src/cpu/sparc/vm/frame_sparc.cpp

Wed, 02 Jul 2008 12:55:16 -0700

author
xdono
date
Wed, 02 Jul 2008 12:55:16 -0700
changeset 631
d1605aabd0a1
parent 542
93b6525e3b82
child 1635
ba263cfb7611
permissions
-rw-r--r--

6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_frame_sparc.cpp.incl"
    28 void RegisterMap::pd_clear() {
    29   if (_thread->has_last_Java_frame()) {
    30     frame fr = _thread->last_frame();
    31     _window = fr.sp();
    32   } else {
    33     _window = NULL;
    34   }
    35   _younger_window = NULL;
    36 }
    39 // Unified register numbering scheme: each 32-bits counts as a register
    40 // number, so all the V9 registers take 2 slots.
    41 const static int R_L_nums[] = {0+040,2+040,4+040,6+040,8+040,10+040,12+040,14+040};
    42 const static int R_I_nums[] = {0+060,2+060,4+060,6+060,8+060,10+060,12+060,14+060};
    43 const static int R_O_nums[] = {0+020,2+020,4+020,6+020,8+020,10+020,12+020,14+020};
    44 const static int R_G_nums[] = {0+000,2+000,4+000,6+000,8+000,10+000,12+000,14+000};
    45 static RegisterMap::LocationValidType bad_mask = 0;
    46 static RegisterMap::LocationValidType R_LIO_mask = 0;
    47 static bool register_map_inited = false;
    49 static void register_map_init() {
    50   if (!register_map_inited) {
    51     register_map_inited = true;
    52     int i;
    53     for (i = 0; i < 8; i++) {
    54       assert(R_L_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
    55       assert(R_I_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
    56       assert(R_O_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
    57       assert(R_G_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
    58     }
    60     bad_mask |= (1LL << R_O_nums[6]); // SP
    61     bad_mask |= (1LL << R_O_nums[7]); // cPC
    62     bad_mask |= (1LL << R_I_nums[6]); // FP
    63     bad_mask |= (1LL << R_I_nums[7]); // rPC
    64     bad_mask |= (1LL << R_G_nums[2]); // TLS
    65     bad_mask |= (1LL << R_G_nums[7]); // reserved by libthread
    67     for (i = 0; i < 8; i++) {
    68       R_LIO_mask |= (1LL << R_L_nums[i]);
    69       R_LIO_mask |= (1LL << R_I_nums[i]);
    70       R_LIO_mask |= (1LL << R_O_nums[i]);
    71     }
    72   }
    73 }
    76 address RegisterMap::pd_location(VMReg regname) const {
    77   register_map_init();
    79   assert(regname->is_reg(), "sanity check");
    80   // Only the GPRs get handled this way
    81   if( !regname->is_Register())
    82     return NULL;
    84   // don't talk about bad registers
    85   if ((bad_mask & ((LocationValidType)1 << regname->value())) != 0) {
    86     return NULL;
    87   }
    89   // Convert to a GPR
    90   Register reg;
    91   int second_word = 0;
    92   // 32-bit registers for in, out and local
    93   if (!regname->is_concrete()) {
    94     // HMM ought to return NULL for any non-concrete (odd) vmreg
    95     // this all tied up in the fact we put out double oopMaps for
    96     // register locations. When that is fixed we'd will return NULL
    97     // (or assert here).
    98     reg = regname->prev()->as_Register();
    99 #ifdef _LP64
   100     second_word = sizeof(jint);
   101 #else
   102     return NULL;
   103 #endif // _LP64
   104   } else {
   105     reg = regname->as_Register();
   106   }
   107   if (reg->is_out()) {
   108     assert(_younger_window != NULL, "Younger window should be available");
   109     return second_word + (address)&_younger_window[reg->after_save()->sp_offset_in_saved_window()];
   110   }
   111   if (reg->is_local() || reg->is_in()) {
   112     assert(_window != NULL, "Window should be available");
   113     return second_word + (address)&_window[reg->sp_offset_in_saved_window()];
   114   }
   115   // Only the window'd GPRs get handled this way; not the globals.
   116   return NULL;
   117 }
   120 #ifdef ASSERT
   121 void RegisterMap::check_location_valid() {
   122   register_map_init();
   123   assert((_location_valid[0] & bad_mask) == 0, "cannot have special locations for SP,FP,TLS,etc.");
   124 }
   125 #endif
   127 // We are shifting windows.  That means we are moving all %i to %o,
   128 // getting rid of all current %l, and keeping all %g.  This is only
   129 // complicated if any of the location pointers for these are valid.
