src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.cpp

Wed, 02 Jul 2008 12:55:16 -0700

author
xdono
date
Wed, 02 Jul 2008 12:55:16 -0700
changeset 631
d1605aabd0a1
parent 574
c0492d52d55b
child 672
1fdb98a17101
permissions
-rw-r--r--

6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell

     1 /*
     2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_parallelScavengeHeap.cpp.incl"
    28 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
    29 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
    30 PSPermGen*   ParallelScavengeHeap::_perm_gen = NULL;
    31 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
    32 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
    33 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
    34 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
    36 static void trace_gen_sizes(const char* const str,
    37                             size_t pg_min, size_t pg_max,
    38                             size_t og_min, size_t og_max,
    39                             size_t yg_min, size_t yg_max)
    40 {
    41   if (TracePageSizes) {
    42     tty->print_cr("%s:  " SIZE_FORMAT "," SIZE_FORMAT " "
    43                   SIZE_FORMAT "," SIZE_FORMAT " "
    44                   SIZE_FORMAT "," SIZE_FORMAT " "
    45                   SIZE_FORMAT,
    46                   str, pg_min / K, pg_max / K,
    47                   og_min / K, og_max / K,
    48                   yg_min / K, yg_max / K,
    49                   (pg_max + og_max + yg_max) / K);
    50   }
    51 }
    53 jint ParallelScavengeHeap::initialize() {
    54   // Cannot be initialized until after the flags are parsed
    55   GenerationSizer flag_parser;
    57   size_t yg_min_size = flag_parser.min_young_gen_size();
    58   size_t yg_max_size = flag_parser.max_young_gen_size();
    59   size_t og_min_size = flag_parser.min_old_gen_size();
    60   size_t og_max_size = flag_parser.max_old_gen_size();
    61   // Why isn't there a min_perm_gen_size()?
    62   size_t pg_min_size = flag_parser.perm_gen_size();
    63   size_t pg_max_size = flag_parser.max_perm_gen_size();
    65   trace_gen_sizes("ps heap raw",
    66                   pg_min_size, pg_max_size,
    67                   og_min_size, og_max_size,
    68                   yg_min_size, yg_max_size);
    70   // The ReservedSpace ctor used below requires that the page size for the perm
    71   // gen is <= the page size for the rest of the heap (young + old gens).
    72   const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
    73                                                      yg_max_size + og_max_size,
    74                                                      8);
    75   const size_t pg_page_sz = MIN2(os::page_size_for_region(pg_min_size,
    76                                                           pg_max_size, 16),
    77                                  og_page_sz);
    79   const size_t pg_align = set_alignment(_perm_gen_alignment,  pg_page_sz);
    80   const size_t og_align = set_alignment(_old_gen_alignment,   og_page_sz);
    81   const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
    83   // Update sizes to reflect the selected page size(s).
    84   //
    85   // NEEDS_CLEANUP.  The default TwoGenerationCollectorPolicy uses NewRatio; it
    86   // should check UseAdaptiveSizePolicy.  Changes from generationSizer could
    87   // move to the common code.
    88   yg_min_size = align_size_up(yg_min_size, yg_align);
    89   yg_max_size = align_size_up(yg_max_size, yg_align);
    90   size_t yg_cur_size = align_size_up(flag_parser.young_gen_size(), yg_align);
    91   yg_cur_size = MAX2(yg_cur_size, yg_min_size);
    93   og_min_size = align_size_up(og_min_size, og_align);
    94   og_max_size = align_size_up(og_max_size, og_align);
    95   size_t og_cur_size = align_size_up(flag_parser.old_gen_size(), og_align);
    96   og_cur_size = MAX2(og_cur_size, og_min_size);
    98   pg_min_size = align_size_up(pg_min_size, pg_align);
    99   pg_max_size = align_size_up(pg_max_size, pg_align);
   100   size_t pg_cur_size = pg_min_size;
   102   trace_gen_sizes("ps heap rnd",
   103                   pg_min_size, pg_max_size,
   104                   og_min_size, og_max_size,
   105                   yg_min_size, yg_max_size);
   107   // The main part of the heap (old gen + young gen) can often use a larger page
   108   // size than is needed or wanted for the perm gen.  Use the "compound
   109   // alignment" ReservedSpace ctor to avoid having to use the same page size for
   110   // all gens.
