src/os/windows/vm/os_windows.cpp

Wed, 02 Jul 2008 12:55:16 -0700

author
xdono
date
Wed, 02 Jul 2008 12:55:16 -0700
changeset 631
d1605aabd0a1
parent 577
8bd1e4487c18
child 672
1fdb98a17101
permissions
-rw-r--r--

6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #ifdef _WIN64
    26 // Must be at least Windows 2000 or XP to use VectoredExceptions
    27 #define _WIN32_WINNT 0x500
    28 #endif
    30 // do not include precompiled header file
    31 # include "incls/_os_windows.cpp.incl"
    33 #ifdef _DEBUG
    34 #include <crtdbg.h>
    35 #endif
    38 #include <windows.h>
    39 #include <sys/types.h>
    40 #include <sys/stat.h>
    41 #include <sys/timeb.h>
    42 #include <objidl.h>
    43 #include <shlobj.h>
    45 #include <malloc.h>
    46 #include <signal.h>
    47 #include <direct.h>
    48 #include <errno.h>
    49 #include <fcntl.h>
    50 #include <io.h>
    51 #include <process.h>              // For _beginthreadex(), _endthreadex()
    52 #include <imagehlp.h>             // For os::dll_address_to_function_name
    54 /* for enumerating dll libraries */
    55 #include <tlhelp32.h>
    56 #include <vdmdbg.h>
    58 // for timer info max values which include all bits
    59 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
    61 // For DLL loading/load error detection
    62 // Values of PE COFF
    63 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
    64 #define IMAGE_FILE_SIGNATURE_LENGTH 4
    66 static HANDLE main_process;
    67 static HANDLE main_thread;
    68 static int    main_thread_id;
    70 static FILETIME process_creation_time;
    71 static FILETIME process_exit_time;
    72 static FILETIME process_user_time;
    73 static FILETIME process_kernel_time;
    75 #ifdef _WIN64
    76 PVOID  topLevelVectoredExceptionHandler = NULL;
    77 #endif
    79 #ifdef _M_IA64
    80 #define __CPU__ ia64
    81 #elif _M_AMD64
    82 #define __CPU__ amd64
    83 #else
    84 #define __CPU__ i486
    85 #endif
    87 // save DLL module handle, used by GetModuleFileName
    89 HINSTANCE vm_lib_handle;
    90 static int getLastErrorString(char *buf, size_t len);
    92 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
    93   switch (reason) {
    94     case DLL_PROCESS_ATTACH:
    95       vm_lib_handle = hinst;
    96       if(ForceTimeHighResolution)
    97         timeBeginPeriod(1L);
    98       break;
    99     case DLL_PROCESS_DETACH:
   100       if(ForceTimeHighResolution)
   101         timeEndPeriod(1L);
   102 #ifdef _WIN64
   103       if (topLevelVectoredExceptionHandler != NULL) {
   104         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
   105         topLevelVectoredExceptionHandler = NULL;
   106       }
   107 #endif
   108       break;
   109     default:
   110       break;
   111   }
   112   return true;
   113 }
   115 static inline double fileTimeAsDouble(FILETIME* time) {
   116   const double high  = (double) ((unsigned int) ~0);
   117   const double split = 10000000.0;
   118   double result = (time->dwLowDateTime / split) +
   119                    time->dwHighDateTime * (high/split);
   120   return result;
   121 }
   123 // Implementation of os
   125 bool os::getenv(const char* name, char* buffer, int len) {
   126  int result = GetEnvironmentVariable(name, buffer, len);
   127  return result > 0 && result < len;
   128 }
   131 // No setuid programs under Windows.
   132 bool os::have_special_privileges() {
   133   return false;
   134 }
   137 // This method is  a periodic task to check for misbehaving JNI applications
   138 // under CheckJNI, we can add any periodic checks here.
   139 // For Windows at the moment does nothing
   140 void os::run_periodic_checks() {
   141   return;
   142 }
   144 #ifndef _WIN64
   145 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
   146 #endif
   147 void os::init_system_properties_values() {
   148   /* sysclasspath, java_home, dll_dir */
   149   {
   150       char *home_path;
   151       char *dll_path;
   152       char *pslash;
   153       char *bin = "\\bin";
   154       char home_dir[MAX_PATH];
   156       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
   157           os::jvm_path(home_dir, sizeof(home_dir));
   158           // Found the full path to jvm[_g].dll.
   159           // Now cut the path to <java_home>/jre if we can.
   160           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
   161           pslash = strrchr(home_dir, '\\');
   162           if (pslash != NULL) {
   163               *pslash = '\0';                 /* get rid of \{client|server} */
   164               pslash = strrchr(home_dir, '\\');
   165               if (pslash != NULL)
   166                   *pslash = '\0';             /* get rid of \bin */
   167           }
   168       }
   170       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
   171       if (home_path == NULL)
   172           return;
   173       strcpy(home_path, home_dir);
   174       Arguments::set_java_home(home_path);
   176       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
   177       if (dll_path == NULL)
   178           return;
   179       strcpy(dll_path, home_dir);
   180       strcat(dll_path, bin);
   181       Arguments::set_dll_dir(dll_path);
   183       if (!set_boot_path('\\', ';'))
   184           return;
   185   }
   187   /* library_path */
   188   #define EXT_DIR "\\lib\\ext"
   189   #define BIN_DIR "\\bin"
   190   #define PACKAGE_DIR "\\Sun\\Java"
   191   {
   192     /* Win32 library search order (See the documentation for LoadLibrary):
   193      *
   194      * 1. The directory from which application is loaded.
   195      * 2. The current directory
   196      * 3. The system wide Java Extensions directory (Java only)
   197      * 4. System directory (GetSystemDirectory)
   198      * 5. Windows directory (GetWindowsDirectory)
   199      * 6. The PATH environment variable
   200      */
   202     char *library_path;
   203     char tmp[MAX_PATH];
   204     char *path_str = ::getenv("PATH");
   206     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
   207         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
   209     library_path[0] = '\0';
   211     GetModuleFileName(NULL, tmp, sizeof(tmp));
   212     *(strrchr(tmp, '\\')) = '\0';
   213     strcat(library_path, tmp);
   215     strcat(library_path, ";.");
   217     GetWindowsDirectory(tmp, sizeof(tmp));
   218     strcat(library_path, ";");
   219     strcat(library_path, tmp);
   220     strcat(library_path, PACKAGE_DIR BIN_DIR);
   222     GetSystemDirectory(tmp, sizeof(tmp));
   223     strcat(library_path, ";");
   224     strcat(library_path, tmp);
   226     GetWindowsDirectory(tmp, sizeof(tmp));
   227     strcat(library_path, ";");
   228     strcat(library_path, tmp);
   230     if (path_str) {
   231         strcat(library_path, ";");
   232         strcat(library_path, path_str);
   233     }
   235     Arguments::set_library_path(library_path);
   236     FREE_C_HEAP_ARRAY(char, library_path);
   237   }
   239   /* Default extensions directory */
   240   {
   241     char path[MAX_PATH];
   242     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
   243     GetWindowsDirectory(path, MAX_PATH);
   244     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
   245         path, PACKAGE_DIR, EXT_DIR);
   246     Arguments::set_ext_dirs(buf);
   247   }
   248   #undef EXT_DIR
   249   #undef BIN_DIR
   250   #undef PACKAGE_DIR
   252   /* Default endorsed standards directory. */
   253   {
   254     #define ENDORSED_DIR "\\lib\\endorsed"
   255     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
   256     char * buf = NEW_C_HEAP_ARRAY(char, len);
   257     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
   258     Arguments::set_endorsed_dirs(buf);
   259     #undef ENDORSED_DIR
   260   }
   262 #ifndef _WIN64
   263   SetUnhandledExceptionFilter(Handle_FLT_Exception);
   264 #endif
   266   // Done
   267   return;
   268 }
   270 void os::breakpoint() {
   271   DebugBreak();
   272 }
   274 // Invoked from the BREAKPOINT Macro
   275 extern "C" void breakpoint() {
   276   os::breakpoint();
   277 }
   279 // Returns an estimate of the current stack pointer. Result must be guaranteed
   280 // to point into the calling threads stack, and be no lower than the current
   281 // stack pointer.
   283 address os::current_stack_pointer() {
   284   int dummy;
   285   address sp = (address)&dummy;
   286   return sp;
   287 }
   289 // os::current_stack_base()
   290 //
   291 //   Returns the base of the stack, which is the stack's
   292 //   starting address.  This function must be called
   293 //   while running on the stack of the thread being queried.
   295 address os::current_stack_base() {
   296   MEMORY_BASIC_INFORMATION minfo;
   297   address stack_bottom;
   298   size_t stack_size;
   300   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   301   stack_bottom =  (address)minfo.AllocationBase;
   302   stack_size = minfo.RegionSize;
   304   // Add up the sizes of all the regions with the same
   305   // AllocationBase.
   306   while( 1 )
   307   {
   308     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
   309     if ( stack_bottom == (address)minfo.AllocationBase )
   310       stack_size += minfo.RegionSize;
   311     else
   312       break;
   313   }
   315 #ifdef _M_IA64
   316   // IA64 has memory and register stacks
   317   stack_size = stack_size / 2;
   318 #endif
   319   return stack_bottom + stack_size;
   320 }
   322 size_t os::current_stack_size() {
   323   size_t sz;
   324   MEMORY_BASIC_INFORMATION minfo;
   325   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   326   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
   327   return sz;
   328 }
   331 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
   333 // Thread start routine for all new Java threads
   334 static unsigned __stdcall java_start(Thread* thread) {
   335   // Try to randomize the cache line index of hot stack frames.
   336   // This helps when threads of the same stack traces evict each other's
   337   // cache lines. The threads can be either from the same JVM instance, or
   338   // from different JVM instances. The benefit is especially true for
   339   // processors with hyperthreading technology.
   340   static int counter = 0;
   341   int pid = os::current_process_id();
   342   _alloca(((pid ^ counter++) & 7) * 128);
   344   OSThread* osthr = thread->osthread();
   345   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   347   if (UseNUMA) {
   348     int lgrp_id = os::numa_get_group_id();
   349     if (lgrp_id != -1) {
   350       thread->set_lgrp_id(lgrp_id);
   351     }
   352   }
   355   if (UseVectoredExceptions) {
   356     // If we are using vectored exception we don't need to set a SEH
   357     thread->run();
   358   }
   359   else {
   360     // Install a win32 structured exception handler around every thread created
   361     // by VM, so VM can genrate error dump when an exception occurred in non-
   362     // Java thread (e.g. VM thread).
   363     __try {
   364        thread->run();
   365     } __except(topLevelExceptionFilter(
   366                (_EXCEPTION_POINTERS*)_exception_info())) {
   367         // Nothing to do.
   368     }
   369   }
   371   // One less thread is executing
   372   // When the VMThread gets here, the main thread may have already exited
   373   // which frees the CodeHeap containing the Atomic::add code
   374   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   375     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
   376   }
   378   return 0;
   379 }
   381 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
   382   // Allocate the OSThread object
   383   OSThread* osthread = new OSThread(NULL, NULL);
   384   if (osthread == NULL) return NULL;
   386   // Initialize support for Java interrupts
   387   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   388   if (interrupt_event == NULL) {
   389     delete osthread;
   390     return NULL;
   391   }
   392   osthread->set_interrupt_event(interrupt_event);
   394   // Store info on the Win32 thread into the OSThread
   395   osthread->set_thread_handle(thread_handle);
   396   osthread->set_thread_id(thread_id);
   398   if (UseNUMA) {
   399     int lgrp_id = os::numa_get_group_id();
   400     if (lgrp_id != -1) {
   401       thread->set_lgrp_id(lgrp_id);
   402     }
   403   }
   405   // Initial thread state is INITIALIZED, not SUSPENDED
   406   osthread->set_state(INITIALIZED);
   408   return osthread;
   409 }
   412 bool os::create_attached_thread(JavaThread* thread) {
   413 #ifdef ASSERT
   414   thread->verify_not_published();
   415 #endif
   416   HANDLE thread_h;
   417   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
   418                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
   419     fatal("DuplicateHandle failed\n");
   420   }
   421   OSThread* osthread = create_os_thread(thread, thread_h,
   422                                         (int)current_thread_id());
   423   if (osthread == NULL) {
   424      return false;
   425   }
   427   // Initial thread state is RUNNABLE
   428   osthread->set_state(RUNNABLE);
   430   thread->set_osthread(osthread);
   431   return true;
   432 }
   434 bool os::create_main_thread(JavaThread* thread) {
   435 #ifdef ASSERT
   436   thread->verify_not_published();
   437 #endif
   438   if (_starting_thread == NULL) {
   439     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
   440      if (_starting_thread == NULL) {
   441         return false;
   442      }
   443   }
   445   // The primordial thread is runnable from the start)
   446   _starting_thread->set_state(RUNNABLE);
   448   thread->set_osthread(_starting_thread);
   449   return true;
   450 }
   452 // Allocate and initialize a new OSThread
   453 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   454   unsigned thread_id;
   456   // Allocate the OSThread object
   457   OSThread* osthread = new OSThread(NULL, NULL);
   458   if (osthread == NULL) {
   459     return false;
   460   }
   462   // Initialize support for Java interrupts
   463   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   464   if (interrupt_event == NULL) {
   465     delete osthread;
   466     return NULL;
   467   }
   468   osthread->set_interrupt_event(interrupt_event);
   469   osthread->set_interrupted(false);
   471   thread->set_osthread(osthread);
   473   if (stack_size == 0) {
   474     switch (thr_type) {
   475     case os::java_thread:
   476       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   477       if (JavaThread::stack_size_at_create() > 0)
   478         stack_size = JavaThread::stack_size_at_create();
   479       break;
   480     case os::compiler_thread:
   481       if (CompilerThreadStackSize > 0) {
   482         stack_size = (size_t)(CompilerThreadStackSize * K);
   483         break;
   484       } // else fall through:
   485         // use VMThreadStackSize if CompilerThreadStackSize is not defined
   486     case os::vm_thread:
   487     case os::pgc_thread:
   488     case os::cgc_thread:
   489     case os::watcher_thread:
   490       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   491       break;
   492     }
   493   }
   495   // Create the Win32 thread
   496   //
   497   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
   498   // does not specify stack size. Instead, it specifies the size of
   499   // initially committed space. The stack size is determined by
   500   // PE header in the executable. If the committed "stack_size" is larger
   501   // than default value in the PE header, the stack is rounded up to the
   502   // nearest multiple of 1MB. For example if the launcher has default
   503   // stack size of 320k, specifying any size less than 320k does not
   504   // affect the actual stack size at all, it only affects the initial
   505   // commitment. On the other hand, specifying 'stack_size' larger than
   506   // default value may cause significant increase in memory usage, because
   507   // not only the stack space will be rounded up to MB, but also the
   508   // entire space is committed upfront.
   509   //
   510   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
   511   // for CreateThread() that can treat 'stack_size' as stack size. However we
   512   // are not supposed to call CreateThread() directly according to MSDN
   513   // document because JVM uses C runtime library. The good news is that the
   514   // flag appears to work with _beginthredex() as well.
