src/share/vm/opto/block.cpp

Wed, 07 Aug 2013 17:56:19 +0200

author
adlertz
date
Wed, 07 Aug 2013 17:56:19 +0200
changeset 5509
d1034bd8cefc
parent 4889
cc32ccaaf47f
child 5539
adb9a7d94cb5
permissions
-rw-r--r--

8022284: Hide internal data structure in PhaseCFG
Summary: Hide private node to block mapping using public interface
Reviewed-by: kvn, roland

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/block.hpp"
    29 #include "opto/cfgnode.hpp"
    30 #include "opto/chaitin.hpp"
    31 #include "opto/loopnode.hpp"
    32 #include "opto/machnode.hpp"
    33 #include "opto/matcher.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/rootnode.hpp"
    36 #include "utilities/copy.hpp"
    38 // Optimization - Graph Style
    41 //-----------------------------------------------------------------------------
    42 void Block_Array::grow( uint i ) {
    43   assert(i >= Max(), "must be an overflow");
    44   debug_only(_limit = i+1);
    45   if( i < _size )  return;
    46   if( !_size ) {
    47     _size = 1;
    48     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
    49     _blocks[0] = NULL;
    50   }
    51   uint old = _size;
    52   while( i >= _size ) _size <<= 1;      // Double to fit
    53   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
    54   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
    55 }
    57 //=============================================================================
    58 void Block_List::remove(uint i) {
    59   assert(i < _cnt, "index out of bounds");
    60   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
    61   pop(); // shrink list by one block
    62 }
    64 void Block_List::insert(uint i, Block *b) {
    65   push(b); // grow list by one block
    66   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
    67   _blocks[i] = b;
    68 }
    70 #ifndef PRODUCT
    71 void Block_List::print() {
    72   for (uint i=0; i < size(); i++) {
    73     tty->print("B%d ", _blocks[i]->_pre_order);
    74   }
    75   tty->print("size = %d\n", size());
    76 }
    77 #endif
    79 //=============================================================================
    81 uint Block::code_alignment() {
    82   // Check for Root block
    83   if (_pre_order == 0) return CodeEntryAlignment;
    84   // Check for Start block
    85   if (_pre_order == 1) return InteriorEntryAlignment;
    86   // Check for loop alignment
    87   if (has_loop_alignment()) return loop_alignment();
    89   return relocInfo::addr_unit(); // no particular alignment
    90 }
    92 uint Block::compute_loop_alignment() {
    93   Node *h = head();
    94   int unit_sz = relocInfo::addr_unit();
    95   if (h->is_Loop() && h->as_Loop()->is_inner_loop())  {
    96     // Pre- and post-loops have low trip count so do not bother with
    97     // NOPs for align loop head.  The constants are hidden from tuning
    98     // but only because my "divide by 4" heuristic surely gets nearly
    99     // all possible gain (a "do not align at all" heuristic has a
   100     // chance of getting a really tiny gain).
   101     if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
   102                                 h->as_CountedLoop()->is_post_loop())) {
   103       return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
   104     }
   105     // Loops with low backedge frequency should not be aligned.
   106     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
   107     if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
   108       return unit_sz; // Loop does not loop, more often than not!
   109     }
   110     return OptoLoopAlignment; // Otherwise align loop head
   111   }
   113   return unit_sz; // no particular alignment
   114 }
   116 //-----------------------------------------------------------------------------
   117 // Compute the size of first 'inst_cnt' instructions in this block.
   118 // Return the number of instructions left to compute if the block has
   119 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
   120 // exceeds OptoLoopAlignment.
   121 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
   122                                     PhaseRegAlloc* ra) {
   123   uint last_inst = _nodes.size();
   124   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
   125     uint inst_size = _nodes[j]->size(ra);
   126     if( inst_size > 0 ) {
   127       inst_cnt--;
   128       uint sz = sum_size + inst_size;
   129       if( sz <= (uint)OptoLoopAlignment ) {
   130         // Compute size of instructions which fit into fetch buffer only
   131         // since all inst_cnt instructions will not fit even if we align them.
   132         sum_size = sz;
   133       } else {
   134         return 0;
   135       }
   136     }
   137   }
   138   return inst_cnt;
   139 }
   141 //-----------------------------------------------------------------------------
   142 uint Block::find_node( const Node *n ) const {
   143   for( uint i = 0; i < _nodes.size(); i++ ) {
   144     if( _nodes[i] == n )
   145       return i;
   146   }
   147   ShouldNotReachHere();
   148   return 0;
   149 }
   151 // Find and remove n from block list
   152 void Block::find_remove( const Node *n ) {
   153   _nodes.remove(find_node(n));
   154 }
   156 //------------------------------is_Empty---------------------------------------
   157 // Return empty status of a block.  Empty blocks contain only the head, other
   158 // ideal nodes, and an optional trailing goto.
   159 int Block::is_Empty() const {
   161   // Root or start block is not considered empty
   162   if (head()->is_Root() || head()->is_Start()) {
   163     return not_empty;
   164   }
   166   int success_result = completely_empty;
   167   int end_idx = _nodes.size()-1;
   169   // Check for ending goto
   170   if ((end_idx > 0) && (_nodes[end_idx]->is_MachGoto())) {
   171     success_result = empty_with_goto;
   172     end_idx--;
   173   }
   175   // Unreachable blocks are considered empty
   176   if (num_preds() <= 1) {
   177     return success_result;
   178   }
   180   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
   181   // turn directly into code, because only MachNodes have non-trivial
   182   // emit() functions.
   183   while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
   184     end_idx--;
   185   }
   187   // No room for any interesting instructions?
   188   if (end_idx == 0) {
   189     return success_result;
   190   }
   192   return not_empty;
   193 }
   195 //------------------------------has_uncommon_code------------------------------
   196 // Return true if the block's code implies that it is likely to be
   197 // executed infrequently.  Check to see if the block ends in a Halt or
   198 // a low probability call.
   199 bool Block::has_uncommon_code() const {
   200   Node* en = end();
   202   if (en->is_MachGoto())
   203     en = en->in(0);
   204   if (en->is_Catch())
   205     en = en->in(0);
   206   if (en->is_MachProj() && en->in(0)->is_MachCall()) {
   207     MachCallNode* call = en->in(0)->as_MachCall();
   208     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
   209       // This is true for slow-path stubs like new_{instance,array},
   210       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
   211       // The magic number corresponds to the probability of an uncommon_trap,
   212       // even though it is a count not a probability.