   111   ReservedSpace heap_rs(pg_max_size, pg_align, og_max_size + yg_max_size,
   112                         og_align);
   113   os::trace_page_sizes("ps perm", pg_min_size, pg_max_size, pg_page_sz,
   114                        heap_rs.base(), pg_max_size);
   115   os::trace_page_sizes("ps main", og_min_size + yg_min_size,
   116                        og_max_size + yg_max_size, og_page_sz,
   117                        heap_rs.base() + pg_max_size,
   118                        heap_rs.size() - pg_max_size);
   119   if (!heap_rs.is_reserved()) {
   120     vm_shutdown_during_initialization(
   121       "Could not reserve enough space for object heap");
   122     return JNI_ENOMEM;
   123   }
   125   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   126                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   128   CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
   129   _barrier_set = barrier_set;
   130   oopDesc::set_bs(_barrier_set);
   131   if (_barrier_set == NULL) {
   132     vm_shutdown_during_initialization(
   133       "Could not reserve enough space for barrier set");
   134     return JNI_ENOMEM;
   135   }
   137   // Initial young gen size is 4 Mb
   138   //
   139   // XXX - what about flag_parser.young_gen_size()?
   140   const size_t init_young_size = align_size_up(4 * M, yg_align);
   141   yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
   143   // Split the reserved space into perm gen and the main heap (everything else).
   144   // The main heap uses a different alignment.
   145   ReservedSpace perm_rs = heap_rs.first_part(pg_max_size);
   146   ReservedSpace main_rs = heap_rs.last_part(pg_max_size, og_align);
   148   // Make up the generations
   149   // Calculate the maximum size that a generation can grow.  This
   150   // includes growth into the other generation.  Note that the
   151   // parameter _max_gen_size is kept as the maximum
   152   // size of the generation as the boundaries currently stand.
   153   // _max_gen_size is still used as that value.
   154   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
   155   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
   157   _gens = new AdjoiningGenerations(main_rs,
   158                                    og_cur_size,
   159                                    og_min_size,
   160                                    og_max_size,
   161                                    yg_cur_size,
   162                                    yg_min_size,
   163                                    yg_max_size,
   164                                    yg_align);
   166   _old_gen = _gens->old_gen();
   167   _young_gen = _gens->young_gen();
   169   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
   170   const size_t old_capacity = _old_gen->capacity_in_bytes();
   171   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
   172   _size_policy =
   173     new PSAdaptiveSizePolicy(eden_capacity,
   174                              initial_promo_size,
   175                              young_gen()->to_space()->capacity_in_bytes(),
   176                              intra_heap_alignment(),
   177                              max_gc_pause_sec,
   178                              max_gc_minor_pause_sec,
   179                              GCTimeRatio
   180                              );
   182   _perm_gen = new PSPermGen(perm_rs,
   183                             pg_align,
   184                             pg_cur_size,
   185                             pg_cur_size,
   186                             pg_max_size,
   187                             "perm", 2);
   189   assert(!UseAdaptiveGCBoundary ||
   190     (old_gen()->virtual_space()->high_boundary() ==
   191      young_gen()->virtual_space()->low_boundary()),
   192     "Boundaries must meet");
   193   // initialize the policy counters - 2 collectors, 3 generations
   194   _gc_policy_counters =
   195     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
   196   _psh = this;
   198   // Set up the GCTaskManager
   199   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
   201   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
   202     return JNI_ENOMEM;
   203   }
   205   return JNI_OK;
   206 }
   208 void ParallelScavengeHeap::post_initialize() {
   209   // Need to init the tenuring threshold
   210   PSScavenge::initialize();
   211   if (UseParallelOldGC) {
   212     PSParallelCompact::post_initialize();
   213     if (VerifyParallelOldWithMarkSweep) {
   214       // Will be used for verification of par old.