   130 // The normal case is that everything is in its standard register window
   131 // home, and _location_valid[0] is zero.  In that case, this routine
   132 // does exactly nothing.
   133 void RegisterMap::shift_individual_registers() {
   134   if (!update_map())  return;  // this only applies to maps with locations
   135   register_map_init();
   136   check_location_valid();
   138   LocationValidType lv = _location_valid[0];
   139   LocationValidType lv0 = lv;
   141   lv &= ~R_LIO_mask;  // clear %l, %o, %i regs
   143   // if we cleared some non-%g locations, we may have to do some shifting
   144   if (lv != lv0) {
   145     // copy %i0-%i5 to %o0-%o5, if they have special locations
   146     // This can happen in within stubs which spill argument registers
   147     // around a dynamic link operation, such as resolve_opt_virtual_call.
   148     for (int i = 0; i < 8; i++) {
   149       if (lv0 & (1LL << R_I_nums[i])) {
   150         _location[R_O_nums[i]] = _location[R_I_nums[i]];
   151         lv |=  (1LL << R_O_nums[i]);
   152       }
   153     }
   154   }
   156   _location_valid[0] = lv;
   157   check_location_valid();
   158 }
   160 bool frame::safe_for_sender(JavaThread *thread) {
   162   address _SP = (address) sp();
   163   address _FP = (address) fp();
   164   address _UNEXTENDED_SP = (address) unextended_sp();
   165   // sp must be within the stack
   166   bool sp_safe = (_SP <= thread->stack_base()) &&
   167                  (_SP >= thread->stack_base() - thread->stack_size());
   169   if (!sp_safe) {
   170     return false;
   171   }
   173   // unextended sp must be within the stack and above or equal sp
   174   bool unextended_sp_safe = (_UNEXTENDED_SP <= thread->stack_base()) &&
   175                             (_UNEXTENDED_SP >= _SP);
   177   if (!unextended_sp_safe) return false;
   179   // an fp must be within the stack and above (but not equal) sp
   180   bool fp_safe = (_FP <= thread->stack_base()) &&
   181                  (_FP > _SP);
   183   // We know sp/unextended_sp are safe only fp is questionable here
   185   // If the current frame is known to the code cache then we can attempt to
   186   // to construct the sender and do some validation of it. This goes a long way
   187   // toward eliminating issues when we get in frame construction code
   189   if (_cb != NULL ) {
   191     // First check if frame is complete and tester is reliable
   192     // Unfortunately we can only check frame complete for runtime stubs and nmethod
   193     // other generic buffer blobs are more problematic so we just assume they are
   194     // ok. adapter blobs never have a frame complete and are never ok.
   196     if (!_cb->is_frame_complete_at(_pc)) {
   197       if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
   198         return false;
   199       }
   200     }
   202     // Entry frame checks
   203     if (is_entry_frame()) {
   204       // an entry frame must have a valid fp.
   206       if (!fp_safe) {
   207         return false;
   208       }
   210       // Validate the JavaCallWrapper an entry frame must have
   212       address jcw = (address)entry_frame_call_wrapper();
   214       bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > _FP);
   216       return jcw_safe;
   218     }
   220     intptr_t* younger_sp = sp();
   221     intptr_t* _SENDER_SP = sender_sp(); // sender is actually just _FP
   222     bool adjusted_stack = is_interpreted_frame();
   224     address   sender_pc = (address)younger_sp[I7->sp_offset_in_saved_window()] + pc_return_offset;
   227     // We must always be able to find a recognizable pc
   228     CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
   229     if (sender_pc == NULL ||  sender_blob == NULL) {
   230       return false;
   231     }
   233     // It should be safe to construct the sender though it might not be valid
   235     frame sender(_SENDER_SP, younger_sp, adjusted_stack);
   237     // Do we have a valid fp?
