src/share/vm/opto/escape.cpp

Wed, 07 Aug 2013 17:56:19 +0200

author
adlertz
date
Wed, 07 Aug 2013 17:56:19 +0200
changeset 5509
d1034bd8cefc
parent 5353
b800986664f4
child 5910
6171eb9da4fd
permissions
-rw-r--r--

8022284: Hide internal data structure in PhaseCFG
Summary: Hide private node to block mapping using public interface
Reviewed-by: kvn, roland

     1 /*
     2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/bcEscapeAnalyzer.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "opto/c2compiler.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/compile.hpp"
    34 #include "opto/escape.hpp"
    35 #include "opto/phaseX.hpp"
    36 #include "opto/rootnode.hpp"
    38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
    39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
    40   _collecting(true),
    41   _verify(false),
    42   _compile(C),
    43   _igvn(igvn),
    44   _node_map(C->comp_arena()) {
    45   // Add unknown java object.
    46   add_java_object(C->top(), PointsToNode::GlobalEscape);
    47   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
    48   // Add ConP(#NULL) and ConN(#NULL) nodes.
    49   Node* oop_null = igvn->zerocon(T_OBJECT);
    50   assert(oop_null->_idx < nodes_size(), "should be created already");
    51   add_java_object(oop_null, PointsToNode::NoEscape);
    52   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
    53   if (UseCompressedOops) {
    54     Node* noop_null = igvn->zerocon(T_NARROWOOP);
    55     assert(noop_null->_idx < nodes_size(), "should be created already");
    56     map_ideal_node(noop_null, null_obj);
    57   }
    58   _pcmp_neq = NULL; // Should be initialized
    59   _pcmp_eq  = NULL;
    60 }
    62 bool ConnectionGraph::has_candidates(Compile *C) {
    63   // EA brings benefits only when the code has allocations and/or locks which
    64   // are represented by ideal Macro nodes.
    65   int cnt = C->macro_count();
    66   for (int i = 0; i < cnt; i++) {
    67     Node *n = C->macro_node(i);
    68     if (n->is_Allocate())
    69       return true;
    70     if (n->is_Lock()) {
    71       Node* obj = n->as_Lock()->obj_node()->uncast();
    72       if (!(obj->is_Parm() || obj->is_Con()))
    73         return true;
    74     }
    75     if (n->is_CallStaticJava() &&
    76         n->as_CallStaticJava()->is_boxing_method()) {
    77       return true;
    78     }
    79   }
    80   return false;
    81 }
    83 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
    84   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
    85   ResourceMark rm;
    87   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
    88   // to create space for them in ConnectionGraph::_nodes[].
    89   Node* oop_null = igvn->zerocon(T_OBJECT);
    90   Node* noop_null = igvn->zerocon(T_NARROWOOP);
    91   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
    92   // Perform escape analysis
    93   if (congraph->compute_escape()) {
    94     // There are non escaping objects.
    95     C->set_congraph(congraph);
    96   }
    97   // Cleanup.
    98   if (oop_null->outcnt() == 0)
    99     igvn->hash_delete(oop_null);
   100   if (noop_null->outcnt() == 0)
   101     igvn->hash_delete(noop_null);
   102 }
   104 bool ConnectionGraph::compute_escape() {
   105   Compile* C = _compile;
   106   PhaseGVN* igvn = _igvn;
   108   // Worklists used by EA.
   109   Unique_Node_List delayed_worklist;
   110   GrowableArray<Node*> alloc_worklist;
   111   GrowableArray<Node*> ptr_cmp_worklist;
   112   GrowableArray<Node*> storestore_worklist;
   113   GrowableArray<PointsToNode*>   ptnodes_worklist;
   114   GrowableArray<JavaObjectNode*> java_objects_worklist;
   115   GrowableArray<JavaObjectNode*> non_escaped_worklist;
   116   GrowableArray<FieldNode*>      oop_fields_worklist;
   117   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
   119   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
   121   // 1. Populate Connection Graph (CG) with PointsTo nodes.
   122   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
   123   // Initialize worklist
   124   if (C->root() != NULL) {
   125     ideal_nodes.push(C->root());
   126   }
   127   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
   128     Node* n = ideal_nodes.at(next);
   129     // Create PointsTo nodes and add them to Connection Graph. Called
   130     // only once per ideal node since ideal_nodes is Unique_Node list.
   131     add_node_to_connection_graph(n, &delayed_worklist);
   132     PointsToNode* ptn = ptnode_adr(n->_idx);
   133     if (ptn != NULL) {
   134       ptnodes_worklist.append(ptn);
   135       if (ptn->is_JavaObject()) {
   136         java_objects_worklist.append(ptn->as_JavaObject());
   137         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
   138             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
   139           // Only allocations and java static calls results are interesting.
   140           non_escaped_worklist.append(ptn->as_JavaObject());
   141         }
   142       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
   143         oop_fields_worklist.append(ptn->as_Field());
   144       }
   145     }
   146     if (n->is_MergeMem()) {
   147       // Collect all MergeMem nodes to add memory slices for
   148       // scalar replaceable objects in split_unique_types().
   149       _mergemem_worklist.append(n->as_MergeMem());
   150     } else if (OptimizePtrCompare && n->is_Cmp() &&
   151                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
   152       // Collect compare pointers nodes.
   153       ptr_cmp_worklist.append(n);
   154     } else if (n->is_MemBarStoreStore()) {
   155       // Collect all MemBarStoreStore nodes so that depending on the
   156       // escape status of the associated Allocate node some of them
   157       // may be eliminated.
   158       storestore_worklist.append(n);
   159     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
   160                (n->req() > MemBarNode::Precedent)) {
   161       record_for_optimizer(n);
   162 #ifdef ASSERT
   163     } else if (n->is_AddP()) {
   164       // Collect address nodes for graph verification.
   165       addp_worklist.append(n);
   166 #endif
   167     }
   168     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   169       Node* m = n->fast_out(i);   // Get user
   170       ideal_nodes.push(m);
   171     }
   172   }
   173   if (non_escaped_worklist.length() == 0) {
   174     _collecting = false;
   175     return false; // Nothing to do.
   176   }
   177   // Add final simple edges to graph.
   178   while(delayed_worklist.size() > 0) {
   179     Node* n = delayed_worklist.pop();
   180     add_final_edges(n);
   181   }
   182   int ptnodes_length = ptnodes_worklist.length();
   184 #ifdef ASSERT
   185   if (VerifyConnectionGraph) {
   186     // Verify that no new simple edges could be created and all
   187     // local vars has edges.
   188     _verify = true;
   189     for (int next = 0; next < ptnodes_length; ++next) {
   190       PointsToNode* ptn = ptnodes_worklist.at(next);
   191       add_final_edges(ptn->ideal_node());
   192       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
   193         ptn->dump();
   194         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
   195       }
   196     }
   197     _verify = false;
   198   }
   199 #endif
   201   // 2. Finish Graph construction by propagating references to all
   202   //    java objects through graph.
   203   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
   204                                  java_objects_worklist, oop_fields_worklist)) {
   205     // All objects escaped or hit time or iterations limits.
   206     _collecting = false;
   207     return false;
   208   }
   210   // 3. Adjust scalar_replaceable state of nonescaping objects and push
   211   //    scalar replaceable allocations on alloc_worklist for processing
   212   //    in split_unique_types().
   213   int non_escaped_length = non_escaped_worklist.length();
   214   for (int next = 0; next < non_escaped_length; next++) {
   215     JavaObjectNode* ptn = non_escaped_worklist.at(next);
   216     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
   217     Node* n = ptn->ideal_node();
   218     if (n->is_Allocate()) {
   219       n->as_Allocate()->_is_non_escaping = noescape;
   220     }
   221     if (n->is_CallStaticJava()) {
   222       n->as_CallStaticJava()->_is_non_escaping = noescape;
   223     }
   224     if (noescape && ptn->scalar_replaceable()) {
   225       adjust_scalar_replaceable_state(ptn);
   226       if (ptn->scalar_replaceable()) {
   227         alloc_worklist.append(ptn->ideal_node());
   228       }
   229     }
   230   }
   232 #ifdef ASSERT
   233   if (VerifyConnectionGraph) {
   234     // Verify that graph is complete - no new edges could be added or needed.
   235     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
   236                             java_objects_worklist, addp_worklist);
   237   }
   238   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
   239   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
   240          null_obj->edge_count() == 0 &&
   241          !null_obj->arraycopy_src() &&
   242          !null_obj->arraycopy_dst(), "sanity");
   243 #endif
   245   _collecting = false;
   247   } // TracePhase t3("connectionGraph")
   249   // 4. Optimize ideal graph based on EA information.
   250   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
   251   if (has_non_escaping_obj) {
   252     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
   253   }
   255 #ifndef PRODUCT
   256   if (PrintEscapeAnalysis) {
   257     dump(ptnodes_worklist); // Dump ConnectionGraph
   258   }
   259 #endif
   261   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
   262 #ifdef ASSERT
   263   if (VerifyConnectionGraph) {
   264     int alloc_length = alloc_worklist.length();
   265     for (int next = 0; next < alloc_length; ++next) {
   266       Node* n = alloc_worklist.at(next);
   267       PointsToNode* ptn = ptnode_adr(n->_idx);
   268       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
   269     }
   270   }
   271 #endif
   273   // 5. Separate memory graph for scalar replaceable allcations.
   274   if (has_scalar_replaceable_candidates &&
   275       C->AliasLevel() >= 3 && EliminateAllocations) {
   276     // Now use the escape information to create unique types for
   277     // scalar replaceable objects.
   278     split_unique_types(alloc_worklist);
   279     if (C->failing())  return false;
   280     C->print_method(PHASE_AFTER_EA, 2);
   282 #ifdef ASSERT
   283   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
   284     tty->print("=== No allocations eliminated for ");
   285     C->method()->print_short_name();
   286     if(!EliminateAllocations) {
   287       tty->print(" since EliminateAllocations is off ===");
   288     } else if(!has_scalar_replaceable_candidates) {
   289       tty->print(" since there are no scalar replaceable candidates ===");
   290     } else if(C->AliasLevel() < 3) {
   291       tty->print(" since AliasLevel < 3 ===");
   292     }
   293     tty->cr();
   294 #endif
   295   }
   296   return has_non_escaping_obj;
   297 }
   299 // Utility function for nodes that load an object
   300 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   301   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   302   // ThreadLocal has RawPtr type.
   303   const Type* t = _igvn->type(n);
   304   if (t->make_ptr() != NULL) {
   305     Node* adr = n->in(MemNode::Address);
   306 #ifdef ASSERT
   307     if (!adr->is_AddP()) {
   308       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
   309     } else {
   310       assert((ptnode_adr(adr->_idx) == NULL ||
   311               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
   312     }
   313 #endif
   314     add_local_var_and_edge(n, PointsToNode::NoEscape,
   315                            adr, delayed_worklist);
   316   }
   317 }
   319 // Populate Connection Graph with PointsTo nodes and create simple
   320 // connection graph edges.
   321 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   322   assert(!_verify, "this method sould not be called for verification");
   323   PhaseGVN* igvn = _igvn;
   324   uint n_idx = n->_idx;
   325   PointsToNode* n_ptn = ptnode_adr(n_idx);
   326   if (n_ptn != NULL)
   327     return; // No need to redefine PointsTo node during first iteration.
   329   if (n->is_Call()) {
   330     // Arguments to allocation and locking don't escape.
   331     if (n->is_AbstractLock()) {
   332       // Put Lock and Unlock nodes on IGVN worklist to process them during
   333       // first IGVN optimization when escape information is still available.
   334       record_for_optimizer(n);
   335     } else if (n->is_Allocate()) {
   336       add_call_node(n->as_Call());
   337       record_for_optimizer(n);
   338     } else {
   339       if (n->is_CallStaticJava()) {
   340         const char* name = n->as_CallStaticJava()->_name;
   341         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
   342           return; // Skip uncommon traps
   343       }
   344       // Don't mark as processed since call's arguments have to be processed.
   345       delayed_worklist->push(n);
   346       // Check if a call returns an object.
   347       if ((n->as_Call()->returns_pointer() &&
   348            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
   349           (n->is_CallStaticJava() &&
   350            n->as_CallStaticJava()->is_boxing_method())) {
   351         add_call_node(n->as_Call());
   352       }
   353     }
   354     return;
   355   }
   356   // Put this check here to process call arguments since some call nodes
   357   // point to phantom_obj.
   358   if (n_ptn == phantom_obj || n_ptn == null_obj)
   359     return; // Skip predefined nodes.
   361   int opcode = n->Opcode();
   362   switch (opcode) {
   363     case Op_AddP: {
   364       Node* base = get_addp_base(n);
   365       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   366       // Field nodes are created for all field types. They are used in
   367       // adjust_scalar_replaceable_state() and split_unique_types().
   368       // Note, non-oop fields will have only base edges in Connection
   369       // Graph because such fields are not used for oop loads and stores.
   370       int offset = address_offset(n, igvn);
   371       add_field(n, PointsToNode::NoEscape, offset);
   372       if (ptn_base == NULL) {
   373         delayed_worklist->push(n); // Process it later.
   374       } else {
   375         n_ptn = ptnode_adr(n_idx);
   376         add_base(n_ptn->as_Field(), ptn_base);
   377       }
   378       break;
   379     }
   380     case Op_CastX2P: {
   381       map_ideal_node(n, phantom_obj);
   382       break;
   383     }
   384     case Op_CastPP:
   385     case Op_CheckCastPP:
   386     case Op_EncodeP:
   387     case Op_DecodeN:
   388     case Op_EncodePKlass:
   389     case Op_DecodeNKlass: {
   390       add_local_var_and_edge(n, PointsToNode::NoEscape,
   391                              n->in(1), delayed_worklist);
   392       break;
   393     }
   394     case Op_CMoveP: {
   395       add_local_var(n, PointsToNode::NoEscape);
   396       // Do not add edges during first iteration because some could be
   397       // not defined yet.
   398       delayed_worklist->push(n);
   399       break;
   400     }
   401     case Op_ConP:
   402     case Op_ConN:
   403     case Op_ConNKlass: {
   404       // assume all oop constants globally escape except for null
   405       PointsToNode::EscapeState es;
   406       const Type* t = igvn->type(n);
   407       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
   408         es = PointsToNode::NoEscape;
   409       } else {
   410         es = PointsToNode::GlobalEscape;
   411       }
   412       add_java_object(n, es);
   413       break;
   414     }
   415     case Op_CreateEx: {
   416       // assume that all exception objects globally escape
   417       add_java_object(n, PointsToNode::GlobalEscape);
   418       break;
   419     }
   420     case Op_LoadKlass:
   421     case Op_LoadNKlass: {
   422       // Unknown class is loaded
   423       map_ideal_node(n, phantom_obj);
   424       break;
   425     }
   426     case Op_LoadP:
   427     case Op_LoadN:
   428     case Op_LoadPLocked: {
   429       add_objload_to_connection_graph(n, delayed_worklist);
   430       break;
   431     }
   432     case Op_Parm: {
   433       map_ideal_node(n, phantom_obj);
   434       break;
   435     }
   436     case Op_PartialSubtypeCheck: {
   437       // Produces Null or notNull and is used in only in CmpP so
   438       // phantom_obj could be used.