   213       return true;
   214     }
   215   }
   217   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
   218   return op == Op_Halt;
   219 }
   221 //------------------------------is_uncommon------------------------------------
   222 // True if block is low enough frequency or guarded by a test which
   223 // mostly does not go here.
   224 bool Block::is_uncommon(PhaseCFG* cfg) const {
   225   // Initial blocks must never be moved, so are never uncommon.
   226   if (head()->is_Root() || head()->is_Start())  return false;
   228   // Check for way-low freq
   229   if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
   231   // Look for code shape indicating uncommon_trap or slow path
   232   if (has_uncommon_code()) return true;
   234   const float epsilon = 0.05f;
   235   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
   236   uint uncommon_preds = 0;
   237   uint freq_preds = 0;
   238   uint uncommon_for_freq_preds = 0;
   240   for( uint i=1; i<num_preds(); i++ ) {
   241     Block* guard = cfg->get_block_for_node(pred(i));
   242     // Check to see if this block follows its guard 1 time out of 10000
   243     // or less.
   244     //
   245     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
   246     // we intend to be "uncommon", such as slow-path TLE allocation,
   247     // predicted call failure, and uncommon trap triggers.
   248     //
   249     // Use an epsilon value of 5% to allow for variability in frequency
   250     // predictions and floating point calculations. The net effect is
   251     // that guard_factor is set to 9500.
   252     //
   253     // Ignore low-frequency blocks.
   254     // The next check is (guard->_freq < 1.e-5 * 9500.).
   255     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
   256       uncommon_preds++;
   257     } else {
   258       freq_preds++;
   259       if( _freq < guard->_freq * guard_factor ) {
   260         uncommon_for_freq_preds++;
   261       }
   262     }
   263   }
   264   if( num_preds() > 1 &&
   265       // The block is uncommon if all preds are uncommon or
   266       (uncommon_preds == (num_preds()-1) ||
   267       // it is uncommon for all frequent preds.
   268        uncommon_for_freq_preds == freq_preds) ) {
   269     return true;
   270   }
   271   return false;
   272 }
   274 //------------------------------dump-------------------------------------------
   275 #ifndef PRODUCT
   276 void Block::dump_bidx(const Block* orig, outputStream* st) const {
   277   if (_pre_order) st->print("B%d",_pre_order);
   278   else st->print("N%d", head()->_idx);
   280   if (Verbose && orig != this) {
   281     // Dump the original block's idx
   282     st->print(" (");
   283     orig->dump_bidx(orig, st);
   284     st->print(")");
   285   }
   286 }
   288 void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
   289   if (is_connector()) {
   290     for (uint i=1; i<num_preds(); i++) {
   291       Block *p = cfg->get_block_for_node(pred(i));
   292       p->dump_pred(cfg, orig, st);
   293     }
   294   } else {
   295     dump_bidx(orig, st);
   296     st->print(" ");
   297   }
   298 }
   300 void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
   301   // Print the basic block
   302   dump_bidx(this, st);
   303   st->print(": #\t");
   305   // Print the incoming CFG edges and the outgoing CFG edges
   306   for( uint i=0; i<_num_succs; i++ ) {
   307     non_connector_successor(i)->dump_bidx(_succs[i], st);
   308     st->print(" ");
   309   }
   310   st->print("<- ");
   311   if( head()->is_block_start() ) {
   312     for (uint i=1; i<num_preds(); i++) {
   313       Node *s = pred(i);
   314       if (cfg != NULL) {
   315         Block *p = cfg->get_block_for_node(s);
   316         p->dump_pred(cfg, p, st);
   317       } else {
   318         while (!s->is_block_start())
   319           s = s->in(0);
   320         st->print("N%d ", s->_idx );
   321       }
   322     }
   323   } else {
   324     st->print("BLOCK HEAD IS JUNK  ");
   325   }
   327   // Print loop, if any
   328   const Block *bhead = this;    // Head of self-loop
   329   Node *bh = bhead->head();
   331   if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
   332     LoopNode *loop = bh->as_Loop();
   333     const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
   334     while (bx->is_connector()) {
   335       bx = cfg->get_block_for_node(bx->pred(1));
   336     }
   337     st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
   338     // Dump any loop-specific bits, especially for CountedLoops.
   339     loop->dump_spec(st);
   340   } else if (has_loop_alignment()) {
   341     st->print(" top-of-loop");
   342   }
   343   st->print(" Freq: %g",_freq);
   344   if( Verbose || WizardMode ) {
   345     st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
   346     st->print(" RegPressure: %d",_reg_pressure);
   347     st->print(" IHRP Index: %d",_ihrp_index);
   348     st->print(" FRegPressure: %d",_freg_pressure);
   349     st->print(" FHRP Index: %d",_fhrp_index);
   350   }
   351   st->print_cr("");
   352 }
   354 void Block::dump() const {
   355   dump(NULL);
   356 }
   358 void Block::dump(const PhaseCFG* cfg) const {
   359   dump_head(cfg);
   360   for (uint i=0; i< _nodes.size(); i++) {
   361     _nodes[i]->dump();
   362   }
   363   tty->print("\n");
   364 }
   365 #endif
   367 //=============================================================================
   368 //------------------------------PhaseCFG---------------------------------------
   369 PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
   370 : Phase(CFG)
   371 , _block_arena(arena)
   372 , _node_to_block_mapping(arena)
   373 , _root(root)
   374 , _node_latency(NULL)
   375 #ifndef PRODUCT
   376 , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
   377 #endif
   378 #ifdef ASSERT
   379 , _raw_oops(arena)
   380 #endif
   381 {
   382   ResourceMark rm;
   383   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
   384   // then Match it into a machine-specific Node.  Then clone the machine
   385   // Node on demand.