   238     address sender_fp = (address) sender.fp();
   240     // an fp must be within the stack and above (but not equal) current frame's _FP
   242     bool sender_fp_safe = (sender_fp <= thread->stack_base()) &&
   243                    (sender_fp > _FP);
   245     if (!sender_fp_safe) {
   246       return false;
   247     }
   250     // If the potential sender is the interpreter then we can do some more checking
   251     if (Interpreter::contains(sender_pc)) {
   252       return sender.is_interpreted_frame_valid(thread);
   253     }
   255     // Could just be some random pointer within the codeBlob
   256     if (!sender.cb()->instructions_contains(sender_pc)) return false;
   258     // We should never be able to see an adapter if the current frame is something from code cache
   260     if ( sender_blob->is_adapter_blob()) {
   261       return false;
   262     }
   264     if( sender.is_entry_frame()) {
   265       // Validate the JavaCallWrapper an entry frame must have
   267       address jcw = (address)sender.entry_frame_call_wrapper();
   269       bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > sender_fp);
   271       return jcw_safe;
   272     }
   274     // If the frame size is 0 something is bad because every nmethod has a non-zero frame size
   275     // because you must allocate window space
   277     if (sender_blob->frame_size() == 0) {
   278       assert(!sender_blob->is_nmethod(), "should count return address at least");
   279       return false;
   280     }
   282     // The sender should positively be an nmethod or call_stub. On sparc we might in fact see something else.
   283     // The cause of this is because at a save instruction the O7 we get is a leftover from an earlier
   284     // window use. So if a runtime stub creates two frames (common in fastdebug/jvmg) then we see the
   285     // stale pc. So if the sender blob is not something we'd expect we have little choice but to declare
   286     // the stack unwalkable. pd_get_top_frame_for_signal_handler tries to recover from this by unwinding
   287     // that initial frame and retrying.
   289     if (!sender_blob->is_nmethod()) {
   290       return false;
   291     }
   293     // Could put some more validation for the potential non-interpreted sender
   294     // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
   296     // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
   298     // We've validated the potential sender that would be created
   300     return true;
   302   }
   304   // Must be native-compiled frame. Since sender will try and use fp to find
   305   // linkages it must be safe
   307   if (!fp_safe) return false;
   309   // could try and do some more potential verification of native frame if we could think of some...
   311   return true;
   312 }
   314 // constructors
   316 // Construct an unpatchable, deficient frame
   317 frame::frame(intptr_t* sp, unpatchable_t, address pc, CodeBlob* cb) {
   318 #ifdef _LP64
   319   assert( (((intptr_t)sp & (wordSize-1)) == 0), "frame constructor passed an invalid sp");
   320 #endif
   321   _sp = sp;
   322   _younger_sp = NULL;
   323   _pc = pc;
   324   _cb = cb;
   325   _sp_adjustment_by_callee = 0;
   326   assert(pc == NULL && cb == NULL || pc != NULL, "can't have a cb and no pc!");
   327   if (_cb == NULL && _pc != NULL ) {
   328     _cb = CodeCache::find_blob(_pc);
   329   }
   330   _deopt_state = unknown;
   331 #ifdef ASSERT
   332   if ( _cb != NULL && _cb->is_nmethod()) {
   333     // Without a valid unextended_sp() we can't convert the pc to "original"
   334     assert(!((nmethod*)_cb)->is_deopt_pc(_pc), "invariant broken");
   335   }
   336 #endif // ASSERT
   337 }
   339 frame::frame(intptr_t* sp, intptr_t* younger_sp, bool younger_frame_adjusted_stack) {
   340   _sp = sp;
   341   _younger_sp = younger_sp;
   342   if (younger_sp == NULL) {
   343     // make a deficient frame which doesn't know where its PC is
   344     _pc = NULL;
   345     _cb = NULL;
   346   } else {
   347     _pc = (address)younger_sp[I7->sp_offset_in_saved_window()] + pc_return_offset;
   348     assert( (intptr_t*)younger_sp[FP->sp_offset_in_saved_window()] == (intptr_t*)((intptr_t)sp - STACK_BIAS), "younger_sp must be valid");
   349     // Any frame we ever build should always "safe" therefore we should not have to call
   350     // find_blob_unsafe
   351     // In case of native stubs, the pc retrieved here might be
   352     // wrong.  (the _last_native_pc will have the right value)
   353     // So do not put add any asserts on the _pc here.
