src/share/vm/interpreter/templateInterpreter.cpp

Tue, 05 Apr 2016 08:55:39 -0700

author
asaha
date
Tue, 05 Apr 2016 08:55:39 -0700
changeset 8415
d109bda16490
parent 8316
626f594dffa6
parent 8368
32b682649973
child 8604
04d83ba48607
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterGenerator.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "interpreter/templateTable.hpp"
    31 #ifndef CC_INTERP
    33 # define __ _masm->
    35 void TemplateInterpreter::initialize() {
    36   if (_code != NULL) return;
    37   // assertions
    38   assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length,
    39          "dispatch table too small");
    41   AbstractInterpreter::initialize();
    43   TemplateTable::initialize();
    45   // generate interpreter
    46   { ResourceMark rm;
    47     TraceTime timer("Interpreter generation", TraceStartupTime);
    48     int code_size = InterpreterCodeSize;
    49     NOT_PRODUCT(code_size *= 4;)  // debug uses extra interpreter code space
    50     _code = new StubQueue(new InterpreterCodeletInterface, code_size, NULL,
    51                           "Interpreter");
    52     InterpreterGenerator g(_code);
    53     if (PrintInterpreter) print();
    54   }
    56   // initialize dispatch table
    57   _active_table = _normal_table;
    58 }
    60 //------------------------------------------------------------------------------------------------------------------------
    61 // Implementation of EntryPoint
    63 EntryPoint::EntryPoint() {
    64   assert(number_of_states == 10, "check the code below");
    65   _entry[btos] = NULL;
    66   _entry[ztos] = NULL;
    67   _entry[ctos] = NULL;
    68   _entry[stos] = NULL;
    69   _entry[atos] = NULL;
    70   _entry[itos] = NULL;
    71   _entry[ltos] = NULL;
    72   _entry[ftos] = NULL;
    73   _entry[dtos] = NULL;
    74   _entry[vtos] = NULL;
    75 }
    78 EntryPoint::EntryPoint(address bentry, address zentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
    79   assert(number_of_states == 10, "check the code below");
    80   _entry[btos] = bentry;
    81   _entry[ztos] = zentry;
    82   _entry[ctos] = centry;
    83   _entry[stos] = sentry;
    84   _entry[atos] = aentry;
    85   _entry[itos] = ientry;
    86   _entry[ltos] = lentry;
    87   _entry[ftos] = fentry;
    88   _entry[dtos] = dentry;
    89   _entry[vtos] = ventry;
    90 }
    93 void EntryPoint::set_entry(TosState state, address entry) {
    94   assert(0 <= state && state < number_of_states, "state out of bounds");
    95   _entry[state] = entry;
    96 }
    99 address EntryPoint::entry(TosState state) const {
   100   assert(0 <= state && state < number_of_states, "state out of bounds");
   101   return _entry[state];
   102 }
   105 void EntryPoint::print() {
   106   tty->print("[");
   107   for (int i = 0; i < number_of_states; i++) {
   108     if (i > 0) tty->print(", ");
   109     tty->print(INTPTR_FORMAT, p2i(_entry[i]));
   110   }
   111   tty->print("]");
   112 }
   115 bool EntryPoint::operator == (const EntryPoint& y) {
   116   int i = number_of_states;
   117   while (i-- > 0) {
   118     if (_entry[i] != y._entry[i]) return false;
   119   }
   120   return true;
   121 }
   124 //------------------------------------------------------------------------------------------------------------------------
   125 // Implementation of DispatchTable
   127 EntryPoint DispatchTable::entry(int i) const {
   128   assert(0 <= i && i < length, "index out of bounds");
   129   return
   130     EntryPoint(
   131       _table[btos][i],
   132       _table[ztos][i],
   133       _table[ctos][i],
   134       _table[stos][i],
   135       _table[atos][i],
   136       _table[itos][i],
   137       _table[ltos][i],
   138       _table[ftos][i],
   139       _table[dtos][i],
   140       _table[vtos][i]
   141     );
   142 }
   145 void DispatchTable::set_entry(int i, EntryPoint& entry) {