   516 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
   517 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
   518 #endif
   520   HANDLE thread_handle =
   521     (HANDLE)_beginthreadex(NULL,
   522                            (unsigned)stack_size,
   523                            (unsigned (__stdcall *)(void*)) java_start,
   524                            thread,
   525                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
   526                            &thread_id);
   527   if (thread_handle == NULL) {
   528     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
   529     // without the flag.
   530     thread_handle =
   531     (HANDLE)_beginthreadex(NULL,
   532                            (unsigned)stack_size,
   533                            (unsigned (__stdcall *)(void*)) java_start,
   534                            thread,
   535                            CREATE_SUSPENDED,
   536                            &thread_id);
   537   }
   538   if (thread_handle == NULL) {
   539     // Need to clean up stuff we've allocated so far
   540     CloseHandle(osthread->interrupt_event());
   541     thread->set_osthread(NULL);
   542     delete osthread;
   543     return NULL;
   544   }
   546   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
   548   // Store info on the Win32 thread into the OSThread
   549   osthread->set_thread_handle(thread_handle);
   550   osthread->set_thread_id(thread_id);
   552   // Initial thread state is INITIALIZED, not SUSPENDED
   553   osthread->set_state(INITIALIZED);
   555   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
   556   return true;
   557 }
   560 // Free Win32 resources related to the OSThread
   561 void os::free_thread(OSThread* osthread) {
   562   assert(osthread != NULL, "osthread not set");
   563   CloseHandle(osthread->thread_handle());
   564   CloseHandle(osthread->interrupt_event());
   565   delete osthread;
   566 }
   569 static int    has_performance_count = 0;
   570 static jlong first_filetime;
   571 static jlong initial_performance_count;
   572 static jlong performance_frequency;
   575 jlong as_long(LARGE_INTEGER x) {
   576   jlong result = 0; // initialization to avoid warning
   577   set_high(&result, x.HighPart);
   578   set_low(&result,  x.LowPart);
   579   return result;
   580 }
   583 jlong os::elapsed_counter() {
   584   LARGE_INTEGER count;
   585   if (has_performance_count) {
   586     QueryPerformanceCounter(&count);
   587     return as_long(count) - initial_performance_count;
   588   } else {
   589     FILETIME wt;
   590     GetSystemTimeAsFileTime(&wt);
   591     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
   592   }
   593 }
   596 jlong os::elapsed_frequency() {
   597   if (has_performance_count) {
   598     return performance_frequency;
   599   } else {
   600    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
   601    return 10000000;
   602   }
   603 }
   606 julong os::available_memory() {
   607   return win32::available_memory();
   608 }
   610 julong os::win32::available_memory() {
   611   // FIXME: GlobalMemoryStatus() may return incorrect value if total memory
   612   // is larger than 4GB
   613   MEMORYSTATUS ms;
   614   GlobalMemoryStatus(&ms);
   616   return (julong)ms.dwAvailPhys;
   617 }
   619 julong os::physical_memory() {
   620   return win32::physical_memory();
   621 }
   623 julong os::allocatable_physical_memory(julong size) {
   624 #ifdef _LP64
   625   return size;
   626 #else
   627   // Limit to 1400m because of the 2gb address space wall
   628   return MIN2(size, (julong)1400*M);
   629 #endif
   630 }
   632 // VC6 lacks DWORD_PTR
   633 #if _MSC_VER < 1300
   634 typedef UINT_PTR DWORD_PTR;
   635 #endif
   637 int os::active_processor_count() {
   638   DWORD_PTR lpProcessAffinityMask = 0;
   639   DWORD_PTR lpSystemAffinityMask = 0;
   640   int proc_count = processor_count();
   641   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
   642       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
   643     // Nof active processors is number of bits in process affinity mask
   644     int bitcount = 0;
   645     while (lpProcessAffinityMask != 0) {
   646       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
   647       bitcount++;
   648     }
   649     return bitcount;
   650   } else {
   651     return proc_count;
   652   }
   653 }
   655 bool os::distribute_processes(uint length, uint* distribution) {
   656   // Not yet implemented.
   657   return false;
   658 }
   660 bool os::bind_to_processor(uint processor_id) {
   661   // Not yet implemented.
   662   return false;
   663 }
   665 static void initialize_performance_counter() {
   666   LARGE_INTEGER count;
   667   if (QueryPerformanceFrequency(&count)) {
   668     has_performance_count = 1;
   669     performance_frequency = as_long(count);
   670     QueryPerformanceCounter(&count);
   671     initial_performance_count = as_long(count);
   672   } else {
   673     has_performance_count = 0;
   674     FILETIME wt;
   675     GetSystemTimeAsFileTime(&wt);
   676     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   677   }
   678 }
   681 double os::elapsedTime() {
   682   return (double) elapsed_counter() / (double) elapsed_frequency();
   683 }
   686 // Windows format:
   687 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
   688 // Java format:
   689 //   Java standards require the number of milliseconds since 1/1/1970
   691 // Constant offset - calculated using offset()
   692 static jlong  _offset   = 116444736000000000;
   693 // Fake time counter for reproducible results when debugging
   694 static jlong  fake_time = 0;
   696 #ifdef ASSERT
   697 // Just to be safe, recalculate the offset in debug mode
   698 static jlong _calculated_offset = 0;
   699 static int   _has_calculated_offset = 0;
   701 jlong offset() {
   702   if (_has_calculated_offset) return _calculated_offset;
   703   SYSTEMTIME java_origin;
   704   java_origin.wYear          = 1970;
   705   java_origin.wMonth         = 1;
   706   java_origin.wDayOfWeek     = 0; // ignored
   707   java_origin.wDay           = 1;
   708   java_origin.wHour          = 0;
   709   java_origin.wMinute        = 0;
   710   java_origin.wSecond        = 0;
   711   java_origin.wMilliseconds  = 0;
   712   FILETIME jot;
   713   if (!SystemTimeToFileTime(&java_origin, &jot)) {
   714     fatal1("Error = %d\nWindows error", GetLastError());
   715   }
   716   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
   717   _has_calculated_offset = 1;
   718   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
   719   return _calculated_offset;
   720 }
   721 #else
   722 jlong offset() {
   723   return _offset;
   724 }
   725 #endif
   727 jlong windows_to_java_time(FILETIME wt) {
   728   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   729   return (a - offset()) / 10000;
   730 }
   732 FILETIME java_to_windows_time(jlong l) {
   733   jlong a = (l * 10000) + offset();
   734   FILETIME result;
   735   result.dwHighDateTime = high(a);
   736   result.dwLowDateTime  = low(a);
   737   return result;
   738 }
   740 jlong os::javaTimeMillis() {
   741   if (UseFakeTimers) {
   742     return fake_time++;
   743   } else {
   744     FILETIME wt;
   745     GetSystemTimeAsFileTime(&wt);
   746     return windows_to_java_time(wt);
   747   }
   748 }
   750 #define NANOS_PER_SEC         CONST64(1000000000)
   751 #define NANOS_PER_MILLISEC    1000000
   752 jlong os::javaTimeNanos() {
   753   if (!has_performance_count) {
   754     return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
   755   } else {
   756     LARGE_INTEGER current_count;
   757     QueryPerformanceCounter(&current_count);
   758     double current = as_long(current_count);
   759     double freq = performance_frequency;
   760     jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
   761     return time;
   762   }
   763 }
   765 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
   766   if (!has_performance_count) {
   767     // javaTimeMillis() doesn't have much percision,
   768     // but it is not going to wrap -- so all 64 bits
   769     info_ptr->max_value = ALL_64_BITS;
   771     // this is a wall clock timer, so may skip
   772     info_ptr->may_skip_backward = true;
   773     info_ptr->may_skip_forward = true;
   774   } else {
   775     jlong freq = performance_frequency;
   776     if (freq < NANOS_PER_SEC) {
   777       // the performance counter is 64 bits and we will
   778       // be multiplying it -- so no wrap in 64 bits
   779       info_ptr->max_value = ALL_64_BITS;
   780     } else if (freq > NANOS_PER_SEC) {
   781       // use the max value the counter can reach to
   782       // determine the max value which could be returned
   783       julong max_counter = (julong)ALL_64_BITS;
   784       info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
   785     } else {
   786       // the performance counter is 64 bits and we will
   787       // be using it directly -- so no wrap in 64 bits
   788       info_ptr->max_value = ALL_64_BITS;
   789     }
   791     // using a counter, so no skipping
   792     info_ptr->may_skip_backward = false;
   793     info_ptr->may_skip_forward = false;
   794   }
   795   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
   796 }
   798 char* os::local_time_string(char *buf, size_t buflen) {
   799   SYSTEMTIME st;
   800   GetLocalTime(&st);
   801   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
   802                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
   803   return buf;
   804 }
   806 bool os::getTimesSecs(double* process_real_time,
   807                      double* process_user_time,
   808                      double* process_system_time) {
   809   HANDLE h_process = GetCurrentProcess();
   810   FILETIME create_time, exit_time, kernel_time, user_time;
   811   BOOL result = GetProcessTimes(h_process,
   812                                &create_time,
   813                                &exit_time,
   814                                &kernel_time,
   815                                &user_time);
   816   if (result != 0) {
   817     FILETIME wt;
   818     GetSystemTimeAsFileTime(&wt);
   819     jlong rtc_millis = windows_to_java_time(wt);
   820     jlong user_millis = windows_to_java_time(user_time);
   821     jlong system_millis = windows_to_java_time(kernel_time);
   822     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
   823     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
   824     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
   825     return true;
   826   } else {
   827     return false;
   828   }
   829 }
   831 void os::shutdown() {
   833   // allow PerfMemory to attempt cleanup of any persistent resources
   834   perfMemory_exit();
   836   // flush buffered output, finish log files
   837   ostream_abort();
   839   // Check for abort hook
   840   abort_hook_t abort_hook = Arguments::abort_hook();
   841   if (abort_hook != NULL) {
   842     abort_hook();
   843   }
   844 }
   846 void os::abort(bool dump_core)
   847 {
   848   os::shutdown();
   849   // no core dump on Windows
   850   ::exit(1);
   851 }
   853 // Die immediately, no exit hook, no abort hook, no cleanup.
   854 void os::die() {
   855   _exit(-1);
   856 }
   858 // Directory routines copied from src/win32/native/java/io/dirent_md.c
   859 //  * dirent_md.c       1.15 00/02/02
   860 //
   861 // The declarations for DIR and struct dirent are in jvm_win32.h.
   863 /* Caller must have already run dirname through JVM_NativePath, which removes
   864    duplicate slashes and converts all instances of '/' into '\\'. */
   866 DIR *
   867 os::opendir(const char *dirname)
   868 {
   869     assert(dirname != NULL, "just checking");   // hotspot change
   870     DIR *dirp = (DIR *)malloc(sizeof(DIR));
   871     DWORD fattr;                                // hotspot change
   872     char alt_dirname[4] = { 0, 0, 0, 0 };
   874     if (dirp == 0) {
   875         errno = ENOMEM;
   876         return 0;
   877     }
   879     /*
   880      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
   881      * as a directory in FindFirstFile().  We detect this case here and
   882      * prepend the current drive name.
   883      */
   884     if (dirname[1] == '\0' && dirname[0] == '\\') {
   885         alt_dirname[0] = _getdrive() + 'A' - 1;
   886         alt_dirname[1] = ':';
   887         alt_dirname[2] = '\\';
   888         alt_dirname[3] = '\0';
   889         dirname = alt_dirname;
   890     }
   892     dirp->path = (char *)malloc(strlen(dirname) + 5);
   893     if (dirp->path == 0) {
   894         free(dirp);
   895         errno = ENOMEM;
   896         return 0;
   897     }
   898     strcpy(dirp->path, dirname);
   900     fattr = GetFileAttributes(dirp->path);
   901     if (fattr == 0xffffffff) {
   902         free(dirp->path);
   903         free(dirp);
   904         errno = ENOENT;
   905         return 0;
   906     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
   907         free(dirp->path);
   908         free(dirp);
   909         errno = ENOTDIR;
   910         return 0;
   911     }
   913     /* Append "*.*", or possibly "\\*.*", to path */
   914     if (dirp->path[1] == ':'
   915         && (dirp->path[2] == '\0'
   916             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
   917         /* No '\\' needed for cases like "Z:" or "Z:\" */
   918         strcat(dirp->path, "*.*");
   919     } else {
   920         strcat(dirp->path, "\\*.*");
   921     }
   923     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
   924     if (dirp->handle == INVALID_HANDLE_VALUE) {
   925         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
   926             free(dirp->path);
   927             free(dirp);
   928             errno = EACCES;
   929             return 0;
   930         }
   931     }
   932     return dirp;
   933 }
   935 /* parameter dbuf unused on Windows */
   937 struct dirent *
   938 os::readdir(DIR *dirp, dirent *dbuf)
   939 {
   940     assert(dirp != NULL, "just checking");      // hotspot change
   941     if (dirp->handle == INVALID_HANDLE_VALUE) {
   942         return 0;
   943     }
   945     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
   947     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
   948         if (GetLastError() == ERROR_INVALID_HANDLE) {
   949             errno = EBADF;
   950             return 0;
   951         }
   952         FindClose(dirp->handle);
   953         dirp->handle = INVALID_HANDLE_VALUE;
   954     }
   956     return &dirp->dirent;
   957 }
   959 int
   960 os::closedir(DIR *dirp)
   961 {
   962     assert(dirp != NULL, "just checking");      // hotspot change
   963     if (dirp->handle != INVALID_HANDLE_VALUE) {
   964         if (!FindClose(dirp->handle)) {
   965             errno = EBADF;
   966             return -1;
   967         }
   968         dirp->handle = INVALID_HANDLE_VALUE;
   969     }
   970     free(dirp->path);
   971     free(dirp);
   972     return 0;
   973 }
   975 const char* os::dll_file_extension() { return ".dll"; }
   977 const char * os::get_temp_directory()
   978 {
   979     static char path_buf[MAX_PATH];
   980     if (GetTempPath(MAX_PATH, path_buf)>0)
   981       return path_buf;
   982     else{
   983       path_buf[0]='\0';
   984       return path_buf;
   985     }
   986 }
   988 // Needs to be in os specific directory because windows requires another
   989 // header file <direct.h>
   990 const char* os::get_current_directory(char *buf, int buflen) {
   991   return _getcwd(buf, buflen);
   992 }
   994 //-----------------------------------------------------------
   995 // Helper functions for fatal error handler
   997 // The following library functions are resolved dynamically at runtime:
   999 // PSAPI functions, for Windows NT, 2000, XP
  1001 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
  1002 // SDK from Microsoft.  Here are the definitions copied from psapi.h
  1003 typedef struct _MODULEINFO {
  1004     LPVOID lpBaseOfDll;
  1005     DWORD SizeOfImage;
  1006     LPVOID EntryPoint;
  1007 } MODULEINFO, *LPMODULEINFO;
  1009 static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
  1010 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
  1011 static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
  1013 // ToolHelp Functions, for Windows 95, 98 and ME
  1015 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
  1016 static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
  1017 static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
  1019 bool _has_psapi;
  1020 bool _psapi_init = false;
  1021 bool _has_toolhelp;
  1023 static bool _init_psapi() {
  1024   HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
  1025   if( psapi == NULL ) return false ;
  1027   _EnumProcessModules = CAST_TO_FN_PTR(
  1028       BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
  1029       GetProcAddress(psapi, "EnumProcessModules")) ;
  1030   _GetModuleFileNameEx = CAST_TO_FN_PTR(
  1031       DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
  1032       GetProcAddress(psapi, "GetModuleFileNameExA"));
  1033   _GetModuleInformation = CAST_TO_FN_PTR(
  1034       BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
  1035       GetProcAddress(psapi, "GetModuleInformation"));
  1037   _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
  1038   _psapi_init = true;
  1039   return _has_psapi;
  1042 static bool _init_toolhelp() {
  1043   HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
  1044   if (kernel32 == NULL) return false ;
  1046   _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
  1047       HANDLE(WINAPI *)(DWORD,DWORD),
  1048       GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
  1049   _Module32First = CAST_TO_FN_PTR(
  1050       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
  1051       GetProcAddress(kernel32, "Module32First" ));
  1052   _Module32Next = CAST_TO_FN_PTR(
  1053       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
  1054       GetProcAddress(kernel32, "Module32Next" ));
  1056   _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
  1057   return _has_toolhelp;
  1060 #ifdef _WIN64
  1061 // Helper routine which returns true if address in
  1062 // within the NTDLL address space.