   354   }
   355   if (younger_frame_adjusted_stack) {
   356     // compute adjustment to this frame's SP made by its interpreted callee
   357     _sp_adjustment_by_callee = (intptr_t*)((intptr_t)younger_sp[I5_savedSP->sp_offset_in_saved_window()] +
   358                                              STACK_BIAS) - sp;
   359   } else {
   360     _sp_adjustment_by_callee = 0;
   361   }
   363   _deopt_state = unknown;
   365   // It is important that frame be fully construct when we do this lookup
   366   // as get_original_pc() needs correct value for unextended_sp()
   367   if (_pc != NULL) {
   368     _cb = CodeCache::find_blob(_pc);
   369     if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_deopt_pc(_pc)) {
   370       _pc = ((nmethod*)_cb)->get_original_pc(this);
   371       _deopt_state = is_deoptimized;
   372     } else {
   373       _deopt_state = not_deoptimized;
   374     }
   375   }
   376 }
   378 bool frame::is_interpreted_frame() const  {
   379   return Interpreter::contains(pc());
   380 }
   382 // sender_sp
   384 intptr_t* frame::interpreter_frame_sender_sp() const {
   385   assert(is_interpreted_frame(), "interpreted frame expected");
   386   return fp();
   387 }
   389 #ifndef CC_INTERP
   390 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
   391   assert(is_interpreted_frame(), "interpreted frame expected");
   392   Unimplemented();
   393 }
   394 #endif // CC_INTERP
   397 #ifdef ASSERT
   398 // Debugging aid
   399 static frame nth_sender(int n) {
   400   frame f = JavaThread::current()->last_frame();
   402   for(int i = 0; i < n; ++i)
   403     f = f.sender((RegisterMap*)NULL);
   405   printf("first frame %d\n",          f.is_first_frame()       ? 1 : 0);
   406   printf("interpreted frame %d\n",    f.is_interpreted_frame() ? 1 : 0);
   407   printf("java frame %d\n",           f.is_java_frame()        ? 1 : 0);
   408   printf("entry frame %d\n",          f.is_entry_frame()       ? 1 : 0);
   409   printf("native frame %d\n",         f.is_native_frame()      ? 1 : 0);
   410   if (f.is_compiled_frame()) {
   411     if (f.is_deoptimized_frame())
   412       printf("deoptimized frame 1\n");
   413     else
   414       printf("compiled frame 1\n");
   415   }
   417   return f;
   418 }
   419 #endif
   422 frame frame::sender_for_entry_frame(RegisterMap *map) const {
   423   assert(map != NULL, "map must be set");
   424   // Java frame called from C; skip all C frames and return top C
   425   // frame of that chunk as the sender
   426   JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
   427   assert(!entry_frame_is_first(), "next Java fp must be non zero");
   428   assert(jfa->last_Java_sp() > _sp, "must be above this frame on stack");
   429   intptr_t* last_Java_sp = jfa->last_Java_sp();
   430   // Since we are walking the stack now this nested anchor is obviously walkable
   431   // even if it wasn't when it was stacked.
   432   if (!jfa->walkable()) {
   433     // Capture _last_Java_pc (if needed) and mark anchor walkable.
   434     jfa->capture_last_Java_pc(_sp);
   435   }
   436   assert(jfa->last_Java_pc() != NULL, "No captured pc!");
   437   map->clear();
   438   map->make_integer_regs_unsaved();
   439   map->shift_window(last_Java_sp, NULL);
   440   assert(map->include_argument_oops(), "should be set by clear");
   441   return frame(last_Java_sp, frame::unpatchable, jfa->last_Java_pc());
   442 }
   444 frame frame::sender_for_interpreter_frame(RegisterMap *map) const {
   445   ShouldNotCallThis();
   446   return sender(map);
   447 }
   449 frame frame::sender_for_compiled_frame(RegisterMap *map) const {
   450   ShouldNotCallThis();
   451   return sender(map);
   452 }
   454 frame frame::sender(RegisterMap* map) const {
   455   assert(map != NULL, "map must be set");
   457   assert(CodeCache::find_blob_unsafe(_pc) == _cb, "inconsistent");
   459   // Default is not to follow arguments; update it accordingly below
   460   map->set_include_argument_oops(false);
   462   if (is_entry_frame()) return sender_for_entry_frame(map);
   464   intptr_t* younger_sp     = sp();
   465   intptr_t* sp             = sender_sp();
   466   bool      adjusted_stack = false;
   468   // Note:  The version of this operation on any platform with callee-save
   469   //        registers must update the register map (if not null).
   470   //        In order to do this correctly, the various subtypes of
   471   //        of frame (interpreted, compiled, glue, native),
   472   //        must be distinguished.  There is no need on SPARC for
   473   //        such distinctions, because all callee-save registers are
   474   //        preserved for all frames via SPARC-specific mechanisms.