   439       map_ideal_node(n, phantom_obj); // Result is unknown
   440       break;
   441     }
   442     case Op_Phi: {
   443       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   444       // ThreadLocal has RawPtr type.
   445       const Type* t = n->as_Phi()->type();
   446       if (t->make_ptr() != NULL) {
   447         add_local_var(n, PointsToNode::NoEscape);
   448         // Do not add edges during first iteration because some could be
   449         // not defined yet.
   450         delayed_worklist->push(n);
   451       }
   452       break;
   453     }
   454     case Op_Proj: {
   455       // we are only interested in the oop result projection from a call
   456       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   457           n->in(0)->as_Call()->returns_pointer()) {
   458         add_local_var_and_edge(n, PointsToNode::NoEscape,
   459                                n->in(0), delayed_worklist);
   460       }
   461       break;
   462     }
   463     case Op_Rethrow: // Exception object escapes
   464     case Op_Return: {
   465       if (n->req() > TypeFunc::Parms &&
   466           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   467         // Treat Return value as LocalVar with GlobalEscape escape state.
   468         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   469                                n->in(TypeFunc::Parms), delayed_worklist);
   470       }
   471       break;
   472     }
   473     case Op_GetAndSetP:
   474     case Op_GetAndSetN: {
   475       add_objload_to_connection_graph(n, delayed_worklist);
   476       // fallthrough
   477     }
   478     case Op_StoreP:
   479     case Op_StoreN:
   480     case Op_StoreNKlass:
   481     case Op_StorePConditional:
   482     case Op_CompareAndSwapP:
   483     case Op_CompareAndSwapN: {
   484       Node* adr = n->in(MemNode::Address);
   485       const Type *adr_type = igvn->type(adr);
   486       adr_type = adr_type->make_ptr();
   487       if (adr_type == NULL) {
   488         break; // skip dead nodes
   489       }
   490       if (adr_type->isa_oopptr() ||
   491           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
   492                         (adr_type == TypeRawPtr::NOTNULL &&
   493                          adr->in(AddPNode::Address)->is_Proj() &&
   494                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   495         delayed_worklist->push(n); // Process it later.
   496 #ifdef ASSERT
   497         assert(adr->is_AddP(), "expecting an AddP");
   498         if (adr_type == TypeRawPtr::NOTNULL) {
   499           // Verify a raw address for a store captured by Initialize node.
   500           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   501           assert(offs != Type::OffsetBot, "offset must be a constant");
   502         }
   503 #endif
   504       } else {
   505         // Ignore copy the displaced header to the BoxNode (OSR compilation).
   506         if (adr->is_BoxLock())
   507           break;
   508         // Stored value escapes in unsafe access.
   509         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   510           // Pointer stores in G1 barriers looks like unsafe access.
   511           // Ignore such stores to be able scalar replace non-escaping
   512           // allocations.
   513           if (UseG1GC && adr->is_AddP()) {
   514             Node* base = get_addp_base(adr);
   515             if (base->Opcode() == Op_LoadP &&
   516                 base->in(MemNode::Address)->is_AddP()) {
   517               adr = base->in(MemNode::Address);
   518               Node* tls = get_addp_base(adr);
   519               if (tls->Opcode() == Op_ThreadLocal) {
   520                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   521                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
   522                                      PtrQueue::byte_offset_of_buf())) {
   523                   break; // G1 pre barier previous oop value store.
   524                 }
   525                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
   526                                      PtrQueue::byte_offset_of_buf())) {
   527                   break; // G1 post barier card address store.
   528                 }
   529               }
   530             }
   531           }
   532           delayed_worklist->push(n); // Process unsafe access later.
   533           break;
   534         }
   535 #ifdef ASSERT
   536         n->dump(1);
   537         assert(false, "not unsafe or G1 barrier raw StoreP");
   538 #endif
   539       }
   540       break;
   541     }
   542     case Op_AryEq:
   543     case Op_StrComp:
   544     case Op_StrEquals:
   545     case Op_StrIndexOf:
   546     case Op_EncodeISOArray: {
   547       add_local_var(n, PointsToNode::ArgEscape);
   548       delayed_worklist->push(n); // Process it later.
   549       break;
   550     }
   551     case Op_ThreadLocal: {
   552       add_java_object(n, PointsToNode::ArgEscape);
   553       break;
   554     }
   555     default:
   556       ; // Do nothing for nodes not related to EA.
   557   }
   558   return;
   559 }
   561 #ifdef ASSERT
   562 #define ELSE_FAIL(name)                               \
   563       /* Should not be called for not pointer type. */  \
   564       n->dump(1);                                       \
   565       assert(false, name);                              \
   566       break;
   567 #else
   568 #define ELSE_FAIL(name) \
   569       break;
   570 #endif
   572 // Add final simple edges to graph.
   573 void ConnectionGraph::add_final_edges(Node *n) {
   574   PointsToNode* n_ptn = ptnode_adr(n->_idx);
   575 #ifdef ASSERT
   576   if (_verify && n_ptn->is_JavaObject())
   577     return; // This method does not change graph for JavaObject.
   578 #endif
   580   if (n->is_Call()) {
   581     process_call_arguments(n->as_Call());
   582     return;
   583   }
   584   assert(n->is_Store() || n->is_LoadStore() ||
   585          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
   586          "node should be registered already");
   587   int opcode = n->Opcode();
   588   switch (opcode) {
   589     case Op_AddP: {
   590       Node* base = get_addp_base(n);
   591       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   592       assert(ptn_base != NULL, "field's base should be registered");
   593       add_base(n_ptn->as_Field(), ptn_base);
   594       break;
   595     }
   596     case Op_CastPP:
   597     case Op_CheckCastPP:
   598     case Op_EncodeP:
   599     case Op_DecodeN:
   600     case Op_EncodePKlass:
   601     case Op_DecodeNKlass: {
   602       add_local_var_and_edge(n, PointsToNode::NoEscape,
   603                              n->in(1), NULL);
   604       break;
   605     }
   606     case Op_CMoveP: {
   607       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
   608         Node* in = n->in(i);
   609         if (in == NULL)
   610           continue;  // ignore NULL
   611         Node* uncast_in = in->uncast();
   612         if (uncast_in->is_top() || uncast_in == n)
   613           continue;  // ignore top or inputs which go back this node
   614         PointsToNode* ptn = ptnode_adr(in->_idx);
   615         assert(ptn != NULL, "node should be registered");
   616         add_edge(n_ptn, ptn);
   617       }
   618       break;
   619     }
   620     case Op_LoadP:
   621     case Op_LoadN:
   622     case Op_LoadPLocked: {
   623       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   624       // ThreadLocal has RawPtr type.
   625       const Type* t = _igvn->type(n);
   626       if (t->make_ptr() != NULL) {
   627         Node* adr = n->in(MemNode::Address);
   628         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   629         break;
   630       }
   631       ELSE_FAIL("Op_LoadP");
   632     }
   633     case Op_Phi: {
   634       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   635       // ThreadLocal has RawPtr type.
   636       const Type* t = n->as_Phi()->type();
   637       if (t->make_ptr() != NULL) {
   638         for (uint i = 1; i < n->req(); i++) {
   639           Node* in = n->in(i);
   640           if (in == NULL)
   641             continue;  // ignore NULL
   642           Node* uncast_in = in->uncast();
   643           if (uncast_in->is_top() || uncast_in == n)
   644             continue;  // ignore top or inputs which go back this node
   645           PointsToNode* ptn = ptnode_adr(in->_idx);
   646           assert(ptn != NULL, "node should be registered");
   647           add_edge(n_ptn, ptn);
   648         }
   649         break;
   650       }
   651       ELSE_FAIL("Op_Phi");
   652     }
   653     case Op_Proj: {
   654       // we are only interested in the oop result projection from a call
   655       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   656           n->in(0)->as_Call()->returns_pointer()) {
   657         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
   658         break;
   659       }
   660       ELSE_FAIL("Op_Proj");
   661     }
   662     case Op_Rethrow: // Exception object escapes
   663     case Op_Return: {
   664       if (n->req() > TypeFunc::Parms &&
   665           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   666         // Treat Return value as LocalVar with GlobalEscape escape state.
   667         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   668                                n->in(TypeFunc::Parms), NULL);
   669         break;
   670       }
   671       ELSE_FAIL("Op_Return");
   672     }
   673     case Op_StoreP:
   674     case Op_StoreN:
   675     case Op_StoreNKlass:
   676     case Op_StorePConditional:
   677     case Op_CompareAndSwapP:
   678     case Op_CompareAndSwapN:
   679     case Op_GetAndSetP:
   680     case Op_GetAndSetN: {
   681       Node* adr = n->in(MemNode::Address);
   682       const Type *adr_type = _igvn->type(adr);
   683       adr_type = adr_type->make_ptr();
   684 #ifdef ASSERT
   685       if (adr_type == NULL) {
   686         n->dump(1);
   687         assert(adr_type != NULL, "dead node should not be on list");
   688         break;
   689       }
   690 #endif
   691       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
   692         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   693       }
   694       if (adr_type->isa_oopptr() ||
   695           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
   696                         (adr_type == TypeRawPtr::NOTNULL &&
   697                          adr->in(AddPNode::Address)->is_Proj() &&
   698                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   699         // Point Address to Value
   700         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   701         assert(adr_ptn != NULL &&
   702                adr_ptn->as_Field()->is_oop(), "node should be registered");
   703         Node *val = n->in(MemNode::ValueIn);
   704         PointsToNode* ptn = ptnode_adr(val->_idx);
   705         assert(ptn != NULL, "node should be registered");
   706         add_edge(adr_ptn, ptn);
   707         break;
   708       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   709         // Stored value escapes in unsafe access.
   710         Node *val = n->in(MemNode::ValueIn);
   711         PointsToNode* ptn = ptnode_adr(val->_idx);
   712         assert(ptn != NULL, "node should be registered");
   713         ptn->set_escape_state(PointsToNode::GlobalEscape);
   714         // Add edge to object for unsafe access with offset.
   715         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   716         assert(adr_ptn != NULL, "node should be registered");
   717         if (adr_ptn->is_Field()) {
   718           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
   719           add_edge(adr_ptn, ptn);
   720         }
   721         break;
   722       }
   723       ELSE_FAIL("Op_StoreP");
   724     }
   725     case Op_AryEq:
   726     case Op_StrComp:
   727     case Op_StrEquals:
   728     case Op_StrIndexOf:
   729     case Op_EncodeISOArray: {
   730       // char[] arrays passed to string intrinsic do not escape but
   731       // they are not scalar replaceable. Adjust escape state for them.
   732       // Start from in(2) edge since in(1) is memory edge.
   733       for (uint i = 2; i < n->req(); i++) {
   734         Node* adr = n->in(i);
   735         const Type* at = _igvn->type(adr);
   736         if (!adr->is_top() && at->isa_ptr()) {
   737           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
   738                  at->isa_ptr() != NULL, "expecting a pointer");
   739           if (adr->is_AddP()) {
   740             adr = get_addp_base(adr);
   741           }
   742           PointsToNode* ptn = ptnode_adr(adr->_idx);
   743           assert(ptn != NULL, "node should be registered");
   744           add_edge(n_ptn, ptn);
   745         }
   746       }
   747       break;
   748     }
   749     default: {
   750       // This method should be called only for EA specific nodes which may
   751       // miss some edges when they were created.
   752 #ifdef ASSERT
   753       n->dump(1);
   754 #endif
   755       guarantee(false, "unknown node");
   756     }
   757   }
   758   return;
   759 }
   761 void ConnectionGraph::add_call_node(CallNode* call) {
   762   assert(call->returns_pointer(), "only for call which returns pointer");
   763   uint call_idx = call->_idx;
   764   if (call->is_Allocate()) {
   765     Node* k = call->in(AllocateNode::KlassNode);
   766     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
   767     assert(kt != NULL, "TypeKlassPtr  required.");
   768     ciKlass* cik = kt->klass();
   769     PointsToNode::EscapeState es = PointsToNode::NoEscape;
   770     bool scalar_replaceable = true;
   771     if (call->is_AllocateArray()) {
   772       if (!cik->is_array_klass()) { // StressReflectiveCode
   773         es = PointsToNode::GlobalEscape;
   774       } else {
   775         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
   776         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
   777           // Not scalar replaceable if the length is not constant or too big.
   778           scalar_replaceable = false;
   779         }
   780       }
   781     } else {  // Allocate instance
   782       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
   783          !cik->is_instance_klass() || // StressReflectiveCode
   784           cik->as_instance_klass()->has_finalizer()) {
   785         es = PointsToNode::GlobalEscape;
   786       }
   787     }
   788     add_java_object(call, es);
   789     PointsToNode* ptn = ptnode_adr(call_idx);
   790     if (!scalar_replaceable && ptn->scalar_replaceable()) {
   791       ptn->set_scalar_replaceable(false);
   792     }
   793   } else if (call->is_CallStaticJava()) {
   794     // Call nodes could be different types:
   795     //
   796     // 1. CallDynamicJavaNode (what happened during call is unknown):
   797     //
   798     //    - mapped to GlobalEscape JavaObject node if oop is returned;
   799     //
   800     //    - all oop arguments are escaping globally;
   801     //
   802     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
   803     //
   804     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
   805     //
   806     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
   807     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
   808     //      during call is returned;
   809     //    - mapped to ArgEscape LocalVar node pointed to object arguments
   810     //      which are returned and does not escape during call;
   811     //
   812     //    - oop arguments escaping status is defined by bytecode analysis;
   813     //
   814     // For a static call, we know exactly what method is being called.
   815     // Use bytecode estimator to record whether the call's return value escapes.
   816     ciMethod* meth = call->as_CallJava()->method();
   817     if (meth == NULL) {
   818       const char* name = call->as_CallStaticJava()->_name;
   819       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
   820       // Returns a newly allocated unescaped object.
   821       add_java_object(call, PointsToNode::NoEscape);
   822       ptnode_adr(call_idx)->set_scalar_replaceable(false);
   823     } else if (meth->is_boxing_method()) {
   824       // Returns boxing object
   825       PointsToNode::EscapeState es;
   826       vmIntrinsics::ID intr = meth->intrinsic_id();
   827       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
   828         // It does not escape if object is always allocated.
   829         es = PointsToNode::NoEscape;
   830       } else {
   831         // It escapes globally if object could be loaded from cache.