   215       PSMarkSweep::initialize();
   216     }
   217   } else {
   218     PSMarkSweep::initialize();
   219   }
   220   PSPromotionManager::initialize();
   221 }
   223 void ParallelScavengeHeap::update_counters() {
   224   young_gen()->update_counters();
   225   old_gen()->update_counters();
   226   perm_gen()->update_counters();
   227 }
   229 size_t ParallelScavengeHeap::capacity() const {
   230   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
   231   return value;
   232 }
   234 size_t ParallelScavengeHeap::used() const {
   235   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
   236   return value;
   237 }
   239 bool ParallelScavengeHeap::is_maximal_no_gc() const {
   240   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
   241 }
   244 size_t ParallelScavengeHeap::permanent_capacity() const {
   245   return perm_gen()->capacity_in_bytes();
   246 }
   248 size_t ParallelScavengeHeap::permanent_used() const {
   249   return perm_gen()->used_in_bytes();
   250 }
   252 size_t ParallelScavengeHeap::max_capacity() const {
   253   size_t estimated = reserved_region().byte_size();
   254   estimated -= perm_gen()->reserved().byte_size();
   255   if (UseAdaptiveSizePolicy) {
   256     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
   257   } else {
   258     estimated -= young_gen()->to_space()->capacity_in_bytes();
   259   }
   260   return MAX2(estimated, capacity());
   261 }
   263 bool ParallelScavengeHeap::is_in(const void* p) const {
   264   if (young_gen()->is_in(p)) {
   265     return true;
   266   }
   268   if (old_gen()->is_in(p)) {
   269     return true;
   270   }
   272   if (perm_gen()->is_in(p)) {
   273     return true;
   274   }
   276   return false;
   277 }
   279 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
   280   if (young_gen()->is_in_reserved(p)) {
   281     return true;
   282   }
   284   if (old_gen()->is_in_reserved(p)) {
   285     return true;
   286   }
   288   if (perm_gen()->is_in_reserved(p)) {
   289     return true;
   290   }
   292   return false;
   293 }
   295 // Static method
   296 bool ParallelScavengeHeap::is_in_young(oop* p) {
   297   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   298   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap,
   299                                             "Must be ParallelScavengeHeap");
   301   PSYoungGen* young_gen = heap->young_gen();
   303   if (young_gen->is_in_reserved(p)) {
   304     return true;
   305   }
   307   return false;
   308 }
   310 // Static method
   311 bool ParallelScavengeHeap::is_in_old_or_perm(oop* p) {
   312   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   313   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap,
   314                                             "Must be ParallelScavengeHeap");
   316   PSOldGen* old_gen = heap->old_gen();
   317   PSPermGen* perm_gen = heap->perm_gen();
   319   if (old_gen->is_in_reserved(p)) {
   320     return true;
   321   }
   323   if (perm_gen->is_in_reserved(p)) {
   324     return true;
   325   }
   327   return false;
   328 }
   330 // There are two levels of allocation policy here.
   331 //
   332 // When an allocation request fails, the requesting thread must invoke a VM
   333 // operation, transfer control to the VM thread, and await the results of a
   334 // garbage collection. That is quite expensive, and we should avoid doing it
   335 // multiple times if possible.
   336 //
   337 // To accomplish this, we have a basic allocation policy, and also a
   338 // failed allocation policy.
   339 //
   340 // The basic allocation policy controls how you allocate memory without
   341 // attempting garbage collection. It is okay to grab locks and
   342 // expand the heap, if that can be done without coming to a safepoint.
   343 // It is likely that the basic allocation policy will not be very
   344 // aggressive.
   345 //
   346 // The failed allocation policy is invoked from the VM thread after
   347 // the basic allocation policy is unable to satisfy a mem_allocate
   348 // request. This policy needs to cover the entire range of collection,
   349 // heap expansion, and out-of-memory conditions. It should make every
   350 // attempt to allocate the requested memory.
   352 // Basic allocation policy. Should never be called at a safepoint, or
   353 // from the VM thread.
   354 //
   355 // This method must handle cases where many mem_allocate requests fail
   356 // simultaneously. When that happens, only one VM operation will succeed,
   357 // and the rest will not be executed. For that reason, this method loops
   358 // during failed allocation attempts. If the java heap becomes exhausted,
   359 // we rely on the size_policy object to force a bail out.