   475   //
   476   //        *** HOWEVER, *** if and when we make any floating-point
   477   //        registers callee-saved, then we will have to copy over
   478   //        the RegisterMap update logic from the Intel code.
   480   // The constructor of the sender must know whether this frame is interpreted so it can set the
   481   // sender's _sp_adjustment_by_callee field.  An osr adapter frame was originally
   482   // interpreted but its pc is in the code cache (for c1 -> osr_frame_return_id stub), so it must be
   483   // explicitly recognized.
   485   adjusted_stack = is_interpreted_frame();
   486   if (adjusted_stack) {
   487     map->make_integer_regs_unsaved();
   488     map->shift_window(sp, younger_sp);
   489   } else if (_cb != NULL) {
   490     // Update the locations of implicitly saved registers to be their
   491     // addresses in the register save area.
   492     // For %o registers, the addresses of %i registers in the next younger
   493     // frame are used.
   494     map->shift_window(sp, younger_sp);
   495     if (map->update_map()) {
   496       // Tell GC to use argument oopmaps for some runtime stubs that need it.
   497       // For C1, the runtime stub might not have oop maps, so set this flag
   498       // outside of update_register_map.
   499       map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
   500       if (_cb->oop_maps() != NULL) {
   501         OopMapSet::update_register_map(this, map);
   502       }
   503     }
   504   }
   505   return frame(sp, younger_sp, adjusted_stack);
   506 }
   509 void frame::patch_pc(Thread* thread, address pc) {
   510   if(thread == Thread::current()) {
   511    StubRoutines::Sparc::flush_callers_register_windows_func()();
   512   }
   513   if (TracePcPatching) {
   514     // QQQ this assert is invalid (or too strong anyway) sice _pc could
   515     // be original pc and frame could have the deopt pc.
   516     // assert(_pc == *O7_addr() + pc_return_offset, "frame has wrong pc");
   517     tty->print_cr("patch_pc at address  0x%x [0x%x -> 0x%x] ", O7_addr(), _pc, pc);
   518   }
   519   _cb = CodeCache::find_blob(pc);
   520   *O7_addr() = pc - pc_return_offset;
   521   _cb = CodeCache::find_blob(_pc);
   522   if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_deopt_pc(_pc)) {
   523     address orig = ((nmethod*)_cb)->get_original_pc(this);
   524     assert(orig == _pc, "expected original to be stored before patching");
   525     _deopt_state = is_deoptimized;
   526   } else {
   527     _deopt_state = not_deoptimized;
   528   }
   529 }
   532 static bool sp_is_valid(intptr_t* old_sp, intptr_t* young_sp, intptr_t* sp) {
   533   return (((intptr_t)sp & (2*wordSize-1)) == 0 &&
   534           sp <= old_sp &&
   535           sp >= young_sp);
   536 }
   539 /*
   540   Find the (biased) sp that is just younger than old_sp starting at sp.
   541   If not found return NULL. Register windows are assumed to be flushed.
   542 */
   543 intptr_t* frame::next_younger_sp_or_null(intptr_t* old_sp, intptr_t* sp) {
   545   intptr_t* previous_sp = NULL;
   546   intptr_t* orig_sp = sp;
   548   int max_frames = (old_sp - sp) / 16; // Minimum frame size is 16
   549   int max_frame2 = max_frames;
   550   while(sp != old_sp && sp_is_valid(old_sp, orig_sp, sp)) {
   551     if (max_frames-- <= 0)
   552       // too many frames have gone by; invalid parameters given to this function
   553       break;
   554     previous_sp = sp;
   555     sp = (intptr_t*)sp[FP->sp_offset_in_saved_window()];
   556     sp = (intptr_t*)((intptr_t)sp + STACK_BIAS);
   557   }
   559   return (sp == old_sp ? previous_sp : NULL);
   560 }
   562 /*
   563   Determine if "sp" is a valid stack pointer. "sp" is assumed to be younger than
   564   "valid_sp". So if "sp" is valid itself then it should be possible to walk frames
   565   from "sp" to "valid_sp". The assumption is that the registers windows for the
   566   thread stack in question are flushed.
