) {
   311         Node* u = phi->raw_out(0);
   312         // Skip if only one use is an other Phi or Call or Uncommon trap.
   313         // It is safe to consider this case as fallthrough.
   314         if (u != NULL && (u->is_Phi() || u->is_CFG()))
   315           continue;
   316       }
   317       // Check when phi references itself directly or through an other node.
   318       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
   319         break; // Found possible unsafe data loop.
   320     }
   321   }
   322   if (i >= max)
   323     return false; // An unsafe case was NOT found - don't need graph walk.
   325   // Unsafe case - check if the Region node is reachable from root.
   326   ResourceMark rm;
   328   Arena *a = Thread::current()->resource_area();
   329   Node_List nstack(a);
   330   VectorSet visited(a);
   332   // Mark all control nodes reachable from root outputs
   333   Node *n = (Node*)phase->C->root();
   334   nstack.push(n);
   335   visited.set(n->_idx);
   336   while (nstack.size() != 0) {
   337     n = nstack.pop();
   338     uint max = n->outcnt();
   339     for (uint i = 0; i < max; i++) {
   340       Node* m = n->raw_out(i);
   341       if (m != NULL && m->is_CFG()) {
   342         if (phase->eqv(m, this)) {
   343           return false; // We reached the Region node - it is not dead.
   344         }
   345         if (!visited.test_set(m->_idx))
   346           nstack.push(m);
   347       }
   348     }
   349   }
   351   return true; // The Region node is unreachable - it is dead.
   352 }
   354 //------------------------------Ideal------------------------------------------
   355 // Return a node which is more "ideal" than the current node.  Must preserve
   356 // the CFG, but we can still strip out dead paths.
   357 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   358   if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
   359   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
   361   // Check for RegionNode with no Phi users and both inputs come from either
   362   // arm of the same IF.  If found, then the control-flow split is useless.
   363   bool has_phis = false;
   364   if (can_reshape) {            // Need DU info to check for Phi users
   365     has_phis = (has_phi() != NULL);       // Cache result
   366     if (!has_phis) {            // No Phi users?  Nothing merging?
   367       for (uint i = 1; i < req()-1; i++) {
   368         Node *if1 = in(i);
   369         if( !if1 ) continue;
   370         Node *iff = if1->in(0);
   371         if( !iff || !iff->is_If() ) continue;
   372         for( uint j=i+1; j<req(); j++ ) {
   373           if( in(j) && in(j)->in(0) == iff &&
   374               if1->Opcode() != in(j)->Opcode() ) {
   375             // Add the IF Projections to the worklist. They (and the IF itself)
   376             // will be eliminated if dead.
   377             phase->is_IterGVN()->add_users_to_worklist(iff);
   378             set_req(i, iff->in(0));// Skip around the useless IF diamond
   379             set_req(j, NULL);
   380             return this;      // Record progress
   381           }
   382         }
   383       }
   384     }
   385   }
   387   // Remove TOP or NULL input paths. If only 1 input path remains, this Region
   388   // degrades to a copy.
   389   bool add_to_worklist = false;
   390   int cnt = 0;                  // Count of values merging
   391   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
   392   int del_it = 0;               // The last input path we delete
   393   // For all inputs...
   394   for( uint i=1; i<req(); ++i ){// For all paths in
   395     Node *n = in(i);            // Get the input
   396     if( n != NULL ) {
   397       // Remove useless control copy inputs
   398       if( n->is_Region() && n->as_Region()->is_copy() ) {
   399         set_req(i, n->nonnull_req());
   400         i--;
   401         continue;
   402       }
   403       if( n->is_Proj() ) {      // Remove useless rethrows
   404         Node *call = n->in(0);
   405         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
   406           set_req(i, call->in(0));
   407           i--;
   408           continue;
   409         }
   410       }
   411       if( phase->type(n) == Type::TOP ) {
   412         set_req(i, NULL);       // Ignore TOP inputs
   413         i--;
   414         continue;
   415       }
   416       cnt++;                    // One more value merging
   418     } else if (can_reshape) {   // Else found dead path with DU info
   419       PhaseIterGVN *igvn = phase->is_IterGVN();
   420       del_req(i);               // Yank path from self
   421       del_it = i;
   422       uint max = outcnt();
   423       DUIterator j;
   424       bool progress = true;
   425       while(progress) {         // Need to establish property over all users
   426         progress = false;
   427         for (j = outs(); has_out(j); j++) {
   428           Node *n = out(j);
   429           if( n->req() != req() && n->is_Phi() ) {
   430             assert( n->in(0) == this, "" );
   431             igvn->hash_delete(n); // Yank from hash before hacking edges
   432             n->set_req_X(i,NULL,igvn);// Correct DU info
   433             n->del_req(i);        // Yank path from Phis
   434             if( max != outcnt() ) {
   435               progress = true;
   436               j = refresh_out_pos(j);
   437               max = outcnt();
   438             }
   439           }
   440         }
   441       }
   442       add_to_worklist = true;
   443       i--;
   444     }
   445   }
   447   if (can_reshape && cnt == 1) {
   448     // Is it dead loop?
   449     // If it is LoopNopde it had 2 (+1 itself) inputs and
   450     // one of them was cut. The loop is dead if it was EntryContol.
   451     assert(!this->is_Loop() || cnt_orig == 3, "Loop node should have 3 inputs");
   452     if (this->is_Loop() && del_it == LoopNode::EntryControl ||
   453        !this->is_Loop() && has_phis && is_unreachable_region(phase)) {
   454       // Yes,  the region will be removed during the next step below.
   455       // Cut the backedge input and remove phis since no data paths left.
   456       // We don't cut outputs to other nodes here since we need to put them
   457       // on the worklist.
   458       del_req(1);
   459       cnt = 0;
   460       assert( req() == 1, "no more inputs expected" );
   461       uint max = outcnt();
   462       bool progress = true;
   463       Node *top = phase->C->top();
   464       PhaseIterGVN *igvn = phase->is_IterGVN();
   465       DUIterator j;
   466       while(progress) {
   467         progress = false;
   468         for (j = outs(); has_out(j); j++) {
   469           Node *n = out(j);
   470           if( n->is_Phi() ) {
   471             assert( igvn->eqv(n->in(0), this), "" );
   472             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
   473             // Break dead loop data path.
   474             // Eagerly replace phis with top to avoid phis copies generation.
   475             igvn->add_users_to_worklist(n);
   476             igvn->hash_delete(n); // Yank from hash before hacking edges
   477             igvn->subsume_node(n, top);
   478             if( max != outcnt() ) {
   479               progress = true;
   480               j = refresh_out_pos(j);
   481               max = outcnt();
   482             }
   483           }
   484         }
   485       }
   486       add_to_worklist = true;
   487     }
   488   }
   489   if (add_to_worklist) {
   490     phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
   491   }
   493   if( cnt <= 1 ) {              // Only 1 path in?
   494     set_req(0, NULL);           // Null control input for region copy
   495     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
   496       // No inputs or all inputs are NULL.
   497       return NULL;
   498     } else if (can_reshape) {   // Optimization phase - remove the node
   499       PhaseIterGVN *igvn = phase->is_IterGVN();
   500       Node *parent_ctrl;
   501       if( cnt == 0 ) {
   502         assert( req() == 1, "no inputs expected" );
   503         // During IGVN phase such region will be subsumed by TOP node
   504         // so region's phis will have TOP as control node.
   505         // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
   506         // Also set other user's input to top.
   507         parent_ctrl = phase->C->top();
   508       } else {
   509         // The fallthrough case since we already checked dead loops above.
   510         parent_ctrl = in(1);
   511         assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
   512         assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
   513       }
   514       if (!add_to_worklist)
   515         igvn->add_users_to_worklist(this); // Check for further allowed opts
   516       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
   517         Node* n = last_out(i);
   518         igvn->hash_delete(n); // Remove from worklist before modifying edges
   519         if( n->is_Phi() ) {   // Collapse all Phis
   520           // Eagerly replace phis to avoid copies generation.