  1063 //
  1064 static bool _addr_in_ntdll( address addr )
  1066   HMODULE hmod;
  1067   MODULEINFO minfo;
  1069   hmod = GetModuleHandle("NTDLL.DLL");
  1070   if ( hmod == NULL ) return false;
  1071   if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
  1072                                &minfo, sizeof(MODULEINFO)) )
  1073     return false;
  1075   if ( (addr >= minfo.lpBaseOfDll) &&
  1076        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
  1077     return true;
  1078   else
  1079     return false;
  1081 #endif
  1084 // Enumerate all modules for a given process ID
  1085 //
  1086 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
  1087 // different API for doing this. We use PSAPI.DLL on NT based
  1088 // Windows and ToolHelp on 95/98/Me.
  1090 // Callback function that is called by enumerate_modules() on
  1091 // every DLL module.
  1092 // Input parameters:
  1093 //    int       pid,
  1094 //    char*     module_file_name,
  1095 //    address   module_base_addr,
  1096 //    unsigned  module_size,
  1097 //    void*     param
  1098 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
  1100 // enumerate_modules for Windows NT, using PSAPI
  1101 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
  1103   HANDLE   hProcess ;
  1105 # define MAX_NUM_MODULES 128
  1106   HMODULE     modules[MAX_NUM_MODULES];
  1107   static char filename[ MAX_PATH ];
  1108   int         result = 0;
  1110   if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
  1112   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1113                          FALSE, pid ) ;
  1114   if (hProcess == NULL) return 0;
  1116   DWORD size_needed;
  1117   if (!_EnumProcessModules(hProcess, modules,
  1118                            sizeof(modules), &size_needed)) {
  1119       CloseHandle( hProcess );
  1120       return 0;
  1123   // number of modules that are currently loaded
  1124   int num_modules = size_needed / sizeof(HMODULE);
  1126   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1127     // Get Full pathname:
  1128     if(!_GetModuleFileNameEx(hProcess, modules[i],
  1129                              filename, sizeof(filename))) {
  1130         filename[0] = '\0';
  1133     MODULEINFO modinfo;
  1134     if (!_GetModuleInformation(hProcess, modules[i],
  1135                                &modinfo, sizeof(modinfo))) {
  1136         modinfo.lpBaseOfDll = NULL;
  1137         modinfo.SizeOfImage = 0;
  1140     // Invoke callback function
  1141     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
  1142                   modinfo.SizeOfImage, param);
  1143     if (result) break;
  1146   CloseHandle( hProcess ) ;
  1147   return result;
  1151 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
  1152 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
  1154   HANDLE                hSnapShot ;
  1155   static MODULEENTRY32  modentry ;
  1156   int                   result = 0;
  1158   if (!_has_toolhelp) return 0;
  1160   // Get a handle to a Toolhelp snapshot of the system
  1161   hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
  1162   if( hSnapShot == INVALID_HANDLE_VALUE ) {
  1163       return FALSE ;
  1166   // iterate through all modules
  1167   modentry.dwSize = sizeof(MODULEENTRY32) ;
  1168   bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
  1170   while( not_done ) {
  1171     // invoke the callback
  1172     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
  1173                 modentry.modBaseSize, param);
  1174     if (result) break;
  1176     modentry.dwSize = sizeof(MODULEENTRY32) ;
  1177     not_done = _Module32Next( hSnapShot, &modentry ) != 0;
  1180   CloseHandle(hSnapShot);
  1181   return result;
  1184 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
  1186   // Get current process ID if caller doesn't provide it.
  1187   if (!pid) pid = os::current_process_id();
  1189   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
  1190   else                    return _enumerate_modules_windows(pid, func, param);
  1193 struct _modinfo {
  1194    address addr;
  1195    char*   full_path;   // point to a char buffer
  1196    int     buflen;      // size of the buffer
  1197    address base_addr;
  1198 };
  1200 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
  1201                                   unsigned size, void * param) {
  1202    struct _modinfo *pmod = (struct _modinfo *)param;
  1203    if (!pmod) return -1;
  1205    if (base_addr     <= pmod->addr &&
  1206        base_addr+size > pmod->addr) {
  1207      // if a buffer is provided, copy path name to the buffer
  1208      if (pmod->full_path) {
  1209        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
  1211      pmod->base_addr = base_addr;
  1212      return 1;
  1214    return 0;
  1217 bool os::dll_address_to_library_name(address addr, char* buf,
  1218                                      int buflen, int* offset) {
  1219 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
  1220 //       return the full path to the DLL file, sometimes it returns path
  1221 //       to the corresponding PDB file (debug info); sometimes it only
  1222 //       returns partial path, which makes life painful.
  1224    struct _modinfo mi;
  1225    mi.addr      = addr;
  1226    mi.full_path = buf;
  1227    mi.buflen    = buflen;
  1228    int pid = os::current_process_id();
  1229    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
  1230       // buf already contains path name
  1231       if (offset) *offset = addr - mi.base_addr;
  1232       return true;
  1233    } else {
  1234       if (buf) buf[0] = '\0';
  1235       if (offset) *offset = -1;
  1236       return false;
  1240 bool os::dll_address_to_function_name(address addr, char *buf,
  1241                                       int buflen, int *offset) {
  1242   // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
  1243   // we need to initialize imagehlp/dbghelp, then load symbol table
  1244   // for every module. That's too much work to do after a fatal error.
  1245   // For an example on how to implement this function, see 1.4.2.
  1246   if (offset)  *offset  = -1;
  1247   if (buf) buf[0] = '\0';
  1248   return false;
  1251 // save the start and end address of jvm.dll into param[0] and param[1]
  1252 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
  1253                     unsigned size, void * param) {
  1254    if (!param) return -1;
  1256    if (base_addr     <= (address)_locate_jvm_dll &&
  1257        base_addr+size > (address)_locate_jvm_dll) {
  1258          ((address*)param)[0] = base_addr;
  1259          ((address*)param)[1] = base_addr + size;
  1260          return 1;
  1262    return 0;
  1265 address vm_lib_location[2];    // start and end address of jvm.dll
  1267 // check if addr is inside jvm.dll
  1268 bool os::address_is_in_vm(address addr) {
  1269   if (!vm_lib_location[0] || !vm_lib_location[1]) {
  1270     int pid = os::current_process_id();
  1271     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
  1272       assert(false, "Can't find jvm module.");
  1273       return false;
  1277   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
  1280 // print module info; param is outputStream*
  1281 static int _print_module(int pid, char* fname, address base,
  1282                          unsigned size, void* param) {
  1283    if (!param) return -1;
  1285    outputStream* st = (outputStream*)param;
  1287    address end_addr = base + size;
  1288    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
  1289    return 0;
  1292 // Loads .dll/.so and
  1293 // in case of error it checks if .dll/.so was built for the
  1294 // same architecture as Hotspot is running on
  1295 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
  1297   void * result = LoadLibrary(name);
  1298   if (result != NULL)
  1300     return result;
  1303   long errcode = GetLastError();
  1304   if (errcode == ERROR_MOD_NOT_FOUND) {
  1305     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
  1306     ebuf[ebuflen-1]='\0';
  1307     return NULL;
  1310   // Parsing dll below
  1311   // If we can read dll-info and find that dll was built
  1312   // for an architecture other than Hotspot is running in
  1313   // - then print to buffer "DLL was built for a different architecture"
  1314   // else call getLastErrorString to obtain system error message
  1316   // Read system error message into ebuf
  1317   // It may or may not be overwritten below (in the for loop and just above)
  1318   getLastErrorString(ebuf, (size_t) ebuflen);
  1319   ebuf[ebuflen-1]='\0';
  1320   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
  1321   if (file_descriptor<0)
  1323     return NULL;
  1326   uint32_t signature_offset;
  1327   uint16_t lib_arch=0;
  1328   bool failed_to_get_lib_arch=
  1330     //Go to position 3c in the dll
  1331     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
  1332     ||
  1333     // Read loacation of signature
  1334     (sizeof(signature_offset)!=
  1335       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
  1336     ||
  1337     //Go to COFF File Header in dll
  1338     //that is located after"signature" (4 bytes long)
  1339     (os::seek_to_file_offset(file_descriptor,
  1340       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
  1341     ||
  1342     //Read field that contains code of architecture
  1343     // that dll was build for
  1344     (sizeof(lib_arch)!=
  1345       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
  1346   );
  1348   ::close(file_descriptor);
  1349   if (failed_to_get_lib_arch)
  1351     // file i/o error - report getLastErrorString(...) msg
  1352     return NULL;
  1355   typedef struct
  1357     uint16_t arch_code;
  1358     char* arch_name;
  1359   } arch_t;
  1361   static const arch_t arch_array[]={
  1362     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
  1363     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
  1364     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
  1365   };
  1366   #if   (defined _M_IA64)
  1367     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
  1368   #elif (defined _M_AMD64)
  1369     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
  1370   #elif (defined _M_IX86)
  1371     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
  1372   #else
  1373     #error Method os::dll_load requires that one of following \
  1374            is defined :_M_IA64,_M_AMD64 or _M_IX86
  1375   #endif
  1378   // Obtain a string for printf operation
  1379   // lib_arch_str shall contain string what platform this .dll was built for
  1380   // running_arch_str shall string contain what platform Hotspot was built for
  1381   char *running_arch_str=NULL,*lib_arch_str=NULL;
  1382   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
  1384     if (lib_arch==arch_array[i].arch_code)
  1385       lib_arch_str=arch_array[i].arch_name;
  1386     if (running_arch==arch_array[i].arch_code)
  1387       running_arch_str=arch_array[i].arch_name;
  1390   assert(running_arch_str,
  1391     "Didn't find runing architecture code in arch_array");
  1393   // If the architure is right
  1394   // but some other error took place - report getLastErrorString(...) msg
  1395   if (lib_arch == running_arch)
  1397     return NULL;
  1400   if (lib_arch_str!=NULL)
  1402     ::_snprintf(ebuf, ebuflen-1,
  1403       "Can't load %s-bit .dll on a %s-bit platform",
  1404       lib_arch_str,running_arch_str);
  1406   else
  1408     // don't know what architecture this dll was build for
  1409     ::_snprintf(ebuf, ebuflen-1,
  1410       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
  1411       lib_arch,running_arch_str);
  1414   return NULL;
  1418 void os::print_dll_info(outputStream *st) {
  1419    int pid = os::current_process_id();
  1420    st->print_cr("Dynamic libraries:");
  1421    enumerate_modules(pid, _print_module, (void *)st);
  1424 void os::print_os_info(outputStream* st) {
  1425    st->print("OS:");
  1427    OSVERSIONINFOEX osvi;
  1428    ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
  1429    osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  1431    if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
  1432       st->print_cr("N/A");
  1433       return;
  1436    int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
  1438    if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
  1439      switch (os_vers) {
  1440        case 3051: st->print(" Windows NT 3.51"); break;
  1441        case 4000: st->print(" Windows NT 4.0"); break;
  1442        case 5000: st->print(" Windows 2000"); break;
  1443        case 5001: st->print(" Windows XP"); break;
  1444        case 5002: st->print(" Windows Server 2003 family"); break;
  1445        case 6000: st->print(" Windows Vista"); break;
  1446        default: // future windows, print out its major and minor versions
  1447                 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1449    } else {
  1450      switch (os_vers) {
  1451        case 4000: st->print(" Windows 95"); break;
  1452        case 4010: st->print(" Windows 98"); break;
  1453        case 4090: st->print(" Windows Me"); break;
  1454        default: // future windows, print out its major and minor versions
  1455                 st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1459    st->print(" Build %d", osvi.dwBuildNumber);
  1460    st->print(" %s", osvi.szCSDVersion);           // service pack
  1461    st->cr();
  1464 void os::print_memory_info(outputStream* st) {
  1465   st->print("Memory:");
  1466   st->print(" %dk page", os::vm_page_size()>>10);
  1468   // FIXME: GlobalMemoryStatus() may return incorrect value if total memory
  1469   // is larger than 4GB
  1470   MEMORYSTATUS ms;
  1471   GlobalMemoryStatus(&ms);
  1473   st->print(", physical %uk", os::physical_memory() >> 10);
  1474   st->print("(%uk free)", os::available_memory() >> 10);
  1476   st->print(", swap %uk", ms.dwTotalPageFile >> 10);
  1477   st->print("(%uk free)", ms.dwAvailPageFile >> 10);
  1478   st->cr();
  1481 void os::print_siginfo(outputStream *st, void *siginfo) {
  1482   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
  1483   st->print("siginfo:");
  1484   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
  1486   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  1487       er->NumberParameters >= 2) {
  1488       switch (er->ExceptionInformation[0]) {
  1489       case 0: st->print(", reading address"); break;
  1490       case 1: st->print(", writing address"); break;
  1491       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
  1492                             er->ExceptionInformation[0]);
  1494       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
  1495   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
  1496              er->NumberParameters >= 2 && UseSharedSpaces) {
  1497     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1498     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
  1499       st->print("\n\nError accessing class data sharing archive."       \
  1500                 " Mapped file inaccessible during execution, "          \
  1501                 " possible disk/network problem.");
  1503   } else {
  1504     int num = er->NumberParameters;
  1505     if (num > 0) {
  1506       st->print(", ExceptionInformation=");
  1507       for (int i = 0; i < num; i++) {
  1508         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
  1512   st->cr();
  1515 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1516   // do nothing
  1519 static char saved_jvm_path[MAX_PATH] = {0};
  1521 // Find the full path to the current module, jvm.dll or jvm_g.dll
  1522 void os::jvm_path(char *buf, jint buflen) {
  1523   // Error checking.