   832         es = PointsToNode::GlobalEscape;
   833       }
   834       add_java_object(call, es);
   835     } else {
   836       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
   837       call_analyzer->copy_dependencies(_compile->dependencies());
   838       if (call_analyzer->is_return_allocated()) {
   839         // Returns a newly allocated unescaped object, simply
   840         // update dependency information.
   841         // Mark it as NoEscape so that objects referenced by
   842         // it's fields will be marked as NoEscape at least.
   843         add_java_object(call, PointsToNode::NoEscape);
   844         ptnode_adr(call_idx)->set_scalar_replaceable(false);
   845       } else {
   846         // Determine whether any arguments are returned.
   847         const TypeTuple* d = call->tf()->domain();
   848         bool ret_arg = false;
   849         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   850           if (d->field_at(i)->isa_ptr() != NULL &&
   851               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
   852             ret_arg = true;
   853             break;
   854           }
   855         }
   856         if (ret_arg) {
   857           add_local_var(call, PointsToNode::ArgEscape);
   858         } else {
   859           // Returns unknown object.
   860           map_ideal_node(call, phantom_obj);
   861         }
   862       }
   863     }
   864   } else {
   865     // An other type of call, assume the worst case:
   866     // returned value is unknown and globally escapes.
   867     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
   868     map_ideal_node(call, phantom_obj);
   869   }
   870 }
   872 void ConnectionGraph::process_call_arguments(CallNode *call) {
   873     bool is_arraycopy = false;
   874     switch (call->Opcode()) {
   875 #ifdef ASSERT
   876     case Op_Allocate:
   877     case Op_AllocateArray:
   878     case Op_Lock:
   879     case Op_Unlock:
   880       assert(false, "should be done already");
   881       break;
   882 #endif
   883     case Op_CallLeafNoFP:
   884       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
   885                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
   886       // fall through
   887     case Op_CallLeaf: {
   888       // Stub calls, objects do not escape but they are not scale replaceable.
   889       // Adjust escape state for outgoing arguments.
   890       const TypeTuple * d = call->tf()->domain();
   891       bool src_has_oops = false;
   892       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   893         const Type* at = d->field_at(i);
   894         Node *arg = call->in(i);
   895         const Type *aat = _igvn->type(arg);
   896         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
   897           continue;
   898         if (arg->is_AddP()) {
   899           //
   900           // The inline_native_clone() case when the arraycopy stub is called
   901           // after the allocation before Initialize and CheckCastPP nodes.
   902           // Or normal arraycopy for object arrays case.
   903           //
   904           // Set AddP's base (Allocate) as not scalar replaceable since
   905           // pointer to the base (with offset) is passed as argument.
   906           //
   907           arg = get_addp_base(arg);
   908         }
   909         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
   910         assert(arg_ptn != NULL, "should be registered");
   911         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
   912         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
   913           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
   914                  aat->isa_ptr() != NULL, "expecting an Ptr");
   915           bool arg_has_oops = aat->isa_oopptr() &&
   916                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
   917                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
   918           if (i == TypeFunc::Parms) {
   919             src_has_oops = arg_has_oops;
   920           }
   921           //
   922           // src or dst could be j.l.Object when other is basic type array:
   923           //
   924           //   arraycopy(char[],0,Object*,0,size);
   925           //   arraycopy(Object*,0,char[],0,size);
   926           //
   927           // Don't add edges in such cases.
   928           //
   929           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
   930                                        arg_has_oops && (i > TypeFunc::Parms);
   931 #ifdef ASSERT
   932           if (!(is_arraycopy ||
   933                 (call->as_CallLeaf()->_name != NULL &&
   934                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
   935                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
   936                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
   937                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
   938                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
   939                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
   940                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0)
   941                   ))) {
   942             call->dump();
   943             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
   944           }
   945 #endif
   946           // Always process arraycopy's destination object since
   947           // we need to add all possible edges to references in
   948           // source object.
   949           if (arg_esc >= PointsToNode::ArgEscape &&
   950               !arg_is_arraycopy_dest) {
   951             continue;
   952           }
   953           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
   954           if (arg_is_arraycopy_dest) {
   955             Node* src = call->in(TypeFunc::Parms);
   956             if (src->is_AddP()) {
   957               src = get_addp_base(src);
   958             }
   959             PointsToNode* src_ptn = ptnode_adr(src->_idx);
   960             assert(src_ptn != NULL, "should be registered");
   961             if (arg_ptn != src_ptn) {
   962               // Special arraycopy edge:
   963               // A destination object's field can't have the source object
   964               // as base since objects escape states are not related.
   965               // Only escape state of destination object's fields affects
   966               // escape state of fields in source object.
   967               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
   968             }
   969           }
   970         }
   971       }
   972       break;
   973     }
   974     case Op_CallStaticJava: {
   975       // For a static call, we know exactly what method is being called.
   976       // Use bytecode estimator to record the call's escape affects
   977 #ifdef ASSERT
   978       const char* name = call->as_CallStaticJava()->_name;
   979       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
   980 #endif
   981       ciMethod* meth = call->as_CallJava()->method();
   982       if ((meth != NULL) && meth->is_boxing_method()) {
   983         break; // Boxing methods do not modify any oops.
   984       }
   985       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
   986       // fall-through if not a Java method or no analyzer information
   987       if (call_analyzer != NULL) {
   988         PointsToNode* call_ptn = ptnode_adr(call->_idx);
   989         const TypeTuple* d = call->tf()->domain();
   990         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   991           const Type* at = d->field_at(i);
   992           int k = i - TypeFunc::Parms;
   993           Node* arg = call->in(i);
   994           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
   995           if (at->isa_ptr() != NULL &&
   996               call_analyzer->is_arg_returned(k)) {
   997             // The call returns arguments.
   998             if (call_ptn != NULL) { // Is call's result used?
   999               assert(call_ptn->is_LocalVar(), "node should be registered");
  1000               assert(arg_ptn != NULL, "node should be registered");
  1001               add_edge(call_ptn, arg_ptn);
  1004           if (at->isa_oopptr() != NULL &&
  1005               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
  1006             if (!call_analyzer->is_arg_stack(k)) {
  1007               // The argument global escapes
  1008               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
  1009             } else {
  1010               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
  1011               if (!call_analyzer->is_arg_local(k)) {
  1012                 // The argument itself doesn't escape, but any fields might
  1013                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
  1018         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
  1019           // The call returns arguments.
  1020           assert(call_ptn->edge_count() > 0, "sanity");
  1021           if (!call_analyzer->is_return_local()) {
  1022             // Returns also unknown object.
  1023             add_edge(call_ptn, phantom_obj);
  1026         break;
  1029     default: {
  1030       // Fall-through here if not a Java method or no analyzer information
  1031       // or some other type of call, assume the worst case: all arguments
  1032       // globally escape.
  1033       const TypeTuple* d = call->tf()->domain();
  1034       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1035         const Type* at = d->field_at(i);
  1036         if (at->isa_oopptr() != NULL) {
  1037           Node* arg = call->in(i);
  1038           if (arg->is_AddP()) {
  1039             arg = get_addp_base(arg);
  1041           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
  1042           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
  1050 // Finish Graph construction.
  1051 bool ConnectionGraph::complete_connection_graph(
  1052                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1053                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1054                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1055                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
  1056   // Normally only 1-3 passes needed to build Connection Graph depending
  1057   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
  1058   // Set limit to 20 to catch situation when something did go wrong and
  1059   // bailout Escape Analysis.
  1060   // Also limit build time to 30 sec (60 in debug VM).
  1061 #define CG_BUILD_ITER_LIMIT 20
  1062 #ifdef ASSERT
  1063 #define CG_BUILD_TIME_LIMIT 60.0
  1064 #else
  1065 #define CG_BUILD_TIME_LIMIT 30.0
  1066 #endif
  1068   // Propagate GlobalEscape and ArgEscape escape states and check that
  1069   // we still have non-escaping objects. The method pushs on _worklist
  1070   // Field nodes which reference phantom_object.
  1071   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1072     return false; // Nothing to do.
  1074   // Now propagate references to all JavaObject nodes.
  1075   int java_objects_length = java_objects_worklist.length();
  1076   elapsedTimer time;
  1077   int new_edges = 1;
  1078   int iterations = 0;
  1079   do {
  1080     while ((new_edges > 0) &&
  1081           (iterations++   < CG_BUILD_ITER_LIMIT) &&
  1082           (time.seconds() < CG_BUILD_TIME_LIMIT)) {
  1083       time.start();
  1084       new_edges = 0;
  1085       // Propagate references to phantom_object for nodes pushed on _worklist
  1086       // by find_non_escaped_objects() and find_field_value().
  1087       new_edges += add_java_object_edges(phantom_obj, false);
  1088       for (int next = 0; next < java_objects_length; ++next) {
  1089         JavaObjectNode* ptn = java_objects_worklist.at(next);
  1090         new_edges += add_java_object_edges(ptn, true);
  1092       if (new_edges > 0) {
  1093         // Update escape states on each iteration if graph was updated.
  1094         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1095           return false; // Nothing to do.
  1098       time.stop();
  1100     if ((iterations     < CG_BUILD_ITER_LIMIT) &&
  1101         (time.seconds() < CG_BUILD_TIME_LIMIT)) {
  1102       time.start();
  1103       // Find fields which have unknown value.
  1104       int fields_length = oop_fields_worklist.length();
  1105       for (int next = 0; next < fields_length; next++) {
  1106         FieldNode* field = oop_fields_worklist.at(next);
  1107         if (field->edge_count() == 0) {
  1108           new_edges += find_field_value(field);
  1109           // This code may added new edges to phantom_object.
  1110           // Need an other cycle to propagate references to phantom_object.
  1113       time.stop();
  1114     } else {
  1115       new_edges = 0; // Bailout
  1117   } while (new_edges > 0);
  1119   // Bailout if passed limits.
  1120   if ((iterations     >= CG_BUILD_ITER_LIMIT) ||
  1121       (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
  1122     Compile* C = _compile;
  1123     if (C->log() != NULL) {
  1124       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
  1125       C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time");
  1126       C->log()->end_elem(" limit'");
  1128     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
  1129            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
  1130     // Possible infinite build_connection_graph loop,
  1131     // bailout (no changes to ideal graph were made).
  1132     return false;
  1134 #ifdef ASSERT
  1135   if (Verbose && PrintEscapeAnalysis) {
  1136     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
  1137                   iterations, nodes_size(), ptnodes_worklist.length());
  1139 #endif
  1141 #undef CG_BUILD_ITER_LIMIT
  1142 #undef CG_BUILD_TIME_LIMIT
  1144   // Find fields initialized by NULL for non-escaping Allocations.
  1145   int non_escaped_length = non_escaped_worklist.length();
  1146   for (int next = 0; next < non_escaped_length; next++) {
  1147     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1148     PointsToNode::EscapeState es = ptn->escape_state();
  1149     assert(es <= PointsToNode::ArgEscape, "sanity");
  1150     if (es == PointsToNode::NoEscape) {
  1151       if (find_init_values(ptn, null_obj, _igvn) > 0) {
  1152         // Adding references to NULL object does not change escape states
  1153         // since it does not escape. Also no fields are added to NULL object.
  1154         add_java_object_edges(null_obj, false);
  1157     Node* n = ptn->ideal_node();
  1158     if (n->is_Allocate()) {
  1159       // The object allocated by this Allocate node will never be
  1160       // seen by an other thread. Mark it so that when it is
  1161       // expanded no MemBarStoreStore is added.
  1162       InitializeNode* ini = n->as_Allocate()->initialization();
  1163       if (ini != NULL)
  1164         ini->set_does_not_escape();
  1167   return true; // Finished graph construction.
  1170 // Propagate GlobalEscape and ArgEscape escape states to all nodes
  1171 // and check that we still have non-escaping java objects.
  1172 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
  1173                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
  1174   GrowableArray<PointsToNode*> escape_worklist;
  1175   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
  1176   int ptnodes_length = ptnodes_worklist.length();
  1177   for (int next = 0; next < ptnodes_length; ++next) {
  1178     PointsToNode* ptn = ptnodes_worklist.at(next);
  1179     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
  1180         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
  1181       escape_worklist.push(ptn);
  1184   // Set escape states to referenced nodes (edges list).
  1185   while (escape_worklist.length() > 0) {
  1186     PointsToNode* ptn = escape_worklist.pop();
  1187     PointsToNode::EscapeState es  = ptn->escape_state();
  1188     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
  1189     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
  1190         es >= PointsToNode::ArgEscape) {
  1191       // GlobalEscape or ArgEscape state of field means it has unknown value.
  1192       if (add_edge(ptn, phantom_obj)) {
  1193         // New edge was added
  1194         add_field_uses_to_worklist(ptn->as_Field());
  1197     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1198       PointsToNode* e = i.get();
  1199       if (e->is_Arraycopy()) {
  1200         assert(ptn->arraycopy_dst(), "sanity");
  1201         // Propagate only fields escape state through arraycopy edge.
  1202         if (e->fields_escape_state() < field_es) {
  1203           set_fields_escape_state(e, field_es);
  1204           escape_worklist.push(e);
  1206       } else if (es >= field_es) {
  1207         // fields_escape_state is also set to 'es' if it is less than 'es'.
  1208         if (e->escape_state() < es) {
  1209           set_escape_state(e, es);
  1210           escape_worklist.push(e);
  1212       } else {
  1213         // Propagate field escape state.
  1214         bool es_changed = false;
  1215         if (e->fields_escape_state() < field_es) {
  1216           set_fields_escape_state(e, field_es);
  1217           es_changed = true;
  1219         if ((e->escape_state() < field_es) &&
  1220             e->is_Field() && ptn->is_JavaObject() &&
  1221             e->as_Field()->is_oop()) {
  1222           // Change escape state of referenced fileds.
  1223           set_escape_state(e, field_es);
  1224           es_changed = true;;
  1225         } else if (e->escape_state() < es) {
  1226           set_escape_state(e, es);
  1227           es_changed = true;;
  1229         if (es_changed) {
  1230           escape_worklist.push(e);
  1235   // Remove escaped objects from non_escaped list.
  1236   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
  1237     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1238     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
  1239       non_escaped_worklist.delete_at(next);
  1241     if (ptn->escape_state() == PointsToNode::NoEscape) {
  1242       // Find fields in non-escaped allocations which have unknown value.
  1243       find_init_values(ptn, phantom_obj, NULL);
  1246   return (non_escaped_worklist.length() > 0);
  1249 // Add all references to JavaObject node by walking over all uses.
  1250 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
  1251   int new_edges = 0;
  1252   if (populate_worklist) {
  1253     // Populate _worklist by uses of jobj's uses.
  1254     for (UseIterator i(jobj); i.has_next(); i.next()) {
  1255       PointsToNode* use = i.get();
  1256       if (use->is_Arraycopy())
  1257         continue;
  1258       add_uses_to_worklist(use);
  1259       if (use->is_Field() && use->as_Field()->is_oop()) {
  1260         // Put on worklist all field's uses (loads) and
  1261         // related field nodes (same base and offset).