   521           igvn->add_users_to_worklist(n);
   522           igvn->hash_delete(n); // Yank from hash before hacking edges
   523           if( cnt == 0 ) {
   524             assert( n->req() == 1, "No data inputs expected" );
   525             igvn->subsume_node(n, parent_ctrl); // replaced by top
   526           } else {
   527             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
   528             Node* in1 = n->in(1);               // replaced by unique input
   529             if( n->as_Phi()->is_unsafe_data_reference(in1) )
   530               in1 = phase->C->top();            // replaced by top
   531             igvn->subsume_node(n, in1);
   532           }
   533         }
   534         else if( n->is_Region() ) { // Update all incoming edges
   535           assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
   536           uint uses_found = 0;
   537           for( uint k=1; k < n->req(); k++ ) {
   538             if( n->in(k) == this ) {
   539               n->set_req(k, parent_ctrl);
   540               uses_found++;
   541             }
   542           }
   543           if( uses_found > 1 ) { // (--i) done at the end of the loop.
   544             i -= (uses_found - 1);
   545           }
   546         }
   547         else {
   548           assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
   549           n->set_req(0, parent_ctrl);
   550         }
   551 #ifdef ASSERT
   552         for( uint k=0; k < n->req(); k++ ) {
   553           assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
   554         }
   555 #endif
   556       }
   557       // Remove the RegionNode itself from DefUse info
   558       igvn->remove_dead_node(this);
   559       return NULL;
   560     }
   561     return this;                // Record progress
   562   }
   565   // If a Region flows into a Region, merge into one big happy merge.
   566   if (can_reshape) {
   567     Node *m = merge_region(this, phase);
   568     if (m != NULL)  return m;
   569   }
   571   // Check if this region is the root of a clipping idiom on floats
   572   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
   573     // Check that only one use is a Phi and that it simplifies to two constants +
   574     PhiNode* phi = has_unique_phi();
   575     if (phi != NULL) {          // One Phi user
   576       // Check inputs to the Phi
   577       ConNode *min;
   578       ConNode *max;
   579       Node    *val;
   580       uint     min_idx;
   581       uint     max_idx;
   582       uint     val_idx;
   583       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
   584         IfNode *top_if;
   585         IfNode *bot_if;
   586         if( check_if_clipping( this, bot_if, top_if ) ) {
   587           // Control pattern checks, now verify compares
   588           Node   *top_in = NULL;   // value being compared against
   589           Node   *bot_in = NULL;
   590           if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
   591               check_compare_clipping( false, top_if, max, top_in ) ) {
   592             if( bot_in == top_in ) {
   593               PhaseIterGVN *gvn = phase->is_IterGVN();
   594               assert( gvn != NULL, "Only had DefUse info in IterGVN");
   595               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
   597               // Check for the ConvF2INode
   598               ConvF2INode *convf2i;
   599               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
   600                 convf2i->in(1) == bot_in ) {
   601                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
   602                 // max test
   603                 Node *cmp   = gvn->register_new_node_with_optimizer(new (phase->C, 3) CmpINode( convf2i, min ));
   604                 Node *boo   = gvn->register_new_node_with_optimizer(new (phase->C, 2) BoolNode( cmp, BoolTest::lt ));
   605                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C, 2) IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
   606                 Node *if_min= gvn->register_new_node_with_optimizer(new (phase->C, 1) IfTrueNode (iff));
   607                 Node *ifF   = gvn->register_new_node_with_optimizer(new (phase->C, 1) IfFalseNode(iff));
   608                 // min test
   609                 cmp         = gvn->register_new_node_with_optimizer(new (phase->C, 3) CmpINode( convf2i, max ));
   610                 boo         = gvn->register_new_node_with_optimizer(new (phase->C, 2) BoolNode( cmp, BoolTest::gt ));
   611                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C, 2) IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
   612                 Node *if_max= gvn->register_new_node_with_optimizer(new (phase->C, 1) IfTrueNode (iff));
   613                 ifF         = gvn->register_new_node_with_optimizer(new (phase->C, 1) IfFalseNode(iff));
   614                 // update input edges to region node
   615                 set_req_X( min_idx, if_min, gvn );
   616                 set_req_X( max_idx, if_max, gvn );
   617                 set_req_X( val_idx, ifF,    gvn );
   618                 // remove unnecessary 'LShiftI; RShiftI' idiom
   619                 gvn->hash_delete(phi);
   620                 phi->set_req_X( val_idx, convf2i, gvn );
   621                 gvn->hash_find_insert(phi);
   622                 // Return transformed region node
   623                 return this;
   624               }
   625             }
   626           }
   627         }
   628       }
   629     }
   630   }
   632   return NULL;
   633 }
   637 const RegMask &RegionNode::out_RegMask() const {
   638   return RegMask::Empty;
   639 }
   641 // Find the one non-null required input.  RegionNode only
   642 Node *Node::nonnull_req() const {
   643   assert( is_Region(), "" );
   644   for( uint i = 1; i < _cnt; i++ )
   645     if( in(i) )
   646       return in(i);
   647   ShouldNotReachHere();
   648   return NULL;
   649 }
   652 //=============================================================================
   653 // note that these functions assume that the _adr_type field is flattened
   654 uint PhiNode::hash() const {
   655   const Type* at = _adr_type;
   656   return TypeNode::hash() + (at ? at->hash() : 0);
   657 }
   658 uint PhiNode::cmp( const Node &n ) const {
   659   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
   660 }
   661 static inline
   662 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
   663   if (at == NULL || at == TypePtr::BOTTOM)  return at;
   664   return Compile::current()->alias_type(at)->adr_type();
   665 }
   667 //----------------------------make---------------------------------------------
   668 // create a new phi with edges matching r and set (initially) to x
   669 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
   670   uint preds = r->req();   // Number of predecessor paths
   671   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
   672   PhiNode* p = new (Compile::current(), preds) PhiNode(r, t, at);
   673   for (uint j = 1; j < preds; j++) {
   674     // Fill in all inputs, except those which the region does not yet have
   675     if (r->in(j) != NULL)
   676       p->init_req(j, x);
   677   }
   678   return p;
   679 }
   680 PhiNode* PhiNode::make(Node* r, Node* x) {
   681   const Type*    t  = x->bottom_type();
   682   const TypePtr* at = NULL;
   683   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
   684   return make(r, x, t, at);
   685 }
   686 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
   687   const Type*    t  = x->bottom_type();
   688   const TypePtr* at = NULL;
   689   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
   690   return new (Compile::current(), r->req()) PhiNode(r, t, at);
   691 }
   694 //------------------------slice_memory-----------------------------------------
   695 // create a new phi with narrowed memory type
   696 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
   697   PhiNode* mem = (PhiNode*) clone();
   698   *(const TypePtr**)&mem->_adr_type = adr_type;
   699   // convert self-loops, or else we get a bad graph
   700   for (uint i = 1; i < req(); i++) {
   701     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
   702   }
   703   mem->verify_adr_type();
   704   return mem;
   705 }
   707 //------------------------split_out_instance-----------------------------------
   708 // Split out an instance type from a bottom phi.
   709 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
   710   const TypeOopPtr *t_oop = at->isa_oopptr();
   711   assert(t_oop != NULL && t_oop->is_instance(), "expecting instance oopptr");
   712   const TypePtr *t = adr_type();
   713   assert(type() == Type::MEMORY &&
   714          (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   715           t->isa_oopptr() && !t->is_oopptr()->is_instance() &&
   716           t->is_oopptr()->cast_to_instance(t_oop->instance_id()) == t_oop),
   717          "bottom or raw memory required");
   719   // Check if an appropriate node already exists.