   386   Node *x = new (C) GotoNode(NULL);
   387   x->init_req(0, x);
   388   _goto = matcher.match_tree(x);
   389   assert(_goto != NULL, "");
   390   _goto->set_req(0,_goto);
   392   // Build the CFG in Reverse Post Order
   393   _num_blocks = build_cfg();
   394   _broot = get_block_for_node(_root);
   395 }
   397 //------------------------------build_cfg--------------------------------------
   398 // Build a proper looking CFG.  Make every block begin with either a StartNode
   399 // or a RegionNode.  Make every block end with either a Goto, If or Return.
   400 // The RootNode both starts and ends it's own block.  Do this with a recursive
   401 // backwards walk over the control edges.
   402 uint PhaseCFG::build_cfg() {
   403   Arena *a = Thread::current()->resource_area();
   404   VectorSet visited(a);
   406   // Allocate stack with enough space to avoid frequent realloc
   407   Node_Stack nstack(a, C->unique() >> 1);
   408   nstack.push(_root, 0);
   409   uint sum = 0;                 // Counter for blocks
   411   while (nstack.is_nonempty()) {
   412     // node and in's index from stack's top
   413     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
   414     // only nodes which point to the start of basic block (see below).
   415     Node *np = nstack.node();
   416     // idx > 0, except for the first node (_root) pushed on stack
   417     // at the beginning when idx == 0.
   418     // We will use the condition (idx == 0) later to end the build.
   419     uint idx = nstack.index();
   420     Node *proj = np->in(idx);
   421     const Node *x = proj->is_block_proj();
   422     // Does the block end with a proper block-ending Node?  One of Return,
   423     // If or Goto? (This check should be done for visited nodes also).
   424     if (x == NULL) {                    // Does not end right...
   425       Node *g = _goto->clone(); // Force it to end in a Goto
   426       g->set_req(0, proj);
   427       np->set_req(idx, g);
   428       x = proj = g;
   429     }
   430     if (!visited.test_set(x->_idx)) { // Visit this block once
   431       // Skip any control-pinned middle'in stuff
   432       Node *p = proj;
   433       do {
   434         proj = p;                   // Update pointer to last Control
   435         p = p->in(0);               // Move control forward
   436       } while( !p->is_block_proj() &&
   437                !p->is_block_start() );
   438       // Make the block begin with one of Region or StartNode.
   439       if( !p->is_block_start() ) {
   440         RegionNode *r = new (C) RegionNode( 2 );
   441         r->init_req(1, p);         // Insert RegionNode in the way
   442         proj->set_req(0, r);        // Insert RegionNode in the way
   443         p = r;
   444       }
   445       // 'p' now points to the start of this basic block
   447       // Put self in array of basic blocks
   448       Block *bb = new (_block_arena) Block(_block_arena, p);
   449       map_node_to_block(p, bb);
   450       map_node_to_block(x, bb);
   451       if( x != p ) {                // Only for root is x == p
   452         bb->_nodes.push((Node*)x);
   453       }
   454       // Now handle predecessors
   455       ++sum;                        // Count 1 for self block
   456       uint cnt = bb->num_preds();
   457       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
   458         Node *prevproj = p->in(i);  // Get prior input
   459         assert( !prevproj->is_Con(), "dead input not removed" );
   460         // Check to see if p->in(i) is a "control-dependent" CFG edge -
   461         // i.e., it splits at the source (via an IF or SWITCH) and merges
   462         // at the destination (via a many-input Region).
   463         // This breaks critical edges.  The RegionNode to start the block
   464         // will be added when <p,i> is pulled off the node stack
   465         if ( cnt > 2 ) {             // Merging many things?
   466           assert( prevproj== bb->pred(i),"");
   467           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
   468             // Force a block on the control-dependent edge
   469             Node *g = _goto->clone();       // Force it to end in a Goto
   470             g->set_req(0,prevproj);
   471             p->set_req(i,g);
   472           }
   473         }
   474         nstack.push(p, i);  // 'p' is RegionNode or StartNode
   475       }
   476     } else { // Post-processing visited nodes
   477       nstack.pop();                 // remove node from stack
   478       // Check if it the fist node pushed on stack at the beginning.
   479       if (idx == 0) break;          // end of the build
   480       // Find predecessor basic block
   481       Block *pb = get_block_for_node(x);
   482       // Insert into nodes array, if not already there
   483       if (!has_block(proj)) {
   484         assert( x != proj, "" );
   485         // Map basic block of projection
   486         map_node_to_block(proj, pb);
   487         pb->_nodes.push(proj);
   488       }
   489       // Insert self as a child of my predecessor block
   490       pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
   491       assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
   492               "too many control users, not a CFG?" );
   493     }
   494   }
   495   // Return number of basic blocks for all children and self
   496   return sum;
   497 }
   499 //------------------------------insert_goto_at---------------------------------
   500 // Inserts a goto & corresponding basic block between
   501 // block[block_no] and its succ_no'th successor block
   502 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
   503   // get block with block_no
   504   assert(block_no < _num_blocks, "illegal block number");
   505   Block* in  = _blocks[block_no];
   506   // get successor block succ_no
   507   assert(succ_no < in->_num_succs, "illegal successor number");
   508   Block* out = in->_succs[succ_no];
   509   // Compute frequency of the new block. Do this before inserting
   510   // new block in case succ_prob() needs to infer the probability from
   511   // surrounding blocks.
   512   float freq = in->_freq * in->succ_prob(succ_no);
   513   // get ProjNode corresponding to the succ_no'th successor of the in block
   514   ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
   515   // create region for basic block
   516   RegionNode* region = new (C) RegionNode(2);
   517   region->init_req(1, proj);
   518   // setup corresponding basic block
   519   Block* block = new (_block_arena) Block(_block_arena, region);
   520   map_node_to_block(region, block);
   521   C->regalloc()->set_bad(region->_idx);
   522   // add a goto node
   523   Node* gto = _goto->clone(); // get a new goto node
   524   gto->set_req(0, region);
   525   // add it to the basic block
   526   block->_nodes.push(gto);
   527   map_node_to_block(gto, block);
   528   C->regalloc()->set_bad(gto->_idx);
   529   // hook up successor block
   530   block->_succs.map(block->_num_succs++, out);
   531   // remap successor's predecessors if necessary
   532   for (uint i = 1; i < out->num_preds(); i++) {
   533     if (out->pred(i) == proj) out->head()->set_req(i, gto);
   534   }
   535   // remap predecessor's successor to new block
   536   in->_succs.map(succ_no, block);
   537   // Set the frequency of the new block
   538   block->_freq = freq;
   539   // add new basic block to basic block list
   540   _blocks.insert(block_no + 1, block);
   541   _num_blocks++;
   542 }
   544 //------------------------------no_flip_branch---------------------------------
   545 // Does this block end in a multiway branch that cannot have the default case
   546 // flipped for another case?