   360 HeapWord* ParallelScavengeHeap::mem_allocate(
   361                                      size_t size,
   362                                      bool is_noref,
   363                                      bool is_tlab,
   364                                      bool* gc_overhead_limit_was_exceeded) {
   365   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   366   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   367   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   369   HeapWord* result = young_gen()->allocate(size, is_tlab);
   371   uint loop_count = 0;
   372   uint gc_count = 0;
   374   while (result == NULL) {
   375     // We don't want to have multiple collections for a single filled generation.
   376     // To prevent this, each thread tracks the total_collections() value, and if
   377     // the count has changed, does not do a new collection.
   378     //
   379     // The collection count must be read only while holding the heap lock. VM
   380     // operations also hold the heap lock during collections. There is a lock
   381     // contention case where thread A blocks waiting on the Heap_lock, while
   382     // thread B is holding it doing a collection. When thread A gets the lock,
   383     // the collection count has already changed. To prevent duplicate collections,
   384     // The policy MUST attempt allocations during the same period it reads the
   385     // total_collections() value!
   386     {
   387       MutexLocker ml(Heap_lock);
   388       gc_count = Universe::heap()->total_collections();
   390       result = young_gen()->allocate(size, is_tlab);
   392       // (1) If the requested object is too large to easily fit in the
   393       //     young_gen, or
   394       // (2) If GC is locked out via GCLocker, young gen is full and
   395       //     the need for a GC already signalled to GCLocker (done
   396       //     at a safepoint),
   397       // ... then, rather than force a safepoint and (a potentially futile)
   398       // collection (attempt) for each allocation, try allocation directly
   399       // in old_gen. For case (2) above, we may in the future allow
   400       // TLAB allocation directly in the old gen.
   401       if (result != NULL) {
   402         return result;
   403       }
   404       if (!is_tlab &&
   405           size >= (young_gen()->eden_space()->capacity_in_words() / 2)) {
   406         result = old_gen()->allocate(size, is_tlab);
   407         if (result != NULL) {
   408           return result;
   409         }
   410       }
   411       if (GC_locker::is_active_and_needs_gc()) {
   412         // GC is locked out. If this is a TLAB allocation,
   413         // return NULL; the requestor will retry allocation
   414         // of an idividual object at a time.
   415         if (is_tlab) {
   416           return NULL;
   417         }
   419         // If this thread is not in a jni critical section, we stall
   420         // the requestor until the critical section has cleared and
   421         // GC allowed. When the critical section clears, a GC is
   422         // initiated by the last thread exiting the critical section; so
   423         // we retry the allocation sequence from the beginning of the loop,
   424         // rather than causing more, now probably unnecessary, GC attempts.
   425         JavaThread* jthr = JavaThread::current();
   426         if (!jthr->in_critical()) {
   427           MutexUnlocker mul(Heap_lock);
   428           GC_locker::stall_until_clear();
   429           continue;
   430         } else {
   431           if (CheckJNICalls) {
   432             fatal("Possible deadlock due to allocating while"
   433                   " in jni critical section");
   434           }
   435           return NULL;
   436         }
   437       }
   438     }
   440     if (result == NULL) {
   442       // Exit the loop if if the gc time limit has been exceeded.
   443       // The allocation must have failed above (result must be NULL),
   444       // and the most recent collection must have exceeded the
   445       // gc time limit.  Exit the loop so that an out-of-memory
   446       // will be thrown (returning a NULL will do that), but
   447       // clear gc_time_limit_exceeded so that the next collection
   448       // will succeeded if the applications decides to handle the
   449       // out-of-memory and tries to go on.
   450       *gc_overhead_limit_was_exceeded = size_policy()->gc_time_limit_exceeded();
   451       if (size_policy()->gc_time_limit_exceeded()) {
   452         size_policy()->set_gc_time_limit_exceeded(false);
   453         if (PrintGCDetails && Verbose) {
   454         gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
   455           "return NULL because gc_time_limit_exceeded is set");
   456         }
   457         return NULL;
   458       }
   460       // Generate a VM operation
   461       VM_ParallelGCFailedAllocation op(size, is_tlab, gc_count);
   462       VMThread::execute(&op);
   464       // Did the VM operation execute? If so, return the result directly.