  1524   if (buflen < MAX_PATH) {
  1525     assert(false, "must use a large-enough buffer");
  1526     buf[0] = '\0';
  1527     return;
  1529   // Lazy resolve the path to current module.
  1530   if (saved_jvm_path[0] != 0) {
  1531     strcpy(buf, saved_jvm_path);
  1532     return;
  1535   GetModuleFileName(vm_lib_handle, buf, buflen);
  1536   strcpy(saved_jvm_path, buf);
  1540 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1541 #ifndef _WIN64
  1542   st->print("_");
  1543 #endif
  1547 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1548 #ifndef _WIN64
  1549   st->print("@%d", args_size  * sizeof(int));
  1550 #endif
  1553 // sun.misc.Signal
  1554 // NOTE that this is a workaround for an apparent kernel bug where if
  1555 // a signal handler for SIGBREAK is installed then that signal handler
  1556 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
  1557 // See bug 4416763.
  1558 static void (*sigbreakHandler)(int) = NULL;
  1560 static void UserHandler(int sig, void *siginfo, void *context) {
  1561   os::signal_notify(sig);
  1562   // We need to reinstate the signal handler each time...
  1563   os::signal(sig, (void*)UserHandler);
  1566 void* os::user_handler() {
  1567   return (void*) UserHandler;
  1570 void* os::signal(int signal_number, void* handler) {
  1571   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
  1572     void (*oldHandler)(int) = sigbreakHandler;
  1573     sigbreakHandler = (void (*)(int)) handler;
  1574     return (void*) oldHandler;
  1575   } else {
  1576     return (void*)::signal(signal_number, (void (*)(int))handler);
  1580 void os::signal_raise(int signal_number) {
  1581   raise(signal_number);
  1584 // The Win32 C runtime library maps all console control events other than ^C
  1585 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
  1586 // logoff, and shutdown events.  We therefore install our own console handler
  1587 // that raises SIGTERM for the latter cases.
  1588 //
  1589 static BOOL WINAPI consoleHandler(DWORD event) {
  1590   switch(event) {
  1591     case CTRL_C_EVENT:
  1592       if (is_error_reported()) {
  1593         // Ctrl-C is pressed during error reporting, likely because the error
  1594         // handler fails to abort. Let VM die immediately.
  1595         os::die();
  1598       os::signal_raise(SIGINT);
  1599       return TRUE;
  1600       break;
  1601     case CTRL_BREAK_EVENT:
  1602       if (sigbreakHandler != NULL) {
  1603         (*sigbreakHandler)(SIGBREAK);
  1605       return TRUE;
  1606       break;
  1607     case CTRL_CLOSE_EVENT:
  1608     case CTRL_LOGOFF_EVENT:
  1609     case CTRL_SHUTDOWN_EVENT:
  1610       os::signal_raise(SIGTERM);
  1611       return TRUE;
  1612       break;
  1613     default:
  1614       break;
  1616   return FALSE;
  1619 /*
  1620  * The following code is moved from os.cpp for making this
  1621  * code platform specific, which it is by its very nature.
  1622  */
  1624 // Return maximum OS signal used + 1 for internal use only
  1625 // Used as exit signal for signal_thread
  1626 int os::sigexitnum_pd(){
  1627   return NSIG;
  1630 // a counter for each possible signal value, including signal_thread exit signal
  1631 static volatile jint pending_signals[NSIG+1] = { 0 };
  1632 static HANDLE sig_sem;
  1634 void os::signal_init_pd() {
  1635   // Initialize signal structures
  1636   memset((void*)pending_signals, 0, sizeof(pending_signals));
  1638   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
  1640   // Programs embedding the VM do not want it to attempt to receive
  1641   // events like CTRL_LOGOFF_EVENT, which are used to implement the
  1642   // shutdown hooks mechanism introduced in 1.3.  For example, when
  1643   // the VM is run as part of a Windows NT service (i.e., a servlet
  1644   // engine in a web server), the correct behavior is for any console
  1645   // control handler to return FALSE, not TRUE, because the OS's
  1646   // "final" handler for such events allows the process to continue if
  1647   // it is a service (while terminating it if it is not a service).
  1648   // To make this behavior uniform and the mechanism simpler, we
  1649   // completely disable the VM's usage of these console events if -Xrs
  1650   // (=ReduceSignalUsage) is specified.  This means, for example, that
  1651   // the CTRL-BREAK thread dump mechanism is also disabled in this
  1652   // case.  See bugs 4323062, 4345157, and related bugs.
  1654   if (!ReduceSignalUsage) {
  1655     // Add a CTRL-C handler
  1656     SetConsoleCtrlHandler(consoleHandler, TRUE);
  1660 void os::signal_notify(int signal_number) {
  1661   BOOL ret;
  1663   Atomic::inc(&pending_signals[signal_number]);
  1664   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1665   assert(ret != 0, "ReleaseSemaphore() failed");
  1668 static int check_pending_signals(bool wait_for_signal) {
  1669   DWORD ret;
  1670   while (true) {
  1671     for (int i = 0; i < NSIG + 1; i++) {
  1672       jint n = pending_signals[i];
  1673       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  1674         return i;
  1677     if (!wait_for_signal) {
  1678       return -1;
  1681     JavaThread *thread = JavaThread::current();
  1683     ThreadBlockInVM tbivm(thread);
  1685     bool threadIsSuspended;
  1686     do {
  1687       thread->set_suspend_equivalent();
  1688       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  1689       ret = ::WaitForSingleObject(sig_sem, INFINITE);
  1690       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
  1692       // were we externally suspended while we were waiting?
  1693       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  1694       if (threadIsSuspended) {
  1695         //
  1696         // The semaphore has been incremented, but while we were waiting
  1697         // another thread suspended us. We don't want to continue running
  1698         // while suspended because that would surprise the thread that
  1699         // suspended us.
  1700         //
  1701         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1702         assert(ret != 0, "ReleaseSemaphore() failed");
  1704         thread->java_suspend_self();
  1706     } while (threadIsSuspended);
  1710 int os::signal_lookup() {
  1711   return check_pending_signals(false);
  1714 int os::signal_wait() {
  1715   return check_pending_signals(true);
  1718 // Implicit OS exception handling
  1720 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
  1721   JavaThread* thread = JavaThread::current();
  1722   // Save pc in thread
  1723 #ifdef _M_IA64
  1724   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
  1725   // Set pc to handler
  1726   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
  1727 #elif _M_AMD64
  1728   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
  1729   // Set pc to handler
  1730   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
  1731 #else
  1732   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
  1733   // Set pc to handler
  1734   exceptionInfo->ContextRecord->Eip = (LONG)handler;
  1735 #endif
  1737   // Continue the execution
  1738   return EXCEPTION_CONTINUE_EXECUTION;
  1742 // Used for PostMortemDump
  1743 extern "C" void safepoints();
  1744 extern "C" void find(int x);
  1745 extern "C" void events();
  1747 // According to Windows API documentation, an illegal instruction sequence should generate
  1748 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
  1749 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
  1750 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
  1752 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
  1754 // From "Execution Protection in the Windows Operating System" draft 0.35
  1755 // Once a system header becomes available, the "real" define should be
  1756 // included or copied here.
  1757 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
  1759 #define def_excpt(val) #val, val
  1761 struct siglabel {
  1762   char *name;
  1763   int   number;
  1764 };
  1766 struct siglabel exceptlabels[] = {
  1767     def_excpt(EXCEPTION_ACCESS_VIOLATION),
  1768     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
  1769     def_excpt(EXCEPTION_BREAKPOINT),
  1770     def_excpt(EXCEPTION_SINGLE_STEP),
  1771     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
  1772     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
  1773     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
  1774     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
  1775     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
  1776     def_excpt(EXCEPTION_FLT_OVERFLOW),
  1777     def_excpt(EXCEPTION_FLT_STACK_CHECK),
  1778     def_excpt(EXCEPTION_FLT_UNDERFLOW),
  1779     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
  1780     def_excpt(EXCEPTION_INT_OVERFLOW),
  1781     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
  1782     def_excpt(EXCEPTION_IN_PAGE_ERROR),
  1783     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
  1784     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
  1785     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
  1786     def_excpt(EXCEPTION_STACK_OVERFLOW),
  1787     def_excpt(EXCEPTION_INVALID_DISPOSITION),
  1788     def_excpt(EXCEPTION_GUARD_PAGE),
  1789     def_excpt(EXCEPTION_INVALID_HANDLE),
  1790     NULL, 0
  1791 };
  1793 const char* os::exception_name(int exception_code, char *buf, size_t size) {
  1794   for (int i = 0; exceptlabels[i].name != NULL; i++) {
  1795     if (exceptlabels[i].number == exception_code) {
  1796        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
  1797        return buf;
  1801   return NULL;
  1804 //-----------------------------------------------------------------------------
  1805 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  1806   // handle exception caused by idiv; should only happen for -MinInt/-1
  1807   // (division by zero is handled explicitly)
  1808 #ifdef _M_IA64
  1809   assert(0, "Fix Handle_IDiv_Exception");
  1810 #elif _M_AMD64
  1811   PCONTEXT ctx = exceptionInfo->ContextRecord;
  1812   address pc = (address)ctx->Rip;
  1813   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
  1814   assert(pc[0] == 0xF7, "not an idiv opcode");
  1815   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  1816   assert(ctx->Rax == min_jint, "unexpected idiv exception");
  1817   // set correct result values and continue after idiv instruction
  1818   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  1819   ctx->Rax = (DWORD)min_jint;      // result
  1820   ctx->Rdx = (DWORD)0;             // remainder
  1821   // Continue the execution
  1822 #else
  1823   PCONTEXT ctx = exceptionInfo->ContextRecord;
  1824   address pc = (address)ctx->Eip;
  1825   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
  1826   assert(pc[0] == 0xF7, "not an idiv opcode");
  1827   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  1828   assert(ctx->Eax == min_jint, "unexpected idiv exception");
  1829   // set correct result values and continue after idiv instruction
  1830   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  1831   ctx->Eax = (DWORD)min_jint;      // result
  1832   ctx->Edx = (DWORD)0;             // remainder
  1833   // Continue the execution
  1834 #endif
  1835   return EXCEPTION_CONTINUE_EXECUTION;
  1838 #ifndef  _WIN64
  1839 //-----------------------------------------------------------------------------
  1840 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  1841   // handle exception caused by native mothod modifying control word
  1842   PCONTEXT ctx = exceptionInfo->ContextRecord;
  1843   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  1845   switch (exception_code) {
  1846     case EXCEPTION_FLT_DENORMAL_OPERAND:
  1847     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
  1848     case EXCEPTION_FLT_INEXACT_RESULT:
  1849     case EXCEPTION_FLT_INVALID_OPERATION:
  1850     case EXCEPTION_FLT_OVERFLOW:
  1851     case EXCEPTION_FLT_STACK_CHECK:
  1852     case EXCEPTION_FLT_UNDERFLOW:
  1853       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
  1854       if (fp_control_word != ctx->FloatSave.ControlWord) {
  1855         // Restore FPCW and mask out FLT exceptions
  1856         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
  1857         // Mask out pending FLT exceptions
  1858         ctx->FloatSave.StatusWord &=  0xffffff00;
  1859         return EXCEPTION_CONTINUE_EXECUTION;
  1862   return EXCEPTION_CONTINUE_SEARCH;
  1864 #else //_WIN64
  1865 /*
  1866   On Windows, the mxcsr control bits are non-volatile across calls
  1867   See also CR 6192333
  1868   If EXCEPTION_FLT_* happened after some native method modified
  1869   mxcsr - it is not a jvm fault.
  1870   However should we decide to restore of mxcsr after a faulty
  1871   native method we can uncomment following code
  1872       jint MxCsr = INITIAL_MXCSR;
  1873         // we can't use StubRoutines::addr_mxcsr_std()
  1874         // because in Win64 mxcsr is not saved there
  1875       if (MxCsr != ctx->MxCsr) {
  1876         ctx->MxCsr = MxCsr;
  1877         return EXCEPTION_CONTINUE_EXECUTION;
  1880 */
  1881 #endif //_WIN64
  1884 // Fatal error reporting is single threaded so we can make this a
  1885 // static and preallocated.  If it's more than MAX_PATH silently ignore
  1886 // it.
  1887 static char saved_error_file[MAX_PATH] = {0};
  1889 void os::set_error_file(const char *logfile) {
  1890   if (strlen(logfile) <= MAX_PATH) {
  1891     strncpy(saved_error_file, logfile, MAX_PATH);
  1895 static inline void report_error(Thread* t, DWORD exception_code,
  1896                                 address addr, void* siginfo, void* context) {
  1897   VMError err(t, exception_code, addr, siginfo, context);
  1898   err.report_and_die();
  1900   // If UseOsErrorReporting, this will return here and save the error file
  1901   // somewhere where we can find it in the minidump.
  1904 //-----------------------------------------------------------------------------
  1905 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  1906   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
  1907   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  1908 #ifdef _M_IA64
  1909   address pc = (address) exceptionInfo->ContextRecord->StIIP;
  1910 #elif _M_AMD64
  1911   address pc = (address) exceptionInfo->ContextRecord->Rip;
  1912 #else
  1913   address pc = (address) exceptionInfo->ContextRecord->Eip;
  1914 #endif
  1915   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
  1917 #ifndef _WIN64
  1918   // Execution protection violation - win32 running on AMD64 only
  1919   // Handled first to avoid misdiagnosis as a "normal" access violation;
  1920   // This is safe to do because we have a new/unique ExceptionInformation
  1921   // code for this condition.
  1922   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  1923     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  1924     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
  1925     address addr = (address) exceptionRecord->ExceptionInformation[1];
  1927     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
  1928       int page_size = os::vm_page_size();
  1930       // Make sure the pc and the faulting address are sane.
  1931       //
  1932       // If an instruction spans a page boundary, and the page containing
  1933       // the beginning of the instruction is executable but the following
  1934       // page is not, the pc and the faulting address might be slightly
  1935       // different - we still want to unguard the 2nd page in this case.
  1936       //
  1937       // 15 bytes seems to be a (very) safe value for max instruction size.
  1938       bool pc_is_near_addr =
  1939         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
  1940       bool instr_spans_page_boundary =
  1941         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
  1942                          (intptr_t) page_size) > 0);
  1944       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
  1945         static volatile address last_addr =
  1946           (address) os::non_memory_address_word();
  1948         // In conservative mode, don't unguard unless the address is in the VM
  1949         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
  1950             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
  1952           // Unguard and retry
  1953           address page_start =
  1954             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
  1955           bool res = os::unguard_memory((char*) page_start, page_size);
  1957           if (PrintMiscellaneous && Verbose) {
  1958             char buf[256];
  1959             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
  1960                          "at " INTPTR_FORMAT
  1961                          ", unguarding " INTPTR_FORMAT ": %s", addr,
  1962                          page_start, (res ? "success" : strerror(errno)));
  1963             tty->print_raw_cr(buf);
  1966           // Set last_addr so if we fault again at the same address, we don't
  1967           // end up in an endless loop.