   146   assert(0 <= i && i < length, "index out of bounds");
   147   assert(number_of_states == 10, "check the code below");
   148   _table[btos][i] = entry.entry(btos);
   149   _table[ztos][i] = entry.entry(ztos);
   150   _table[ctos][i] = entry.entry(ctos);
   151   _table[stos][i] = entry.entry(stos);
   152   _table[atos][i] = entry.entry(atos);
   153   _table[itos][i] = entry.entry(itos);
   154   _table[ltos][i] = entry.entry(ltos);
   155   _table[ftos][i] = entry.entry(ftos);
   156   _table[dtos][i] = entry.entry(dtos);
   157   _table[vtos][i] = entry.entry(vtos);
   158 }
   161 bool DispatchTable::operator == (DispatchTable& y) {
   162   int i = length;
   163   while (i-- > 0) {
   164     EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096)
   165     if (!(entry(i) == t)) return false;
   166   }
   167   return true;
   168 }
   170 address    TemplateInterpreter::_remove_activation_entry                    = NULL;
   171 address    TemplateInterpreter::_remove_activation_preserving_args_entry    = NULL;
   174 address    TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = NULL;
   175 address    TemplateInterpreter::_throw_ArrayStoreException_entry            = NULL;
   176 address    TemplateInterpreter::_throw_ArithmeticException_entry            = NULL;
   177 address    TemplateInterpreter::_throw_ClassCastException_entry             = NULL;
   178 address    TemplateInterpreter::_throw_NullPointerException_entry           = NULL;
   179 address    TemplateInterpreter::_throw_StackOverflowError_entry             = NULL;
   180 address    TemplateInterpreter::_throw_exception_entry                      = NULL;
   182 #ifndef PRODUCT
   183 EntryPoint TemplateInterpreter::_trace_code;
   184 #endif // !PRODUCT
   185 EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries];
   186 EntryPoint TemplateInterpreter::_earlyret_entry;
   187 EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ];
   188 EntryPoint TemplateInterpreter::_continuation_entry;
   189 EntryPoint TemplateInterpreter::_safept_entry;
   191 address TemplateInterpreter::_invoke_return_entry[TemplateInterpreter::number_of_return_addrs];
   192 address TemplateInterpreter::_invokeinterface_return_entry[TemplateInterpreter::number_of_return_addrs];
   193 address TemplateInterpreter::_invokedynamic_return_entry[TemplateInterpreter::number_of_return_addrs];
   195 DispatchTable TemplateInterpreter::_active_table;
   196 DispatchTable TemplateInterpreter::_normal_table;
   197 DispatchTable TemplateInterpreter::_safept_table;
   198 address    TemplateInterpreter::_wentry_point[DispatchTable::length];
   200 TemplateInterpreterGenerator::TemplateInterpreterGenerator(StubQueue* _code): AbstractInterpreterGenerator(_code) {
   201   _unimplemented_bytecode    = NULL;
   202   _illegal_bytecode_sequence = NULL;
   203 }
   205 static const BasicType types[Interpreter::number_of_result_handlers] = {
   206   T_BOOLEAN,
   207   T_CHAR   ,
   208   T_BYTE   ,
   209   T_SHORT  ,
   210   T_INT    ,
   211   T_LONG   ,
   212   T_VOID   ,
   213   T_FLOAT  ,
   214   T_DOUBLE ,
   215   T_OBJECT
   216 };
   218 void TemplateInterpreterGenerator::generate_all() {
   219   AbstractInterpreterGenerator::generate_all();
   221   { CodeletMark cm(_masm, "error exits");
   222     _unimplemented_bytecode    = generate_error_exit("unimplemented bytecode");
   223     _illegal_bytecode_sequence = generate_error_exit("illegal bytecode sequence - method not verified");
   224   }
   226 #ifndef PRODUCT
   227   if (TraceBytecodes) {
   228     CodeletMark cm(_masm, "bytecode tracing support");
   229     Interpreter::_trace_code =
   230       EntryPoint(
   231         generate_trace_code(btos),
   232         generate_trace_code(ztos),
   233         generate_trace_code(ctos),
   234         generate_trace_code(stos),
   235         generate_trace_code(atos),