   465       // This prevents us from looping until time out on requests that can
   466       // not be satisfied.
   467       if (op.prologue_succeeded()) {
   468         assert(Universe::heap()->is_in_or_null(op.result()),
   469           "result not in heap");
   471         // If GC was locked out during VM operation then retry allocation
   472         // and/or stall as necessary.
   473         if (op.gc_locked()) {
   474           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   475           continue;  // retry and/or stall as necessary
   476         }
   477         // If a NULL result is being returned, an out-of-memory
   478         // will be thrown now.  Clear the gc_time_limit_exceeded
   479         // flag to avoid the following situation.
   480         //      gc_time_limit_exceeded is set during a collection
   481         //      the collection fails to return enough space and an OOM is thrown
   482         //      the next GC is skipped because the gc_time_limit_exceeded
   483         //        flag is set and another OOM is thrown
   484         if (op.result() == NULL) {
   485           size_policy()->set_gc_time_limit_exceeded(false);
   486         }
   487         return op.result();
   488       }
   489     }
   491     // The policy object will prevent us from looping forever. If the
   492     // time spent in gc crosses a threshold, we will bail out.
   493     loop_count++;
   494     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
   495         (loop_count % QueuedAllocationWarningCount == 0)) {
   496       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
   497               " size=%d %s", loop_count, size, is_tlab ? "(TLAB)" : "");
   498     }
   499   }
   501   return result;
   502 }
   504 // Failed allocation policy. Must be called from the VM thread, and
   505 // only at a safepoint! Note that this method has policy for allocation
   506 // flow, and NOT collection policy. So we do not check for gc collection
   507 // time over limit here, that is the responsibility of the heap specific
   508 // collection methods. This method decides where to attempt allocations,
   509 // and when to attempt collections, but no collection specific policy.
   510 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size, bool is_tlab) {
   511   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   512   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   513   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   514   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   516   size_t mark_sweep_invocation_count = total_invocations();
   518   // We assume (and assert!) that an allocation at this point will fail
   519   // unless we collect.
   521   // First level allocation failure, scavenge and allocate in young gen.
   522   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   523   PSScavenge::invoke();
   524   HeapWord* result = young_gen()->allocate(size, is_tlab);
   526   // Second level allocation failure.
   527   //   Mark sweep and allocate in young generation.
   528   if (result == NULL) {
   529     // There is some chance the scavenge method decided to invoke mark_sweep.
   530     // Don't mark sweep twice if so.
   531     if (mark_sweep_invocation_count == total_invocations()) {
   532       invoke_full_gc(false);
   533       result = young_gen()->allocate(size, is_tlab);
   534     }
   535   }
   537   // Third level allocation failure.
   538   //   After mark sweep and young generation allocation failure,
   539   //   allocate in old generation.
   540   if (result == NULL && !is_tlab) {
   541     result = old_gen()->allocate(size, is_tlab);
   542   }
   544   // Fourth level allocation failure. We're running out of memory.
   545   //   More complete mark sweep and allocate in young generation.
   546   if (result == NULL) {
   547     invoke_full_gc(true);
   548     result = young_gen()->allocate(size, is_tlab);
   549   }
   551   // Fifth level allocation failure.
   552   //   After more complete mark sweep, allocate in old generation.
   553   if (result == NULL && !is_tlab) {
   554     result = old_gen()->allocate(size, is_tlab);
   555   }
   557   return result;
   558 }
   560 //
   561 // This is the policy loop for allocating in the permanent generation.
   562 // If the initial allocation fails, we create a vm operation which will
   563 // cause a collection.
   564 HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
   565   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   566   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   567   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   569   HeapWord* result;
   571   uint loop_count = 0;
   572   uint gc_count = 0;
   573   uint full_gc_count = 0;
   575   do {
   576     // We don't want to have multiple collections for a single filled generation.
   577     // To prevent this, each thread tracks the total_collections() value, and if
   578     // the count has changed, does not do a new collection.