  1968           //
  1969           // There are two potential complications here.  Two threads trapping
  1970           // at the same address at the same time could cause one of the
  1971           // threads to think it already unguarded, and abort the VM.  Likely
  1972           // very rare.
  1973           //
  1974           // The other race involves two threads alternately trapping at
  1975           // different addresses and failing to unguard the page, resulting in
  1976           // an endless loop.  This condition is probably even more unlikely
  1977           // than the first.
  1978           //
  1979           // Although both cases could be avoided by using locks or thread
  1980           // local last_addr, these solutions are unnecessary complication:
  1981           // this handler is a best-effort safety net, not a complete solution.
  1982           // It is disabled by default and should only be used as a workaround
  1983           // in case we missed any no-execute-unsafe VM code.
  1985           last_addr = addr;
  1987           return EXCEPTION_CONTINUE_EXECUTION;
  1991       // Last unguard failed or not unguarding
  1992       tty->print_raw_cr("Execution protection violation");
  1993       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
  1994                    exceptionInfo->ContextRecord);
  1995       return EXCEPTION_CONTINUE_SEARCH;
  1998 #endif // _WIN64
  2000   // Check to see if we caught the safepoint code in the
  2001   // process of write protecting the memory serialization page.
  2002   // It write enables the page immediately after protecting it
  2003   // so just return.
  2004   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  2005     JavaThread* thread = (JavaThread*) t;
  2006     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2007     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2008     if ( os::is_memory_serialize_page(thread, addr) ) {
  2009       // Block current thread until the memory serialize page permission restored.
  2010       os::block_on_serialize_page_trap();
  2011       return EXCEPTION_CONTINUE_EXECUTION;
  2016   if (t != NULL && t->is_Java_thread()) {
  2017     JavaThread* thread = (JavaThread*) t;
  2018     bool in_java = thread->thread_state() == _thread_in_Java;
  2020     // Handle potential stack overflows up front.
  2021     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
  2022       if (os::uses_stack_guard_pages()) {
  2023 #ifdef _M_IA64
  2024         //
  2025         // If it's a legal stack address continue, Windows will map it in.
  2026         //
  2027         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2028         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2029         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
  2030           return EXCEPTION_CONTINUE_EXECUTION;
  2032         // The register save area is the same size as the memory stack
  2033         // and starts at the page just above the start of the memory stack.
  2034         // If we get a fault in this area, we've run out of register
  2035         // stack.  If we are in java, try throwing a stack overflow exception.
  2036         if (addr > thread->stack_base() &&
  2037                       addr <= (thread->stack_base()+thread->stack_size()) ) {
  2038           char buf[256];
  2039           jio_snprintf(buf, sizeof(buf),
  2040                        "Register stack overflow, addr:%p, stack_base:%p\n",
  2041                        addr, thread->stack_base() );
  2042           tty->print_raw_cr(buf);
  2043           // If not in java code, return and hope for the best.
  2044           return in_java ? Handle_Exception(exceptionInfo,
  2045             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2046             :  EXCEPTION_CONTINUE_EXECUTION;
  2048 #endif
  2049         if (thread->stack_yellow_zone_enabled()) {
  2050           // Yellow zone violation.  The o/s has unprotected the first yellow
  2051           // zone page for us.  Note:  must call disable_stack_yellow_zone to
  2052           // update the enabled status, even if the zone contains only one page.
  2053           thread->disable_stack_yellow_zone();
  2054           // If not in java code, return and hope for the best.
  2055           return in_java ? Handle_Exception(exceptionInfo,
  2056             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2057             :  EXCEPTION_CONTINUE_EXECUTION;
  2058         } else {
  2059           // Fatal red zone violation.
  2060           thread->disable_stack_red_zone();
  2061           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
  2062           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2063                        exceptionInfo->ContextRecord);
  2064           return EXCEPTION_CONTINUE_SEARCH;
  2066       } else if (in_java) {
  2067         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
  2068         // a one-time-only guard page, which it has released to us.  The next
  2069         // stack overflow on this thread will result in an ACCESS_VIOLATION.
  2070         return Handle_Exception(exceptionInfo,
  2071           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2072       } else {
  2073         // Can only return and hope for the best.  Further stack growth will
  2074         // result in an ACCESS_VIOLATION.
  2075         return EXCEPTION_CONTINUE_EXECUTION;
  2077     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2078       // Either stack overflow or null pointer exception.
  2079       if (in_java) {
  2080         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2081         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2082         address stack_end = thread->stack_base() - thread->stack_size();
  2083         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
  2084           // Stack overflow.
  2085           assert(!os::uses_stack_guard_pages(),
  2086             "should be caught by red zone code above.");
  2087           return Handle_Exception(exceptionInfo,
  2088             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2090         //
  2091         // Check for safepoint polling and implicit null
  2092         // We only expect null pointers in the stubs (vtable)
  2093         // the rest are checked explicitly now.
  2094         //
  2095         CodeBlob* cb = CodeCache::find_blob(pc);
  2096         if (cb != NULL) {
  2097           if (os::is_poll_address(addr)) {
  2098             address stub = SharedRuntime::get_poll_stub(pc);
  2099             return Handle_Exception(exceptionInfo, stub);
  2103 #ifdef _WIN64
  2104           //
  2105           // If it's a legal stack address map the entire region in
  2106           //
  2107           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2108           address addr = (address) exceptionRecord->ExceptionInformation[1];
  2109           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
  2110                   addr = (address)((uintptr_t)addr &
  2111                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
  2112                   os::commit_memory( (char *)addr, thread->stack_base() - addr );
  2113                   return EXCEPTION_CONTINUE_EXECUTION;
  2115           else
  2116 #endif
  2118             // Null pointer exception.
  2119 #ifdef _M_IA64
  2120             // We catch register stack overflows in compiled code by doing
  2121             // an explicit compare and executing a st8(G0, G0) if the
  2122             // BSP enters into our guard area.  We test for the overflow
  2123             // condition and fall into the normal null pointer exception
  2124             // code if BSP hasn't overflowed.
  2125             if ( in_java ) {
  2126               if(thread->register_stack_overflow()) {
  2127                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
  2128                                 thread->register_stack_limit(),
  2129                                "GR7 doesn't contain register_stack_limit");
  2130                 // Disable the yellow zone which sets the state that
  2131                 // we've got a stack overflow problem.
  2132                 if (thread->stack_yellow_zone_enabled()) {
  2133                   thread->disable_stack_yellow_zone();
  2135                 // Give us some room to process the exception
  2136                 thread->disable_register_stack_guard();
  2137                 // Update GR7 with the new limit so we can continue running
  2138                 // compiled code.
  2139                 exceptionInfo->ContextRecord->IntS3 =
  2140                                (ULONGLONG)thread->register_stack_limit();
  2141                 return Handle_Exception(exceptionInfo,
  2142                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2143               } else {
  2144                 //
  2145                 // Check for implicit null
  2146                 // We only expect null pointers in the stubs (vtable)
  2147                 // the rest are checked explicitly now.
  2148                 //
  2149                 CodeBlob* cb = CodeCache::find_blob(pc);
  2150                 if (cb != NULL) {
  2151                   if (VtableStubs::stub_containing(pc) != NULL) {
  2152                     if (((uintptr_t)addr) < os::vm_page_size() ) {
  2153                       // an access to the first page of VM--assume it is a null pointer
  2154                       return Handle_Exception(exceptionInfo,
  2155                         SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL));
  2160             } // in_java
  2162             // IA64 doesn't use implicit null checking yet. So we shouldn't
  2163             // get here.
  2164             tty->print_raw_cr("Access violation, possible null pointer exception");
  2165             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2166                          exceptionInfo->ContextRecord);
  2167             return EXCEPTION_CONTINUE_SEARCH;
  2168 #else /* !IA64 */
  2170             // Windows 98 reports faulting addresses incorrectly
  2171             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
  2172                 !os::win32::is_nt()) {
  2173               return Handle_Exception(exceptionInfo,
  2174                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL));
  2176             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2177                          exceptionInfo->ContextRecord);
  2178             return EXCEPTION_CONTINUE_SEARCH;
  2179 #endif
  2184 #ifdef _WIN64
  2185       // Special care for fast JNI field accessors.
  2186       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
  2187       // in and the heap gets shrunk before the field access.
  2188       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2189         address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2190         if (addr != (address)-1) {
  2191           return Handle_Exception(exceptionInfo, addr);
  2194 #endif
  2196 #ifdef _WIN64
  2197       // Windows will sometimes generate an access violation
  2198       // when we call malloc.  Since we use VectoredExceptions
  2199       // on 64 bit platforms, we see this exception.  We must
  2200       // pass this exception on so Windows can recover.
  2201       // We check to see if the pc of the fault is in NTDLL.DLL
  2202       // if so, we pass control on to Windows for handling.
  2203       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
  2204 #endif
  2206       // Stack overflow or null pointer exception in native code.
  2207       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2208                    exceptionInfo->ContextRecord);
  2209       return EXCEPTION_CONTINUE_SEARCH;
  2212     if (in_java) {
  2213       switch (exception_code) {
  2214       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2215         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
  2217       case EXCEPTION_INT_OVERFLOW:
  2218         return Handle_IDiv_Exception(exceptionInfo);
  2220       } // switch
  2222 #ifndef _WIN64
  2223     if ((thread->thread_state() == _thread_in_Java) ||
  2224         (thread->thread_state() == _thread_in_native) )
  2226       LONG result=Handle_FLT_Exception(exceptionInfo);
  2227       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
  2229 #endif //_WIN64
  2232   if (exception_code != EXCEPTION_BREAKPOINT) {
  2233 #ifndef _WIN64
  2234     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2235                  exceptionInfo->ContextRecord);
  2236 #else
  2237     // Itanium Windows uses a VectoredExceptionHandler
  2238     // Which means that C++ programatic exception handlers (try/except)
  2239     // will get here.  Continue the search for the right except block if
  2240     // the exception code is not a fatal code.
  2241     switch ( exception_code ) {
  2242       case EXCEPTION_ACCESS_VIOLATION:
  2243       case EXCEPTION_STACK_OVERFLOW:
  2244       case EXCEPTION_ILLEGAL_INSTRUCTION:
  2245       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
  2246       case EXCEPTION_INT_OVERFLOW:
  2247       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2248       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2249                        exceptionInfo->ContextRecord);
  2251         break;
  2252       default:
  2253         break;
  2255 #endif
  2257   return EXCEPTION_CONTINUE_SEARCH;
  2260 #ifndef _WIN64
  2261 // Special care for fast JNI accessors.
  2262 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
  2263 // the heap gets shrunk before the field access.
  2264 // Need to install our own structured exception handler since native code may
  2265 // install its own.
  2266 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2267   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2268   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2269     address pc = (address) exceptionInfo->ContextRecord->Eip;
  2270     address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2271     if (addr != (address)-1) {
  2272       return Handle_Exception(exceptionInfo, addr);
  2275   return EXCEPTION_CONTINUE_SEARCH;
  2278 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
  2279 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
  2280   __try { \
  2281     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
  2282   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
  2283   } \
  2284   return 0; \
  2287 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
  2288 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
  2289 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
  2290 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
  2291 DEFINE_FAST_GETFIELD(jint,     int,    Int)
  2292 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
  2293 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
  2294 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
  2296 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
  2297   switch (type) {
  2298     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
  2299     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
  2300     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
  2301     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
  2302     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
  2303     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
  2304     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
  2305     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
  2306     default:        ShouldNotReachHere();
  2308   return (address)-1;
  2310 #endif
  2312 // Virtual Memory
  2314 int os::vm_page_size() { return os::win32::vm_page_size(); }
  2315 int os::vm_allocation_granularity() {
  2316   return os::win32::vm_allocation_granularity();
  2319 // Windows large page support is available on Windows 2003. In order to use
  2320 // large page memory, the administrator must first assign additional privilege
  2321 // to the user:
  2322 //   + select Control Panel -> Administrative Tools -> Local Security Policy
  2323 //   + select Local Policies -> User Rights Assignment
  2324 //   + double click "Lock pages in memory", add users and/or groups
  2325 //   + reboot
  2326 // Note the above steps are needed for administrator as well, as administrators
  2327 // by default do not have the privilege to lock pages in memory.
  2328 //
  2329 // Note about Windows 2003: although the API supports committing large page
  2330 // memory on a page-by-page basis and VirtualAlloc() returns success under this
  2331 // scenario, I found through experiment it only uses large page if the entire
  2332 // memory region is reserved and committed in a single VirtualAlloc() call.
  2333 // This makes Windows large page support more or less like Solaris ISM, in
  2334 // that the entire heap must be committed upfront. This probably will change
  2335 // in the future, if so the code below needs to be revisited.
  2337 #ifndef MEM_LARGE_PAGES
  2338 #define MEM_LARGE_PAGES 0x20000000
  2339 #endif
  2341 // GetLargePageMinimum is only available on Windows 2003. The other functions
  2342 // are available on NT but not on Windows 98/Me. We have to resolve them at
  2343 // runtime.
  2344 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
  2345 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
  2346              (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
  2347 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
  2348 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
  2350 static GetLargePageMinimum_func_type   _GetLargePageMinimum;
  2351 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
  2352 static OpenProcessToken_func_type      _OpenProcessToken;
  2353 static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
  2355 static HINSTANCE _kernel32;
  2356 static HINSTANCE _advapi32;
  2357 static HANDLE    _hProcess;
  2358 static HANDLE    _hToken;
  2360 static size_t _large_page_size = 0;
  2362 static bool resolve_functions_for_large_page_init() {
  2363   _kernel32 = LoadLibrary("kernel32.dll");
  2364   if (_kernel32 == NULL) return false;
  2366   _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
  2367                             GetProcAddress(_kernel32, "GetLargePageMinimum"));
  2368   if (_GetLargePageMinimum == NULL) return false;
  2370   _advapi32 = LoadLibrary("advapi32.dll");
  2371   if (_advapi32 == NULL) return false;
  2373   _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
  2374                             GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
  2375   _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
  2376                             GetProcAddress(_advapi32, "OpenProcessToken"));
  2377   _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
  2378                             GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
  2379   return _AdjustTokenPrivileges != NULL &&
  2380          _OpenProcessToken      != NULL &&
  2381          _LookupPrivilegeValue  != NULL;
  2384 static bool request_lock_memory_privilege() {
  2385   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
  2386                                 os::current_process_id());
  2388   LUID luid;
  2389   if (_hProcess != NULL &&
  2390       _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
  2391       _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
  2393     TOKEN_PRIVILEGES tp;
  2394     tp.PrivilegeCount = 1;
  2395     tp.Privileges[0].Luid = luid;
  2396     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
  2398     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
  2399     // privilege. Check GetLastError() too. See MSDN document.