   720   Node *region = in(0);
   721   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
   722     Node* use = region->fast_out(k);
   723     if( use->is_Phi()) {
   724       PhiNode *phi2 = use->as_Phi();
   725       if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
   726         return phi2;
   727       }
   728     }
   729   }
   730   Compile *C = igvn->C;
   731   Arena *a = Thread::current()->resource_area();
   732   Node_Array node_map = new Node_Array(a);
   733   Node_Stack stack(a, C->unique() >> 4);
   734   PhiNode *nphi = slice_memory(at);
   735   igvn->register_new_node_with_optimizer( nphi );
   736   node_map.map(_idx, nphi);
   737   stack.push((Node *)this, 1);
   738   while(!stack.is_empty()) {
   739     PhiNode *ophi = stack.node()->as_Phi();
   740     uint i = stack.index();
   741     assert(i >= 1, "not control edge");
   742     stack.pop();
   743     nphi = node_map[ophi->_idx]->as_Phi();
   744     for (; i < ophi->req(); i++) {
   745       Node *in = ophi->in(i);
   746       if (in == NULL || igvn->type(in) == Type::TOP)
   747         continue;
   748       Node *opt = MemNode::optimize_simple_memory_chain(in, at, igvn);
   749       PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
   750       if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
   751         opt = node_map[optphi->_idx];
   752         if (opt == NULL) {
   753           stack.push(ophi, i);
   754           nphi = optphi->slice_memory(at);
   755           igvn->register_new_node_with_optimizer( nphi );
   756           node_map.map(optphi->_idx, nphi);
   757           ophi = optphi;
   758           i = 0; // will get incremented at top of loop
   759           continue;
   760         }
   761       }
   762       nphi->set_req(i, opt);
   763     }
   764   }
   765   return nphi;
   766 }
   768 //------------------------verify_adr_type--------------------------------------
   769 #ifdef ASSERT
   770 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
   771   if (visited.test_set(_idx))  return;  //already visited
   773   // recheck constructor invariants:
   774   verify_adr_type(false);
   776   // recheck local phi/phi consistency:
   777   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
   778          "adr_type must be consistent across phi nest");
   780   // walk around
   781   for (uint i = 1; i < req(); i++) {
   782     Node* n = in(i);
   783     if (n == NULL)  continue;
   784     const Node* np = in(i);
   785     if (np->is_Phi()) {
   786       np->as_Phi()->verify_adr_type(visited, at);
   787     } else if (n->bottom_type() == Type::TOP
   788                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
   789       // ignore top inputs
   790     } else {
   791       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
   792       // recheck phi/non-phi consistency at leaves:
   793       assert((nat != NULL) == (at != NULL), "");
   794       assert(nat == at || nat == TypePtr::BOTTOM,
   795              "adr_type must be consistent at leaves of phi nest");
   796     }
   797   }
   798 }
   800 // Verify a whole nest of phis rooted at this one.
   801 void PhiNode::verify_adr_type(bool recursive) const {
   802   if (is_error_reported())  return;  // muzzle asserts when debugging an error
   803   if (Node::in_dump())      return;  // muzzle asserts when printing
   805   assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
   807   if (!VerifyAliases)       return;  // verify thoroughly only if requested
   809   assert(_adr_type == flatten_phi_adr_type(_adr_type),
   810          "Phi::adr_type must be pre-normalized");
   812   if (recursive) {
   813     VectorSet visited(Thread::current()->resource_area());
   814     verify_adr_type(visited, _adr_type);
   815   }
   816 }
   817 #endif
   820 //------------------------------Value------------------------------------------
   821 // Compute the type of the PhiNode
   822 const Type *PhiNode::Value( PhaseTransform *phase ) const {
   823   Node *r = in(0);              // RegionNode
   824   if( !r )                      // Copy or dead
   825     return in(1) ? phase->type(in(1)) : Type::TOP;
   827   // Note: During parsing, phis are often transformed before their regions.
   828   // This means we have to use type_or_null to defend against untyped regions.
   829   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
   830     return Type::TOP;
   832   // Check for trip-counted loop.  If so, be smarter.
   833   CountedLoopNode *l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
   834   if( l && l->can_be_counted_loop(phase) &&
   835       ((const Node*)l->phi() == this) ) { // Trip counted loop!
   836     // protect against init_trip() or limit() returning NULL
   837     const Node *init   = l->init_trip();
   838     const Node *limit  = l->limit();
   839     if( init != NULL && limit != NULL && l->stride_is_con() ) {
   840       const TypeInt *lo = init ->bottom_type()->isa_int();
   841       const TypeInt *hi = limit->bottom_type()->isa_int();
   842       if( lo && hi ) {            // Dying loops might have TOP here
   843         int stride = l->stride_con();
   844         if( stride < 0 ) {          // Down-counter loop
   845           const TypeInt *tmp = lo; lo = hi; hi = tmp;
   846           stride = -stride;
   847         }
   848         if( lo->_hi < hi->_lo )     // Reversed endpoints are well defined :-(
   849           return TypeInt::make(lo->_lo,hi->_hi,3);
   850       }
   851     }
   852   }
   854   // Until we have harmony between classes and interfaces in the type
   855   // lattice, we must tread carefully around phis which implicitly
   856   // convert the one to the other.
   857   const TypeInstPtr* ttip = _type->isa_narrowoop() ? _type->isa_narrowoop()->make_oopptr()->isa_instptr() :_type->isa_instptr();
   858   bool is_intf = false;
   859   if (ttip != NULL) {
   860     ciKlass* k = ttip->klass();
   861     if (k->is_loaded() && k->is_interface())
   862       is_intf = true;
   863   }
   865   // Default case: merge all inputs
   866   const Type *t = Type::TOP;        // Merged type starting value
   867   for (uint i = 1; i < req(); ++i) {// For all paths in
   868     // Reachable control path?
   869     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
   870       const Type* ti = phase->type(in(i));
   871       // We assume that each input of an interface-valued Phi is a true
   872       // subtype of that interface.  This might not be true of the meet
   873       // of all the input types.  The lattice is not distributive in
   874       // such cases.  Ward off asserts in type.cpp by refusing to do
   875       // meets between interfaces and proper classes.
   876       const TypeInstPtr* tiip = ti->isa_narrowoop() ? ti->is_narrowoop()->make_oopptr()->isa_instptr() : ti->isa_instptr();
   877       if (tiip) {
   878         bool ti_is_intf = false;
   879         ciKlass* k = tiip->klass();
   880         if (k->is_loaded() && k->is_interface())
   881           ti_is_intf = true;
   882         if (is_intf != ti_is_intf)
   883           { t = _type; break; }
   884       }
   885       t = t->meet(ti);
   886     }
   887   }
   889   // The worst-case type (from ciTypeFlow) should be consistent with "t".
   890   // That is, we expect that "t->higher_equal(_type)" holds true.
   891   // There are various exceptions:
   892   // - Inputs which are phis might in fact be widened unnecessarily.
   893   //   For example, an input might be a widened int while the phi is a short.
   894   // - Inputs might be BotPtrs but this phi is dependent on a null check,
   895   //   and postCCP has removed the cast which encodes the result of the check.
   896   // - The type of this phi is an interface, and the inputs are classes.
   897   // - Value calls on inputs might produce fuzzy results.
   898   //   (Occurrences of this case suggest improvements to Value methods.)
   899   //
   900   // It is not possible to see Type::BOTTOM values as phi inputs,
   901   // because the ciTypeFlow pre-pass produces verifier-quality types.
   902   const Type* ft = t->filter(_type);  // Worst case type
   904 #ifdef ASSERT
   905   // The following logic has been moved into TypeOopPtr::filter.
   906   const Type* jt = t->join(_type);
   907   if( jt->empty() ) {           // Emptied out???
   909     // Check for evil case of 't' being a class and '_type' expecting an
   910     // interface.  This can happen because the bytecodes do not contain
   911     // enough type info to distinguish a Java-level interface variable
   912     // from a Java-level object variable.  If we meet 2 classes which
   913     // both implement interface I, but their meet is at 'j/l/O' which
   914     // doesn't implement I, we have no way to tell if the result should
   915     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
   916     // into a Phi which "knows" it's an Interface type we'll have to
   917     // uplift the type.
   918     if( !t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface() )
   919       { assert(ft == _type, ""); } // Uplift to interface
   920     // Otherwise it's something stupid like non-overlapping int ranges
   921     // found on dying counted loops.