   579     //
   580     // The collection count must be read only while holding the heap lock. VM
   581     // operations also hold the heap lock during collections. There is a lock
   582     // contention case where thread A blocks waiting on the Heap_lock, while
   583     // thread B is holding it doing a collection. When thread A gets the lock,
   584     // the collection count has already changed. To prevent duplicate collections,
   585     // The policy MUST attempt allocations during the same period it reads the
   586     // total_collections() value!
   587     {
   588       MutexLocker ml(Heap_lock);
   589       gc_count      = Universe::heap()->total_collections();
   590       full_gc_count = Universe::heap()->total_full_collections();
   592       result = perm_gen()->allocate_permanent(size);
   594       if (result != NULL) {
   595         return result;
   596       }
   598       if (GC_locker::is_active_and_needs_gc()) {
   599         // If this thread is not in a jni critical section, we stall
   600         // the requestor until the critical section has cleared and
   601         // GC allowed. When the critical section clears, a GC is
   602         // initiated by the last thread exiting the critical section; so
   603         // we retry the allocation sequence from the beginning of the loop,
   604         // rather than causing more, now probably unnecessary, GC attempts.
   605         JavaThread* jthr = JavaThread::current();
   606         if (!jthr->in_critical()) {
   607           MutexUnlocker mul(Heap_lock);
   608           GC_locker::stall_until_clear();
   609           continue;
   610         } else {
   611           if (CheckJNICalls) {
   612             fatal("Possible deadlock due to allocating while"
   613                   " in jni critical section");
   614           }
   615           return NULL;
   616         }
   617       }
   618     }
   620     if (result == NULL) {
   622       // Exit the loop if the gc time limit has been exceeded.
   623       // The allocation must have failed above (result must be NULL),
   624       // and the most recent collection must have exceeded the
   625       // gc time limit.  Exit the loop so that an out-of-memory
   626       // will be thrown (returning a NULL will do that), but
   627       // clear gc_time_limit_exceeded so that the next collection
   628       // will succeeded if the applications decides to handle the
   629       // out-of-memory and tries to go on.
   630       if (size_policy()->gc_time_limit_exceeded()) {
   631         size_policy()->set_gc_time_limit_exceeded(false);
   632         if (PrintGCDetails && Verbose) {
   633         gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate: "
   634           "return NULL because gc_time_limit_exceeded is set");
   635         }
   636         assert(result == NULL, "Allocation did not fail");
   637         return NULL;
   638       }
   640       // Generate a VM operation
   641       VM_ParallelGCFailedPermanentAllocation op(size, gc_count, full_gc_count);
   642       VMThread::execute(&op);
   644       // Did the VM operation execute? If so, return the result directly.
   645       // This prevents us from looping until time out on requests that can
   646       // not be satisfied.
   647       if (op.prologue_succeeded()) {
   648         assert(Universe::heap()->is_in_permanent_or_null(op.result()),
   649           "result not in heap");
   650         // If GC was locked out during VM operation then retry allocation
   651         // and/or stall as necessary.
   652         if (op.gc_locked()) {
   653           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   654           continue;  // retry and/or stall as necessary
   655         }
   656         // If a NULL results is being returned, an out-of-memory
   657         // will be thrown now.  Clear the gc_time_limit_exceeded
   658         // flag to avoid the following situation.
   659         //      gc_time_limit_exceeded is set during a collection
   660         //      the collection fails to return enough space and an OOM is thrown
   661         //      the next GC is skipped because the gc_time_limit_exceeded
   662         //        flag is set and another OOM is thrown
   663         if (op.result() == NULL) {
   664           size_policy()->set_gc_time_limit_exceeded(false);
   665         }
   666         return op.result();
   667       }
   668     }
   670     // The policy object will prevent us from looping forever. If the
   671     // time spent in gc crosses a threshold, we will bail out.
   672     loop_count++;
   673     if ((QueuedAllocationWarningCount > 0) &&
   674         (loop_count % QueuedAllocationWarningCount == 0)) {
   675       warning("ParallelScavengeHeap::permanent_mem_allocate retries %d times \n\t"
   676               " size=%d", loop_count, size);
   677     }
   678   } while (result == NULL);
   680   return result;
   681 }
   683 //
   684 // This is the policy code for permanent allocations which have failed
   685 // and require a collection. Note that just as in failed_mem_allocate,
   686 // we do not set collection policy, only where & when to allocate and
   687 // collect.