   236         generate_trace_code(itos),
   237         generate_trace_code(ltos),
   238         generate_trace_code(ftos),
   239         generate_trace_code(dtos),
   240         generate_trace_code(vtos)
   241       );
   242   }
   243 #endif // !PRODUCT
   245   { CodeletMark cm(_masm, "return entry points");
   246     const int index_size = sizeof(u2);
   247     for (int i = 0; i < Interpreter::number_of_return_entries; i++) {
   248       Interpreter::_return_entry[i] =
   249         EntryPoint(
   250           generate_return_entry_for(itos, i, index_size),
   251           generate_return_entry_for(itos, i, index_size),
   252           generate_return_entry_for(itos, i, index_size),
   253           generate_return_entry_for(itos, i, index_size),
   254           generate_return_entry_for(atos, i, index_size),
   255           generate_return_entry_for(itos, i, index_size),
   256           generate_return_entry_for(ltos, i, index_size),
   257           generate_return_entry_for(ftos, i, index_size),
   258           generate_return_entry_for(dtos, i, index_size),
   259           generate_return_entry_for(vtos, i, index_size)
   260         );
   261     }
   262   }
   264   { CodeletMark cm(_masm, "invoke return entry points");
   265     // These states are in order specified in TosState, except btos/ztos/ctos/stos are
   266     // really the same as itos since there is no top of stack optimization for these types
   267     const TosState states[] = {itos, itos, itos, itos, itos, ltos, ftos, dtos, atos, vtos, ilgl};
   268     const int invoke_length = Bytecodes::length_for(Bytecodes::_invokestatic);
   269     const int invokeinterface_length = Bytecodes::length_for(Bytecodes::_invokeinterface);
   270     const int invokedynamic_length = Bytecodes::length_for(Bytecodes::_invokedynamic);
   272     for (int i = 0; i < Interpreter::number_of_return_addrs; i++) {
   273       TosState state = states[i];
   274       assert(state != ilgl, "states array is wrong above");
   275       Interpreter::_invoke_return_entry[i] = generate_return_entry_for(state, invoke_length, sizeof(u2));
   276       Interpreter::_invokeinterface_return_entry[i] = generate_return_entry_for(state, invokeinterface_length, sizeof(u2));
   277       Interpreter::_invokedynamic_return_entry[i] = generate_return_entry_for(state, invokedynamic_length, sizeof(u4));
   278     }
   279   }
   281   { CodeletMark cm(_masm, "earlyret entry points");
   282     Interpreter::_earlyret_entry =
   283       EntryPoint(
   284         generate_earlyret_entry_for(btos),
   285         generate_earlyret_entry_for(ztos),
   286         generate_earlyret_entry_for(ctos),
   287         generate_earlyret_entry_for(stos),
   288         generate_earlyret_entry_for(atos),
   289         generate_earlyret_entry_for(itos),
   290         generate_earlyret_entry_for(ltos),
   291         generate_earlyret_entry_for(ftos),
   292         generate_earlyret_entry_for(dtos),
   293         generate_earlyret_entry_for(vtos)
   294       );
   295   }
   297   { CodeletMark cm(_masm, "deoptimization entry points");
   298     for (int i = 0; i < Interpreter::number_of_deopt_entries; i++) {
   299       Interpreter::_deopt_entry[i] =
   300         EntryPoint(
   301           generate_deopt_entry_for(itos, i),
   302           generate_deopt_entry_for(itos, i),
   303           generate_deopt_entry_for(itos, i),
   304           generate_deopt_entry_for(itos, i),
   305           generate_deopt_entry_for(atos, i),
   306           generate_deopt_entry_for(itos, i),
   307           generate_deopt_entry_for(ltos, i),
   308           generate_deopt_entry_for(ftos, i),
   309           generate_deopt_entry_for(dtos, i),
   310           generate_deopt_entry_for(vtos, i)
   311         );
   312     }
   313   }
   315   { CodeletMark cm(_masm, "result handlers for native calls");
   316     // The various result converter stublets.