  1262         add_field_uses_to_worklist(use->as_Field());
  1266   while(_worklist.length() > 0) {
  1267     PointsToNode* use = _worklist.pop();
  1268     if (PointsToNode::is_base_use(use)) {
  1269       // Add reference from jobj to field and from field to jobj (field's base).
  1270       use = PointsToNode::get_use_node(use)->as_Field();
  1271       if (add_base(use->as_Field(), jobj)) {
  1272         new_edges++;
  1274       continue;
  1276     assert(!use->is_JavaObject(), "sanity");
  1277     if (use->is_Arraycopy()) {
  1278       if (jobj == null_obj) // NULL object does not have field edges
  1279         continue;
  1280       // Added edge from Arraycopy node to arraycopy's source java object
  1281       if (add_edge(use, jobj)) {
  1282         jobj->set_arraycopy_src();
  1283         new_edges++;
  1285       // and stop here.
  1286       continue;
  1288     if (!add_edge(use, jobj))
  1289       continue; // No new edge added, there was such edge already.
  1290     new_edges++;
  1291     if (use->is_LocalVar()) {
  1292       add_uses_to_worklist(use);
  1293       if (use->arraycopy_dst()) {
  1294         for (EdgeIterator i(use); i.has_next(); i.next()) {
  1295           PointsToNode* e = i.get();
  1296           if (e->is_Arraycopy()) {
  1297             if (jobj == null_obj) // NULL object does not have field edges
  1298               continue;
  1299             // Add edge from arraycopy's destination java object to Arraycopy node.
  1300             if (add_edge(jobj, e)) {
  1301               new_edges++;
  1302               jobj->set_arraycopy_dst();
  1307     } else {
  1308       // Added new edge to stored in field values.
  1309       // Put on worklist all field's uses (loads) and
  1310       // related field nodes (same base and offset).
  1311       add_field_uses_to_worklist(use->as_Field());
  1314   return new_edges;
  1317 // Put on worklist all related field nodes.
  1318 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
  1319   assert(field->is_oop(), "sanity");
  1320   int offset = field->offset();
  1321   add_uses_to_worklist(field);
  1322   // Loop over all bases of this field and push on worklist Field nodes
  1323   // with the same offset and base (since they may reference the same field).
  1324   for (BaseIterator i(field); i.has_next(); i.next()) {
  1325     PointsToNode* base = i.get();
  1326     add_fields_to_worklist(field, base);
  1327     // Check if the base was source object of arraycopy and go over arraycopy's
  1328     // destination objects since values stored to a field of source object are
  1329     // accessable by uses (loads) of fields of destination objects.
  1330     if (base->arraycopy_src()) {
  1331       for (UseIterator j(base); j.has_next(); j.next()) {
  1332         PointsToNode* arycp = j.get();
  1333         if (arycp->is_Arraycopy()) {
  1334           for (UseIterator k(arycp); k.has_next(); k.next()) {
  1335             PointsToNode* abase = k.get();
  1336             if (abase->arraycopy_dst() && abase != base) {
  1337               // Look for the same arracopy reference.
  1338               add_fields_to_worklist(field, abase);
  1347 // Put on worklist all related field nodes.
  1348 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
  1349   int offset = field->offset();
  1350   if (base->is_LocalVar()) {
  1351     for (UseIterator j(base); j.has_next(); j.next()) {
  1352       PointsToNode* f = j.get();
  1353       if (PointsToNode::is_base_use(f)) { // Field
  1354         f = PointsToNode::get_use_node(f);
  1355         if (f == field || !f->as_Field()->is_oop())
  1356           continue;
  1357         int offs = f->as_Field()->offset();
  1358         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1359           add_to_worklist(f);
  1363   } else {
  1364     assert(base->is_JavaObject(), "sanity");
  1365     if (// Skip phantom_object since it is only used to indicate that
  1366         // this field's content globally escapes.
  1367         (base != phantom_obj) &&
  1368         // NULL object node does not have fields.
  1369         (base != null_obj)) {
  1370       for (EdgeIterator i(base); i.has_next(); i.next()) {
  1371         PointsToNode* f = i.get();
  1372         // Skip arraycopy edge since store to destination object field
  1373         // does not update value in source object field.
  1374         if (f->is_Arraycopy()) {
  1375           assert(base->arraycopy_dst(), "sanity");
  1376           continue;
  1378         if (f == field || !f->as_Field()->is_oop())
  1379           continue;
  1380         int offs = f->as_Field()->offset();
  1381         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1382           add_to_worklist(f);
  1389 // Find fields which have unknown value.
  1390 int ConnectionGraph::find_field_value(FieldNode* field) {
  1391   // Escaped fields should have init value already.
  1392   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
  1393   int new_edges = 0;
  1394   for (BaseIterator i(field); i.has_next(); i.next()) {
  1395     PointsToNode* base = i.get();
  1396     if (base->is_JavaObject()) {
  1397       // Skip Allocate's fields which will be processed later.
  1398       if (base->ideal_node()->is_Allocate())
  1399         return 0;
  1400       assert(base == null_obj, "only NULL ptr base expected here");
  1403   if (add_edge(field, phantom_obj)) {
  1404     // New edge was added
  1405     new_edges++;
  1406     add_field_uses_to_worklist(field);
  1408   return new_edges;
  1411 // Find fields initializing values for allocations.
  1412 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
  1413   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
  1414   int new_edges = 0;
  1415   Node* alloc = pta->ideal_node();
  1416   if (init_val == phantom_obj) {
  1417     // Do nothing for Allocate nodes since its fields values are "known".
  1418     if (alloc->is_Allocate())
  1419       return 0;
  1420     assert(alloc->as_CallStaticJava(), "sanity");
  1421 #ifdef ASSERT
  1422     if (alloc->as_CallStaticJava()->method() == NULL) {
  1423       const char* name = alloc->as_CallStaticJava()->_name;
  1424       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
  1426 #endif
  1427     // Non-escaped allocation returned from Java or runtime call have
  1428     // unknown values in fields.
  1429     for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1430       PointsToNode* field = i.get();
  1431       if (field->is_Field() && field->as_Field()->is_oop()) {
  1432         if (add_edge(field, phantom_obj)) {
  1433           // New edge was added
  1434           new_edges++;
  1435           add_field_uses_to_worklist(field->as_Field());
  1439     return new_edges;
  1441   assert(init_val == null_obj, "sanity");
  1442   // Do nothing for Call nodes since its fields values are unknown.
  1443   if (!alloc->is_Allocate())
  1444     return 0;
  1446   InitializeNode* ini = alloc->as_Allocate()->initialization();
  1447   Compile* C = _compile;
  1448   bool visited_bottom_offset = false;
  1449   GrowableArray<int> offsets_worklist;
  1451   // Check if an oop field's initializing value is recorded and add
  1452   // a corresponding NULL if field's value if it is not recorded.
  1453   // Connection Graph does not record a default initialization by NULL
  1454   // captured by Initialize node.
  1455   //
  1456   for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1457     PointsToNode* field = i.get(); // Field (AddP)
  1458     if (!field->is_Field() || !field->as_Field()->is_oop())
  1459       continue; // Not oop field
  1460     int offset = field->as_Field()->offset();
  1461     if (offset == Type::OffsetBot) {
  1462       if (!visited_bottom_offset) {
  1463         // OffsetBot is used to reference array's element,
  1464         // always add reference to NULL to all Field nodes since we don't
  1465         // known which element is referenced.
  1466         if (add_edge(field, null_obj)) {
  1467           // New edge was added
  1468           new_edges++;
  1469           add_field_uses_to_worklist(field->as_Field());
  1470           visited_bottom_offset = true;
  1473     } else {
  1474       // Check only oop fields.
  1475       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
  1476       if (adr_type->isa_rawptr()) {
  1477 #ifdef ASSERT
  1478         // Raw pointers are used for initializing stores so skip it
  1479         // since it should be recorded already
  1480         Node* base = get_addp_base(field->ideal_node());
  1481         assert(adr_type->isa_rawptr() && base->is_Proj() &&
  1482                (base->in(0) == alloc),"unexpected pointer type");
  1483 #endif
  1484         continue;
  1486       if (!offsets_worklist.contains(offset)) {
  1487         offsets_worklist.append(offset);
  1488         Node* value = NULL;
  1489         if (ini != NULL) {
  1490           // StoreP::memory_type() == T_ADDRESS
  1491           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
  1492           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
  1493           // Make sure initializing store has the same type as this AddP.
  1494           // This AddP may reference non existing field because it is on a
  1495           // dead branch of bimorphic call which is not eliminated yet.
  1496           if (store != NULL && store->is_Store() &&
  1497               store->as_Store()->memory_type() == ft) {
  1498             value = store->in(MemNode::ValueIn);
  1499 #ifdef ASSERT
  1500             if (VerifyConnectionGraph) {
  1501               // Verify that AddP already points to all objects the value points to.
  1502               PointsToNode* val = ptnode_adr(value->_idx);
  1503               assert((val != NULL), "should be processed already");
  1504               PointsToNode* missed_obj = NULL;
  1505               if (val->is_JavaObject()) {
  1506                 if (!field->points_to(val->as_JavaObject())) {
  1507                   missed_obj = val;
  1509               } else {
  1510                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
  1511                   tty->print_cr("----------init store has invalid value -----");
  1512                   store->dump();
  1513                   val->dump();
  1514                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
  1516                 for (EdgeIterator j(val); j.has_next(); j.next()) {
  1517                   PointsToNode* obj = j.get();
  1518                   if (obj->is_JavaObject()) {
  1519                     if (!field->points_to(obj->as_JavaObject())) {
  1520                       missed_obj = obj;
  1521                       break;
  1526               if (missed_obj != NULL) {
  1527                 tty->print_cr("----------field---------------------------------");
  1528                 field->dump();
  1529                 tty->print_cr("----------missed referernce to object-----------");
  1530                 missed_obj->dump();
  1531                 tty->print_cr("----------object referernced by init store -----");
  1532                 store->dump();
  1533                 val->dump();
  1534                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
  1537 #endif
  1538           } else {
  1539             // There could be initializing stores which follow allocation.
  1540             // For example, a volatile field store is not collected
  1541             // by Initialize node.
  1542             //
  1543             // Need to check for dependent loads to separate such stores from
  1544             // stores which follow loads. For now, add initial value NULL so
  1545             // that compare pointers optimization works correctly.
  1548         if (value == NULL) {
  1549           // A field's initializing value was not recorded. Add NULL.
  1550           if (add_edge(field, null_obj)) {
  1551             // New edge was added
  1552             new_edges++;
  1553             add_field_uses_to_worklist(field->as_Field());
  1559   return new_edges;
  1562 // Adjust scalar_replaceable state after Connection Graph is built.
  1563 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
  1564   // Search for non-escaping objects which are not scalar replaceable
  1565   // and mark them to propagate the state to referenced objects.
  1567   // 1. An object is not scalar replaceable if the field into which it is
  1568   // stored has unknown offset (stored into unknown element of an array).
  1569   //
  1570   for (UseIterator i(jobj); i.has_next(); i.next()) {
  1571     PointsToNode* use = i.get();
  1572     assert(!use->is_Arraycopy(), "sanity");
  1573     if (use->is_Field()) {
  1574       FieldNode* field = use->as_Field();
  1575       assert(field->is_oop() && field->scalar_replaceable() &&
  1576              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
  1577       if (field->offset() == Type::OffsetBot) {
  1578         jobj->set_scalar_replaceable(false);
  1579         return;
  1582     assert(use->is_Field() || use->is_LocalVar(), "sanity");
  1583     // 2. An object is not scalar replaceable if it is merged with other objects.
  1584     for (EdgeIterator j(use); j.has_next(); j.next()) {
  1585       PointsToNode* ptn = j.get();
  1586       if (ptn->is_JavaObject() && ptn != jobj) {
  1587         // Mark all objects.
  1588         jobj->set_scalar_replaceable(false);
  1589          ptn->set_scalar_replaceable(false);
  1592     if (!jobj->scalar_replaceable()) {
  1593       return;
  1597   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
  1598     // Non-escaping object node should point only to field nodes.
  1599     FieldNode* field = j.get()->as_Field();
  1600     int offset = field->as_Field()->offset();
  1602     // 3. An object is not scalar replaceable if it has a field with unknown
  1603     // offset (array's element is accessed in loop).
  1604     if (offset == Type::OffsetBot) {
  1605       jobj->set_scalar_replaceable(false);
  1606       return;
  1608     // 4. Currently an object is not scalar replaceable if a LoadStore node
  1609     // access its field since the field value is unknown after it.
  1610     //
  1611     Node* n = field->ideal_node();
  1612     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1613       if (n->fast_out(i)->is_LoadStore()) {
  1614         jobj->set_scalar_replaceable(false);
  1615         return;
  1619     // 5. Or the address may point to more then one object. This may produce
  1620     // the false positive result (set not scalar replaceable)
  1621     // since the flow-insensitive escape analysis can't separate
  1622     // the case when stores overwrite the field's value from the case
  1623     // when stores happened on different control branches.
  1624     //
  1625     // Note: it will disable scalar replacement in some cases:
  1626     //
  1627     //    Point p[] = new Point[1];
  1628     //    p[0] = new Point(); // Will be not scalar replaced
  1629     //
  1630     // but it will save us from incorrect optimizations in next cases:
  1631     //
  1632     //    Point p[] = new Point[1];
  1633     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
  1634     //
  1635     if (field->base_count() > 1) {
  1636       for (BaseIterator i(field); i.has_next(); i.next()) {
  1637         PointsToNode* base = i.get();
  1638         // Don't take into account LocalVar nodes which
  1639         // may point to only one object which should be also
  1640         // this field's base by now.
  1641         if (base->is_JavaObject() && base != jobj) {
  1642           // Mark all bases.
  1643           jobj->set_scalar_replaceable(false);
  1644           base->set_scalar_replaceable(false);
  1651 #ifdef ASSERT
  1652 void ConnectionGraph::verify_connection_graph(
  1653                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1654                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1655                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1656                          GrowableArray<Node*>& addp_worklist) {
  1657   // Verify that graph is complete - no new edges could be added.
  1658   int java_objects_length = java_objects_worklist.length();
  1659   int non_escaped_length  = non_escaped_worklist.length();
  1660   int new_edges = 0;
  1661   for (int next = 0; next < java_objects_length; ++next) {
  1662     JavaObjectNode* ptn = java_objects_worklist.at(next);
  1663     new_edges += add_java_object_edges(ptn, true);
  1665   assert(new_edges == 0, "graph was not complete");
  1666   // Verify that escape state is final.
  1667   int length = non_escaped_worklist.length();
  1668   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
  1669   assert((non_escaped_length == non_escaped_worklist.length()) &&
  1670          (non_escaped_length == length) &&
  1671          (_worklist.length() == 0), "escape state was not final");
  1673   // Verify fields information.