   547 static bool no_flip_branch( Block *b ) {
   548   int branch_idx = b->_nodes.size() - b->_num_succs-1;
   549   if( branch_idx < 1 ) return false;
   550   Node *bra = b->_nodes[branch_idx];
   551   if( bra->is_Catch() )
   552     return true;
   553   if( bra->is_Mach() ) {
   554     if( bra->is_MachNullCheck() )
   555       return true;
   556     int iop = bra->as_Mach()->ideal_Opcode();
   557     if( iop == Op_FastLock || iop == Op_FastUnlock )
   558       return true;
   559   }
   560   return false;
   561 }
   563 //------------------------------convert_NeverBranch_to_Goto--------------------
   564 // Check for NeverBranch at block end.  This needs to become a GOTO to the
   565 // true target.  NeverBranch are treated as a conditional branch that always
   566 // goes the same direction for most of the optimizer and are used to give a
   567 // fake exit path to infinite loops.  At this late stage they need to turn
   568 // into Goto's so that when you enter the infinite loop you indeed hang.
   569 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
   570   // Find true target
   571   int end_idx = b->end_idx();
   572   int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
   573   Block *succ = b->_succs[idx];
   574   Node* gto = _goto->clone(); // get a new goto node
   575   gto->set_req(0, b->head());
   576   Node *bp = b->_nodes[end_idx];
   577   b->_nodes.map(end_idx,gto); // Slam over NeverBranch
   578   map_node_to_block(gto, b);
   579   C->regalloc()->set_bad(gto->_idx);
   580   b->_nodes.pop();              // Yank projections
   581   b->_nodes.pop();              // Yank projections
   582   b->_succs.map(0,succ);        // Map only successor
   583   b->_num_succs = 1;
   584   // remap successor's predecessors if necessary
   585   uint j;
   586   for( j = 1; j < succ->num_preds(); j++)
   587     if( succ->pred(j)->in(0) == bp )
   588       succ->head()->set_req(j, gto);
   589   // Kill alternate exit path
   590   Block *dead = b->_succs[1-idx];
   591   for( j = 1; j < dead->num_preds(); j++)
   592     if( dead->pred(j)->in(0) == bp )
   593       break;
   594   // Scan through block, yanking dead path from
   595   // all regions and phis.
   596   dead->head()->del_req(j);
   597   for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
   598     dead->_nodes[k]->del_req(j);
   599 }
   601 //------------------------------move_to_next-----------------------------------
   602 // Helper function to move block bx to the slot following b_index. Return
   603 // true if the move is successful, otherwise false
   604 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
   605   if (bx == NULL) return false;
   607   // Return false if bx is already scheduled.
   608   uint bx_index = bx->_pre_order;
   609   if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
   610     return false;
   611   }
   613   // Find the current index of block bx on the block list
   614   bx_index = b_index + 1;
   615   while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
   616   assert(_blocks[bx_index] == bx, "block not found");
   618   // If the previous block conditionally falls into bx, return false,
   619   // because moving bx will create an extra jump.
   620   for(uint k = 1; k < bx->num_preds(); k++ ) {
   621     Block* pred = get_block_for_node(bx->pred(k));
   622     if (pred == _blocks[bx_index-1]) {
   623       if (pred->_num_succs != 1) {
   624         return false;
   625       }
   626     }
   627   }
   629   // Reinsert bx just past block 'b'
   630   _blocks.remove(bx_index);
   631   _blocks.insert(b_index + 1, bx);
   632   return true;
   633 }
   635 //------------------------------move_to_end------------------------------------
   636 // Move empty and uncommon blocks to the end.
   637 void PhaseCFG::move_to_end(Block *b, uint i) {
   638   int e = b->is_Empty();
   639   if (e != Block::not_empty) {
   640     if (e == Block::empty_with_goto) {
   641       // Remove the goto, but leave the block.
   642       b->_nodes.pop();
   643     }
   644     // Mark this block as a connector block, which will cause it to be
   645     // ignored in certain functions such as non_connector_successor().
   646     b->set_connector();
   647   }
   648   // Move the empty block to the end, and don't recheck.
   649   _blocks.remove(i);
   650   _blocks.push(b);
   651 }
   653 //---------------------------set_loop_alignment--------------------------------
   654 // Set loop alignment for every block
   655 void PhaseCFG::set_loop_alignment() {
   656   uint last = _num_blocks;
   657   assert( _blocks[0] == _broot, "" );
   659   for (uint i = 1; i < last; i++ ) {
   660     Block *b = _blocks[i];
   661     if (b->head()->is_Loop()) {
   662       b->set_loop_alignment(b);
   663     }
   664   }
   665 }
   667 //-----------------------------remove_empty------------------------------------
   668 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
   669 // to the end.
   670 void PhaseCFG::remove_empty() {
   671   // Move uncommon blocks to the end
   672   uint last = _num_blocks;
   673   assert( _blocks[0] == _broot, "" );
   675   for (uint i = 1; i < last; i++) {
   676     Block *b = _blocks[i];
   677     if (b->is_connector()) break;
   679     // Check for NeverBranch at block end.  This needs to become a GOTO to the
   680     // true target.  NeverBranch are treated as a conditional branch that
   681     // always goes the same direction for most of the optimizer and are used
   682     // to give a fake exit path to infinite loops.  At this late stage they
   683     // need to turn into Goto's so that when you enter the infinite loop you
   684     // indeed hang.
   685     if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
   686       convert_NeverBranch_to_Goto(b);
   688     // Look for uncommon blocks and move to end.
   689     if (!C->do_freq_based_layout()) {
   690       if (b->is_uncommon(this)) {
   691         move_to_end(b, i);
   692         last--;                   // No longer check for being uncommon!
   693         if( no_flip_branch(b) ) { // Fall-thru case must follow?