   317     int is_generated[Interpreter::number_of_result_handlers];
   318     memset(is_generated, 0, sizeof(is_generated));
   320     for (int i = 0; i < Interpreter::number_of_result_handlers; i++) {
   321       BasicType type = types[i];
   322       if (!is_generated[Interpreter::BasicType_as_index(type)]++) {
   323         Interpreter::_native_abi_to_tosca[Interpreter::BasicType_as_index(type)] = generate_result_handler_for(type);
   324       }
   325     }
   326   }
   328   { CodeletMark cm(_masm, "continuation entry points");
   329     Interpreter::_continuation_entry =
   330       EntryPoint(
   331         generate_continuation_for(btos),
   332         generate_continuation_for(ztos),
   333         generate_continuation_for(ctos),
   334         generate_continuation_for(stos),
   335         generate_continuation_for(atos),
   336         generate_continuation_for(itos),
   337         generate_continuation_for(ltos),
   338         generate_continuation_for(ftos),
   339         generate_continuation_for(dtos),
   340         generate_continuation_for(vtos)
   341       );
   342   }
   344   { CodeletMark cm(_masm, "safepoint entry points");
   345     Interpreter::_safept_entry =
   346       EntryPoint(
   347         generate_safept_entry_for(btos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   348         generate_safept_entry_for(ztos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   349         generate_safept_entry_for(ctos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   350         generate_safept_entry_for(stos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   351         generate_safept_entry_for(atos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   352         generate_safept_entry_for(itos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   353         generate_safept_entry_for(ltos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   354         generate_safept_entry_for(ftos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   355         generate_safept_entry_for(dtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   356         generate_safept_entry_for(vtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint))
   357       );
   358   }
   360   { CodeletMark cm(_masm, "exception handling");
   361     // (Note: this is not safepoint safe because thread may return to compiled code)
   362     generate_throw_exception();
   363   }
   365   { CodeletMark cm(_masm, "throw exception entrypoints");
   366     Interpreter::_throw_ArrayIndexOutOfBoundsException_entry = generate_ArrayIndexOutOfBounds_handler("java/lang/ArrayIndexOutOfBoundsException");
   367     Interpreter::_throw_ArrayStoreException_entry            = generate_klass_exception_handler("java/lang/ArrayStoreException"                 );
   368     Interpreter::_throw_ArithmeticException_entry            = generate_exception_handler("java/lang/ArithmeticException"           , "/ by zero");
   369     Interpreter::_throw_ClassCastException_entry             = generate_ClassCastException_handler();
   370     Interpreter::_throw_NullPointerException_entry           = generate_exception_handler("java/lang/NullPointerException"          , NULL       );
   371     Interpreter::_throw_StackOverflowError_entry             = generate_StackOverflowError_handler();
   372   }
   376 #define method_entry(kind)                                                                    \
   377   { CodeletMark cm(_masm, "method entry point (kind = " #kind ")");                    \
   378     Interpreter::_entry_table[Interpreter::kind] = generate_method_entry(Interpreter::kind);  \
   379   }
   381   // all non-native method kinds
   382   method_entry(zerolocals)
   383   method_entry(zerolocals_synchronized)
   384   method_entry(empty)
   385   method_entry(accessor)
   386   method_entry(abstract)
   387   method_entry(java_lang_math_sin  )
   388   method_entry(java_lang_math_cos  )
   389   method_entry(java_lang_math_tan  )
   390   method_entry(java_lang_math_abs  )
   391   method_entry(java_lang_math_sqrt )
   392   method_entry(java_lang_math_log  )
   393   method_entry(java_lang_math_log10)
   394   method_entry(java_lang_math_exp  )
   395   method_entry(java_lang_math_pow  )
   396   method_entry(java_lang_ref_reference_get)