  2400     if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
  2401         (GetLastError() == ERROR_SUCCESS)) {
  2402       return true;
  2406   return false;
  2409 static void cleanup_after_large_page_init() {
  2410   _GetLargePageMinimum = NULL;
  2411   _AdjustTokenPrivileges = NULL;
  2412   _OpenProcessToken = NULL;
  2413   _LookupPrivilegeValue = NULL;
  2414   if (_kernel32) FreeLibrary(_kernel32);
  2415   _kernel32 = NULL;
  2416   if (_advapi32) FreeLibrary(_advapi32);
  2417   _advapi32 = NULL;
  2418   if (_hProcess) CloseHandle(_hProcess);
  2419   _hProcess = NULL;
  2420   if (_hToken) CloseHandle(_hToken);
  2421   _hToken = NULL;
  2424 bool os::large_page_init() {
  2425   if (!UseLargePages) return false;
  2427   // print a warning if any large page related flag is specified on command line
  2428   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
  2429                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  2430   bool success = false;
  2432 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2433   if (resolve_functions_for_large_page_init()) {
  2434     if (request_lock_memory_privilege()) {
  2435       size_t s = _GetLargePageMinimum();
  2436       if (s) {
  2437 #if defined(IA32) || defined(AMD64)
  2438         if (s > 4*M || LargePageSizeInBytes > 4*M) {
  2439           WARN("JVM cannot use large pages bigger than 4mb.");
  2440         } else {
  2441 #endif
  2442           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
  2443             _large_page_size = LargePageSizeInBytes;
  2444           } else {
  2445             _large_page_size = s;
  2447           success = true;
  2448 #if defined(IA32) || defined(AMD64)
  2450 #endif
  2451       } else {
  2452         WARN("Large page is not supported by the processor.");
  2454     } else {
  2455       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
  2457   } else {
  2458     WARN("Large page is not supported by the operating system.");
  2460 #undef WARN
  2462   const size_t default_page_size = (size_t) vm_page_size();
  2463   if (success && _large_page_size > default_page_size) {
  2464     _page_sizes[0] = _large_page_size;
  2465     _page_sizes[1] = default_page_size;
  2466     _page_sizes[2] = 0;
  2469   cleanup_after_large_page_init();
  2470   return success;
  2473 // On win32, one cannot release just a part of reserved memory, it's an
  2474 // all or nothing deal.  When we split a reservation, we must break the
  2475 // reservation into two reservations.
  2476 void os::split_reserved_memory(char *base, size_t size, size_t split,
  2477                               bool realloc) {
  2478   if (size > 0) {
  2479     release_memory(base, size);
  2480     if (realloc) {
  2481       reserve_memory(split, base);
  2483     if (size != split) {
  2484       reserve_memory(size - split, base + split);
  2489 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  2490   assert((size_t)addr % os::vm_allocation_granularity() == 0,
  2491          "reserve alignment");
  2492   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
  2493   char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE,
  2494                                   PAGE_EXECUTE_READWRITE);
  2495   assert(res == NULL || addr == NULL || addr == res,
  2496          "Unexpected address from reserve.");
  2497   return res;
  2500 // Reserve memory at an arbitrary address, only if that area is
  2501 // available (and not reserved for something else).
  2502 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2503   // Windows os::reserve_memory() fails of the requested address range is
  2504   // not avilable.
  2505   return reserve_memory(bytes, requested_addr);
  2508 size_t os::large_page_size() {
  2509   return _large_page_size;
  2512 bool os::can_commit_large_page_memory() {
  2513   // Windows only uses large page memory when the entire region is reserved
  2514   // and committed in a single VirtualAlloc() call. This may change in the
  2515   // future, but with Windows 2003 it's not possible to commit on demand.
  2516   return false;
  2519 bool os::can_execute_large_page_memory() {
  2520   return true;
  2523 char* os::reserve_memory_special(size_t bytes) {
  2524   DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  2525   char * res = (char *)VirtualAlloc(NULL, bytes, flag, PAGE_EXECUTE_READWRITE);
  2526   return res;
  2529 bool os::release_memory_special(char* base, size_t bytes) {
  2530   return release_memory(base, bytes);
  2533 void os::print_statistics() {
  2536 bool os::commit_memory(char* addr, size_t bytes) {
  2537   if (bytes == 0) {
  2538     // Don't bother the OS with noops.
  2539     return true;
  2541   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
  2542   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
  2543   // Don't attempt to print anything if the OS call fails. We're
  2544   // probably low on resources, so the print itself may cause crashes.
  2545   return VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_EXECUTE_READWRITE) != NULL;
  2548 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint) {
  2549   return commit_memory(addr, size);
  2552 bool os::uncommit_memory(char* addr, size_t bytes) {
  2553   if (bytes == 0) {
  2554     // Don't bother the OS with noops.
  2555     return true;
  2557   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
  2558   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
  2559   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
  2562 bool os::release_memory(char* addr, size_t bytes) {
  2563   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
  2566 bool os::protect_memory(char* addr, size_t bytes) {
  2567   DWORD old_status;
  2568   return VirtualProtect(addr, bytes, PAGE_READONLY, &old_status) != 0;
  2571 bool os::guard_memory(char* addr, size_t bytes) {
  2572   DWORD old_status;
  2573   return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE | PAGE_GUARD, &old_status) != 0;
  2576 bool os::unguard_memory(char* addr, size_t bytes) {
  2577   DWORD old_status;
  2578   return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &old_status) != 0;
  2581 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  2582 void os::free_memory(char *addr, size_t bytes)         { }
  2583 void os::numa_make_global(char *addr, size_t bytes)    { }
  2584 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
  2585 bool os::numa_topology_changed()                       { return false; }
  2586 size_t os::numa_get_groups_num()                       { return 1; }
  2587 int os::numa_get_group_id()                            { return 0; }
  2588 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2589   if (size > 0) {
  2590     ids[0] = 0;
  2591     return 1;
  2593   return 0;
  2596 bool os::get_page_info(char *start, page_info* info) {
  2597   return false;
  2600 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2601   return end;
  2604 char* os::non_memory_address_word() {
  2605   // Must never look like an address returned by reserve_memory,
  2606   // even in its subfields (as defined by the CPU immediate fields,
  2607   // if the CPU splits constants across multiple instructions).
  2608   return (char*)-1;
  2611 #define MAX_ERROR_COUNT 100
  2612 #define SYS_THREAD_ERROR 0xffffffffUL
  2614 void os::pd_start_thread(Thread* thread) {
  2615   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
  2616   // Returns previous suspend state:
  2617   // 0:  Thread was not suspended
  2618   // 1:  Thread is running now
  2619   // >1: Thread is still suspended.
  2620   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
  2623 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  2624   return ::read(fd, buf, nBytes);
  2627 class HighResolutionInterval {
  2628   // The default timer resolution seems to be 10 milliseconds.
  2629   // (Where is this written down?)
  2630   // If someone wants to sleep for only a fraction of the default,
  2631   // then we set the timer resolution down to 1 millisecond for
  2632   // the duration of their interval.
  2633   // We carefully set the resolution back, since otherwise we
  2634   // seem to incur an overhead (3%?) that we don't need.
  2635   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
  2636   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
  2637   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
  2638   // timeBeginPeriod() if the relative error exceeded some threshold.
  2639   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
  2640   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
  2641   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
  2642   // resolution timers running.
  2643 private:
  2644     jlong resolution;
  2645 public:
  2646   HighResolutionInterval(jlong ms) {
  2647     resolution = ms % 10L;
  2648     if (resolution != 0) {
  2649       MMRESULT result = timeBeginPeriod(1L);
  2652   ~HighResolutionInterval() {
  2653     if (resolution != 0) {
  2654       MMRESULT result = timeEndPeriod(1L);
  2656     resolution = 0L;
  2658 };
  2660 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
  2661   jlong limit = (jlong) MAXDWORD;
  2663   while(ms > limit) {
  2664     int res;
  2665     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
  2666       return res;
  2667     ms -= limit;
  2670   assert(thread == Thread::current(),  "thread consistency check");
  2671   OSThread* osthread = thread->osthread();
  2672   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
  2673   int result;
  2674   if (interruptable) {
  2675     assert(thread->is_Java_thread(), "must be java thread");
  2676     JavaThread *jt = (JavaThread *) thread;
  2677     ThreadBlockInVM tbivm(jt);
  2679     jt->set_suspend_equivalent();
  2680     // cleared by handle_special_suspend_equivalent_condition() or
  2681     // java_suspend_self() via check_and_wait_while_suspended()
  2683     HANDLE events[1];
  2684     events[0] = osthread->interrupt_event();
  2685     HighResolutionInterval *phri=NULL;
  2686     if(!ForceTimeHighResolution)
  2687       phri = new HighResolutionInterval( ms );
  2688     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
  2689       result = OS_TIMEOUT;
  2690     } else {
  2691       ResetEvent(osthread->interrupt_event());
  2692       osthread->set_interrupted(false);
  2693       result = OS_INTRPT;
  2695     delete phri; //if it is NULL, harmless
  2697     // were we externally suspended while we were waiting?
  2698     jt->check_and_wait_while_suspended();
  2699   } else {
  2700     assert(!thread->is_Java_thread(), "must not be java thread");
  2701     Sleep((long) ms);
  2702     result = OS_TIMEOUT;
  2704   return result;
  2707 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  2708 void os::infinite_sleep() {
  2709   while (true) {    // sleep forever ...
  2710     Sleep(100000);  // ... 100 seconds at a time
  2714 typedef BOOL (WINAPI * STTSignature)(void) ;
  2716 os::YieldResult os::NakedYield() {
  2717   // Use either SwitchToThread() or Sleep(0)
  2718   // Consider passing back the return value from SwitchToThread().
  2719   // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
  2720   // In that case we revert to Sleep(0).
  2721   static volatile STTSignature stt = (STTSignature) 1 ;
  2723   if (stt == ((STTSignature) 1)) {
  2724     stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
  2725     // It's OK if threads race during initialization as the operation above is idempotent.
  2727   if (stt != NULL) {
  2728     return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
  2729   } else {
  2730     Sleep (0) ;
  2732   return os::YIELD_UNKNOWN ;
  2735 void os::yield() {  os::NakedYield(); }
  2737 void os::yield_all(int attempts) {
  2738   // Yields to all threads, including threads with lower priorities
  2739   Sleep(1);
  2742 // Win32 only gives you access to seven real priorities at a time,
  2743 // so we compress Java's ten down to seven.  It would be better
  2744 // if we dynamically adjusted relative priorities.
  2746 int os::java_to_os_priority[MaxPriority + 1] = {
  2747   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  2748   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  2749   THREAD_PRIORITY_LOWEST,                       // 2
  2750   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  2751   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  2752   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  2753   THREAD_PRIORITY_NORMAL,                       // 6
  2754   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  2755   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
  2756   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  2757   THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
  2758 };
  2760 int prio_policy1[MaxPriority + 1] = {
  2761   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  2762   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  2763   THREAD_PRIORITY_LOWEST,                       // 2
  2764   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  2765   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  2766   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  2767   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
  2768   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  2769   THREAD_PRIORITY_HIGHEST,                      // 8
  2770   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  2771   THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
  2772 };
  2774 static int prio_init() {
  2775   // If ThreadPriorityPolicy is 1, switch tables
  2776   if (ThreadPriorityPolicy == 1) {
  2777     int i;
  2778     for (i = 0; i < MaxPriority + 1; i++) {
  2779       os::java_to_os_priority[i] = prio_policy1[i];
  2782   return 0;
  2785 OSReturn os::set_native_priority(Thread* thread, int priority) {
  2786   if (!UseThreadPriorities) return OS_OK;
  2787   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
  2788   return ret ? OS_OK : OS_ERR;
  2791 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
  2792   if ( !UseThreadPriorities ) {
  2793     *priority_ptr = java_to_os_priority[NormPriority];
  2794     return OS_OK;
  2796   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
  2797   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
  2798     assert(false, "GetThreadPriority failed");
  2799     return OS_ERR;
  2801   *priority_ptr = os_prio;
  2802   return OS_OK;
  2806 // Hint to the underlying OS that a task switch would not be good.
  2807 // Void return because it's a hint and can fail.
  2808 void os::hint_no_preempt() {}
  2810 void os::interrupt(Thread* thread) {
  2811   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  2812          "possibility of dangling Thread pointer");
  2814   OSThread* osthread = thread->osthread();
  2815   osthread->set_interrupted(true);
  2816   // More than one thread can get here with the same value of osthread,
  2817   // resulting in multiple notifications.  We do, however, want the store
  2818   // to interrupted() to be visible to other threads before we post
  2819   // the interrupt event.
  2820   OrderAccess::release();
  2821   SetEvent(osthread->interrupt_event());
  2822   // For JSR166:  unpark after setting status
  2823   if (thread->is_Java_thread())
  2824     ((JavaThread*)thread)->parker()->unpark();
  2826   ParkEvent * ev = thread->_ParkEvent ;
  2827   if (ev != NULL) ev->unpark() ;
  2832 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  2833   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  2834          "possibility of dangling Thread pointer");
  2836   OSThread* osthread = thread->osthread();
  2837   bool interrupted;
  2838   interrupted = osthread->interrupted();
  2839   if (clear_interrupted == true) {
  2840     osthread->set_interrupted(false);
  2841     ResetEvent(osthread->interrupt_event());
  2842   } // Otherwise leave the interrupted state alone
  2844   return interrupted;
  2847 // Get's a pc (hint) for a running thread. Currently used only for profiling.
  2848 ExtendedPC os::get_thread_pc(Thread* thread) {
  2849   CONTEXT context;
  2850   context.ContextFlags = CONTEXT_CONTROL;
  2851   HANDLE handle = thread->osthread()->thread_handle();
  2852 #ifdef _M_IA64
  2853   assert(0, "Fix get_thread_pc");
  2854   return ExtendedPC(NULL);
  2855 #else
  2856   if (GetThreadContext(handle, &context)) {
  2857 #ifdef _M_AMD64
  2858     return ExtendedPC((address) context.Rip);
  2859 #else
  2860     return ExtendedPC((address) context.Eip);
  2861 #endif
  2862   } else {
  2863     return ExtendedPC(NULL);
  2865 #endif
  2868 // GetCurrentThreadId() returns DWORD
  2869 intx os::current_thread_id()          { return GetCurrentThreadId(); }
  2871 static int _initial_pid = 0;
  2873 int os::current_process_id()
  2875   return (_initial_pid ? _initial_pid : _getpid());
  2878 int    os::win32::_vm_page_size       = 0;
  2879 int    os::win32::_vm_allocation_granularity = 0;
  2880 int    os::win32::_processor_type     = 0;
  2881 // Processor level is not available on non-NT systems, use vm_version instead
  2882 int    os::win32::_processor_level    = 0;
  2883 julong os::win32::_physical_memory    = 0;
  2884 size_t os::win32::_default_stack_size = 0;
  2886          intx os::win32::_os_thread_limit    = 0;
  2887 volatile intx os::win32::_os_thread_count    = 0;
  2889 bool   os::win32::_is_nt              = false;
  2892 void os::win32::initialize_system_info() {
  2893   SYSTEM_INFO si;
  2894   GetSystemInfo(&si);
  2895   _vm_page_size    = si.dwPageSize;
  2896   _vm_allocation_granularity = si.dwAllocationGranularity;
  2897   _processor_type  = si.dwProcessorType;
  2898   _processor_level = si.wProcessorLevel;
  2899   _processor_count = si.dwNumberOfProcessors;
  2901   MEMORYSTATUS ms;
  2902   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
  2903   // dwMemoryLoad (% of memory in use)
  2904   GlobalMemoryStatus(&ms);
  2905   _physical_memory = ms.dwTotalPhys;
  2907   OSVERSIONINFO oi;
  2908   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
  2909   GetVersionEx(&oi);
  2910   switch(oi.dwPlatformId) {
  2911     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
  2912     case VER_PLATFORM_WIN32_NT:      _is_nt = true;  break;
  2913     default: fatal("Unknown platform");
  2916   _default_stack_size = os::current_stack_size();
  2917   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
  2918   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
  2919     "stack size not a multiple of page size");
  2921   initialize_performance_counter();
  2923   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
  2924   // known to deadlock the system, if the VM issues to thread operations with
  2925   // a too high frequency, e.g., such as changing the priorities.