   567 */
   568 bool frame::is_valid_stack_pointer(intptr_t* valid_sp, intptr_t* sp) {
   569   return next_younger_sp_or_null(valid_sp, sp) != NULL;
   570 }
   573 bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
   574   assert(is_interpreted_frame(), "must be interpreter frame");
   575   return this->fp() == fp;
   576 }
   579 void frame::pd_gc_epilog() {
   580   if (is_interpreted_frame()) {
   581     // set constant pool cache entry for interpreter
   582     methodOop m = interpreter_frame_method();
   584     *interpreter_frame_cpoolcache_addr() = m->constants()->cache();
   585   }
   586 }
   589 bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
   590 #ifdef CC_INTERP
   591   // Is there anything to do?
   592 #else
   593   assert(is_interpreted_frame(), "Not an interpreted frame");
   594   // These are reasonable sanity checks
   595   if (fp() == 0 || (intptr_t(fp()) & (2*wordSize-1)) != 0) {
   596     return false;
   597   }
   598   if (sp() == 0 || (intptr_t(sp()) & (2*wordSize-1)) != 0) {
   599     return false;
   600   }
   602   const intptr_t interpreter_frame_initial_sp_offset = interpreter_frame_vm_local_words;
   603   if (fp() + interpreter_frame_initial_sp_offset < sp()) {
   604     return false;
   605   }
   606   // These are hacks to keep us out of trouble.
   607   // The problem with these is that they mask other problems
   608   if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
   609     return false;
   610   }
   611   // do some validation of frame elements
   613   // first the method
   615   methodOop m = *interpreter_frame_method_addr();
   617   // validate the method we'd find in this potential sender
   618   if (!Universe::heap()->is_valid_method(m)) return false;
   620   // stack frames shouldn't be much larger than max_stack elements
   622   if (fp() - sp() > 1024 + m->max_stack()*Interpreter::stackElementSize()) {
   623     return false;
   624   }
   626   // validate bci/bcx
   628   intptr_t  bcx    = interpreter_frame_bcx();
   629   if (m->validate_bci_from_bcx(bcx) < 0) {
   630     return false;
   631   }
   633   // validate constantPoolCacheOop
   635   constantPoolCacheOop cp = *interpreter_frame_cache_addr();
   637   if (cp == NULL ||
   638       !Space::is_aligned(cp) ||
   639       !Universe::heap()->is_permanent((void*)cp)) return false;
   641   // validate locals
   643   address locals =  (address) *interpreter_frame_locals_addr();
   645   if (locals > thread->stack_base() || locals < (address) fp()) return false;
   647   // We'd have to be pretty unlucky to be mislead at this point
   648 #endif /* CC_INTERP */
   649   return true;
   650 }
   653 // Windows have been flushed on entry (but not marked). Capture the pc that
   654 // is the return address to the frame that contains "sp" as its stack pointer.
   655 // This pc resides in the called of the frame corresponding to "sp".
   656 // As a side effect we mark this JavaFrameAnchor as having flushed the windows.
   657 // This side effect lets us mark stacked JavaFrameAnchors (stacked in the
   658 // call_helper) as flushed when we have flushed the windows for the most
   659 // recent (i.e. current) JavaFrameAnchor. This saves useless flushing calls
   660 // and lets us find the pc just once rather than multiple times as it did
   661 // in the bad old _post_Java_state days.
   662 //
   663 void JavaFrameAnchor::capture_last_Java_pc(intptr_t* sp) {
   664   if (last_Java_sp() != NULL && last_Java_pc() == NULL) {
   665     // try and find the sp just younger than _last_Java_sp
   666     intptr_t* _post_Java_sp = frame::next_younger_sp_or_null(last_Java_sp(), sp);
   667     // Really this should never fail otherwise VM call must have non-standard
   668     // frame linkage (bad) or stack is not properly flushed (worse).