   694           b = _blocks[i];         // Find the fall-thru block
   695           move_to_end(b, i);
   696           last--;
   697         }
   698         i--;                      // backup block counter post-increment
   699       }
   700     }
   701   }
   703   // Move empty blocks to the end
   704   last = _num_blocks;
   705   for (uint i = 1; i < last; i++) {
   706     Block *b = _blocks[i];
   707     if (b->is_Empty() != Block::not_empty) {
   708       move_to_end(b, i);
   709       last--;
   710       i--;
   711     }
   712   } // End of for all blocks
   713 }
   715 //-----------------------------fixup_flow--------------------------------------
   716 // Fix up the final control flow for basic blocks.
   717 void PhaseCFG::fixup_flow() {
   718   // Fixup final control flow for the blocks.  Remove jump-to-next
   719   // block.  If neither arm of a IF follows the conditional branch, we
   720   // have to add a second jump after the conditional.  We place the
   721   // TRUE branch target in succs[0] for both GOTOs and IFs.
   722   for (uint i=0; i < _num_blocks; i++) {
   723     Block *b = _blocks[i];
   724     b->_pre_order = i;          // turn pre-order into block-index
   726     // Connector blocks need no further processing.
   727     if (b->is_connector()) {
   728       assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(),
   729              "All connector blocks should sink to the end");
   730       continue;
   731     }
   732     assert(b->is_Empty() != Block::completely_empty,
   733            "Empty blocks should be connectors");
   735     Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
   736     Block *bs0 = b->non_connector_successor(0);
   738     // Check for multi-way branches where I cannot negate the test to
   739     // exchange the true and false targets.
   740     if( no_flip_branch( b ) ) {
   741       // Find fall through case - if must fall into its target
   742       int branch_idx = b->_nodes.size() - b->_num_succs;
   743       for (uint j2 = 0; j2 < b->_num_succs; j2++) {
   744         const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
   745         if (p->_con == 0) {
   746           // successor j2 is fall through case
   747           if (b->non_connector_successor(j2) != bnext) {
   748             // but it is not the next block => insert a goto
   749             insert_goto_at(i, j2);
   750           }
   751           // Put taken branch in slot 0
   752           if( j2 == 0 && b->_num_succs == 2) {
   753             // Flip targets in succs map
   754             Block *tbs0 = b->_succs[0];
   755             Block *tbs1 = b->_succs[1];
   756             b->_succs.map( 0, tbs1 );
   757             b->_succs.map( 1, tbs0 );
   758           }
   759           break;
   760         }
   761       }
   762       // Remove all CatchProjs
   763       for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
   765     } else if (b->_num_succs == 1) {
   766       // Block ends in a Goto?
   767       if (bnext == bs0) {
   768         // We fall into next block; remove the Goto
   769         b->_nodes.pop();
   770       }
   772     } else if( b->_num_succs == 2 ) { // Block ends in a If?
   773       // Get opcode of 1st projection (matches _succs[0])
   774       // Note: Since this basic block has 2 exits, the last 2 nodes must
   775       //       be projections (in any order), the 3rd last node must be
   776       //       the IfNode (we have excluded other 2-way exits such as
   777       //       CatchNodes already).
   778       MachNode *iff   = b->_nodes[b->_nodes.size()-3]->as_Mach();
   779       ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
   780       ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
   782       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
   783       assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
   784       assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
   786       Block *bs1 = b->non_connector_successor(1);
   788       // Check for neither successor block following the current
   789       // block ending in a conditional. If so, move one of the
   790       // successors after the current one, provided that the
   791       // successor was previously unscheduled, but moveable
   792       // (i.e., all paths to it involve a branch).
   793       if( !C->do_freq_based_layout() && bnext != bs0 && bnext != bs1 ) {
   794         // Choose the more common successor based on the probability
   795         // of the conditional branch.
   796         Block *bx = bs0;
   797         Block *by = bs1;
   799         // _prob is the probability of taking the true path. Make
   800         // p the probability of taking successor #1.
   801         float p = iff->as_MachIf()->_prob;
   802         if( proj0->Opcode() == Op_IfTrue ) {
   803           p = 1.0 - p;
   804         }
   806         // Prefer successor #1 if p > 0.5
   807         if (p > PROB_FAIR) {
   808           bx = bs1;
   809           by = bs0;
   810         }
   812         // Attempt the more common successor first
   813         if (move_to_next(bx, i)) {
   814           bnext = bx;
   815         } else if (move_to_next(by, i)) {
   816           bnext = by;
   817         }
   818       }
   820       // Check for conditional branching the wrong way.  Negate
   821       // conditional, if needed, so it falls into the following block
   822       // and branches to the not-following block.
   824       // Check for the next block being in succs[0].  We are going to branch
   825       // to succs[0], so we want the fall-thru case as the next block in
   826       // succs[1].
   827       if (bnext == bs0) {
   828         // Fall-thru case in succs[0], so flip targets in succs map
   829         Block *tbs0 = b->_succs[0];
   830         Block *tbs1 = b->_succs[1];
   831         b->_succs.map( 0, tbs1 );
   832         b->_succs.map( 1, tbs0 );
   833         // Flip projection for each target
   834         { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
   836       } else if( bnext != bs1 ) {
   837         // Need a double-branch
   838         // The existing conditional branch need not change.
   839         // Add a unconditional branch to the false target.
   840         // Alas, it must appear in its own block and adding a
   841         // block this late in the game is complicated.  Sigh.
   842         insert_goto_at(i, 1);
   843       }
   845       // Make sure we TRUE branch to the target
   846       if( proj0->Opcode() == Op_IfFalse ) {
   847         iff->as_MachIf()->negate();
   848       }
   850       b->_nodes.pop();          // Remove IfFalse & IfTrue projections
   851       b->_nodes.pop();
   853     } else {
   854       // Multi-exit block, e.g. a switch statement
   855       // But we don't need to do anything here
   856     }
   857   } // End of for all blocks
   858 }
   861 //------------------------------dump-------------------------------------------
   862 #ifndef PRODUCT
   863 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
   864   const Node *x = end->is_block_proj();
   865   assert( x, "not a CFG" );
   867   // Do not visit this block again
   868   if( visited.test_set(x->_idx) ) return;
   870   // Skip through this block
   871   const Node *p = x;
   872   do {
   873     p = p->in(0);               // Move control forward
   874     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
   875   } while( !p->is_block_start() );
   877   // Recursively visit
   878   for (uint i = 1; i < p->req(); i++) {
   879     _dump_cfg(p->in(i), visited);
   880   }
   882   // Dump the block
   883   get_block_for_node(p)->dump(this);
   884 }
   886 void PhaseCFG::dump( ) const {
   887   tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
   888   if (_blocks.size()) {        // Did we do basic-block layout?