  2926   // The 6000 seems to work well - no deadlocks has been notices on the test
  2927   // programs that we have seen experience this problem.
  2928   if (!os::win32::is_nt()) {
  2929     StarvationMonitorInterval = 6000;
  2934 void os::win32::setmode_streams() {
  2935   _setmode(_fileno(stdin), _O_BINARY);
  2936   _setmode(_fileno(stdout), _O_BINARY);
  2937   _setmode(_fileno(stderr), _O_BINARY);
  2941 int os::message_box(const char* title, const char* message) {
  2942   int result = MessageBox(NULL, message, title,
  2943                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
  2944   return result == IDYES;
  2947 int os::allocate_thread_local_storage() {
  2948   return TlsAlloc();
  2952 void os::free_thread_local_storage(int index) {
  2953   TlsFree(index);
  2957 void os::thread_local_storage_at_put(int index, void* value) {
  2958   TlsSetValue(index, value);
  2959   assert(thread_local_storage_at(index) == value, "Just checking");
  2963 void* os::thread_local_storage_at(int index) {
  2964   return TlsGetValue(index);
  2968 #ifndef PRODUCT
  2969 #ifndef _WIN64
  2970 // Helpers to check whether NX protection is enabled
  2971 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
  2972   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  2973       pex->ExceptionRecord->NumberParameters > 0 &&
  2974       pex->ExceptionRecord->ExceptionInformation[0] ==
  2975       EXCEPTION_INFO_EXEC_VIOLATION) {
  2976     return EXCEPTION_EXECUTE_HANDLER;
  2978   return EXCEPTION_CONTINUE_SEARCH;
  2981 void nx_check_protection() {
  2982   // If NX is enabled we'll get an exception calling into code on the stack
  2983   char code[] = { (char)0xC3 }; // ret
  2984   void *code_ptr = (void *)code;
  2985   __try {
  2986     __asm call code_ptr
  2987   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
  2988     tty->print_raw_cr("NX protection detected.");
  2991 #endif // _WIN64
  2992 #endif // PRODUCT
  2994 // this is called _before_ the global arguments have been parsed
  2995 void os::init(void) {
  2996   _initial_pid = _getpid();
  2998   init_random(1234567);
  3000   win32::initialize_system_info();
  3001   win32::setmode_streams();
  3002   init_page_sizes((size_t) win32::vm_page_size());
  3004   // For better scalability on MP systems (must be called after initialize_system_info)
  3005 #ifndef PRODUCT
  3006   if (is_MP()) {
  3007     NoYieldsInMicrolock = true;
  3009 #endif
  3010   // Initialize main_process and main_thread
  3011   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
  3012   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
  3013                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
  3014     fatal("DuplicateHandle failed\n");
  3016   main_thread_id = (int) GetCurrentThreadId();
  3019 // To install functions for atexit processing
  3020 extern "C" {
  3021   static void perfMemory_exit_helper() {
  3022     perfMemory_exit();
  3027 // this is called _after_ the global arguments have been parsed
  3028 jint os::init_2(void) {
  3029   // Allocate a single page and mark it as readable for safepoint polling
  3030   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
  3031   guarantee( polling_page != NULL, "Reserve Failed for polling page");
  3033   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
  3034   guarantee( return_page != NULL, "Commit Failed for polling page");
  3036   os::set_polling_page( polling_page );
  3038 #ifndef PRODUCT
  3039   if( Verbose && PrintMiscellaneous )
  3040     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3041 #endif
  3043   if (!UseMembar) {
  3044     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_EXECUTE_READWRITE);
  3045     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
  3047     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  3048     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
  3050     os::set_memory_serialize_page( mem_serialize_page );
  3052 #ifndef PRODUCT
  3053     if(Verbose && PrintMiscellaneous)
  3054       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3055 #endif
  3058   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
  3060   // Setup Windows Exceptions
  3062   // On Itanium systems, Structured Exception Handling does not
  3063   // work since stack frames must be walkable by the OS.  Since
  3064   // much of our code is dynamically generated, and we do not have
  3065   // proper unwind .xdata sections, the system simply exits
  3066   // rather than delivering the exception.  To work around
  3067   // this we use VectorExceptions instead.
  3068 #ifdef _WIN64
  3069   if (UseVectoredExceptions) {
  3070     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
  3072 #endif
  3074   // for debugging float code generation bugs
  3075   if (ForceFloatExceptions) {
  3076 #ifndef  _WIN64
  3077     static long fp_control_word = 0;
  3078     __asm { fstcw fp_control_word }
  3079     // see Intel PPro Manual, Vol. 2, p 7-16
  3080     const long precision = 0x20;
  3081     const long underflow = 0x10;
  3082     const long overflow  = 0x08;
  3083     const long zero_div  = 0x04;
  3084     const long denorm    = 0x02;
  3085     const long invalid   = 0x01;
  3086     fp_control_word |= invalid;
  3087     __asm { fldcw fp_control_word }
  3088 #endif
  3091   // Initialize HPI.
  3092   jint hpi_result = hpi::initialize();
  3093   if (hpi_result != JNI_OK) { return hpi_result; }
  3095   // If stack_commit_size is 0, windows will reserve the default size,
  3096   // but only commit a small portion of it.
  3097   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
  3098   size_t default_reserve_size = os::win32::default_stack_size();
  3099   size_t actual_reserve_size = stack_commit_size;
  3100   if (stack_commit_size < default_reserve_size) {
  3101     // If stack_commit_size == 0, we want this too
  3102     actual_reserve_size = default_reserve_size;
  3105   JavaThread::set_stack_size_at_create(stack_commit_size);
  3107   // Calculate theoretical max. size of Threads to guard gainst artifical
  3108   // out-of-memory situations, where all available address-space has been
  3109   // reserved by thread stacks.
  3110   assert(actual_reserve_size != 0, "Must have a stack");
  3112   // Calculate the thread limit when we should start doing Virtual Memory
  3113   // banging. Currently when the threads will have used all but 200Mb of space.
  3114   //
  3115   // TODO: consider performing a similar calculation for commit size instead
  3116   // as reserve size, since on a 64-bit platform we'll run into that more
  3117   // often than running out of virtual memory space.  We can use the
  3118   // lower value of the two calculations as the os_thread_limit.
  3119   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
  3120   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
  3122   // at exit methods are called in the reverse order of their registration.
  3123   // there is no limit to the number of functions registered. atexit does
  3124   // not set errno.
  3126   if (PerfAllowAtExitRegistration) {
  3127     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3128     // atexit functions can be delayed until process exit time, which
  3129     // can be problematic for embedded VM situations. Embedded VMs should
  3130     // call DestroyJavaVM() to assure that VM resources are released.
  3132     // note: perfMemory_exit_helper atexit function may be removed in
  3133     // the future if the appropriate cleanup code can be added to the
  3134     // VM_Exit VMOperation's doit method.
  3135     if (atexit(perfMemory_exit_helper) != 0) {
  3136       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  3140   // initialize PSAPI or ToolHelp for fatal error handler
  3141   if (win32::is_nt()) _init_psapi();
  3142   else _init_toolhelp();
  3144 #ifndef _WIN64
  3145   // Print something if NX is enabled (win32 on AMD64)
  3146   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
  3147 #endif
  3149   // initialize thread priority policy
  3150   prio_init();
  3152   return JNI_OK;
  3156 // Mark the polling page as unreadable
  3157 void os::make_polling_page_unreadable(void) {
  3158   DWORD old_status;
  3159   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
  3160     fatal("Could not disable polling page");
  3161 };
  3163 // Mark the polling page as readable
  3164 void os::make_polling_page_readable(void) {
  3165   DWORD old_status;
  3166   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
  3167     fatal("Could not enable polling page");
  3168 };
  3171 int os::stat(const char *path, struct stat *sbuf) {
  3172   char pathbuf[MAX_PATH];
  3173   if (strlen(path) > MAX_PATH - 1) {
  3174     errno = ENAMETOOLONG;
  3175     return -1;
  3177   hpi::native_path(strcpy(pathbuf, path));
  3178   int ret = ::stat(pathbuf, sbuf);
  3179   if (sbuf != NULL && UseUTCFileTimestamp) {
  3180     // Fix for 6539723.  st_mtime returned from stat() is dependent on
  3181     // the system timezone and so can return different values for the
  3182     // same file if/when daylight savings time changes.  This adjustment
  3183     // makes sure the same timestamp is returned regardless of the TZ.
  3184     //
  3185     // See:
  3186     // http://msdn.microsoft.com/library/
  3187     //   default.asp?url=/library/en-us/sysinfo/base/
  3188     //   time_zone_information_str.asp
  3189     // and
  3190     // http://msdn.microsoft.com/library/default.asp?url=
  3191     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
  3192     //
  3193     // NOTE: there is a insidious bug here:  If the timezone is changed
  3194     // after the call to stat() but before 'GetTimeZoneInformation()', then
  3195     // the adjustment we do here will be wrong and we'll return the wrong
  3196     // value (which will likely end up creating an invalid class data
  3197     // archive).  Absent a better API for this, or some time zone locking
  3198     // mechanism, we'll have to live with this risk.
  3199     TIME_ZONE_INFORMATION tz;
  3200     DWORD tzid = GetTimeZoneInformation(&tz);
  3201     int daylightBias =
  3202       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
  3203     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
  3205   return ret;
  3209 #define FT2INT64(ft) \
  3210   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
  3213 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  3214 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  3215 // of a thread.
  3216 //
  3217 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  3218 // the fast estimate available on the platform.
  3220 // current_thread_cpu_time() is not optimized for Windows yet
  3221 jlong os::current_thread_cpu_time() {
  3222   // return user + sys since the cost is the same
  3223   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
  3226 jlong os::thread_cpu_time(Thread* thread) {
  3227   // consistent with what current_thread_cpu_time() returns.
  3228   return os::thread_cpu_time(thread, true /* user+sys */);
  3231 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  3232   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  3235 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
  3236   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
  3237   // If this function changes, os::is_thread_cpu_time_supported() should too
  3238   if (os::win32::is_nt()) {
  3239     FILETIME CreationTime;
  3240     FILETIME ExitTime;
  3241     FILETIME KernelTime;
  3242     FILETIME UserTime;
  3244     if ( GetThreadTimes(thread->osthread()->thread_handle(),
  3245                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3246       return -1;
  3247     else
  3248       if (user_sys_cpu_time) {
  3249         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
  3250       } else {
  3251         return FT2INT64(UserTime) * 100;
  3253   } else {
  3254     return (jlong) timeGetTime() * 1000000;
  3258 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3259   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3260   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3261   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3262   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3265 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3266   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3267   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3268   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3269   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3272 bool os::is_thread_cpu_time_supported() {
  3273   // see os::thread_cpu_time
  3274   if (os::win32::is_nt()) {
  3275     FILETIME CreationTime;
  3276     FILETIME ExitTime;
  3277     FILETIME KernelTime;
  3278     FILETIME UserTime;
  3280     if ( GetThreadTimes(GetCurrentThread(),
  3281                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3282       return false;
  3283     else
  3284       return true;
  3285   } else {
  3286     return false;
  3290 // Windows does't provide a loadavg primitive so this is stubbed out for now.
  3291 // It does have primitives (PDH API) to get CPU usage and run queue length.
  3292 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
  3293 // If we wanted to implement loadavg on Windows, we have a few options:
  3294 //
  3295 // a) Query CPU usage and run queue length and "fake" an answer by
  3296 //    returning the CPU usage if it's under 100%, and the run queue
  3297 //    length otherwise.  It turns out that querying is pretty slow
  3298 //    on Windows, on the order of 200 microseconds on a fast machine.
  3299 //    Note that on the Windows the CPU usage value is the % usage
  3300 //    since the last time the API was called (and the first call
  3301 //    returns 100%), so we'd have to deal with that as well.
  3302 //
  3303 // b) Sample the "fake" answer using a sampling thread and store
  3304 //    the answer in a global variable.  The call to loadavg would
  3305 //    just return the value of the global, avoiding the slow query.
  3306 //
  3307 // c) Sample a better answer using exponential decay to smooth the
  3308 //    value.  This is basically the algorithm used by UNIX kernels.
  3309 //
  3310 // Note that sampling thread starvation could affect both (b) and (c).
  3311 int os::loadavg(double loadavg[], int nelem) {
  3312   return -1;
  3316 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
  3317 bool os::dont_yield() {
  3318   return DontYieldALot;
  3321 // Is a (classpath) directory empty?
  3322 bool os::dir_is_empty(const char* path) {
  3323   WIN32_FIND_DATA fd;
  3324   HANDLE f = FindFirstFile(path, &fd);
  3325   if (f == INVALID_HANDLE_VALUE) {
  3326     return true;
  3328   FindClose(f);
  3329   return false;
  3332 // create binary file, rewriting existing file if required
  3333 int os::create_binary_file(const char* path, bool rewrite_existing) {
  3334   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
  3335   if (!rewrite_existing) {
  3336     oflags |= _O_EXCL;
  3338   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
  3341 // return current position of file pointer
  3342 jlong os::current_file_offset(int fd) {
  3343   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
  3346 // move file pointer to the specified offset
  3347 jlong os::seek_to_file_offset(int fd, jlong offset) {
  3348   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
  3352 // Map a block of memory.
  3353 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  3354                      char *addr, size_t bytes, bool read_only,
  3355                      bool allow_exec) {
  3356   HANDLE hFile;
  3357   char* base;
  3359   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
  3360                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  3361   if (hFile == NULL) {
  3362     if (PrintMiscellaneous && Verbose) {
  3363       DWORD err = GetLastError();
  3364       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
  3366     return NULL;
  3369   if (allow_exec) {
  3370     // CreateFileMapping/MapViewOfFileEx can't map executable memory
  3371     // unless it comes from a PE image (which the shared archive is not.)
  3372     // Even VirtualProtect refuses to give execute access to mapped memory
  3373     // that was not previously executable.
  3374     //
  3375     // Instead, stick the executable region in anonymous memory.  Yuck.