   688 HeapWord* ParallelScavengeHeap::failed_permanent_mem_allocate(size_t size) {
   689   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   690   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   691   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   692   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   693   assert(size > perm_gen()->free_in_words(), "Allocation should fail");
   695   // We assume (and assert!) that an allocation at this point will fail
   696   // unless we collect.
   698   // First level allocation failure.  Mark-sweep and allocate in perm gen.
   699   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   700   invoke_full_gc(false);
   701   HeapWord* result = perm_gen()->allocate_permanent(size);
   703   // Second level allocation failure. We're running out of memory.
   704   if (result == NULL) {
   705     invoke_full_gc(true);
   706     result = perm_gen()->allocate_permanent(size);
   707   }
   709   return result;
   710 }
   712 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
   713   CollectedHeap::ensure_parsability(retire_tlabs);
   714   young_gen()->eden_space()->ensure_parsability();
   715 }
   717 size_t ParallelScavengeHeap::unsafe_max_alloc() {
   718   return young_gen()->eden_space()->free_in_bytes();
   719 }
   721 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
   722   return young_gen()->eden_space()->tlab_capacity(thr);
   723 }
   725 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
   726   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
   727 }
   729 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
   730   return young_gen()->allocate(size, true);
   731 }
   733 void ParallelScavengeHeap::fill_all_tlabs(bool retire) {
   734   CollectedHeap::fill_all_tlabs(retire);
   735 }
   737 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
   738   CollectedHeap::accumulate_statistics_all_tlabs();
   739 }
   741 void ParallelScavengeHeap::resize_all_tlabs() {
   742   CollectedHeap::resize_all_tlabs();
   743 }
   745 // This method is used by System.gc() and JVMTI.
   746 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
   747   assert(!Heap_lock->owned_by_self(),
   748     "this thread should not own the Heap_lock");
   750   unsigned int gc_count      = 0;
   751   unsigned int full_gc_count = 0;
   752   {
   753     MutexLocker ml(Heap_lock);
   754     // This value is guarded by the Heap_lock
   755     gc_count      = Universe::heap()->total_collections();
   756     full_gc_count = Universe::heap()->total_full_collections();
   757   }
   759   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
   760   VMThread::execute(&op);
   761 }
   763 // This interface assumes that it's being called by the
   764 // vm thread. It collects the heap assuming that the
   765 // heap lock is already held and that we are executing in
   766 // the context of the vm thread.
   767 void ParallelScavengeHeap::collect_as_vm_thread(GCCause::Cause cause) {
   768   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   769   assert(Heap_lock->is_locked(), "Precondition#2");
   770   GCCauseSetter gcs(this, cause);
   771   switch (cause) {
   772     case GCCause::_heap_inspection:
   773     case GCCause::_heap_dump: {
   774       HandleMark hm;
   775       invoke_full_gc(false);
   776       break;
   777     }
   778     default: // XXX FIX ME
   779       ShouldNotReachHere();
   780   }
   781 }
   784 void ParallelScavengeHeap::oop_iterate(OopClosure* cl) {
   785   Unimplemented();
   786 }
   788 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
   789   young_gen()->object_iterate(cl);
   790   old_gen()->object_iterate(cl);
   791   perm_gen()->object_iterate(cl);
   792 }
   794 void ParallelScavengeHeap::permanent_oop_iterate(OopClosure* cl) {
   795   Unimplemented();
   796 }
   798 void ParallelScavengeHeap::permanent_object_iterate(ObjectClosure* cl) {
   799   perm_gen()->object_iterate(cl);
   800 }
   802 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
   803   if (young_gen()->is_in_reserved(addr)) {
   804     assert(young_gen()->is_in(addr),
   805            "addr should be in allocated part of young gen");
   806     Unimplemented();
   807   } else if (old_gen()->is_in_reserved(addr)) {
   808     assert(old_gen()->is_in(addr),
   809            "addr should be in allocated part of old gen");
   810     return old_gen()->start_array()->object_start((HeapWord*)addr);
   811   } else if (perm_gen()->is_in_reserved(addr)) {
   812     assert(perm_gen()->is_in(addr),
   813            "addr should be in allocated part of perm gen");
   814     return perm_gen()->start_array()->object_start((HeapWord*)addr);
   815   }
   816   return 0;
   817 }
   819 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
   820   return oop(addr)->size();
   821 }
   823 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
   824   return block_start(addr) == addr;
   825 }
   827 jlong ParallelScavengeHeap::millis_since_last_gc() {
   828   return UseParallelOldGC ?