   922     else
   923       { assert(ft == Type::TOP, ""); } // Canonical empty value
   924   }
   926   else {
   928     // If we have an interface-typed Phi and we narrow to a class type, the join
   929     // should report back the class.  However, if we have a J/L/Object
   930     // class-typed Phi and an interface flows in, it's possible that the meet &
   931     // join report an interface back out.  This isn't possible but happens
   932     // because the type system doesn't interact well with interfaces.
   933     const TypeInstPtr *jtip = jt->isa_narrowoop() ? jt->isa_narrowoop()->make_oopptr()->isa_instptr() : jt->isa_instptr();
   934     if( jtip && ttip ) {
   935       if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
   936           ttip->is_loaded() && !ttip->klass()->is_interface() ) {
   937         // Happens in a CTW of rt.jar, 320-341, no extra flags
   938         assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
   939                ft->isa_narrowoop() && ft->isa_narrowoop()->make_oopptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
   940         jt = ft;
   941       }
   942     }
   943     if (jt != ft && jt->base() == ft->base()) {
   944       if (jt->isa_int() &&
   945           jt->is_int()->_lo == ft->is_int()->_lo &&
   946           jt->is_int()->_hi == ft->is_int()->_hi)
   947         jt = ft;
   948       if (jt->isa_long() &&
   949           jt->is_long()->_lo == ft->is_long()->_lo &&
   950           jt->is_long()->_hi == ft->is_long()->_hi)
   951         jt = ft;
   952     }
   953     if (jt != ft) {
   954       tty->print("merge type:  "); t->dump(); tty->cr();
   955       tty->print("kill type:   "); _type->dump(); tty->cr();
   956       tty->print("join type:   "); jt->dump(); tty->cr();
   957       tty->print("filter type: "); ft->dump(); tty->cr();
   958     }
   959     assert(jt == ft, "");
   960   }
   961 #endif //ASSERT
   963   // Deal with conversion problems found in data loops.
   964   ft = phase->saturate(ft, phase->type_or_null(this), _type);
   966   return ft;
   967 }
   970 //------------------------------is_diamond_phi---------------------------------
   971 // Does this Phi represent a simple well-shaped diamond merge?  Return the
   972 // index of the true path or 0 otherwise.
   973 int PhiNode::is_diamond_phi() const {
   974   // Check for a 2-path merge
   975   Node *region = in(0);
   976   if( !region ) return 0;
   977   if( region->req() != 3 ) return 0;
   978   if(         req() != 3 ) return 0;
   979   // Check that both paths come from the same If
   980   Node *ifp1 = region->in(1);
   981   Node *ifp2 = region->in(2);
   982   if( !ifp1 || !ifp2 ) return 0;
   983   Node *iff = ifp1->in(0);
   984   if( !iff || !iff->is_If() ) return 0;
   985   if( iff != ifp2->in(0) ) return 0;
   986   // Check for a proper bool/cmp
   987   const Node *b = iff->in(1);
   988   if( !b->is_Bool() ) return 0;
   989   const Node *cmp = b->in(1);
   990   if( !cmp->is_Cmp() ) return 0;
   992   // Check for branching opposite expected
   993   if( ifp2->Opcode() == Op_IfTrue ) {
   994     assert( ifp1->Opcode() == Op_IfFalse, "" );
   995     return 2;
   996   } else {
   997     assert( ifp1->Opcode() == Op_IfTrue, "" );
   998     return 1;
   999   }
  1002 //----------------------------check_cmove_id-----------------------------------
  1003 // Check for CMove'ing a constant after comparing against the constant.
  1004 // Happens all the time now, since if we compare equality vs a constant in
  1005 // the parser, we "know" the variable is constant on one path and we force
  1006 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
  1007 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
  1008 // general in that we don't need constants.  Since CMove's are only inserted
  1009 // in very special circumstances, we do it here on generic Phi's.
  1010 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
  1011   assert(true_path !=0, "only diamond shape graph expected");
  1013   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
  1014   // phi->region->if_proj->ifnode->bool->cmp
  1015   Node*     region = in(0);
  1016   Node*     iff    = region->in(1)->in(0);
  1017   BoolNode* b      = iff->in(1)->as_Bool();
  1018   Node*     cmp    = b->in(1);
  1019   Node*     tval   = in(true_path);
  1020   Node*     fval   = in(3-true_path);
  1021   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
  1022   if (id == NULL)
  1023     return NULL;
  1025   // Either value might be a cast that depends on a branch of 'iff'.
  1026   // Since the 'id' value will float free of the diamond, either
  1027   // decast or return failure.
  1028   Node* ctl = id->in(0);
  1029   if (ctl != NULL && ctl->in(0) == iff) {
  1030     if (id->is_ConstraintCast()) {
  1031       return id->in(1);
  1032     } else {
  1033       // Don't know how to disentangle this value.
  1034       return NULL;
  1038   return id;
  1041 //------------------------------Identity---------------------------------------
  1042 // Check for Region being Identity.
  1043 Node *PhiNode::Identity( PhaseTransform *phase ) {
  1044   // Check for no merging going on
  1045   // (There used to be special-case code here when this->region->is_Loop.
  1046   // It would check for a tributary phi on the backedge that the main phi
  1047   // trivially, perhaps with a single cast.  The unique_input method
  1048   // does all this and more, by reducing such tributaries to 'this'.)
  1049   Node* uin = unique_input(phase);
  1050   if (uin != NULL) {
  1051     return uin;
  1054   int true_path = is_diamond_phi();
  1055   if (true_path != 0) {
  1056     Node* id = is_cmove_id(phase, true_path);
  1057     if (id != NULL)  return id;
  1060   return this;                     // No identity
  1063 //-----------------------------unique_input------------------------------------
  1064 // Find the unique value, discounting top, self-loops, and casts.
  1065 // Return top if there are no inputs, and self if there are multiple.
  1066 Node* PhiNode::unique_input(PhaseTransform* phase) {
  1067   //  1) One unique direct input, or
  1068   //  2) some of the inputs have an intervening ConstraintCast and
  1069   //     the type of input is the same or sharper (more specific)
  1070   //     than the phi's type.
  1071   //  3) an input is a self loop
  1072   //
  1073   //  1) input   or   2) input     or   3) input __
  1074   //     /   \           /   \               \  /  \
  1075   //     \   /          |    cast             phi  cast
  1076   //      phi            \   /               /  \  /
  1077   //                      phi               /    --
  1079   Node* r = in(0);                      // RegionNode
  1080   if (r == NULL)  return in(1);         // Already degraded to a Copy
  1081   Node* uncasted_input = NULL; // The unique uncasted input (ConstraintCasts removed)
  1082   Node* direct_input   = NULL; // The unique direct input
  1084   for (uint i = 1, cnt = req(); i < cnt; ++i) {
  1085     Node* rc = r->in(i);
  1086     if (rc == NULL || phase->type(rc) == Type::TOP)
  1087       continue;                 // ignore unreachable control path
  1088     Node* n = in(i);
  1089     Node* un = n->uncast();
  1090     if (un == NULL || un == this || phase->type(un) == Type::TOP) {
  1091       continue; // ignore if top, or in(i) and "this" are in a data cycle
  1093     // Check for a unique uncasted input
  1094     if (uncasted_input == NULL) {
  1095       uncasted_input = un;
  1096     } else if (uncasted_input != un) {
  1097       uncasted_input = NodeSentinel; // no unique uncasted input
  1099     // Check for a unique direct input
  1100     if (direct_input == NULL) {
  1101       direct_input = n;
  1102     } else if (direct_input != n) {
  1103       direct_input = NodeSentinel; // no unique direct input
  1106   if (direct_input == NULL) {
  1107     return phase->C->top();        // no inputs
  1109   assert(uncasted_input != NULL,"");
  1111   if (direct_input != NodeSentinel) {
  1112     return direct_input;           // one unique direct input
  1114   if (uncasted_input != NodeSentinel &&
  1115       phase->type(uncasted_input)->higher_equal(type())) {
  1116     return uncasted_input;         // one unique uncasted input
  1119   // Nothing.
  1120   return NULL;
  1123 //------------------------------is_x2logic-------------------------------------
  1124 // Check for simple convert-to-boolean pattern
  1125 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
  1126 // Convert Phi to an ConvIB.