   889     for (uint i = 0; i < _num_blocks; i++) {
   890       _blocks[i]->dump(this);
   891     }
   892   } else {                      // Else do it with a DFS
   893     VectorSet visited(_block_arena);
   894     _dump_cfg(_root,visited);
   895   }
   896 }
   898 void PhaseCFG::dump_headers() {
   899   for( uint i = 0; i < _num_blocks; i++ ) {
   900     if (_blocks[i]) {
   901       _blocks[i]->dump_head(this);
   902     }
   903   }
   904 }
   906 void PhaseCFG::verify( ) const {
   907 #ifdef ASSERT
   908   // Verify sane CFG
   909   for (uint i = 0; i < _num_blocks; i++) {
   910     Block *b = _blocks[i];
   911     uint cnt = b->_nodes.size();
   912     uint j;
   913     for (j = 0; j < cnt; j++)  {
   914       Node *n = b->_nodes[j];
   915       assert(get_block_for_node(n) == b, "");
   916       if (j >= 1 && n->is_Mach() &&
   917           n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
   918         assert(j == 1 || b->_nodes[j-1]->is_Phi(),
   919                "CreateEx must be first instruction in block");
   920       }
   921       for (uint k = 0; k < n->req(); k++) {
   922         Node *def = n->in(k);
   923         if (def && def != n) {
   924           assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
   925           // Verify that instructions in the block is in correct order.
   926           // Uses must follow their definition if they are at the same block.
   927           // Mostly done to check that MachSpillCopy nodes are placed correctly
   928           // when CreateEx node is moved in build_ifg_physical().
   929           if (get_block_for_node(def) == b &&
   930               !(b->head()->is_Loop() && n->is_Phi()) &&
   931               // See (+++) comment in reg_split.cpp
   932               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
   933             bool is_loop = false;
   934             if (n->is_Phi()) {
   935               for (uint l = 1; l < def->req(); l++) {
   936                 if (n == def->in(l)) {
   937                   is_loop = true;
   938                   break; // Some kind of loop
   939                 }
   940               }
   941             }
   942             assert(is_loop || b->find_node(def) < j, "uses must follow definitions");
   943           }
   944         }
   945       }
   946     }
   948     j = b->end_idx();
   949     Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
   950     assert( bp, "last instruction must be a block proj" );
   951     assert( bp == b->_nodes[j], "wrong number of successors for this block" );
   952     if (bp->is_Catch()) {
   953       while (b->_nodes[--j]->is_MachProj()) ;
   954       assert(b->_nodes[j]->is_MachCall(), "CatchProj must follow call");
   955     } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
   956       assert(b->_num_succs == 2, "Conditional branch must have two targets");
   957     }
   958   }
   959 #endif
   960 }
   961 #endif
   963 //=============================================================================
   964 //------------------------------UnionFind--------------------------------------
   965 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
   966   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
   967 }
   969 void UnionFind::extend( uint from_idx, uint to_idx ) {
   970   _nesting.check();
   971   if( from_idx >= _max ) {
   972     uint size = 16;
   973     while( size <= from_idx ) size <<=1;
   974     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
   975     _max = size;
   976   }
   977   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
   978   _indices[from_idx] = to_idx;
   979 }
   981 void UnionFind::reset( uint max ) {
   982   assert( max <= max_uint, "Must fit within uint" );
   983   // Force the Union-Find mapping to be at least this large
   984   extend(max,0);
   985   // Initialize to be the ID mapping.
   986   for( uint i=0; i<max; i++ ) map(i,i);
   987 }
   989 //------------------------------Find_compress----------------------------------
   990 // Straight out of Tarjan's union-find algorithm
   991 uint UnionFind::Find_compress( uint idx ) {
   992   uint cur  = idx;
   993   uint next = lookup(cur);
   994   while( next != cur ) {        // Scan chain of equivalences
   995     assert( next < cur, "always union smaller" );
   996     cur = next;                 // until find a fixed-point
   997     next = lookup(cur);
   998   }
   999   // Core of union-find algorithm: update chain of
  1000   // equivalences to be equal to the root.
  1001   while( idx != next ) {
  1002     uint tmp = lookup(idx);
  1003     map(idx, next);
  1004     idx = tmp;
  1006   return idx;
  1009 //------------------------------Find_const-------------------------------------
  1010 // Like Find above, but no path compress, so bad asymptotic behavior
  1011 uint UnionFind::Find_const( uint idx ) const {
  1012   if( idx == 0 ) return idx;    // Ignore the zero idx
  1013   // Off the end?  This can happen during debugging dumps
  1014   // when data structures have not finished being updated.
  1015   if( idx >= _max ) return idx;
  1016   uint next = lookup(idx);
  1017   while( next != idx ) {        // Scan chain of equivalences
  1018     idx = next;                 // until find a fixed-point
  1019     next = lookup(idx);
  1021   return next;
  1024 //------------------------------Union------------------------------------------
  1025 // union 2 sets together.