   829     PSParallelCompact::millis_since_last_gc() :
   830     PSMarkSweep::millis_since_last_gc();
   831 }
   833 void ParallelScavengeHeap::prepare_for_verify() {
   834   ensure_parsability(false);  // no need to retire TLABs for verification
   835 }
   837 void ParallelScavengeHeap::print() const { print_on(tty); }
   839 void ParallelScavengeHeap::print_on(outputStream* st) const {
   840   young_gen()->print_on(st);
   841   old_gen()->print_on(st);
   842   perm_gen()->print_on(st);
   843 }
   845 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
   846   PSScavenge::gc_task_manager()->threads_do(tc);
   847 }
   849 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
   850   PSScavenge::gc_task_manager()->print_threads_on(st);
   851 }
   853 void ParallelScavengeHeap::print_tracing_info() const {
   854   if (TraceGen0Time) {
   855     double time = PSScavenge::accumulated_time()->seconds();
   856     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
   857   }
   858   if (TraceGen1Time) {
   859     double time = PSMarkSweep::accumulated_time()->seconds();
   860     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
   861   }
   862 }
   865 void ParallelScavengeHeap::verify(bool allow_dirty, bool silent) {
   866   // Why do we need the total_collections()-filter below?
   867   if (total_collections() > 0) {
   868     if (!silent) {
   869       gclog_or_tty->print("permanent ");
   870     }
   871     perm_gen()->verify(allow_dirty);
   873     if (!silent) {
   874       gclog_or_tty->print("tenured ");
   875     }
   876     old_gen()->verify(allow_dirty);
   878     if (!silent) {
   879       gclog_or_tty->print("eden ");
   880     }
   881     young_gen()->verify(allow_dirty);
   882   }
   883   if (!silent) {
   884     gclog_or_tty->print("ref_proc ");
   885   }
   886   ReferenceProcessor::verify();
   887 }
   889 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
   890   if (PrintGCDetails && Verbose) {
   891     gclog_or_tty->print(" "  SIZE_FORMAT
   892                         "->" SIZE_FORMAT
   893                         "("  SIZE_FORMAT ")",
   894                         prev_used, used(), capacity());
   895   } else {
   896     gclog_or_tty->print(" "  SIZE_FORMAT "K"
   897                         "->" SIZE_FORMAT "K"
   898                         "("  SIZE_FORMAT "K)",
   899                         prev_used / K, used() / K, capacity() / K);
   900   }
   901 }
   903 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
   904   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
   905   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
   906   return _psh;
   907 }
   909 // Before delegating the resize to the young generation,
   910 // the reserved space for the young and old generations
   911 // may be changed to accomodate the desired resize.
   912 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
   913     size_t survivor_size) {
   914   if (UseAdaptiveGCBoundary) {
   915     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   916       size_policy()->reset_bytes_absorbed_from_eden();
   917       return;  // The generation changed size already.
   918     }
   919     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
   920   }
   922   // Delegate the resize to the generation.
   923   _young_gen->resize(eden_size, survivor_size);
   924 }
   926 // Before delegating the resize to the old generation,
   927 // the reserved space for the young and old generations
   928 // may be changed to accomodate the desired resize.
   929 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
   930   if (UseAdaptiveGCBoundary) {
   931     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   932       size_policy()->reset_bytes_absorbed_from_eden();
   933       return;  // The generation changed size already.
   934     }
   935     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
   936   }
   938   // Delegate the resize to the generation.
   939   _old_gen->resize(desired_free_space);
   940 }

mercurial