   669     guarantee(_post_Java_sp != NULL, "bad stack!");
   670     _last_Java_pc = (address) _post_Java_sp[ I7->sp_offset_in_saved_window()] + frame::pc_return_offset;
   672   }
   673   set_window_flushed();
   674 }
   676 void JavaFrameAnchor::make_walkable(JavaThread* thread) {
   677   if (walkable()) return;
   678   // Eventually make an assert
   679   guarantee(Thread::current() == (Thread*)thread, "only current thread can flush its registers");
   680   // We always flush in case the profiler wants it but we won't mark
   681   // the windows as flushed unless we have a last_Java_frame
   682   intptr_t* sp = StubRoutines::Sparc::flush_callers_register_windows_func()();
   683   if (last_Java_sp() != NULL ) {
   684     capture_last_Java_pc(sp);
   685   }
   686 }
   688 intptr_t* frame::entry_frame_argument_at(int offset) const {
   689   // convert offset to index to deal with tsi
   690   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
   692   intptr_t* LSP = (intptr_t*) sp()[Lentry_args->sp_offset_in_saved_window()];
   693   return &LSP[index+1];
   694 }
   697 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
   698   assert(is_interpreted_frame(), "interpreted frame expected");
   699   methodOop method = interpreter_frame_method();
   700   BasicType type = method->result_type();
   702   if (method->is_native()) {
   703     // Prior to notifying the runtime of the method_exit the possible result
   704     // value is saved to l_scratch and d_scratch.
   706 #ifdef CC_INTERP
   707     interpreterState istate = get_interpreterState();
   708     intptr_t* l_scratch = (intptr_t*) &istate->_native_lresult;
   709     intptr_t* d_scratch = (intptr_t*) &istate->_native_fresult;
   710 #else /* CC_INTERP */
   711     intptr_t* l_scratch = fp() + interpreter_frame_l_scratch_fp_offset;
   712     intptr_t* d_scratch = fp() + interpreter_frame_d_scratch_fp_offset;
   713 #endif /* CC_INTERP */
   715     address l_addr = (address)l_scratch;
   716 #ifdef _LP64
   717     // On 64-bit the result for 1/8/16/32-bit result types is in the other
   718     // word half
   719     l_addr += wordSize/2;
   720 #endif
   722     switch (type) {
   723       case T_OBJECT:
   724       case T_ARRAY: {
   725 #ifdef CC_INTERP
   726         *oop_result = istate->_oop_temp;
   727 #else
   728         oop obj = (oop) at(interpreter_frame_oop_temp_offset);
   729         assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
   730         *oop_result = obj;
   731 #endif // CC_INTERP
   732         break;
   733       }
   735       case T_BOOLEAN : { jint* p = (jint*)l_addr; value_result->z = (jboolean)((*p) & 0x1); break; }
   736       case T_BYTE    : { jint* p = (jint*)l_addr; value_result->b = (jbyte)((*p) & 0xff); break; }
   737       case T_CHAR    : { jint* p = (jint*)l_addr; value_result->c = (jchar)((*p) & 0xffff); break; }
   738       case T_SHORT   : { jint* p = (jint*)l_addr; value_result->s = (jshort)((*p) & 0xffff); break; }
   739       case T_INT     : value_result->i = *(jint*)l_addr; break;
   740       case T_LONG    : value_result->j = *(jlong*)l_scratch; break;
   741       case T_FLOAT   : value_result->f = *(jfloat*)d_scratch; break;
   742       case T_DOUBLE  : value_result->d = *(jdouble*)d_scratch; break;
   743       case T_VOID    : /* Nothing to do */ break;
   744       default        : ShouldNotReachHere();
   745     }
   746   } else {
   747     intptr_t* tos_addr = interpreter_frame_tos_address();
   749     switch(type) {
   750       case T_OBJECT:
   751       case T_ARRAY: {
   752         oop obj = (oop)*tos_addr;
   753         assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
   754         *oop_result = obj;
   755         break;
   756       }
   757       case T_BOOLEAN : { jint* p = (jint*)tos_addr; value_result->z = (jboolean)((*p) & 0x1); break; }
   758       case T_BYTE    : { jint* p = (jint*)tos_addr; value_result->b = (jbyte)((*p) & 0xff); break; }
   759       case T_CHAR    : { jint* p = (jint*)tos_addr; value_result->c = (jchar)((*p) & 0xffff); break; }
   760       case T_SHORT   : { jint* p = (jint*)tos_addr; value_result->s = (jshort)((*p) & 0xffff); break; }
   761       case T_INT     : value_result->i = *(jint*)tos_addr; break;
   762       case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
   763       case T_FLOAT   : value_result->f = *(jfloat*)tos_addr; break;
   764       case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
   765       case T_VOID    : /* Nothing to do */ break;
   766       default        : ShouldNotReachHere();
   767     }
   768   };
   770   return type;
   771 }
   773 // Lesp pointer is one word lower than the top item on the stack.
   774 intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
   775   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize) - 1;
   776   return &interpreter_frame_tos_address()[index];
   777 }

mercurial