  1127 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
  1128   assert(true_path !=0, "only diamond shape graph expected");
  1129   // Convert the true/false index into an expected 0/1 return.
  1130   // Map 2->0 and 1->1.
  1131   int flipped = 2-true_path;
  1133   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
  1134   // phi->region->if_proj->ifnode->bool->cmp
  1135   Node *region = phi->in(0);
  1136   Node *iff = region->in(1)->in(0);
  1137   BoolNode *b = (BoolNode*)iff->in(1);
  1138   const CmpNode *cmp = (CmpNode*)b->in(1);
  1140   Node *zero = phi->in(1);
  1141   Node *one  = phi->in(2);
  1142   const Type *tzero = phase->type( zero );
  1143   const Type *tone  = phase->type( one  );
  1145   // Check for compare vs 0
  1146   const Type *tcmp = phase->type(cmp->in(2));
  1147   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
  1148     // Allow cmp-vs-1 if the other input is bounded by 0-1
  1149     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
  1150       return NULL;
  1151     flipped = 1-flipped;        // Test is vs 1 instead of 0!
  1154   // Check for setting zero/one opposite expected
  1155   if( tzero == TypeInt::ZERO ) {
  1156     if( tone == TypeInt::ONE ) {
  1157     } else return NULL;
  1158   } else if( tzero == TypeInt::ONE ) {
  1159     if( tone == TypeInt::ZERO ) {
  1160       flipped = 1-flipped;
  1161     } else return NULL;
  1162   } else return NULL;
  1164   // Check for boolean test backwards
  1165   if( b->_test._test == BoolTest::ne ) {
  1166   } else if( b->_test._test == BoolTest::eq ) {
  1167     flipped = 1-flipped;
  1168   } else return NULL;
  1170   // Build int->bool conversion
  1171   Node *n = new (phase->C, 2) Conv2BNode( cmp->in(1) );
  1172   if( flipped )
  1173     n = new (phase->C, 3) XorINode( phase->transform(n), phase->intcon(1) );
  1175   return n;
  1178 //------------------------------is_cond_add------------------------------------
  1179 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
  1180 // To be profitable the control flow has to disappear; there can be no other
  1181 // values merging here.  We replace the test-and-branch with:
  1182 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
  1183 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
  1184 // Then convert Y to 0-or-Y and finally add.
  1185 // This is a key transform for SpecJava _201_compress.
  1186 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
  1187   assert(true_path !=0, "only diamond shape graph expected");
  1189   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
  1190   // phi->region->if_proj->ifnode->bool->cmp
  1191   RegionNode *region = (RegionNode*)phi->in(0);
  1192   Node *iff = region->in(1)->in(0);
  1193   BoolNode* b = iff->in(1)->as_Bool();
  1194   const CmpNode *cmp = (CmpNode*)b->in(1);
  1196   // Make sure only merging this one phi here
  1197   if (region->has_unique_phi() != phi)  return NULL;
  1199   // Make sure each arm of the diamond has exactly one output, which we assume
  1200   // is the region.  Otherwise, the control flow won't disappear.
  1201   if (region->in(1)->outcnt() != 1) return NULL;
  1202   if (region->in(2)->outcnt() != 1) return NULL;
  1204   // Check for "(P < Q)" of type signed int
  1205   if (b->_test._test != BoolTest::lt)  return NULL;
  1206   if (cmp->Opcode() != Op_CmpI)        return NULL;
  1208   Node *p = cmp->in(1);
  1209   Node *q = cmp->in(2);
  1210   Node *n1 = phi->in(  true_path);
  1211   Node *n2 = phi->in(3-true_path);
  1213   int op = n1->Opcode();
  1214   if( op != Op_AddI           // Need zero as additive identity
  1215       /*&&op != Op_SubI &&
  1216       op != Op_AddP &&
  1217       op != Op_XorI &&
  1218       op != Op_OrI*/ )
  1219     return NULL;
  1221   Node *x = n2;
  1222   Node *y = n1->in(1);
  1223   if( n2 == n1->in(1) ) {
  1224     y = n1->in(2);
  1225   } else if( n2 == n1->in(1) ) {
  1226   } else return NULL;
  1228   // Not so profitable if compare and add are constants
  1229   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
  1230     return NULL;
  1232   Node *cmplt = phase->transform( new (phase->C, 3) CmpLTMaskNode(p,q) );
  1233   Node *j_and   = phase->transform( new (phase->C, 3) AndINode(cmplt,y) );
  1234   return new (phase->C, 3) AddINode(j_and,x);
  1237 //------------------------------is_absolute------------------------------------
  1238 // Check for absolute value.
  1239 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
  1240   assert(true_path !=0, "only diamond shape graph expected");
  1242   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
  1243   int  phi_x_idx = 0;           // Index of phi input where to find naked x
  1245   // ABS ends with the merge of 2 control flow paths.
  1246   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
  1247   int false_path = 3 - true_path;
  1249   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
  1250   // phi->region->if_proj->ifnode->bool->cmp
  1251   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
  1253   // Check bool sense
  1254   switch( bol->_test._test ) {
  1255   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
  1256   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
  1257   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
  1258   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
  1259   default:           return NULL;                              break;
  1262   // Test is next
  1263   Node *cmp = bol->in(1);
  1264   const Type *tzero = NULL;
  1265   switch( cmp->Opcode() ) {
  1266   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
  1267   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
  1268   default: return NULL;
  1271   // Find zero input of compare; the other input is being abs'd
  1272   Node *x = NULL;
  1273   bool flip = false;
  1274   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
  1275     x = cmp->in(3 - cmp_zero_idx);
  1276   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
  1277     // The test is inverted, we should invert the result...
  1278     x = cmp->in(cmp_zero_idx);
  1279     flip = true;
  1280   } else {
  1281     return NULL;
  1284   // Next get the 2 pieces being selected, one is the original value
  1285   // and the other is the negated value.
  1286   if( phi_root->in(phi_x_idx) != x ) return NULL;
  1288   // Check other phi input for subtract node
  1289   Node *sub = phi_root->in(3 - phi_x_idx);
  1291   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
  1292   if( tzero == TypeF::ZERO ) {
  1293     if( sub->Opcode() != Op_SubF ||
  1294         sub->in(2) != x ||
  1295         phase->type(sub->in(1)) != tzero ) return NULL;
  1296     x = new (phase->C, 2) AbsFNode(x);
  1297     if (flip) {
  1298       x = new (phase->C, 3) SubFNode(sub->in(1), phase->transform(x));
  1300   } else {
  1301     if( sub->Opcode() != Op_SubD ||
  1302         sub->in(2) != x ||
  1303         phase->type(sub->in(1)) != tzero ) return NULL;
  1304     x = new (phase->C, 2) AbsDNode(x);
  1305     if (flip) {
  1306       x = new (phase->C, 3) SubDNode(sub->in(1), phase->transform(x));
  1310   return x;
  1313 //------------------------------split_once-------------------------------------
  1314 // Helper for split_flow_path
  1315 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
  1316   igvn->hash_delete(n);         // Remove from hash before hacking edges
  1318   uint j = 1;
  1319   for( uint i = phi->req()-1; i > 0; i-- ) {
  1320     if( phi->in(i) == val ) {   // Found a path with val?
  1321       // Add to NEW Region/Phi, no DU info
  1322       newn->set_req( j++, n->in(i) );
  1323       // Remove from OLD Region/Phi
  1324       n->del_req(i);
  1328   // Register the new node but do not transform it.  Cannot transform until the
  1329   // entire Region/Phi conglerate has been hacked as a single huge transform.
  1330   igvn->register_new_node_with_optimizer( newn );
  1331   // Now I can point to the new node.