  1674   int addp_length = addp_worklist.length();
  1675   for (int next = 0; next < addp_length; ++next ) {
  1676     Node* n = addp_worklist.at(next);
  1677     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
  1678     if (field->is_oop()) {
  1679       // Verify that field has all bases
  1680       Node* base = get_addp_base(n);
  1681       PointsToNode* ptn = ptnode_adr(base->_idx);
  1682       if (ptn->is_JavaObject()) {
  1683         assert(field->has_base(ptn->as_JavaObject()), "sanity");
  1684       } else {
  1685         assert(ptn->is_LocalVar(), "sanity");
  1686         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1687           PointsToNode* e = i.get();
  1688           if (e->is_JavaObject()) {
  1689             assert(field->has_base(e->as_JavaObject()), "sanity");
  1693       // Verify that all fields have initializing values.
  1694       if (field->edge_count() == 0) {
  1695         tty->print_cr("----------field does not have references----------");
  1696         field->dump();
  1697         for (BaseIterator i(field); i.has_next(); i.next()) {
  1698           PointsToNode* base = i.get();
  1699           tty->print_cr("----------field has next base---------------------");
  1700           base->dump();
  1701           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
  1702             tty->print_cr("----------base has fields-------------------------");
  1703             for (EdgeIterator j(base); j.has_next(); j.next()) {
  1704               j.get()->dump();
  1706             tty->print_cr("----------base has references---------------------");
  1707             for (UseIterator j(base); j.has_next(); j.next()) {
  1708               j.get()->dump();
  1712         for (UseIterator i(field); i.has_next(); i.next()) {
  1713           i.get()->dump();
  1715         assert(field->edge_count() > 0, "sanity");
  1720 #endif
  1722 // Optimize ideal graph.
  1723 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
  1724                                            GrowableArray<Node*>& storestore_worklist) {
  1725   Compile* C = _compile;
  1726   PhaseIterGVN* igvn = _igvn;
  1727   if (EliminateLocks) {
  1728     // Mark locks before changing ideal graph.
  1729     int cnt = C->macro_count();
  1730     for( int i=0; i < cnt; i++ ) {
  1731       Node *n = C->macro_node(i);
  1732       if (n->is_AbstractLock()) { // Lock and Unlock nodes
  1733         AbstractLockNode* alock = n->as_AbstractLock();
  1734         if (!alock->is_non_esc_obj()) {
  1735           if (not_global_escape(alock->obj_node())) {
  1736             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
  1737             // The lock could be marked eliminated by lock coarsening
  1738             // code during first IGVN before EA. Replace coarsened flag
  1739             // to eliminate all associated locks/unlocks.
  1740             alock->set_non_esc_obj();
  1747   if (OptimizePtrCompare) {
  1748     // Add ConI(#CC_GT) and ConI(#CC_EQ).
  1749     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
  1750     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
  1751     // Optimize objects compare.
  1752     while (ptr_cmp_worklist.length() != 0) {
  1753       Node *n = ptr_cmp_worklist.pop();
  1754       Node *res = optimize_ptr_compare(n);
  1755       if (res != NULL) {
  1756 #ifndef PRODUCT
  1757         if (PrintOptimizePtrCompare) {
  1758           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
  1759           if (Verbose) {
  1760             n->dump(1);
  1763 #endif
  1764         igvn->replace_node(n, res);
  1767     // cleanup
  1768     if (_pcmp_neq->outcnt() == 0)
  1769       igvn->hash_delete(_pcmp_neq);
  1770     if (_pcmp_eq->outcnt()  == 0)
  1771       igvn->hash_delete(_pcmp_eq);
  1774   // For MemBarStoreStore nodes added in library_call.cpp, check
  1775   // escape status of associated AllocateNode and optimize out
  1776   // MemBarStoreStore node if the allocated object never escapes.
  1777   while (storestore_worklist.length() != 0) {
  1778     Node *n = storestore_worklist.pop();
  1779     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
  1780     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
  1781     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
  1782     if (not_global_escape(alloc)) {
  1783       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
  1784       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
  1785       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
  1786       igvn->register_new_node_with_optimizer(mb);
  1787       igvn->replace_node(storestore, mb);
  1792 // Optimize objects compare.
  1793 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
  1794   assert(OptimizePtrCompare, "sanity");
  1795   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
  1796   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
  1797   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
  1798   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
  1799   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
  1800   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
  1802   // Check simple cases first.
  1803   if (jobj1 != NULL) {
  1804     if (jobj1->escape_state() == PointsToNode::NoEscape) {
  1805       if (jobj1 == jobj2) {
  1806         // Comparing the same not escaping object.
  1807         return _pcmp_eq;
  1809       Node* obj = jobj1->ideal_node();
  1810       // Comparing not escaping allocation.
  1811       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1812           !ptn2->points_to(jobj1)) {
  1813         return _pcmp_neq; // This includes nullness check.
  1817   if (jobj2 != NULL) {
  1818     if (jobj2->escape_state() == PointsToNode::NoEscape) {
  1819       Node* obj = jobj2->ideal_node();
  1820       // Comparing not escaping allocation.
  1821       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1822           !ptn1->points_to(jobj2)) {
  1823         return _pcmp_neq; // This includes nullness check.
  1827   if (jobj1 != NULL && jobj1 != phantom_obj &&
  1828       jobj2 != NULL && jobj2 != phantom_obj &&
  1829       jobj1->ideal_node()->is_Con() &&
  1830       jobj2->ideal_node()->is_Con()) {
  1831     // Klass or String constants compare. Need to be careful with
  1832     // compressed pointers - compare types of ConN and ConP instead of nodes.
  1833     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
  1834     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
  1835     if (t1->make_ptr() == t2->make_ptr()) {
  1836       return _pcmp_eq;
  1837     } else {
  1838       return _pcmp_neq;
  1841   if (ptn1->meet(ptn2)) {
  1842     return NULL; // Sets are not disjoint
  1845   // Sets are disjoint.
  1846   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
  1847   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
  1848   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
  1849   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
  1850   if (set1_has_unknown_ptr && set2_has_null_ptr ||
  1851       set2_has_unknown_ptr && set1_has_null_ptr) {
  1852     // Check nullness of unknown object.
  1853     return NULL;
  1856   // Disjointness by itself is not sufficient since
  1857   // alias analysis is not complete for escaped objects.
  1858   // Disjoint sets are definitely unrelated only when
  1859   // at least one set has only not escaping allocations.
  1860   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
  1861     if (ptn1->non_escaping_allocation()) {
  1862       return _pcmp_neq;
  1865   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
  1866     if (ptn2->non_escaping_allocation()) {
  1867       return _pcmp_neq;
  1870   return NULL;
  1873 // Connection Graph constuction functions.
  1875 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
  1876   PointsToNode* ptadr = _nodes.at(n->_idx);
  1877   if (ptadr != NULL) {
  1878     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
  1879     return;
  1881   Compile* C = _compile;
  1882   ptadr = new (C->comp_arena()) LocalVarNode(C, n, es);
  1883   _nodes.at_put(n->_idx, ptadr);
  1886 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
  1887   PointsToNode* ptadr = _nodes.at(n->_idx);
  1888   if (ptadr != NULL) {
  1889     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
  1890     return;
  1892   Compile* C = _compile;
  1893   ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es);
  1894   _nodes.at_put(n->_idx, ptadr);
  1897 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
  1898   PointsToNode* ptadr = _nodes.at(n->_idx);
  1899   if (ptadr != NULL) {
  1900     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
  1901     return;
  1903   bool unsafe = false;
  1904   bool is_oop = is_oop_field(n, offset, &unsafe);
  1905   if (unsafe) {
  1906     es = PointsToNode::GlobalEscape;
  1908   Compile* C = _compile;
  1909   FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop);
  1910   _nodes.at_put(n->_idx, field);
  1913 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
  1914                                     PointsToNode* src, PointsToNode* dst) {
  1915   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
  1916   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
  1917   PointsToNode* ptadr = _nodes.at(n->_idx);
  1918   if (ptadr != NULL) {
  1919     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
  1920     return;
  1922   Compile* C = _compile;
  1923   ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es);
  1924   _nodes.at_put(n->_idx, ptadr);
  1925   // Add edge from arraycopy node to source object.
  1926   (void)add_edge(ptadr, src);
  1927   src->set_arraycopy_src();
  1928   // Add edge from destination object to arraycopy node.
  1929   (void)add_edge(dst, ptadr);
  1930   dst->set_arraycopy_dst();
  1933 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
  1934   const Type* adr_type = n->as_AddP()->bottom_type();
  1935   BasicType bt = T_INT;
  1936   if (offset == Type::OffsetBot) {
  1937     // Check only oop fields.
  1938     if (!adr_type->isa_aryptr() ||
  1939         (adr_type->isa_aryptr()->klass() == NULL) ||
  1940          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
  1941       // OffsetBot is used to reference array's element. Ignore first AddP.
  1942       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
  1943         bt = T_OBJECT;
  1946   } else if (offset != oopDesc::klass_offset_in_bytes()) {
  1947     if (adr_type->isa_instptr()) {
  1948       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
  1949       if (field != NULL) {
  1950         bt = field->layout_type();
  1951       } else {
  1952         // Check for unsafe oop field access
  1953         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1954           int opcode = n->fast_out(i)->Opcode();
  1955           if (opcode == Op_StoreP || opcode == Op_LoadP ||
  1956               opcode == Op_StoreN || opcode == Op_LoadN) {
  1957             bt = T_OBJECT;
  1958             (*unsafe) = true;
  1959             break;
  1963     } else if (adr_type->isa_aryptr()) {
  1964       if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1965         // Ignore array length load.
  1966       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
  1967         // Ignore first AddP.
  1968       } else {
  1969         const Type* elemtype = adr_type->isa_aryptr()->elem();
  1970         bt = elemtype->array_element_basic_type();
  1972     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
  1973       // Allocation initialization, ThreadLocal field access, unsafe access
  1974       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1975         int opcode = n->fast_out(i)->Opcode();
  1976         if (opcode == Op_StoreP || opcode == Op_LoadP ||
  1977             opcode == Op_StoreN || opcode == Op_LoadN) {
  1978           bt = T_OBJECT;
  1979           break;
  1984   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
  1987 // Returns unique pointed java object or NULL.
  1988 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
  1989   assert(!_collecting, "should not call when contructed graph");
  1990   // If the node was created after the escape computation we can't answer.
  1991   uint idx = n->_idx;
  1992   if (idx >= nodes_size()) {
  1993     return NULL;
  1995   PointsToNode* ptn = ptnode_adr(idx);
  1996   if (ptn->is_JavaObject()) {
  1997     return ptn->as_JavaObject();
  1999   assert(ptn->is_LocalVar(), "sanity");
  2000   // Check all java objects it points to.
  2001   JavaObjectNode* jobj = NULL;
  2002   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  2003     PointsToNode* e = i.get();
  2004     if (e->is_JavaObject()) {
  2005       if (jobj == NULL) {
  2006         jobj = e->as_JavaObject();
  2007       } else if (jobj != e) {
  2008         return NULL;
  2012   return jobj;
  2015 // Return true if this node points only to non-escaping allocations.
  2016 bool PointsToNode::non_escaping_allocation() {
  2017   if (is_JavaObject()) {
  2018     Node* n = ideal_node();
  2019     if (n->is_Allocate() || n->is_CallStaticJava()) {
  2020       return (escape_state() == PointsToNode::NoEscape);
  2021     } else {
  2022       return false;
  2025   assert(is_LocalVar(), "sanity");
  2026   // Check all java objects it points to.
  2027   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2028     PointsToNode* e = i.get();
  2029     if (e->is_JavaObject()) {
  2030       Node* n = e->ideal_node();
  2031       if ((e->escape_state() != PointsToNode::NoEscape) ||
  2032           !(n->is_Allocate() || n->is_CallStaticJava())) {
  2033         return false;
  2037   return true;
  2040 // Return true if we know the node does not escape globally.
  2041 bool ConnectionGraph::not_global_escape(Node *n) {
  2042   assert(!_collecting, "should not call during graph construction");
  2043   // If the node was created after the escape computation we can't answer.
  2044   uint idx = n->_idx;
  2045   if (idx >= nodes_size()) {
  2046     return false;
  2048   PointsToNode* ptn = ptnode_adr(idx);
  2049   PointsToNode::EscapeState es = ptn->escape_state();
  2050   // If we have already computed a value, return it.
  2051   if (es >= PointsToNode::GlobalEscape)
  2052     return false;
  2053   if (ptn->is_JavaObject()) {
  2054     return true; // (es < PointsToNode::GlobalEscape);
  2056   assert(ptn->is_LocalVar(), "sanity");
  2057   // Check all java objects it points to.
  2058   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  2059     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
  2060       return false;
  2062   return true;
  2066 // Helper functions
  2068 // Return true if this node points to specified node or nodes it points to.
  2069 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
  2070   if (is_JavaObject()) {
  2071     return (this == ptn);
  2073   assert(is_LocalVar() || is_Field(), "sanity");
  2074   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2075     if (i.get() == ptn)
  2076       return true;
  2078   return false;
  2081 // Return true if one node points to an other.
  2082 bool PointsToNode::meet(PointsToNode* ptn) {
  2083   if (this == ptn) {
  2084     return true;
  2085   } else if (ptn->is_JavaObject()) {
  2086     return this->points_to(ptn->as_JavaObject());
  2087   } else if (this->is_JavaObject()) {
  2088     return ptn->points_to(this->as_JavaObject());
  2090   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
  2091   int ptn_count =  ptn->edge_count();
  2092   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2093     PointsToNode* this_e = i.get();
  2094     for (int j = 0; j < ptn_count; j++) {
  2095       if (this_e == ptn->edge(j))
  2096         return true;
  2099   return false;
  2102 #ifdef ASSERT
  2103 // Return true if bases point to this java object.
  2104 bool FieldNode::has_base(JavaObjectNode* jobj) const {
  2105   for (BaseIterator i(this); i.has_next(); i.next()) {
  2106     if (i.get() == jobj)
  2107       return true;
  2109   return false;
  2111 #endif
  2113 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
  2114   const Type *adr_type = phase->type(adr);
  2115   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
  2116       adr->in(AddPNode::Address)->is_Proj() &&
  2117       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
  2118     // We are computing a raw address for a store captured by an Initialize
  2119     // compute an appropriate address type. AddP cases #3 and #5 (see below).