  3376     // Penalty is that ~4 pages will not be shareable - in the future
  3377     // we might consider DLLizing the shared archive with a proper PE
  3378     // header so that mapping executable + sharing is possible.
  3380     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
  3381                                 PAGE_READWRITE);
  3382     if (base == NULL) {
  3383       if (PrintMiscellaneous && Verbose) {
  3384         DWORD err = GetLastError();
  3385         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
  3387       CloseHandle(hFile);
  3388       return NULL;
  3391     DWORD bytes_read;
  3392     OVERLAPPED overlapped;
  3393     overlapped.Offset = (DWORD)file_offset;
  3394     overlapped.OffsetHigh = 0;
  3395     overlapped.hEvent = NULL;
  3396     // ReadFile guarantees that if the return value is true, the requested
  3397     // number of bytes were read before returning.
  3398     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
  3399     if (!res) {
  3400       if (PrintMiscellaneous && Verbose) {
  3401         DWORD err = GetLastError();
  3402         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
  3404       release_memory(base, bytes);
  3405       CloseHandle(hFile);
  3406       return NULL;
  3408   } else {
  3409     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
  3410                                     NULL /*file_name*/);
  3411     if (hMap == NULL) {
  3412       if (PrintMiscellaneous && Verbose) {
  3413         DWORD err = GetLastError();
  3414         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
  3416       CloseHandle(hFile);
  3417       return NULL;
  3420     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
  3421     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
  3422                                   (DWORD)bytes, addr);
  3423     if (base == NULL) {
  3424       if (PrintMiscellaneous && Verbose) {
  3425         DWORD err = GetLastError();
  3426         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
  3428       CloseHandle(hMap);
  3429       CloseHandle(hFile);
  3430       return NULL;
  3433     if (CloseHandle(hMap) == 0) {
  3434       if (PrintMiscellaneous && Verbose) {
  3435         DWORD err = GetLastError();
  3436         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
  3438       CloseHandle(hFile);
  3439       return base;
  3443   if (allow_exec) {
  3444     DWORD old_protect;
  3445     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
  3446     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
  3448     if (!res) {
  3449       if (PrintMiscellaneous && Verbose) {
  3450         DWORD err = GetLastError();
  3451         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
  3453       // Don't consider this a hard error, on IA32 even if the
  3454       // VirtualProtect fails, we should still be able to execute
  3455       CloseHandle(hFile);
  3456       return base;
  3460   if (CloseHandle(hFile) == 0) {
  3461     if (PrintMiscellaneous && Verbose) {
  3462       DWORD err = GetLastError();
  3463       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
  3465     return base;
  3468   return base;
  3472 // Remap a block of memory.
  3473 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  3474                        char *addr, size_t bytes, bool read_only,
  3475                        bool allow_exec) {
  3476   // This OS does not allow existing memory maps to be remapped so we
  3477   // have to unmap the memory before we remap it.
  3478   if (!os::unmap_memory(addr, bytes)) {
  3479     return NULL;
  3482   // There is a very small theoretical window between the unmap_memory()
  3483   // call above and the map_memory() call below where a thread in native
  3484   // code may be able to access an address that is no longer mapped.
  3486   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  3487                         allow_exec);
  3491 // Unmap a block of memory.
  3492 // Returns true=success, otherwise false.
  3494 bool os::unmap_memory(char* addr, size_t bytes) {
  3495   BOOL result = UnmapViewOfFile(addr);
  3496   if (result == 0) {
  3497     if (PrintMiscellaneous && Verbose) {
  3498       DWORD err = GetLastError();
  3499       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
  3501     return false;
  3503   return true;
  3506 void os::pause() {
  3507   char filename[MAX_PATH];
  3508   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  3509     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  3510   } else {
  3511     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  3514   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  3515   if (fd != -1) {
  3516     struct stat buf;
  3517     close(fd);
  3518     while (::stat(filename, &buf) == 0) {
  3519       Sleep(100);
  3521   } else {
  3522     jio_fprintf(stderr,
  3523       "Could not open pause file '%s', continuing immediately.\n", filename);
  3527 // An Event wraps a win32 "CreateEvent" kernel handle.
  3528 //
  3529 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
  3530 //
  3531 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
  3532 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
  3533 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
  3534 //     In addition, an unpark() operation might fetch the handle field, but the
  3535 //     event could recycle between the fetch and the SetEvent() operation.
  3536 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
  3537 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
  3538 //     on an stale but recycled handle would be harmless, but in practice this might
  3539 //     confuse other non-Sun code, so it's not a viable approach.
  3540 //
  3541 // 2:  Once a win32 event handle is associated with an Event, it remains associated
  3542 //     with the Event.  The event handle is never closed.  This could be construed
  3543 //     as handle leakage, but only up to the maximum # of threads that have been extant
  3544 //     at any one time.  This shouldn't be an issue, as windows platforms typically
  3545 //     permit a process to have hundreds of thousands of open handles.
  3546 //
  3547 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
  3548 //     and release unused handles.
  3549 //
  3550 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
  3551 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
  3552 //
  3553 // 5.  Use an RCU-like mechanism (Read-Copy Update).
  3554 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
  3555 //
  3556 // We use (2).
  3557 //
  3558 // TODO-FIXME:
  3559 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
  3560 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
  3561 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
  3562 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
  3563 //     into a single win32 CreateEvent() handle.
  3564 //
  3565 // _Event transitions in park()
  3566 //   -1 => -1 : illegal
  3567 //    1 =>  0 : pass - return immediately
  3568 //    0 => -1 : block
  3569 //
  3570 // _Event serves as a restricted-range semaphore :
  3571 //    -1 : thread is blocked
  3572 //     0 : neutral  - thread is running or ready
  3573 //     1 : signaled - thread is running or ready
  3574 //
  3575 // Another possible encoding of _Event would be
  3576 // with explicit "PARKED" and "SIGNALED" bits.
  3578 int os::PlatformEvent::park (jlong Millis) {
  3579     guarantee (_ParkHandle != NULL , "Invariant") ;
  3580     guarantee (Millis > 0          , "Invariant") ;
  3581     int v ;
  3583     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
  3584     // the initial park() operation.
  3586     for (;;) {
  3587         v = _Event ;
  3588         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  3590     guarantee ((v == 0) || (v == 1), "invariant") ;
  3591     if (v != 0) return OS_OK ;
  3593     // Do this the hard way by blocking ...
  3594     // TODO: consider a brief spin here, gated on the success of recent
  3595     // spin attempts by this thread.
  3596     //
  3597     // We decompose long timeouts into series of shorter timed waits.
  3598     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
  3599     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
  3600     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
  3601     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
  3602     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
  3603     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
  3604     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
  3605     // for the already waited time.  This policy does not admit any new outcomes.
  3606     // In the future, however, we might want to track the accumulated wait time and
  3607     // adjust Millis accordingly if we encounter a spurious wakeup.
  3609     const int MAXTIMEOUT = 0x10000000 ;
  3610     DWORD rv = WAIT_TIMEOUT ;
  3611     while (_Event < 0 && Millis > 0) {
  3612        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
  3613        if (Millis > MAXTIMEOUT) {
  3614           prd = MAXTIMEOUT ;
  3616        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
  3617        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
  3618        if (rv == WAIT_TIMEOUT) {
  3619            Millis -= prd ;
  3622     v = _Event ;
  3623     _Event = 0 ;
  3624     OrderAccess::fence() ;
  3625     // If we encounter a nearly simultanous timeout expiry and unpark()
  3626     // we return OS_OK indicating we awoke via unpark().
  3627     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
  3628     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
  3631 void os::PlatformEvent::park () {
  3632     guarantee (_ParkHandle != NULL, "Invariant") ;
  3633     // Invariant: Only the thread associated with the Event/PlatformEvent
  3634     // may call park().
  3635     int v ;
  3636     for (;;) {
  3637         v = _Event ;
  3638         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  3640     guarantee ((v == 0) || (v == 1), "invariant") ;
  3641     if (v != 0) return ;
  3643     // Do this the hard way by blocking ...
  3644     // TODO: consider a brief spin here, gated on the success of recent
  3645     // spin attempts by this thread.
  3646     while (_Event < 0) {
  3647        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
  3648        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
  3651     // Usually we'll find _Event == 0 at this point, but as
  3652     // an optional optimization we clear it, just in case can
  3653     // multiple unpark() operations drove _Event up to 1.
  3654     _Event = 0 ;
  3655     OrderAccess::fence() ;
  3656     guarantee (_Event >= 0, "invariant") ;
  3659 void os::PlatformEvent::unpark() {
  3660   guarantee (_ParkHandle != NULL, "Invariant") ;
  3661   int v ;
  3662   for (;;) {
  3663       v = _Event ;      // Increment _Event if it's < 1.
  3664       if (v > 0) {
  3665          // If it's already signaled just return.
  3666          // The LD of _Event could have reordered or be satisfied
  3667          // by a read-aside from this processor's write buffer.
  3668          // To avoid problems execute a barrier and then
  3669          // ratify the value.  A degenerate CAS() would also work.
  3670          // Viz., CAS (v+0, &_Event, v) == v).
  3671          OrderAccess::fence() ;
  3672          if (_Event == v) return ;
  3673          continue ;
  3675       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  3677   if (v < 0) {
  3678      ::SetEvent (_ParkHandle) ;
  3683 // JSR166
  3684 // -------------------------------------------------------
  3686 /*
  3687  * The Windows implementation of Park is very straightforward: Basic
  3688  * operations on Win32 Events turn out to have the right semantics to
  3689  * use them directly. We opportunistically resuse the event inherited
  3690  * from Monitor.
  3691  */
  3694 void Parker::park(bool isAbsolute, jlong time) {
  3695   guarantee (_ParkEvent != NULL, "invariant") ;
  3696   // First, demultiplex/decode time arguments
  3697   if (time < 0) { // don't wait
  3698     return;
  3700   else if (time == 0) {
  3701     time = INFINITE;
  3703   else if  (isAbsolute) {
  3704     time -= os::javaTimeMillis(); // convert to relative time
  3705     if (time <= 0) // already elapsed
  3706       return;
  3708   else { // relative
  3709     time /= 1000000; // Must coarsen from nanos to millis
  3710     if (time == 0)   // Wait for the minimal time unit if zero
  3711       time = 1;
  3714   JavaThread* thread = (JavaThread*)(Thread::current());
  3715   assert(thread->is_Java_thread(), "Must be JavaThread");
  3716   JavaThread *jt = (JavaThread *)thread;
  3718   // Don't wait if interrupted or already triggered
  3719   if (Thread::is_interrupted(thread, false) ||
  3720     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
  3721     ResetEvent(_ParkEvent);
  3722     return;
  3724   else {
  3725     ThreadBlockInVM tbivm(jt);
  3726     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3727     jt->set_suspend_equivalent();
  3729     WaitForSingleObject(_ParkEvent,  time);
  3730     ResetEvent(_ParkEvent);
  3732     // If externally suspended while waiting, re-suspend
  3733     if (jt->handle_special_suspend_equivalent_condition()) {
  3734       jt->java_suspend_self();
  3739 void Parker::unpark() {
  3740   guarantee (_ParkEvent != NULL, "invariant") ;
  3741   SetEvent(_ParkEvent);
  3744 // Run the specified command in a separate process. Return its exit value,
  3745 // or -1 on failure (e.g. can't create a new process).
  3746 int os::fork_and_exec(char* cmd) {
  3747   STARTUPINFO si;
  3748   PROCESS_INFORMATION pi;
  3750   memset(&si, 0, sizeof(si));
  3751   si.cb = sizeof(si);
  3752   memset(&pi, 0, sizeof(pi));
  3753   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
  3754                             cmd,    // command line
  3755                             NULL,   // process security attribute
  3756                             NULL,   // thread security attribute
  3757                             TRUE,   // inherits system handles
  3758                             0,      // no creation flags
  3759                             NULL,   // use parent's environment block
  3760                             NULL,   // use parent's starting directory
  3761                             &si,    // (in) startup information
  3762                             &pi);   // (out) process information
  3764   if (rslt) {
  3765     // Wait until child process exits.
  3766     WaitForSingleObject(pi.hProcess, INFINITE);
  3768     DWORD exit_code;
  3769     GetExitCodeProcess(pi.hProcess, &exit_code);
  3771     // Close process and thread handles.
  3772     CloseHandle(pi.hProcess);
  3773     CloseHandle(pi.hThread);
  3775     return (int)exit_code;
  3776   } else {
  3777     return -1;
  3781 //--------------------------------------------------------------------------------------------------
  3782 // Non-product code
  3784 static int mallocDebugIntervalCounter = 0;
  3785 static int mallocDebugCounter = 0;
  3786 bool os::check_heap(bool force) {
  3787   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
  3788   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
  3789     // Note: HeapValidate executes two hardware breakpoints when it finds something
  3790     // wrong; at these points, eax contains the address of the offending block (I think).
  3791     // To get to the exlicit error message(s) below, just continue twice.
  3792     HANDLE heap = GetProcessHeap();
  3793     { HeapLock(heap);
  3794       PROCESS_HEAP_ENTRY phe;
  3795       phe.lpData = NULL;
  3796       while (HeapWalk(heap, &phe) != 0) {
  3797         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
  3798             !HeapValidate(heap, 0, phe.lpData)) {
  3799           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
  3800           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
  3801           fatal("corrupted C heap");
  3804       int err = GetLastError();
  3805       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
  3806         fatal1("heap walk aborted with error %d", err);
  3808       HeapUnlock(heap);
  3810     mallocDebugIntervalCounter = 0;
  3812   return true;
  3816 #ifndef PRODUCT
  3817 bool os::find(address addr) {
  3818   // Nothing yet
  3819   return false;
  3821 #endif
  3823 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
  3824   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
  3826   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  3827     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
  3828     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
  3829     address addr = (address) exceptionRecord->ExceptionInformation[1];
  3831     if (os::is_memory_serialize_page(thread, addr))
  3832       return EXCEPTION_CONTINUE_EXECUTION;
  3835   return EXCEPTION_CONTINUE_SEARCH;
  3838 static int getLastErrorString(char *buf, size_t len)
  3840     long errval;
  3842     if ((errval = GetLastError()) != 0)
  3844       /* DOS error */
  3845       size_t n = (size_t)FormatMessage(
  3846             FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  3847             NULL,
  3848             errval,
  3849             0,
  3850             buf,
  3851             (DWORD)len,
  3852             NULL);
  3853       if (n > 3) {
  3854         /* Drop final '.', CR, LF */
  3855         if (buf[n - 1] == '\n') n--;
  3856         if (buf[n - 1] == '\r') n--;
  3857         if (buf[n - 1] == '.') n--;
  3858         buf[n] = '\0';
  3860       return (int)n;
  3863     if (errno != 0)
  3865       /* C runtime error that has no corresponding DOS error code */
  3866       const char *s = strerror(errno);
  3867       size_t n = strlen(s);
  3868       if (n >= len) n = len - 1;
  3869       strncpy(buf, s, n);
  3870       buf[n] = '\0';
  3871       return (int)n;
  3873     return 0;

mercurial