  1026 void UnionFind::Union( uint idx1, uint idx2 ) {
  1027   uint src = Find(idx1);
  1028   uint dst = Find(idx2);
  1029   assert( src, "" );
  1030   assert( dst, "" );
  1031   assert( src < _max, "oob" );
  1032   assert( dst < _max, "oob" );
  1033   assert( src < dst, "always union smaller" );
  1034   map(dst,src);
  1037 #ifndef PRODUCT
  1038 void Trace::dump( ) const {
  1039   tty->print_cr("Trace (freq %f)", first_block()->_freq);
  1040   for (Block *b = first_block(); b != NULL; b = next(b)) {
  1041     tty->print("  B%d", b->_pre_order);
  1042     if (b->head()->is_Loop()) {
  1043       tty->print(" (L%d)", b->compute_loop_alignment());
  1045     if (b->has_loop_alignment()) {
  1046       tty->print(" (T%d)", b->code_alignment());
  1049   tty->cr();
  1052 void CFGEdge::dump( ) const {
  1053   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
  1054              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
  1055   switch(state()) {
  1056   case connected:
  1057     tty->print("connected");
  1058     break;
  1059   case open:
  1060     tty->print("open");
  1061     break;
  1062   case interior:
  1063     tty->print("interior");
  1064     break;
  1066   if (infrequent()) {
  1067     tty->print("  infrequent");
  1069   tty->cr();
  1071 #endif
  1073 //=============================================================================
  1075 //------------------------------edge_order-------------------------------------
  1076 // Comparison function for edges
  1077 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
  1078   float freq0 = (*e0)->freq();
  1079   float freq1 = (*e1)->freq();
  1080   if (freq0 != freq1) {
  1081     return freq0 > freq1 ? -1 : 1;
  1084   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
  1085   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
  1087   return dist1 - dist0;
  1090 //------------------------------trace_frequency_order--------------------------
  1091 // Comparison function for edges
  1092 extern "C" int trace_frequency_order(const void *p0, const void *p1) {
  1093   Trace *tr0 = *(Trace **) p0;
  1094   Trace *tr1 = *(Trace **) p1;
  1095   Block *b0 = tr0->first_block();
  1096   Block *b1 = tr1->first_block();
  1098   // The trace of connector blocks goes at the end;
  1099   // we only expect one such trace
  1100   if (b0->is_connector() != b1->is_connector()) {
  1101     return b1->is_connector() ? -1 : 1;
  1104   // Pull more frequently executed blocks to the beginning
  1105   float freq0 = b0->_freq;
  1106   float freq1 = b1->_freq;
  1107   if (freq0 != freq1) {
  1108     return freq0 > freq1 ? -1 : 1;
  1111   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
  1113   return diff;
  1116 //------------------------------find_edges-------------------------------------
  1117 // Find edges of interest, i.e, those which can fall through. Presumes that
  1118 // edges which don't fall through are of low frequency and can be generally
  1119 // ignored.  Initialize the list of traces.
  1120 void PhaseBlockLayout::find_edges()
  1122   // Walk the blocks, creating edges and Traces
  1123   uint i;
  1124   Trace *tr = NULL;
  1125   for (i = 0; i < _cfg._num_blocks; i++) {
  1126     Block *b = _cfg._blocks[i];
  1127     tr = new Trace(b, next, prev);
  1128     traces[tr->id()] = tr;
  1130     // All connector blocks should be at the end of the list
  1131     if (b->is_connector()) break;
  1133     // If this block and the next one have a one-to-one successor
  1134     // predecessor relationship, simply append the next block
  1135     int nfallthru = b->num_fall_throughs();
  1136     while (nfallthru == 1 &&
  1137            b->succ_fall_through(0)) {
  1138       Block *n = b->_succs[0];
  1140       // Skip over single-entry connector blocks, we don't want to
  1141       // add them to the trace.
  1142       while (n->is_connector() && n->num_preds() == 1) {
  1143         n = n->_succs[0];
  1146       // We see a merge point, so stop search for the next block
  1147       if (n->num_preds() != 1) break;
  1149       i++;
  1150       assert(n = _cfg._blocks[i], "expecting next block");
  1151       tr->append(n);
  1152       uf->map(n->_pre_order, tr->id());
  1153       traces[n->_pre_order] = NULL;
  1154       nfallthru = b->num_fall_throughs();
  1155       b = n;
  1158     if (nfallthru > 0) {
  1159       // Create a CFGEdge for each outgoing
  1160       // edge that could be a fall-through.
  1161       for (uint j = 0; j < b->_num_succs; j++ ) {
  1162         if (b->succ_fall_through(j)) {
  1163           Block *target = b->non_connector_successor(j);
  1164           float freq = b->_freq * b->succ_prob(j);
  1165           int from_pct = (int) ((100 * freq) / b->_freq);
  1166           int to_pct = (int) ((100 * freq) / target->_freq);
  1167           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
  1173   // Group connector blocks into one trace
  1174   for (i++; i < _cfg._num_blocks; i++) {
  1175     Block *b = _cfg._blocks[i];
  1176     assert(b->is_connector(), "connector blocks at the end");
  1177     tr->append(b);
  1178     uf->map(b->_pre_order, tr->id());
  1179     traces[b->_pre_order] = NULL;
  1183 //------------------------------union_traces----------------------------------
  1184 // Union two traces together in uf, and null out the trace in the list
  1185 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace)
  1187   uint old_id = old_trace->id();
  1188   uint updated_id = updated_trace->id();
  1190   uint lo_id = updated_id;
  1191   uint hi_id = old_id;
  1193   // If from is greater than to, swap values to meet
  1194   // UnionFind guarantee.
  1195   if (updated_id > old_id) {
  1196     lo_id = old_id;
  1197     hi_id = updated_id;
  1199     // Fix up the trace ids
  1200     traces[lo_id] = traces[updated_id];
  1201     updated_trace->set_id(lo_id);
  1204   // Union the lower with the higher and remove the pointer
  1205   // to the higher.
  1206   uf->Union(lo_id, hi_id);
  1207   traces[hi_id] = NULL;
  1210 //------------------------------grow_traces-------------------------------------
  1211 // Append traces together via the most frequently executed edges
  1212 void PhaseBlockLayout::grow_traces()
  1214   // Order the edges, and drive the growth of Traces via the most
  1215   // frequently executed edges.
  1216   edges->sort(edge_order);
  1217   for (int i = 0; i < edges->length(); i++) {
  1218     CFGEdge *e = edges->at(i);
  1220     if (e->state() != CFGEdge::open) continue;
  1222     Block *src_block = e->from();
  1223     Block *targ_block = e->to();
  1225     // Don't grow traces along backedges?
  1226     if (!BlockLayoutRotateLoops) {
  1227       if (targ_block->_rpo <= src_block->_rpo) {
  1228         targ_block->set_loop_alignment(targ_block);
  1229         continue;
  1233     Trace *src_trace = trace(src_block);
  1234     Trace *targ_trace = trace(targ_block);
  1236     // If the edge in question can join two traces at their ends,
  1237     // append one trace to the other.