  1332   n->add_req(newn);
  1333   igvn->_worklist.push(n);
  1336 //------------------------------split_flow_path--------------------------------
  1337 // Check for merging identical values and split flow paths
  1338 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
  1339   BasicType bt = phi->type()->basic_type();
  1340   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
  1341     return NULL;                // Bail out on funny non-value stuff
  1342   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
  1343     return NULL;                // third unequal input to be worth doing
  1345   // Scan for a constant
  1346   uint i;
  1347   for( i = 1; i < phi->req()-1; i++ ) {
  1348     Node *n = phi->in(i);
  1349     if( !n ) return NULL;
  1350     if( phase->type(n) == Type::TOP ) return NULL;
  1351     if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN )
  1352       break;
  1354   if( i >= phi->req() )         // Only split for constants
  1355     return NULL;
  1357   Node *val = phi->in(i);       // Constant to split for
  1358   uint hit = 0;                 // Number of times it occurs
  1360   for( ; i < phi->req(); i++ ){ // Count occurances of constant
  1361     Node *n = phi->in(i);
  1362     if( !n ) return NULL;
  1363     if( phase->type(n) == Type::TOP ) return NULL;
  1364     if( phi->in(i) == val )
  1365       hit++;
  1368   if( hit <= 1 ||               // Make sure we find 2 or more
  1369       hit == phi->req()-1 )     // and not ALL the same value
  1370     return NULL;
  1372   // Now start splitting out the flow paths that merge the same value.
  1373   // Split first the RegionNode.
  1374   PhaseIterGVN *igvn = phase->is_IterGVN();
  1375   Node *r = phi->region();
  1376   RegionNode *newr = new (phase->C, hit+1) RegionNode(hit+1);
  1377   split_once(igvn, phi, val, r, newr);
  1379   // Now split all other Phis than this one
  1380   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
  1381     Node* phi2 = r->fast_out(k);
  1382     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
  1383       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
  1384       split_once(igvn, phi, val, phi2, newphi);
  1388   // Clean up this guy
  1389   igvn->hash_delete(phi);
  1390   for( i = phi->req()-1; i > 0; i-- ) {
  1391     if( phi->in(i) == val ) {
  1392       phi->del_req(i);
  1395   phi->add_req(val);
  1397   return phi;
  1400 //=============================================================================
  1401 //------------------------------simple_data_loop_check-------------------------
  1402 //  Try to determing if the phi node in a simple safe/unsafe data loop.
  1403 //  Returns:
  1404 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
  1405 // Safe       - safe case when the phi and it's inputs reference only safe data
  1406 //              nodes;
  1407 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there
  1408 //              is no reference back to the phi - need a graph walk
  1409 //              to determine if it is in a loop;
  1410 // UnsafeLoop - unsafe case when the phi references itself directly or through
  1411 //              unsafe data node.
  1412 //  Note: a safe data node is a node which could/never reference itself during
  1413 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
  1414 //  I mark Phi nodes as safe node not only because they can reference itself
  1415 //  but also to prevent mistaking the fallthrough case inside an outer loop
  1416 //  as dead loop when the phi references itselfs through an other phi.
  1417 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
  1418   // It is unsafe loop if the phi node references itself directly.
  1419   if (in == (Node*)this)
  1420     return UnsafeLoop; // Unsafe loop
  1421   // Unsafe loop if the phi node references itself through an unsafe data node.
  1422   // Exclude cases with null inputs or data nodes which could reference
  1423   // itself (safe for dead loops).
  1424   if (in != NULL && !in->is_dead_loop_safe()) {
  1425     // Check inputs of phi's inputs also.
  1426     // It is much less expensive then full graph walk.
  1427     uint cnt = in->req();
  1428     uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
  1429     for (; i < cnt; ++i) {
  1430       Node* m = in->in(i);
  1431       if (m == (Node*)this)
  1432         return UnsafeLoop; // Unsafe loop
  1433       if (m != NULL && !m->is_dead_loop_safe()) {
  1434         // Check the most common case (about 30% of all cases):
  1435         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
  1436         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
  1437         if (m1 == (Node*)this)
  1438           return UnsafeLoop; // Unsafe loop
  1439         if (m1 != NULL && m1 == m->in(2) &&
  1440             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
  1441           continue; // Safe case
  1443         // The phi references an unsafe node - need full analysis.
  1444         return Unsafe;
  1448   return Safe; // Safe case - we can optimize the phi node.
  1451 //------------------------------is_unsafe_data_reference-----------------------
  1452 // If phi can be reached through the data input - it is data loop.
  1453 bool PhiNode::is_unsafe_data_reference(Node *in) const {
  1454   assert(req() > 1, "");
  1455   // First, check simple cases when phi references itself directly or
  1456   // through an other node.
  1457   LoopSafety safety = simple_data_loop_check(in);
  1458   if (safety == UnsafeLoop)
  1459     return true;  // phi references itself - unsafe loop
  1460   else if (safety == Safe)
  1461     return false; // Safe case - phi could be replaced with the unique input.
  1463   // Unsafe case when we should go through data graph to determine
  1464   // if the phi references itself.
  1466   ResourceMark rm;
  1468   Arena *a = Thread::current()->resource_area();
  1469   Node_List nstack(a);
  1470   VectorSet visited(a);
  1472   nstack.push(in); // Start with unique input.
  1473   visited.set(in->_idx);
  1474   while (nstack.size() != 0) {
  1475     Node* n = nstack.pop();
  1476     uint cnt = n->req();
  1477     uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
  1478     for (; i < cnt; i++) {
  1479       Node* m = n->in(i);
  1480       if (m == (Node*)this) {
  1481         return true;    // Data loop
  1483       if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
  1484         if (!visited.test_set(m->_idx))
  1485           nstack.push(m);
  1489   return false; // The phi is not reachable from its inputs
  1493 //------------------------------Ideal------------------------------------------
  1494 // Return a node which is more "ideal" than the current node.  Must preserve
  1495 // the CFG, but we can still strip out dead paths.
  1496 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1497   // The next should never happen after 6297035 fix.
  1498   if( is_copy() )               // Already degraded to a Copy ?
  1499     return NULL;                // No change
  1501   Node *r = in(0);              // RegionNode
  1502   assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
  1504   // Note: During parsing, phis are often transformed before their regions.
  1505   // This means we have to use type_or_null to defend against untyped regions.
  1506   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
  1507     return NULL;                // No change
  1509   Node *top = phase->C->top();
  1511   // The are 2 situations when only one valid phi's input is left
  1512   // (in addition to Region input).
  1513   // One: region is not loop - replace phi with this input.
  1514   // Two: region is loop - replace phi with top since this data path is dead
  1515   //                       and we need to break the dead data loop.
  1516   Node* progress = NULL;        // Record if any progress made
  1517   for( uint j = 1; j < req(); ++j ){ // For all paths in
  1518     // Check unreachable control paths
  1519     Node* rc = r->in(j);
  1520     Node* n = in(j);            // Get the input
  1521     if (rc == NULL || phase->type(rc) == Type::TOP) {
  1522       if (n != top) {           // Not already top?
  1523         set_req(j, top);        // Nuke it down
  1524         progress = this;        // Record progress
  1529   Node* uin = unique_input(phase);
  1530   if (uin == top) {             // Simplest case: no alive inputs.
  1531     if (can_reshape)            // IGVN transformation
  1532       return top;
  1533     else
  1534       return NULL;              // Identity will return TOP
  1535   } else if (uin != NULL) {
  1536     // Only one not-NULL unique input path is left.
  1537     // Determine if this input is backedge of a loop.
  1538     // (Skip new phis which have no uses and dead regions).
  1539     if( outcnt() > 0 && r->in(0) != NULL ) {
  1540       // First, take the short cut when we know it is a loop and
  1541       // the EntryControl data path is dead.
  1542       assert(!r->is_Loop() || r->req() == 3, "Loop node should have 3 inputs");
  1543       // Then, check if there is a data loop when phi references itself directly
  1544       // or through other data nodes.
  1545       if( r->is_Loop() && !phase->eqv_uncast(uin, in(LoopNode::EntryControl)) ||
  1546          !r->is_Loop() && is_unsafe_data_reference(uin) ) {
  1547         // Break this data loop to avoid creation of a dead loop.
  1548         if (can_reshape) {
  1549           return top;
  1550         } else {
  1551           // We can't return top if we are in Parse phase - cut inputs only
  1552           // let Identity to handle the case.