  2120     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
  2121     assert(offs != Type::OffsetBot ||
  2122            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
  2123            "offset must be a constant or it is initialization of array");
  2124     return offs;
  2126   const TypePtr *t_ptr = adr_type->isa_ptr();
  2127   assert(t_ptr != NULL, "must be a pointer type");
  2128   return t_ptr->offset();
  2131 Node* ConnectionGraph::get_addp_base(Node *addp) {
  2132   assert(addp->is_AddP(), "must be AddP");
  2133   //
  2134   // AddP cases for Base and Address inputs:
  2135   // case #1. Direct object's field reference:
  2136   //     Allocate
  2137   //       |
  2138   //     Proj #5 ( oop result )
  2139   //       |
  2140   //     CheckCastPP (cast to instance type)
  2141   //      | |
  2142   //     AddP  ( base == address )
  2143   //
  2144   // case #2. Indirect object's field reference:
  2145   //      Phi
  2146   //       |
  2147   //     CastPP (cast to instance type)
  2148   //      | |
  2149   //     AddP  ( base == address )
  2150   //
  2151   // case #3. Raw object's field reference for Initialize node:
  2152   //      Allocate
  2153   //        |
  2154   //      Proj #5 ( oop result )
  2155   //  top   |
  2156   //     \  |
  2157   //     AddP  ( base == top )
  2158   //
  2159   // case #4. Array's element reference:
  2160   //   {CheckCastPP | CastPP}
  2161   //     |  | |
  2162   //     |  AddP ( array's element offset )
  2163   //     |  |
  2164   //     AddP ( array's offset )
  2165   //
  2166   // case #5. Raw object's field reference for arraycopy stub call:
  2167   //          The inline_native_clone() case when the arraycopy stub is called
  2168   //          after the allocation before Initialize and CheckCastPP nodes.
  2169   //      Allocate
  2170   //        |
  2171   //      Proj #5 ( oop result )
  2172   //       | |
  2173   //       AddP  ( base == address )
  2174   //
  2175   // case #6. Constant Pool, ThreadLocal, CastX2P or
  2176   //          Raw object's field reference:
  2177   //      {ConP, ThreadLocal, CastX2P, raw Load}
  2178   //  top   |
  2179   //     \  |
  2180   //     AddP  ( base == top )
  2181   //
  2182   // case #7. Klass's field reference.
  2183   //      LoadKlass
  2184   //       | |
  2185   //       AddP  ( base == address )
  2186   //
  2187   // case #8. narrow Klass's field reference.
  2188   //      LoadNKlass
  2189   //       |
  2190   //      DecodeN
  2191   //       | |
  2192   //       AddP  ( base == address )
  2193   //
  2194   Node *base = addp->in(AddPNode::Base);
  2195   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
  2196     base = addp->in(AddPNode::Address);
  2197     while (base->is_AddP()) {
  2198       // Case #6 (unsafe access) may have several chained AddP nodes.
  2199       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
  2200       base = base->in(AddPNode::Address);
  2202     Node* uncast_base = base->uncast();
  2203     int opcode = uncast_base->Opcode();
  2204     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
  2205            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
  2206            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
  2207            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
  2209   return base;
  2212 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
  2213   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
  2214   Node* addp2 = addp->raw_out(0);
  2215   if (addp->outcnt() == 1 && addp2->is_AddP() &&
  2216       addp2->in(AddPNode::Base) == n &&
  2217       addp2->in(AddPNode::Address) == addp) {
  2218     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
  2219     //
  2220     // Find array's offset to push it on worklist first and
  2221     // as result process an array's element offset first (pushed second)
  2222     // to avoid CastPP for the array's offset.
  2223     // Otherwise the inserted CastPP (LocalVar) will point to what
  2224     // the AddP (Field) points to. Which would be wrong since
  2225     // the algorithm expects the CastPP has the same point as
  2226     // as AddP's base CheckCastPP (LocalVar).
  2227     //
  2228     //    ArrayAllocation
  2229     //     |
  2230     //    CheckCastPP
  2231     //     |
  2232     //    memProj (from ArrayAllocation CheckCastPP)
  2233     //     |  ||
  2234     //     |  ||   Int (element index)
  2235     //     |  ||    |   ConI (log(element size))
  2236     //     |  ||    |   /
  2237     //     |  ||   LShift
  2238     //     |  ||  /
  2239     //     |  AddP (array's element offset)
  2240     //     |  |
  2241     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
  2242     //     | / /
  2243     //     AddP (array's offset)
  2244     //      |
  2245     //     Load/Store (memory operation on array's element)
  2246     //
  2247     return addp2;
  2249   return NULL;
  2252 //
  2253 // Adjust the type and inputs of an AddP which computes the
  2254 // address of a field of an instance
  2255 //
  2256 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
  2257   PhaseGVN* igvn = _igvn;
  2258   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
  2259   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
  2260   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
  2261   if (t == NULL) {
  2262     // We are computing a raw address for a store captured by an Initialize
  2263     // compute an appropriate address type (cases #3 and #5).
  2264     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
  2265     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
  2266     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
  2267     assert(offs != Type::OffsetBot, "offset must be a constant");
  2268     t = base_t->add_offset(offs)->is_oopptr();
  2270   int inst_id =  base_t->instance_id();
  2271   assert(!t->is_known_instance() || t->instance_id() == inst_id,
  2272                              "old type must be non-instance or match new type");
  2274   // The type 't' could be subclass of 'base_t'.
  2275   // As result t->offset() could be large then base_t's size and it will
  2276   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
  2277   // constructor verifies correctness of the offset.
  2278   //
  2279   // It could happened on subclass's branch (from the type profiling
  2280   // inlining) which was not eliminated during parsing since the exactness
  2281   // of the allocation type was not propagated to the subclass type check.
  2282   //
  2283   // Or the type 't' could be not related to 'base_t' at all.
  2284   // It could happened when CHA type is different from MDO type on a dead path
  2285   // (for example, from instanceof check) which is not collapsed during parsing.
  2286   //
  2287   // Do nothing for such AddP node and don't process its users since
  2288   // this code branch will go away.
  2289   //
  2290   if (!t->is_known_instance() &&
  2291       !base_t->klass()->is_subtype_of(t->klass())) {
  2292      return false; // bail out
  2294   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
  2295   // Do NOT remove the next line: ensure a new alias index is allocated
  2296   // for the instance type. Note: C++ will not remove it since the call
  2297   // has side effect.
  2298   int alias_idx = _compile->get_alias_index(tinst);
  2299   igvn->set_type(addp, tinst);
  2300   // record the allocation in the node map
  2301   set_map(addp, get_map(base->_idx));
  2302   // Set addp's Base and Address to 'base'.
  2303   Node *abase = addp->in(AddPNode::Base);
  2304   Node *adr   = addp->in(AddPNode::Address);
  2305   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
  2306       adr->in(0)->_idx == (uint)inst_id) {
  2307     // Skip AddP cases #3 and #5.
  2308   } else {
  2309     assert(!abase->is_top(), "sanity"); // AddP case #3
  2310     if (abase != base) {
  2311       igvn->hash_delete(addp);
  2312       addp->set_req(AddPNode::Base, base);
  2313       if (abase == adr) {
  2314         addp->set_req(AddPNode::Address, base);
  2315       } else {
  2316         // AddP case #4 (adr is array's element offset AddP node)
  2317 #ifdef ASSERT
  2318         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
  2319         assert(adr->is_AddP() && atype != NULL &&
  2320                atype->instance_id() == inst_id, "array's element offset should be processed first");
  2321 #endif
  2323       igvn->hash_insert(addp);
  2326   // Put on IGVN worklist since at least addp's type was changed above.
  2327   record_for_optimizer(addp);
  2328   return true;
  2331 //
  2332 // Create a new version of orig_phi if necessary. Returns either the newly
  2333 // created phi or an existing phi.  Sets create_new to indicate whether a new
  2334 // phi was created.  Cache the last newly created phi in the node map.
  2335 //
  2336 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
  2337   Compile *C = _compile;
  2338   PhaseGVN* igvn = _igvn;
  2339   new_created = false;
  2340   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
  2341   // nothing to do if orig_phi is bottom memory or matches alias_idx
  2342   if (phi_alias_idx == alias_idx) {
  2343     return orig_phi;
  2345   // Have we recently created a Phi for this alias index?
  2346   PhiNode *result = get_map_phi(orig_phi->_idx);
  2347   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
  2348     return result;
  2350   // Previous check may fail when the same wide memory Phi was split into Phis
  2351   // for different memory slices. Search all Phis for this region.
  2352   if (result != NULL) {
  2353     Node* region = orig_phi->in(0);
  2354     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  2355       Node* phi = region->fast_out(i);
  2356       if (phi->is_Phi() &&
  2357           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
  2358         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
  2359         return phi->as_Phi();
  2363   if ((int) (C->live_nodes() + 2*NodeLimitFudgeFactor) > MaxNodeLimit) {
  2364     if (C->do_escape_analysis() == true && !C->failing()) {
  2365       // Retry compilation without escape analysis.
  2366       // If this is the first failure, the sentinel string will "stick"
  2367       // to the Compile object, and the C2Compiler will see it and retry.
  2368       C->record_failure(C2Compiler::retry_no_escape_analysis());
  2370     return NULL;
  2372   orig_phi_worklist.append_if_missing(orig_phi);
  2373   const TypePtr *atype = C->get_adr_type(alias_idx);
  2374   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
  2375   C->copy_node_notes_to(result, orig_phi);
  2376   igvn->set_type(result, result->bottom_type());
  2377   record_for_optimizer(result);
  2378   set_map(orig_phi, result);
  2379   new_created = true;
  2380   return result;
  2383 //
  2384 // Return a new version of Memory Phi "orig_phi" with the inputs having the
  2385 // specified alias index.
  2386 //
  2387 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
  2388   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
  2389   Compile *C = _compile;
  2390   PhaseGVN* igvn = _igvn;
  2391   bool new_phi_created;
  2392   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
  2393   if (!new_phi_created) {
  2394     return result;
  2396   GrowableArray<PhiNode *>  phi_list;
  2397   GrowableArray<uint>  cur_input;
  2398   PhiNode *phi = orig_phi;
  2399   uint idx = 1;
  2400   bool finished = false;
  2401   while(!finished) {
  2402     while (idx < phi->req()) {
  2403       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
  2404       if (mem != NULL && mem->is_Phi()) {
  2405         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
  2406         if (new_phi_created) {
  2407           // found an phi for which we created a new split, push current one on worklist and begin
  2408           // processing new one
  2409           phi_list.push(phi);
  2410           cur_input.push(idx);
  2411           phi = mem->as_Phi();
  2412           result = newphi;
  2413           idx = 1;
  2414           continue;
  2415         } else {
  2416           mem = newphi;
  2419       if (C->failing()) {
  2420         return NULL;
  2422       result->set_req(idx++, mem);
  2424 #ifdef ASSERT
  2425     // verify that the new Phi has an input for each input of the original
  2426     assert( phi->req() == result->req(), "must have same number of inputs.");
  2427     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
  2428 #endif
  2429     // Check if all new phi's inputs have specified alias index.
  2430     // Otherwise use old phi.
  2431     for (uint i = 1; i < phi->req(); i++) {
  2432       Node* in = result->in(i);
  2433       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
  2435     // we have finished processing a Phi, see if there are any more to do
  2436     finished = (phi_list.length() == 0 );
  2437     if (!finished) {
  2438       phi = phi_list.pop();
  2439       idx = cur_input.pop();
  2440       PhiNode *prev_result = get_map_phi(phi->_idx);
  2441       prev_result->set_req(idx++, result);
  2442       result = prev_result;
  2445   return result;
  2448 //
  2449 // The next methods are derived from methods in MemNode.
  2450 //
  2451 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
  2452   Node *mem = mmem;
  2453   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
  2454   // means an array I have not precisely typed yet.  Do not do any
  2455   // alias stuff with it any time soon.
  2456   if (toop->base() != Type::AnyPtr &&
  2457       !(toop->klass() != NULL &&
  2458         toop->klass()->is_java_lang_Object() &&
  2459         toop->offset() == Type::OffsetBot)) {
  2460     mem = mmem->memory_at(alias_idx);
  2461     // Update input if it is progress over what we have now
  2463   return mem;
  2466 //
  2467 // Move memory users to their memory slices.
  2468 //
  2469 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
  2470   Compile* C = _compile;
  2471   PhaseGVN* igvn = _igvn;
  2472   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
  2473   assert(tp != NULL, "ptr type");
  2474   int alias_idx = C->get_alias_index(tp);
  2475   int general_idx = C->get_general_index(alias_idx);
  2477   // Move users first
  2478   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2479     Node* use = n->fast_out(i);
  2480     if (use->is_MergeMem()) {
  2481       MergeMemNode* mmem = use->as_MergeMem();
  2482       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
  2483       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
  2484         continue; // Nothing to do
  2486       // Replace previous general reference to mem node.
  2487       uint orig_uniq = C->unique();
  2488       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2489       assert(orig_uniq == C->unique(), "no new nodes");
  2490       mmem->set_memory_at(general_idx, m);
  2491       --imax;
  2492       --i;
  2493     } else if (use->is_MemBar()) {
  2494       assert(!use->is_Initialize(), "initializing stores should not be moved");
  2495       if (use->req() > MemBarNode::Precedent &&
  2496           use->in(MemBarNode::Precedent) == n) {
  2497         // Don't move related membars.
  2498         record_for_optimizer(use);
  2499         continue;
  2501       tp = use->as_MemBar()->adr_type()->isa_ptr();
  2502       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
  2503           alias_idx == general_idx) {
  2504         continue; // Nothing to do
  2506       // Move to general memory slice.
  2507       uint orig_uniq = C->unique();
  2508       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2509       assert(orig_uniq == C->unique(), "no new nodes");
  2510       igvn->hash_delete(use);
  2511       imax -= use->replace_edge(n, m);
  2512       igvn->hash_insert(use);
  2513       record_for_optimizer(use);
  2514       --i;
  2515 #ifdef ASSERT
  2516     } else if (use->is_Mem()) {
  2517       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
  2518         // Don't move related cardmark.
  2519         continue;
  2521       // Memory nodes should have new memory input.
  2522       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
  2523       assert(tp != NULL, "ptr type");
  2524       int idx = C->get_alias_index(tp);
  2525       assert(get_map(use->_idx) != NULL || idx == alias_idx,
  2526              "Following memory nodes should have new memory input or be on the same memory slice");
  2527     } else if (use->is_Phi()) {
  2528       // Phi nodes should be split and moved already.
  2529       tp = use->as_Phi()->adr_type()->isa_ptr();
  2530       assert(tp != NULL, "ptr type");
  2531       int idx = C->get_alias_index(tp);
  2532       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
  2533     } else {
  2534       use->dump();
  2535       assert(false, "should not be here");
  2536 #endif
  2541 //
  2542 // Search memory chain of "mem" to find a MemNode whose address
  2543 // is the specified alias index.