   398   if (UseCRC32Intrinsics) {
   399     method_entry(java_util_zip_CRC32_update)
   400     method_entry(java_util_zip_CRC32_updateBytes)
   401     method_entry(java_util_zip_CRC32_updateByteBuffer)
   402   }
   404   initialize_method_handle_entries();
   406   // all native method kinds (must be one contiguous block)
   407   Interpreter::_native_entry_begin = Interpreter::code()->code_end();
   408   method_entry(native)
   409   method_entry(native_synchronized)
   410   Interpreter::_native_entry_end = Interpreter::code()->code_end();
   412 #undef method_entry
   414   // Bytecodes
   415   set_entry_points_for_all_bytes();
   416   set_safepoints_for_all_bytes();
   417 }
   419 //------------------------------------------------------------------------------------------------------------------------
   421 address TemplateInterpreterGenerator::generate_error_exit(const char* msg) {
   422   address entry = __ pc();
   423   __ stop(msg);
   424   return entry;
   425 }
   428 //------------------------------------------------------------------------------------------------------------------------
   430 void TemplateInterpreterGenerator::set_entry_points_for_all_bytes() {
   431   for (int i = 0; i < DispatchTable::length; i++) {
   432     Bytecodes::Code code = (Bytecodes::Code)i;
   433     if (Bytecodes::is_defined(code)) {
   434       set_entry_points(code);
   435     } else {
   436       set_unimplemented(i);
   437     }
   438   }
   439 }
   442 void TemplateInterpreterGenerator::set_safepoints_for_all_bytes() {
   443   for (int i = 0; i < DispatchTable::length; i++) {
   444     Bytecodes::Code code = (Bytecodes::Code)i;
   445     if (Bytecodes::is_defined(code)) Interpreter::_safept_table.set_entry(code, Interpreter::_safept_entry);
   446   }
   447 }
   450 void TemplateInterpreterGenerator::set_unimplemented(int i) {
   451   address e = _unimplemented_bytecode;
   452   EntryPoint entry(e, e, e, e, e, e, e, e, e, e);
   453   Interpreter::_normal_table.set_entry(i, entry);
   454   Interpreter::_wentry_point[i] = _unimplemented_bytecode;
   455 }
   458 void TemplateInterpreterGenerator::set_entry_points(Bytecodes::Code code) {
   459   CodeletMark cm(_masm, Bytecodes::name(code), code);
   460   // initialize entry points
   461   assert(_unimplemented_bytecode    != NULL, "should have been generated before");
   462   assert(_illegal_bytecode_sequence != NULL, "should have been generated before");
   463   address bep = _illegal_bytecode_sequence;
   464   address zep = _illegal_bytecode_sequence;
   465   address cep = _illegal_bytecode_sequence;
   466   address sep = _illegal_bytecode_sequence;
   467   address aep = _illegal_bytecode_sequence;
   468   address iep = _illegal_bytecode_sequence;
   469   address lep = _illegal_bytecode_sequence;
   470   address fep = _illegal_bytecode_sequence;
   471   address dep = _illegal_bytecode_sequence;
   472   address vep = _unimplemented_bytecode;
   473   address wep = _unimplemented_bytecode;
   474   // code for short & wide version of bytecode
   475   if (Bytecodes::is_defined(code)) {
   476     Template* t = TemplateTable::template_for(code);
   477     assert(t->is_valid(), "just checking");
   478     set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);
   479   }
   480   if (Bytecodes::wide_is_defined(code)) {
   481     Template* t = TemplateTable::template_for_wide(code);
   482     assert(t->is_valid(), "just checking");
   483     set_wide_entry_point(t, wep);
   484   }
   485   // set entry points
   486   EntryPoint entry(bep, zep, cep, sep, aep, iep, lep, fep, dep, vep);
   487   Interpreter::_normal_table.set_entry(code, entry);
   488   Interpreter::_wentry_point[code] = wep;
   489 }
   492 void TemplateInterpreterGenerator::set_wide_entry_point(Template* t, address& wep) {
   493   assert(t->is_valid(), "template must exist");
   494   assert(t->tos_in() == vtos, "only vtos tos_in supported for wide instructions");
   495   wep = __ pc(); generate_and_dispatch(t);
   496 }
   499 void TemplateInterpreterGenerator::set_short_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
   500   assert(t->is_valid(), "template must exist");
   501   switch (t->tos_in()) {
   502     case btos:
   503     case ztos:
   504     case ctos:
   505     case stos:
   506       ShouldNotReachHere();  // btos/ctos/stos should use itos.
   507       break;
   508     case atos: vep = __ pc(); __ pop(atos); aep = __ pc(); generate_and_dispatch(t); break;
   509     case itos: vep = __ pc(); __ pop(itos); iep = __ pc(); generate_and_dispatch(t); break;
   510     case ltos: vep = __ pc(); __ pop(ltos); lep = __ pc(); generate_and_dispatch(t); break;
   511     case ftos: vep = __ pc(); __ pop(ftos); fep = __ pc(); generate_and_dispatch(t); break;
   512     case dtos: vep = __ pc(); __ pop(dtos); dep = __ pc(); generate_and_dispatch(t); break;
   513     case vtos: set_vtos_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);     break;
   514     default  : ShouldNotReachHere();                                                 break;
   515   }
   516 }
   519 //------------------------------------------------------------------------------------------------------------------------
   521 void TemplateInterpreterGenerator::generate_and_dispatch(Template* t, TosState tos_out) {
   522   if (PrintBytecodeHistogram)                                    histogram_bytecode(t);
   523 #ifndef PRODUCT
   524   // debugging code
   525   if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) count_bytecode();
   526   if (PrintBytecodePairHistogram)                                histogram_bytecode_pair(t);
   527   if (TraceBytecodes)                                            trace_bytecode(t);
   528   if (StopInterpreterAt > 0)                                     stop_interpreter_at();
   529   __ verify_FPU(1, t->tos_in());
   530 #endif // !PRODUCT
   531   int step = 0;
   532   if (!t->does_dispatch()) {
   533     step = t->is_wide() ? Bytecodes::wide_length_for(t->bytecode()) : Bytecodes::length_for(t->bytecode());
   534     if (tos_out == ilgl) tos_out = t->tos_out();
   535     // compute bytecode size
   536     assert(step > 0, "just checkin'");
   537     // setup stuff for dispatching next bytecode
   538     if (ProfileInterpreter && VerifyDataPointer
   539         && MethodData::bytecode_has_profile(t->bytecode())) {
   540       __ verify_method_data_pointer();
   541     }
   542     __ dispatch_prolog(tos_out, step);
   543   }
   544   // generate template
   545   t->generate(_masm);
   546   // advance
   547   if (t->does_dispatch()) {
   548 #ifdef ASSERT
   549     // make sure execution doesn't go beyond this point if code is broken
   550     __ should_not_reach_here();
   551 #endif // ASSERT
   552   } else {
   553     // dispatch to next bytecode
   554     __ dispatch_epilog(tos_out, step);
   555   }
   556 }
   558 //------------------------------------------------------------------------------------------------------------------------
   559 // Entry points
   561 /**
   562  * Returns the return entry table for the given invoke bytecode.
   563  */
   564 address* TemplateInterpreter::invoke_return_entry_table_for(Bytecodes::Code code) {
   565   switch (code) {
   566   case Bytecodes::_invokestatic:
   567   case Bytecodes::_invokespecial:
   568   case Bytecodes::_invokevirtual:
   569   case Bytecodes::_invokehandle:
   570     return Interpreter::invoke_return_entry_table();
   571   case Bytecodes::_invokeinterface:
   572     return Interpreter::invokeinterface_return_entry_table();
   573   case Bytecodes::_invokedynamic:
   574     return Interpreter::invokedynamic_return_entry_table();
   575   default:
   576     fatal(err_msg("invalid bytecode: %s", Bytecodes::name(code)));
   577     return NULL;
   578   }
   579 }
   581 /**
   582  * Returns the return entry address for the given top-of-stack state and bytecode.