  1553           replace_edge(uin, top);
  1554           return NULL;
  1559     // One unique input.
  1560     debug_only(Node* ident = Identity(phase));
  1561     // The unique input must eventually be detected by the Identity call.
  1562 #ifdef ASSERT
  1563     if (ident != uin && !ident->is_top()) {
  1564       // print this output before failing assert
  1565       r->dump(3);
  1566       this->dump(3);
  1567       ident->dump();
  1568       uin->dump();
  1570 #endif
  1571     assert(ident == uin || ident->is_top(), "Identity must clean this up");
  1572     return NULL;
  1576   Node* opt = NULL;
  1577   int true_path = is_diamond_phi();
  1578   if( true_path != 0 ) {
  1579     // Check for CMove'ing identity. If it would be unsafe,
  1580     // handle it here. In the safe case, let Identity handle it.
  1581     Node* unsafe_id = is_cmove_id(phase, true_path);
  1582     if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
  1583       opt = unsafe_id;
  1585     // Check for simple convert-to-boolean pattern
  1586     if( opt == NULL )
  1587       opt = is_x2logic(phase, this, true_path);
  1589     // Check for absolute value
  1590     if( opt == NULL )
  1591       opt = is_absolute(phase, this, true_path);
  1593     // Check for conditional add
  1594     if( opt == NULL && can_reshape )
  1595       opt = is_cond_add(phase, this, true_path);
  1597     // These 4 optimizations could subsume the phi:
  1598     // have to check for a dead data loop creation.
  1599     if( opt != NULL ) {
  1600       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
  1601         // Found dead loop.
  1602         if( can_reshape )
  1603           return top;
  1604         // We can't return top if we are in Parse phase - cut inputs only
  1605         // to stop further optimizations for this phi. Identity will return TOP.
  1606         assert(req() == 3, "only diamond merge phi here");
  1607         set_req(1, top);
  1608         set_req(2, top);
  1609         return NULL;
  1610       } else {
  1611         return opt;
  1616   // Check for merging identical values and split flow paths
  1617   if (can_reshape) {
  1618     opt = split_flow_path(phase, this);
  1619     // This optimization only modifies phi - don't need to check for dead loop.
  1620     assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
  1621     if (opt != NULL)  return opt;
  1624   // Split phis through memory merges, so that the memory merges will go away.
  1625   // Piggy-back this transformation on the search for a unique input....
  1626   // It will be as if the merged memory is the unique value of the phi.
  1627   // (Do not attempt this optimization unless parsing is complete.
  1628   // It would make the parser's memory-merge logic sick.)
  1629   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
  1630   if (progress == NULL && can_reshape && type() == Type::MEMORY) {
  1631     // see if this phi should be sliced
  1632     uint merge_width = 0;
  1633     bool saw_self = false;
  1634     for( uint i=1; i<req(); ++i ) {// For all paths in
  1635       Node *ii = in(i);
  1636       if (ii->is_MergeMem()) {
  1637         MergeMemNode* n = ii->as_MergeMem();
  1638         merge_width = MAX2(merge_width, n->req());
  1639         saw_self = saw_self || phase->eqv(n->base_memory(), this);
  1643     // This restriction is temporarily necessary to ensure termination:
  1644     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
  1646     if (merge_width > Compile::AliasIdxRaw) {
  1647       // found at least one non-empty MergeMem
  1648       const TypePtr* at = adr_type();
  1649       if (at != TypePtr::BOTTOM) {
  1650         // Patch the existing phi to select an input from the merge:
  1651         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
  1652         //     Phi:AT1(...m1...)
  1653         int alias_idx = phase->C->get_alias_index(at);
  1654         for (uint i=1; i<req(); ++i) {
  1655           Node *ii = in(i);
  1656           if (ii->is_MergeMem()) {
  1657             MergeMemNode* n = ii->as_MergeMem();
  1658             // compress paths and change unreachable cycles to TOP
  1659             // If not, we can update the input infinitely along a MergeMem cycle
  1660             // Equivalent code is in MemNode::Ideal_common
  1661             Node         *m  = phase->transform(n);
  1662             // If tranformed to a MergeMem, get the desired slice
  1663             // Otherwise the returned node represents memory for every slice
  1664             Node *new_mem = (m->is_MergeMem()) ?
  1665                              m->as_MergeMem()->memory_at(alias_idx) : m;
  1666             // Update input if it is progress over what we have now
  1667             if (new_mem != ii) {
  1668               set_req(i, new_mem);
  1669               progress = this;
  1673       } else {
  1674         // We know that at least one MergeMem->base_memory() == this
  1675         // (saw_self == true). If all other inputs also references this phi
  1676         // (directly or through data nodes) - it is dead loop.
  1677         bool saw_safe_input = false;
  1678         for (uint j = 1; j < req(); ++j) {
  1679           Node *n = in(j);
  1680           if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
  1681             continue;              // skip known cases
  1682           if (!is_unsafe_data_reference(n)) {
  1683             saw_safe_input = true; // found safe input
  1684             break;
  1687         if (!saw_safe_input)
  1688           return top; // all inputs reference back to this phi - dead loop
  1690         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
  1691         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
  1692         PhaseIterGVN *igvn = phase->is_IterGVN();
  1693         Node* hook = new (phase->C, 1) Node(1);
  1694         PhiNode* new_base = (PhiNode*) clone();
  1695         // Must eagerly register phis, since they participate in loops.
  1696         if (igvn) {
  1697           igvn->register_new_node_with_optimizer(new_base);
  1698           hook->add_req(new_base);
  1700         MergeMemNode* result = MergeMemNode::make(phase->C, new_base);
  1701         for (uint i = 1; i < req(); ++i) {
  1702           Node *ii = in(i);
  1703           if (ii->is_MergeMem()) {
  1704             MergeMemNode* n = ii->as_MergeMem();
  1705             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
  1706               // If we have not seen this slice yet, make a phi for it.
  1707               bool made_new_phi = false;
  1708               if (mms.is_empty()) {
  1709                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
  1710                 made_new_phi = true;
  1711                 if (igvn) {
  1712                   igvn->register_new_node_with_optimizer(new_phi);
  1713                   hook->add_req(new_phi);
  1715                 mms.set_memory(new_phi);
  1717               Node* phi = mms.memory();
  1718               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
  1719               phi->set_req(i, mms.memory2());
  1723         // Distribute all self-loops.
  1724         { // (Extra braces to hide mms.)
  1725           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
  1726             Node* phi = mms.memory();
  1727             for (uint i = 1; i < req(); ++i) {
  1728               if (phi->in(i) == this)  phi->set_req(i, phi);
  1732         // now transform the new nodes, and return the mergemem
  1733         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
  1734           Node* phi = mms.memory();
  1735           mms.set_memory(phase->transform(phi));
  1737         if (igvn) { // Unhook.
  1738           igvn->hash_delete(hook);
  1739           for (uint i = 1; i < hook->req(); i++) {
  1740             hook->set_req(i, NULL);
  1743         // Replace self with the result.
  1744         return result;
  1747     //
  1748     // Other optimizations on the memory chain
  1749     //
  1750     const TypePtr* at = adr_type();
  1751     for( uint i=1; i<req(); ++i ) {// For all paths in
  1752       Node *ii = in(i);
  1753       Node *new_in = MemNode::optimize_memory_chain(ii, at, phase);
  1754       if (ii != new_in ) {
  1755         set_req(i, new_in);
  1756         progress = this;
  1761   return progress;              // Return any progress
  1764 //------------------------------out_RegMask------------------------------------
  1765 const RegMask &PhiNode::in_RegMask(uint i) const {
  1766   return i ? out_RegMask() : RegMask::Empty;
  1769 const RegMask &PhiNode::out_RegMask() const {
  1770   uint ideal_reg = Matcher::base2reg[_type->base()];
  1771   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
  1772   if( ideal_reg == 0 ) return RegMask::Empty;
  1773   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
  1776 #ifndef PRODUCT
  1777 void PhiNode::dump_spec(outputStream *st) const {
  1778   TypeNode::dump_spec(st);
  1779   if (in(0) != NULL &&
  1780       in(0)->is_CountedLoop() &&
  1781       in(0)->as_CountedLoop()->phi() == this) {
  1782     st->print(" #tripcount");
  1785 #endif
  1788 //=============================================================================
  1789 const Type *GotoNode::Value( PhaseTransform *phase ) const {
  1790   // If the input is reachable, then we are executed.