  2544 //
  2545 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
  2546   if (orig_mem == NULL)
  2547     return orig_mem;
  2548   Compile* C = _compile;
  2549   PhaseGVN* igvn = _igvn;
  2550   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
  2551   bool is_instance = (toop != NULL) && toop->is_known_instance();
  2552   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
  2553   Node *prev = NULL;
  2554   Node *result = orig_mem;
  2555   while (prev != result) {
  2556     prev = result;
  2557     if (result == start_mem)
  2558       break;  // hit one of our sentinels
  2559     if (result->is_Mem()) {
  2560       const Type *at = igvn->type(result->in(MemNode::Address));
  2561       if (at == Type::TOP)
  2562         break; // Dead
  2563       assert (at->isa_ptr() != NULL, "pointer type required.");
  2564       int idx = C->get_alias_index(at->is_ptr());
  2565       if (idx == alias_idx)
  2566         break; // Found
  2567       if (!is_instance && (at->isa_oopptr() == NULL ||
  2568                            !at->is_oopptr()->is_known_instance())) {
  2569         break; // Do not skip store to general memory slice.
  2571       result = result->in(MemNode::Memory);
  2573     if (!is_instance)
  2574       continue;  // don't search further for non-instance types
  2575     // skip over a call which does not affect this memory slice
  2576     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
  2577       Node *proj_in = result->in(0);
  2578       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
  2579         break;  // hit one of our sentinels
  2580       } else if (proj_in->is_Call()) {
  2581         CallNode *call = proj_in->as_Call();
  2582         if (!call->may_modify(toop, igvn)) {
  2583           result = call->in(TypeFunc::Memory);
  2585       } else if (proj_in->is_Initialize()) {
  2586         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
  2587         // Stop if this is the initialization for the object instance which
  2588         // which contains this memory slice, otherwise skip over it.
  2589         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
  2590           result = proj_in->in(TypeFunc::Memory);
  2592       } else if (proj_in->is_MemBar()) {
  2593         result = proj_in->in(TypeFunc::Memory);
  2595     } else if (result->is_MergeMem()) {
  2596       MergeMemNode *mmem = result->as_MergeMem();
  2597       result = step_through_mergemem(mmem, alias_idx, toop);
  2598       if (result == mmem->base_memory()) {
  2599         // Didn't find instance memory, search through general slice recursively.
  2600         result = mmem->memory_at(C->get_general_index(alias_idx));
  2601         result = find_inst_mem(result, alias_idx, orig_phis);
  2602         if (C->failing()) {
  2603           return NULL;
  2605         mmem->set_memory_at(alias_idx, result);
  2607     } else if (result->is_Phi() &&
  2608                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
  2609       Node *un = result->as_Phi()->unique_input(igvn);
  2610       if (un != NULL) {
  2611         orig_phis.append_if_missing(result->as_Phi());
  2612         result = un;
  2613       } else {
  2614         break;
  2616     } else if (result->is_ClearArray()) {
  2617       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
  2618         // Can not bypass initialization of the instance
  2619         // we are looking for.
  2620         break;
  2622       // Otherwise skip it (the call updated 'result' value).
  2623     } else if (result->Opcode() == Op_SCMemProj) {
  2624       Node* mem = result->in(0);
  2625       Node* adr = NULL;
  2626       if (mem->is_LoadStore()) {
  2627         adr = mem->in(MemNode::Address);
  2628       } else {
  2629         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
  2630         adr = mem->in(3); // Memory edge corresponds to destination array
  2632       const Type *at = igvn->type(adr);
  2633       if (at != Type::TOP) {
  2634         assert (at->isa_ptr() != NULL, "pointer type required.");
  2635         int idx = C->get_alias_index(at->is_ptr());
  2636         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
  2637         break;
  2639       result = mem->in(MemNode::Memory);
  2642   if (result->is_Phi()) {
  2643     PhiNode *mphi = result->as_Phi();
  2644     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
  2645     const TypePtr *t = mphi->adr_type();
  2646     if (!is_instance) {
  2647       // Push all non-instance Phis on the orig_phis worklist to update inputs
  2648       // during Phase 4 if needed.
  2649       orig_phis.append_if_missing(mphi);
  2650     } else if (C->get_alias_index(t) != alias_idx) {
  2651       // Create a new Phi with the specified alias index type.
  2652       result = split_memory_phi(mphi, alias_idx, orig_phis);
  2655   // the result is either MemNode, PhiNode, InitializeNode.
  2656   return result;
  2659 //
  2660 //  Convert the types of unescaped object to instance types where possible,
  2661 //  propagate the new type information through the graph, and update memory
  2662 //  edges and MergeMem inputs to reflect the new type.
  2663 //
  2664 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
  2665 //  The processing is done in 4 phases:
  2666 //
  2667 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
  2668 //            types for the CheckCastPP for allocations where possible.
  2669 //            Propagate the the new types through users as follows:
  2670 //               casts and Phi:  push users on alloc_worklist
  2671 //               AddP:  cast Base and Address inputs to the instance type
  2672 //                      push any AddP users on alloc_worklist and push any memnode
  2673 //                      users onto memnode_worklist.
  2674 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  2675 //            search the Memory chain for a store with the appropriate type
  2676 //            address type.  If a Phi is found, create a new version with
  2677 //            the appropriate memory slices from each of the Phi inputs.
  2678 //            For stores, process the users as follows:
  2679 //               MemNode:  push on memnode_worklist
  2680 //               MergeMem: push on mergemem_worklist
  2681 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
  2682 //            moving the first node encountered of each  instance type to the
  2683 //            the input corresponding to its alias index.
  2684 //            appropriate memory slice.
  2685 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
  2686 //
  2687 // In the following example, the CheckCastPP nodes are the cast of allocation
  2688 // results and the allocation of node 29 is unescaped and eligible to be an
  2689 // instance type.
  2690 //
  2691 // We start with:
  2692 //
  2693 //     7 Parm #memory
  2694 //    10  ConI  "12"
  2695 //    19  CheckCastPP   "Foo"
  2696 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2697 //    29  CheckCastPP   "Foo"
  2698 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
  2699 //
  2700 //    40  StoreP  25   7  20   ... alias_index=4
  2701 //    50  StoreP  35  40  30   ... alias_index=4
  2702 //    60  StoreP  45  50  20   ... alias_index=4
  2703 //    70  LoadP    _  60  30   ... alias_index=4
  2704 //    80  Phi     75  50  60   Memory alias_index=4
  2705 //    90  LoadP    _  80  30   ... alias_index=4
  2706 //   100  LoadP    _  80  20   ... alias_index=4
  2707 //
  2708 //
  2709 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
  2710 // and creating a new alias index for node 30.  This gives:
  2711 //
  2712 //     7 Parm #memory
  2713 //    10  ConI  "12"
  2714 //    19  CheckCastPP   "Foo"
  2715 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2716 //    29  CheckCastPP   "Foo"  iid=24
  2717 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2718 //
  2719 //    40  StoreP  25   7  20   ... alias_index=4
  2720 //    50  StoreP  35  40  30   ... alias_index=6
  2721 //    60  StoreP  45  50  20   ... alias_index=4
  2722 //    70  LoadP    _  60  30   ... alias_index=6
  2723 //    80  Phi     75  50  60   Memory alias_index=4
  2724 //    90  LoadP    _  80  30   ... alias_index=6
  2725 //   100  LoadP    _  80  20   ... alias_index=4
  2726 //
  2727 // In phase 2, new memory inputs are computed for the loads and stores,
  2728 // And a new version of the phi is created.  In phase 4, the inputs to
  2729 // node 80 are updated and then the memory nodes are updated with the
  2730 // values computed in phase 2.  This results in:
  2731 //
  2732 //     7 Parm #memory
  2733 //    10  ConI  "12"
  2734 //    19  CheckCastPP   "Foo"
  2735 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2736 //    29  CheckCastPP   "Foo"  iid=24
  2737 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2738 //
  2739 //    40  StoreP  25  7   20   ... alias_index=4
  2740 //    50  StoreP  35  7   30   ... alias_index=6
  2741 //    60  StoreP  45  40  20   ... alias_index=4
  2742 //    70  LoadP    _  50  30   ... alias_index=6
  2743 //    80  Phi     75  40  60   Memory alias_index=4
  2744 //   120  Phi     75  50  50   Memory alias_index=6
  2745 //    90  LoadP    _ 120  30   ... alias_index=6
  2746 //   100  LoadP    _  80  20   ... alias_index=4
  2747 //
  2748 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
  2749   GrowableArray<Node *>  memnode_worklist;
  2750   GrowableArray<PhiNode *>  orig_phis;
  2751   PhaseIterGVN  *igvn = _igvn;
  2752   uint new_index_start = (uint) _compile->num_alias_types();
  2753   Arena* arena = Thread::current()->resource_area();
  2754   VectorSet visited(arena);
  2755   ideal_nodes.clear(); // Reset for use with set_map/get_map.
  2756   uint unique_old = _compile->unique();
  2758   //  Phase 1:  Process possible allocations from alloc_worklist.
  2759   //  Create instance types for the CheckCastPP for allocations where possible.
  2760   //
  2761   // (Note: don't forget to change the order of the second AddP node on
  2762   //  the alloc_worklist if the order of the worklist processing is changed,
  2763   //  see the comment in find_second_addp().)
  2764   //
  2765   while (alloc_worklist.length() != 0) {
  2766     Node *n = alloc_worklist.pop();
  2767     uint ni = n->_idx;
  2768     if (n->is_Call()) {
  2769       CallNode *alloc = n->as_Call();
  2770       // copy escape information to call node
  2771       PointsToNode* ptn = ptnode_adr(alloc->_idx);
  2772       PointsToNode::EscapeState es = ptn->escape_state();
  2773       // We have an allocation or call which returns a Java object,
  2774       // see if it is unescaped.
  2775       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
  2776         continue;
  2777       // Find CheckCastPP for the allocate or for the return value of a call
  2778       n = alloc->result_cast();
  2779       if (n == NULL) {            // No uses except Initialize node
  2780         if (alloc->is_Allocate()) {
  2781           // Set the scalar_replaceable flag for allocation
  2782           // so it could be eliminated if it has no uses.
  2783           alloc->as_Allocate()->_is_scalar_replaceable = true;
  2785         if (alloc->is_CallStaticJava()) {
  2786           // Set the scalar_replaceable flag for boxing method
  2787           // so it could be eliminated if it has no uses.
  2788           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
  2790         continue;
  2792       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
  2793         assert(!alloc->is_Allocate(), "allocation should have unique type");
  2794         continue;
  2797       // The inline code for Object.clone() casts the allocation result to
  2798       // java.lang.Object and then to the actual type of the allocated
  2799       // object. Detect this case and use the second cast.
  2800       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
  2801       // the allocation result is cast to java.lang.Object and then
  2802       // to the actual Array type.
  2803       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
  2804           && (alloc->is_AllocateArray() ||
  2805               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
  2806         Node *cast2 = NULL;
  2807         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2808           Node *use = n->fast_out(i);
  2809           if (use->is_CheckCastPP()) {
  2810             cast2 = use;
  2811             break;
  2814         if (cast2 != NULL) {
  2815           n = cast2;
  2816         } else {
  2817           // Non-scalar replaceable if the allocation type is unknown statically
  2818           // (reflection allocation), the object can't be restored during
  2819           // deoptimization without precise type.
  2820           continue;
  2823       if (alloc->is_Allocate()) {
  2824         // Set the scalar_replaceable flag for allocation
  2825         // so it could be eliminated.
  2826         alloc->as_Allocate()->_is_scalar_replaceable = true;
  2828       if (alloc->is_CallStaticJava()) {
  2829         // Set the scalar_replaceable flag for boxing method
  2830         // so it could be eliminated.
  2831         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
  2833       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
  2834       // in order for an object to be scalar-replaceable, it must be:
  2835       //   - a direct allocation (not a call returning an object)
  2836       //   - non-escaping
  2837       //   - eligible to be a unique type
  2838       //   - not determined to be ineligible by escape analysis
  2839       set_map(alloc, n);
  2840       set_map(n, alloc);
  2841       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
  2842       if (t == NULL)
  2843         continue;  // not a TypeOopPtr
  2844       const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
  2845       igvn->hash_delete(n);
  2846       igvn->set_type(n,  tinst);
  2847       n->raise_bottom_type(tinst);
  2848       igvn->hash_insert(n);
  2849       record_for_optimizer(n);
  2850       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
  2852         // First, put on the worklist all Field edges from Connection Graph
  2853         // which is more accurate then putting immediate users from Ideal Graph.
  2854         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
  2855           PointsToNode* tgt = e.get();
  2856           Node* use = tgt->ideal_node();
  2857           assert(tgt->is_Field() && use->is_AddP(),
  2858                  "only AddP nodes are Field edges in CG");
  2859           if (use->outcnt() > 0) { // Don't process dead nodes
  2860             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
  2861             if (addp2 != NULL) {
  2862               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2863               alloc_worklist.append_if_missing(addp2);
  2865             alloc_worklist.append_if_missing(use);
  2869         // An allocation may have an Initialize which has raw stores. Scan
  2870         // the users of the raw allocation result and push AddP users
  2871         // on alloc_worklist.