   583  */
   584 address TemplateInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
   585   guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length");
   586   const int index = TosState_as_index(state);
   587   switch (code) {
   588   case Bytecodes::_invokestatic:
   589   case Bytecodes::_invokespecial:
   590   case Bytecodes::_invokevirtual:
   591   case Bytecodes::_invokehandle:
   592     return _invoke_return_entry[index];
   593   case Bytecodes::_invokeinterface:
   594     return _invokeinterface_return_entry[index];
   595   case Bytecodes::_invokedynamic:
   596     return _invokedynamic_return_entry[index];
   597   default:
   598     assert(!Bytecodes::is_invoke(code), err_msg("invoke instructions should be handled separately: %s", Bytecodes::name(code)));
   599     return _return_entry[length].entry(state);
   600   }
   601 }
   604 address TemplateInterpreter::deopt_entry(TosState state, int length) {
   605   guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length");
   606   return _deopt_entry[length].entry(state);
   607 }
   609 //------------------------------------------------------------------------------------------------------------------------
   610 // Suport for invokes
   612 int TemplateInterpreter::TosState_as_index(TosState state) {
   613   assert( state < number_of_states , "Invalid state in TosState_as_index");
   614   assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds");
   615   return (int)state;
   616 }
   619 //------------------------------------------------------------------------------------------------------------------------
   620 // Safepoint suppport
   622 static inline void copy_table(address* from, address* to, int size) {
   623   // Copy non-overlapping tables. The copy has to occur word wise for MT safety.
   624   while (size-- > 0) *to++ = *from++;
   625 }
   627 void TemplateInterpreter::notice_safepoints() {
   628   if (!_notice_safepoints) {
   629     // switch to safepoint dispatch table
   630     _notice_safepoints = true;
   631     copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
   632   }
   633 }
   635 // switch from the dispatch table which notices safepoints back to the
   636 // normal dispatch table.  So that we can notice single stepping points,
   637 // keep the safepoint dispatch table if we are single stepping in JVMTI.
   638 // Note that the should_post_single_step test is exactly as fast as the
   639 // JvmtiExport::_enabled test and covers both cases.
   640 void TemplateInterpreter::ignore_safepoints() {
   641   if (_notice_safepoints) {
   642     if (!JvmtiExport::should_post_single_step()) {
   643       // switch to normal dispatch table
   644       _notice_safepoints = false;
   645       copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
   646     }
   647   }
   648 }
   650 //------------------------------------------------------------------------------------------------------------------------
   651 // Deoptimization support
   653 // If deoptimization happens, this function returns the point of next bytecode to continue execution
   654 address TemplateInterpreter::deopt_continue_after_entry(Method* method, address bcp, int callee_parameters, bool is_top_frame) {
   655   return AbstractInterpreter::deopt_continue_after_entry(method, bcp, callee_parameters, is_top_frame);
   656 }
   658 // If deoptimization happens, this function returns the point where the interpreter reexecutes
   659 // the bytecode.
   660 // Note: Bytecodes::_athrow (C1 only) and Bytecodes::_return are the special cases
   661 //       that do not return "Interpreter::deopt_entry(vtos, 0)"
   662 address TemplateInterpreter::deopt_reexecute_entry(Method* method, address bcp) {
   663   assert(method->contains(bcp), "just checkin'");
   664   Bytecodes::Code code   = Bytecodes::java_code_at(method, bcp);
   665   if (code == Bytecodes::_return) {
   666     // This is used for deopt during registration of finalizers
   667     // during Object.<init>.  We simply need to resume execution at
   668     // the standard return vtos bytecode to pop the frame normally.
   669     // reexecuting the real bytecode would cause double registration
   670     // of the finalizable object.
   671     return _normal_table.entry(Bytecodes::_return).entry(vtos);
   672   } else {
   673     return AbstractInterpreter::deopt_reexecute_entry(method, bcp);
   674   }
   675 }
   677 // If deoptimization happens, the interpreter should reexecute this bytecode.
   678 // This function mainly helps the compilers to set up the reexecute bit.
   679 bool TemplateInterpreter::bytecode_should_reexecute(Bytecodes::Code code) {
   680   if (code == Bytecodes::_return) {
   681     //Yes, we consider Bytecodes::_return as a special case of reexecution
   682     return true;
   683   } else {
   684     return AbstractInterpreter::bytecode_should_reexecute(code);
   685   }
   686 }
   688 #endif // !CC_INTERP

mercurial