  1791   // If the input is not reachable, then we are not executed.
  1792   return phase->type(in(0));
  1795 Node *GotoNode::Identity( PhaseTransform *phase ) {
  1796   return in(0);                // Simple copy of incoming control
  1799 const RegMask &GotoNode::out_RegMask() const {
  1800   return RegMask::Empty;
  1803 //=============================================================================
  1804 const RegMask &JumpNode::out_RegMask() const {
  1805   return RegMask::Empty;
  1808 //=============================================================================
  1809 const RegMask &JProjNode::out_RegMask() const {
  1810   return RegMask::Empty;
  1813 //=============================================================================
  1814 const RegMask &CProjNode::out_RegMask() const {
  1815   return RegMask::Empty;
  1820 //=============================================================================
  1822 uint PCTableNode::hash() const { return Node::hash() + _size; }
  1823 uint PCTableNode::cmp( const Node &n ) const
  1824 { return _size == ((PCTableNode&)n)._size; }
  1826 const Type *PCTableNode::bottom_type() const {
  1827   const Type** f = TypeTuple::fields(_size);
  1828   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
  1829   return TypeTuple::make(_size, f);
  1832 //------------------------------Value------------------------------------------
  1833 // Compute the type of the PCTableNode.  If reachable it is a tuple of
  1834 // Control, otherwise the table targets are not reachable
  1835 const Type *PCTableNode::Value( PhaseTransform *phase ) const {
  1836   if( phase->type(in(0)) == Type::CONTROL )
  1837     return bottom_type();
  1838   return Type::TOP;             // All paths dead?  Then so are we
  1841 //------------------------------Ideal------------------------------------------
  1842 // Return a node which is more "ideal" than the current node.  Strip out
  1843 // control copies
  1844 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1845   return remove_dead_region(phase, can_reshape) ? this : NULL;
  1848 //=============================================================================
  1849 uint JumpProjNode::hash() const {
  1850   return Node::hash() + _dest_bci;
  1853 uint JumpProjNode::cmp( const Node &n ) const {
  1854   return ProjNode::cmp(n) &&
  1855     _dest_bci == ((JumpProjNode&)n)._dest_bci;
  1858 #ifndef PRODUCT
  1859 void JumpProjNode::dump_spec(outputStream *st) const {
  1860   ProjNode::dump_spec(st);
  1861    st->print("@bci %d ",_dest_bci);
  1863 #endif
  1865 //=============================================================================
  1866 //------------------------------Value------------------------------------------
  1867 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
  1868 // have the default "fall_through_index" path.
  1869 const Type *CatchNode::Value( PhaseTransform *phase ) const {
  1870   // Unreachable?  Then so are all paths from here.
  1871   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
  1872   // First assume all paths are reachable
  1873   const Type** f = TypeTuple::fields(_size);
  1874   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
  1875   // Identify cases that will always throw an exception
  1876   // () rethrow call
  1877   // () virtual or interface call with NULL receiver
  1878   // () call is a check cast with incompatible arguments
  1879   if( in(1)->is_Proj() ) {
  1880     Node *i10 = in(1)->in(0);
  1881     if( i10->is_Call() ) {
  1882       CallNode *call = i10->as_Call();
  1883       // Rethrows always throw exceptions, never return
  1884       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  1885         f[CatchProjNode::fall_through_index] = Type::TOP;
  1886       } else if( call->req() > TypeFunc::Parms ) {
  1887         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
  1888         // Check for null reciever to virtual or interface calls
  1889         if( call->is_CallDynamicJava() &&
  1890             arg0->higher_equal(TypePtr::NULL_PTR) ) {
  1891           f[CatchProjNode::fall_through_index] = Type::TOP;
  1893       } // End of if not a runtime stub
  1894     } // End of if have call above me
  1895   } // End of slot 1 is not a projection
  1896   return TypeTuple::make(_size, f);
  1899 //=============================================================================
  1900 uint CatchProjNode::hash() const {
  1901   return Node::hash() + _handler_bci;
  1905 uint CatchProjNode::cmp( const Node &n ) const {
  1906   return ProjNode::cmp(n) &&
  1907     _handler_bci == ((CatchProjNode&)n)._handler_bci;
  1911 //------------------------------Identity---------------------------------------
  1912 // If only 1 target is possible, choose it if it is the main control
  1913 Node *CatchProjNode::Identity( PhaseTransform *phase ) {
  1914   // If my value is control and no other value is, then treat as ID
  1915   const TypeTuple *t = phase->type(in(0))->is_tuple();
  1916   if (t->field_at(_con) != Type::CONTROL)  return this;
  1917   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
  1918   // also remove any exception table entry.  Thus we must know the call
  1919   // feeding the Catch will not really throw an exception.  This is ok for
  1920   // the main fall-thru control (happens when we know a call can never throw
  1921   // an exception) or for "rethrow", because a further optimnization will
  1922   // yank the rethrow (happens when we inline a function that can throw an
  1923   // exception and the caller has no handler).  Not legal, e.g., for passing
  1924   // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
  1925   // These cases MUST throw an exception via the runtime system, so the VM
  1926   // will be looking for a table entry.
  1927   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
  1928   CallNode *call;
  1929   if (_con != TypeFunc::Control && // Bail out if not the main control.
  1930       !(proj->is_Proj() &&      // AND NOT a rethrow
  1931         proj->in(0)->is_Call() &&
  1932         (call = proj->in(0)->as_Call()) &&
  1933         call->entry_point() == OptoRuntime::rethrow_stub()))
  1934     return this;
  1936   // Search for any other path being control
  1937   for (uint i = 0; i < t->cnt(); i++) {
  1938     if (i != _con && t->field_at(i) == Type::CONTROL)
  1939       return this;
  1941   // Only my path is possible; I am identity on control to the jump
  1942   return in(0)->in(0);
  1946 #ifndef PRODUCT
  1947 void CatchProjNode::dump_spec(outputStream *st) const {
  1948   ProjNode::dump_spec(st);
  1949   st->print("@bci %d ",_handler_bci);
  1951 #endif
  1953 //=============================================================================
  1954 //------------------------------Identity---------------------------------------
  1955 // Check for CreateEx being Identity.
  1956 Node *CreateExNode::Identity( PhaseTransform *phase ) {
  1957   if( phase->type(in(1)) == Type::TOP ) return in(1);
  1958   if( phase->type(in(0)) == Type::TOP ) return in(0);
  1959   // We only come from CatchProj, unless the CatchProj goes away.
  1960   // If the CatchProj is optimized away, then we just carry the
  1961   // exception oop through.
  1962   CallNode *call = in(1)->in(0)->as_Call();
  1964   return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
  1965     ? this
  1966     : call->in(TypeFunc::Parms);
  1969 //=============================================================================
  1970 //------------------------------Value------------------------------------------
  1971 // Check for being unreachable.
  1972 const Type *NeverBranchNode::Value( PhaseTransform *phase ) const {
  1973   if (!in(0) || in(0)->is_top()) return Type::TOP;
  1974   return bottom_type();
  1977 //------------------------------Ideal------------------------------------------
  1978 // Check for no longer being part of a loop
  1979 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1980   if (can_reshape && !in(0)->is_Loop()) {
  1981     // Dead code elimination can sometimes delete this projection so
  1982     // if it's not there, there's nothing to do.
  1983     Node* fallthru = proj_out(0);
  1984     if (fallthru != NULL) {
  1985       phase->is_IterGVN()->subsume_node(fallthru, in(0));
  1987     return phase->C->top();
  1989   return NULL;
  1992 #ifndef PRODUCT
  1993 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
  1994   st->print("%s", Name());
  1996 #endif

mercurial