  2872         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
  2873         assert (raw_result != NULL, "must have an allocation result");
  2874         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
  2875           Node *use = raw_result->fast_out(i);
  2876           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
  2877             Node* addp2 = find_second_addp(use, raw_result);
  2878             if (addp2 != NULL) {
  2879               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2880               alloc_worklist.append_if_missing(addp2);
  2882             alloc_worklist.append_if_missing(use);
  2883           } else if (use->is_MemBar()) {
  2884             memnode_worklist.append_if_missing(use);
  2888     } else if (n->is_AddP()) {
  2889       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
  2890       if (jobj == NULL || jobj == phantom_obj) {
  2891 #ifdef ASSERT
  2892         ptnode_adr(get_addp_base(n)->_idx)->dump();
  2893         ptnode_adr(n->_idx)->dump();
  2894         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2895 #endif
  2896         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2897         return;
  2899       Node *base = get_map(jobj->idx());  // CheckCastPP node
  2900       if (!split_AddP(n, base)) continue; // wrong type from dead path
  2901     } else if (n->is_Phi() ||
  2902                n->is_CheckCastPP() ||
  2903                n->is_EncodeP() ||
  2904                n->is_DecodeN() ||
  2905                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
  2906       if (visited.test_set(n->_idx)) {
  2907         assert(n->is_Phi(), "loops only through Phi's");
  2908         continue;  // already processed
  2910       JavaObjectNode* jobj = unique_java_object(n);
  2911       if (jobj == NULL || jobj == phantom_obj) {
  2912 #ifdef ASSERT
  2913         ptnode_adr(n->_idx)->dump();
  2914         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2915 #endif
  2916         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2917         return;
  2918       } else {
  2919         Node *val = get_map(jobj->idx());   // CheckCastPP node
  2920         TypeNode *tn = n->as_Type();
  2921         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
  2922         assert(tinst != NULL && tinst->is_known_instance() &&
  2923                tinst->instance_id() == jobj->idx() , "instance type expected.");
  2925         const Type *tn_type = igvn->type(tn);
  2926         const TypeOopPtr *tn_t;
  2927         if (tn_type->isa_narrowoop()) {
  2928           tn_t = tn_type->make_ptr()->isa_oopptr();
  2929         } else {
  2930           tn_t = tn_type->isa_oopptr();
  2932         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
  2933           if (tn_type->isa_narrowoop()) {
  2934             tn_type = tinst->make_narrowoop();
  2935           } else {
  2936             tn_type = tinst;
  2938           igvn->hash_delete(tn);
  2939           igvn->set_type(tn, tn_type);
  2940           tn->set_type(tn_type);
  2941           igvn->hash_insert(tn);
  2942           record_for_optimizer(n);
  2943         } else {
  2944           assert(tn_type == TypePtr::NULL_PTR ||
  2945                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
  2946                  "unexpected type");
  2947           continue; // Skip dead path with different type
  2950     } else {
  2951       debug_only(n->dump();)
  2952       assert(false, "EA: unexpected node");
  2953       continue;
  2955     // push allocation's users on appropriate worklist
  2956     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2957       Node *use = n->fast_out(i);
  2958       if(use->is_Mem() && use->in(MemNode::Address) == n) {
  2959         // Load/store to instance's field
  2960         memnode_worklist.append_if_missing(use);
  2961       } else if (use->is_MemBar()) {
  2962         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
  2963           memnode_worklist.append_if_missing(use);
  2965       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
  2966         Node* addp2 = find_second_addp(use, n);
  2967         if (addp2 != NULL) {
  2968           alloc_worklist.append_if_missing(addp2);
  2970         alloc_worklist.append_if_missing(use);
  2971       } else if (use->is_Phi() ||
  2972                  use->is_CheckCastPP() ||
  2973                  use->is_EncodeNarrowPtr() ||
  2974                  use->is_DecodeNarrowPtr() ||
  2975                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
  2976         alloc_worklist.append_if_missing(use);
  2977 #ifdef ASSERT
  2978       } else if (use->is_Mem()) {
  2979         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
  2980       } else if (use->is_MergeMem()) {
  2981         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  2982       } else if (use->is_SafePoint()) {
  2983         // Look for MergeMem nodes for calls which reference unique allocation
  2984         // (through CheckCastPP nodes) even for debug info.
  2985         Node* m = use->in(TypeFunc::Memory);
  2986         if (m->is_MergeMem()) {
  2987           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  2989       } else if (use->Opcode() == Op_EncodeISOArray) {
  2990         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
  2991           // EncodeISOArray overwrites destination array
  2992           memnode_worklist.append_if_missing(use);
  2994       } else {
  2995         uint op = use->Opcode();
  2996         if (!(op == Op_CmpP || op == Op_Conv2B ||
  2997               op == Op_CastP2X || op == Op_StoreCM ||
  2998               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
  2999               op == Op_StrEquals || op == Op_StrIndexOf)) {
  3000           n->dump();
  3001           use->dump();
  3002           assert(false, "EA: missing allocation reference path");
  3004 #endif
  3009   // New alias types were created in split_AddP().
  3010   uint new_index_end = (uint) _compile->num_alias_types();
  3011   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
  3013   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  3014   //            compute new values for Memory inputs  (the Memory inputs are not
  3015   //            actually updated until phase 4.)
  3016   if (memnode_worklist.length() == 0)
  3017     return;  // nothing to do
  3018   while (memnode_worklist.length() != 0) {
  3019     Node *n = memnode_worklist.pop();
  3020     if (visited.test_set(n->_idx))
  3021       continue;
  3022     if (n->is_Phi() || n->is_ClearArray()) {
  3023       // we don't need to do anything, but the users must be pushed
  3024     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
  3025       // we don't need to do anything, but the users must be pushed
  3026       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
  3027       if (n == NULL)
  3028         continue;
  3029     } else if (n->Opcode() == Op_EncodeISOArray) {
  3030       // get the memory projection
  3031       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3032         Node *use = n->fast_out(i);
  3033         if (use->Opcode() == Op_SCMemProj) {
  3034           n = use;
  3035           break;
  3038       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  3039     } else {
  3040       assert(n->is_Mem(), "memory node required.");
  3041       Node *addr = n->in(MemNode::Address);
  3042       const Type *addr_t = igvn->type(addr);
  3043       if (addr_t == Type::TOP)
  3044         continue;
  3045       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
  3046       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
  3047       assert ((uint)alias_idx < new_index_end, "wrong alias index");
  3048       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
  3049       if (_compile->failing()) {
  3050         return;
  3052       if (mem != n->in(MemNode::Memory)) {
  3053         // We delay the memory edge update since we need old one in
  3054         // MergeMem code below when instances memory slices are separated.
  3055         set_map(n, mem);
  3057       if (n->is_Load()) {
  3058         continue;  // don't push users
  3059       } else if (n->is_LoadStore()) {
  3060         // get the memory projection
  3061         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3062           Node *use = n->fast_out(i);
  3063           if (use->Opcode() == Op_SCMemProj) {
  3064             n = use;
  3065             break;
  3068         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  3071     // push user on appropriate worklist
  3072     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3073       Node *use = n->fast_out(i);
  3074       if (use->is_Phi() || use->is_ClearArray()) {
  3075         memnode_worklist.append_if_missing(use);
  3076       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
  3077         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
  3078           continue;
  3079         memnode_worklist.append_if_missing(use);
  3080       } else if (use->is_MemBar()) {
  3081         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
  3082           memnode_worklist.append_if_missing(use);
  3084 #ifdef ASSERT
  3085       } else if(use->is_Mem()) {
  3086         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
  3087       } else if (use->is_MergeMem()) {
  3088         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3089       } else if (use->Opcode() == Op_EncodeISOArray) {
  3090         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
  3091           // EncodeISOArray overwrites destination array
  3092           memnode_worklist.append_if_missing(use);
  3094       } else {
  3095         uint op = use->Opcode();
  3096         if (!(op == Op_StoreCM ||
  3097               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
  3098                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
  3099               op == Op_AryEq || op == Op_StrComp ||
  3100               op == Op_StrEquals || op == Op_StrIndexOf)) {
  3101           n->dump();
  3102           use->dump();
  3103           assert(false, "EA: missing memory path");
  3105 #endif
  3110   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  3111   //            Walk each memory slice moving the first node encountered of each
  3112   //            instance type to the the input corresponding to its alias index.
  3113   uint length = _mergemem_worklist.length();
  3114   for( uint next = 0; next < length; ++next ) {
  3115     MergeMemNode* nmm = _mergemem_worklist.at(next);
  3116     assert(!visited.test_set(nmm->_idx), "should not be visited before");
  3117     // Note: we don't want to use MergeMemStream here because we only want to
  3118     // scan inputs which exist at the start, not ones we add during processing.
  3119     // Note 2: MergeMem may already contains instance memory slices added
  3120     // during find_inst_mem() call when memory nodes were processed above.
  3121     igvn->hash_delete(nmm);
  3122     uint nslices = nmm->req();
  3123     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  3124       Node* mem = nmm->in(i);
  3125       Node* cur = NULL;
  3126       if (mem == NULL || mem->is_top())
  3127         continue;
  3128       // First, update mergemem by moving memory nodes to corresponding slices
  3129       // if their type became more precise since this mergemem was created.
  3130       while (mem->is_Mem()) {
  3131         const Type *at = igvn->type(mem->in(MemNode::Address));
  3132         if (at != Type::TOP) {
  3133           assert (at->isa_ptr() != NULL, "pointer type required.");
  3134           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
  3135           if (idx == i) {
  3136             if (cur == NULL)
  3137               cur = mem;
  3138           } else {
  3139             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
  3140               nmm->set_memory_at(idx, mem);
  3144         mem = mem->in(MemNode::Memory);
  3146       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  3147       // Find any instance of the current type if we haven't encountered
  3148       // already a memory slice of the instance along the memory chain.
  3149       for (uint ni = new_index_start; ni < new_index_end; ni++) {
  3150         if((uint)_compile->get_general_index(ni) == i) {
  3151           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  3152           if (nmm->is_empty_memory(m)) {
  3153             Node* result = find_inst_mem(mem, ni, orig_phis);
  3154             if (_compile->failing()) {
  3155               return;
  3157             nmm->set_memory_at(ni, result);
  3162     // Find the rest of instances values
  3163     for (uint ni = new_index_start; ni < new_index_end; ni++) {
  3164       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
  3165       Node* result = step_through_mergemem(nmm, ni, tinst);
  3166       if (result == nmm->base_memory()) {
  3167         // Didn't find instance memory, search through general slice recursively.
  3168         result = nmm->memory_at(_compile->get_general_index(ni));
  3169         result = find_inst_mem(result, ni, orig_phis);
  3170         if (_compile->failing()) {
  3171           return;
  3173         nmm->set_memory_at(ni, result);
  3176     igvn->hash_insert(nmm);
  3177     record_for_optimizer(nmm);
  3180   //  Phase 4:  Update the inputs of non-instance memory Phis and
  3181   //            the Memory input of memnodes
  3182   // First update the inputs of any non-instance Phi's from
  3183   // which we split out an instance Phi.  Note we don't have
  3184   // to recursively process Phi's encounted on the input memory
  3185   // chains as is done in split_memory_phi() since they  will
  3186   // also be processed here.
  3187   for (int j = 0; j < orig_phis.length(); j++) {
  3188     PhiNode *phi = orig_phis.at(j);
  3189     int alias_idx = _compile->get_alias_index(phi->adr_type());
  3190     igvn->hash_delete(phi);
  3191     for (uint i = 1; i < phi->req(); i++) {
  3192       Node *mem = phi->in(i);
  3193       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
  3194       if (_compile->failing()) {
  3195         return;
  3197       if (mem != new_mem) {
  3198         phi->set_req(i, new_mem);
  3201     igvn->hash_insert(phi);
  3202     record_for_optimizer(phi);
  3205   // Update the memory inputs of MemNodes with the value we computed
  3206   // in Phase 2 and move stores memory users to corresponding memory slices.
  3207   // Disable memory split verification code until the fix for 6984348.
  3208   // Currently it produces false negative results since it does not cover all cases.
  3209 #if 0 // ifdef ASSERT
  3210   visited.Reset();
  3211   Node_Stack old_mems(arena, _compile->unique() >> 2);
  3212 #endif
  3213   for (uint i = 0; i < ideal_nodes.size(); i++) {
  3214     Node*    n = ideal_nodes.at(i);
  3215     Node* nmem = get_map(n->_idx);
  3216     assert(nmem != NULL, "sanity");
  3217     if (n->is_Mem()) {
  3218 #if 0 // ifdef ASSERT
  3219       Node* old_mem = n->in(MemNode::Memory);
  3220       if (!visited.test_set(old_mem->_idx)) {
  3221         old_mems.push(old_mem, old_mem->outcnt());
  3223 #endif
  3224       assert(n->in(MemNode::Memory) != nmem, "sanity");
  3225       if (!n->is_Load()) {
  3226         // Move memory users of a store first.
  3227         move_inst_mem(n, orig_phis);
  3229       // Now update memory input
  3230       igvn->hash_delete(n);
  3231       n->set_req(MemNode::Memory, nmem);
  3232       igvn->hash_insert(n);
  3233       record_for_optimizer(n);
  3234     } else {
  3235       assert(n->is_Allocate() || n->is_CheckCastPP() ||
  3236              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
  3239 #if 0 // ifdef ASSERT
  3240   // Verify that memory was split correctly
  3241   while (old_mems.is_nonempty()) {
  3242     Node* old_mem = old_mems.node();
  3243     uint  old_cnt = old_mems.index();
  3244     old_mems.pop();
  3245     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
  3247 #endif
  3250 #ifndef PRODUCT
  3251 static const char *node_type_names[] = {
  3252   "UnknownType",
  3253   "JavaObject",
  3254   "LocalVar",
  3255   "Field",
  3256   "Arraycopy"
  3257 };
  3259 static const char *esc_names[] = {
  3260   "UnknownEscape",
  3261   "NoEscape",
  3262   "ArgEscape",
  3263   "GlobalEscape"
  3264 };
  3266 void PointsToNode::dump(bool print_state) const {
  3267   NodeType nt = node_type();
  3268   tty->print("%s ", node_type_names[(int) nt]);
  3269   if (print_state) {
  3270     EscapeState es = escape_state();
  3271     EscapeState fields_es = fields_escape_state();
  3272     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
  3273     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
  3274       tty->print("NSR ");
  3276   if (is_Field()) {
  3277     FieldNode* f = (FieldNode*)this;
  3278     if (f->is_oop())
  3279       tty->print("oop ");
  3280     if (f->offset() > 0)
  3281       tty->print("+%d ", f->offset());
  3282     tty->print("(");
  3283     for (BaseIterator i(f); i.has_next(); i.next()) {
  3284       PointsToNode* b = i.get();
  3285       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
  3287     tty->print(" )");
  3289   tty->print("[");
  3290   for (EdgeIterator i(this); i.has_next(); i.next()) {
  3291     PointsToNode* e = i.get();
  3292     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
  3294   tty->print(" [");
  3295   for (UseIterator i(this); i.has_next(); i.next()) {
  3296     PointsToNode* u = i.get();
  3297     bool is_base = false;
  3298     if (PointsToNode::is_base_use(u)) {
  3299       is_base = true;
  3300       u = PointsToNode::get_use_node(u)->as_Field();
  3302     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
  3304   tty->print(" ]]  ");
  3305   if (_node == NULL)
  3306     tty->print_cr("<null>");
  3307   else
  3308     _node->dump();
  3311 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
  3312   bool first = true;
  3313   int ptnodes_length = ptnodes_worklist.length();
  3314   for (int i = 0; i < ptnodes_length; i++) {
  3315     PointsToNode *ptn = ptnodes_worklist.at(i);
  3316     if (ptn == NULL || !ptn->is_JavaObject())
  3317       continue;
  3318     PointsToNode::EscapeState es = ptn->escape_state();
  3319     if ((es != PointsToNode::NoEscape) && !Verbose) {
  3320       continue;
  3322     Node* n = ptn->ideal_node();
  3323     if (n->is_Allocate() || (n->is_CallStaticJava() &&
  3324                              n->as_CallStaticJava()->is_boxing_method())) {
  3325       if (first) {
  3326         tty->cr();
  3327         tty->print("======== Connection graph for ");
  3328         _compile->method()->print_short_name();
  3329         tty->cr();
  3330         first = false;
  3332       ptn->dump();
  3333       // Print all locals and fields which reference this allocation
  3334       for (UseIterator j(ptn); j.has_next(); j.next()) {
  3335         PointsToNode* use = j.get();
  3336         if (use->is_LocalVar()) {
  3337           use->dump(Verbose);
  3338         } else if (Verbose) {
  3339           use->dump();
  3342       tty->cr();
  3346 #endif

mercurial