  1238    if (src_trace->last_block() == src_block) {
  1239       if (src_trace == targ_trace) {
  1240         e->set_state(CFGEdge::interior);
  1241         if (targ_trace->backedge(e)) {
  1242           // Reset i to catch any newly eligible edge
  1243           // (Or we could remember the first "open" edge, and reset there)
  1244           i = 0;
  1246       } else if (targ_trace->first_block() == targ_block) {
  1247         e->set_state(CFGEdge::connected);
  1248         src_trace->append(targ_trace);
  1249         union_traces(src_trace, targ_trace);
  1255 //------------------------------merge_traces-----------------------------------
  1256 // Embed one trace into another, if the fork or join points are sufficiently
  1257 // balanced.
  1258 void PhaseBlockLayout::merge_traces(bool fall_thru_only)
  1260   // Walk the edge list a another time, looking at unprocessed edges.
  1261   // Fold in diamonds
  1262   for (int i = 0; i < edges->length(); i++) {
  1263     CFGEdge *e = edges->at(i);
  1265     if (e->state() != CFGEdge::open) continue;
  1266     if (fall_thru_only) {
  1267       if (e->infrequent()) continue;
  1270     Block *src_block = e->from();
  1271     Trace *src_trace = trace(src_block);
  1272     bool src_at_tail = src_trace->last_block() == src_block;
  1274     Block *targ_block  = e->to();
  1275     Trace *targ_trace  = trace(targ_block);
  1276     bool targ_at_start = targ_trace->first_block() == targ_block;
  1278     if (src_trace == targ_trace) {
  1279       // This may be a loop, but we can't do much about it.
  1280       e->set_state(CFGEdge::interior);
  1281       continue;
  1284     if (fall_thru_only) {
  1285       // If the edge links the middle of two traces, we can't do anything.
  1286       // Mark the edge and continue.
  1287       if (!src_at_tail & !targ_at_start) {
  1288         continue;
  1291       // Don't grow traces along backedges?
  1292       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
  1293           continue;
  1296       // If both ends of the edge are available, why didn't we handle it earlier?
  1297       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
  1299       if (targ_at_start) {
  1300         // Insert the "targ" trace in the "src" trace if the insertion point
  1301         // is a two way branch.
  1302         // Better profitability check possible, but may not be worth it.
  1303         // Someday, see if the this "fork" has an associated "join";
  1304         // then make a policy on merging this trace at the fork or join.
  1305         // For example, other things being equal, it may be better to place this
  1306         // trace at the join point if the "src" trace ends in a two-way, but
  1307         // the insertion point is one-way.
  1308         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
  1309         e->set_state(CFGEdge::connected);
  1310         src_trace->insert_after(src_block, targ_trace);
  1311         union_traces(src_trace, targ_trace);
  1312       } else if (src_at_tail) {
  1313         if (src_trace != trace(_cfg._broot)) {
  1314           e->set_state(CFGEdge::connected);
  1315           targ_trace->insert_before(targ_block, src_trace);
  1316           union_traces(targ_trace, src_trace);
  1319     } else if (e->state() == CFGEdge::open) {
  1320       // Append traces, even without a fall-thru connection.
  1321       // But leave root entry at the beginning of the block list.
  1322       if (targ_trace != trace(_cfg._broot)) {
  1323         e->set_state(CFGEdge::connected);
  1324         src_trace->append(targ_trace);
  1325         union_traces(src_trace, targ_trace);
  1331 //----------------------------reorder_traces-----------------------------------
  1332 // Order the sequence of the traces in some desirable way, and fixup the
  1333 // jumps at the end of each block.
  1334 void PhaseBlockLayout::reorder_traces(int count)
  1336   ResourceArea *area = Thread::current()->resource_area();
  1337   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
  1338   Block_List worklist;
  1339   int new_count = 0;
  1341   // Compact the traces.
  1342   for (int i = 0; i < count; i++) {
  1343     Trace *tr = traces[i];
  1344     if (tr != NULL) {
  1345       new_traces[new_count++] = tr;
  1349   // The entry block should be first on the new trace list.
  1350   Trace *tr = trace(_cfg._broot);
  1351   assert(tr == new_traces[0], "entry trace misplaced");
  1353   // Sort the new trace list by frequency
  1354   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
  1356   // Patch up the successor blocks
  1357   _cfg._blocks.reset();
  1358   _cfg._num_blocks = 0;
  1359   for (int i = 0; i < new_count; i++) {
  1360     Trace *tr = new_traces[i];
  1361     if (tr != NULL) {
  1362       tr->fixup_blocks(_cfg);
  1367 //------------------------------PhaseBlockLayout-------------------------------
  1368 // Order basic blocks based on frequency
  1369 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) :
  1370   Phase(BlockLayout),
  1371   _cfg(cfg)
  1373   ResourceMark rm;
  1374   ResourceArea *area = Thread::current()->resource_area();
  1376   // List of traces
  1377   int size = _cfg._num_blocks + 1;
  1378   traces = NEW_ARENA_ARRAY(area, Trace *, size);
  1379   memset(traces, 0, size*sizeof(Trace*));
  1380   next = NEW_ARENA_ARRAY(area, Block *, size);
  1381   memset(next,   0, size*sizeof(Block *));
  1382   prev = NEW_ARENA_ARRAY(area, Block *, size);
  1383   memset(prev  , 0, size*sizeof(Block *));
  1385   // List of edges
  1386   edges = new GrowableArray<CFGEdge*>;
  1388   // Mapping block index --> block_trace
  1389   uf = new UnionFind(size);
  1390   uf->reset(size);
  1392   // Find edges and create traces.
  1393   find_edges();
  1395   // Grow traces at their ends via most frequent edges.
  1396   grow_traces();
  1398   // Merge one trace into another, but only at fall-through points.
  1399   // This may make diamonds and other related shapes in a trace.
  1400   merge_traces(true);
  1402   // Run merge again, allowing two traces to be catenated, even if
  1403   // one does not fall through into the other. This appends loosely
  1404   // related traces to be near each other.
  1405   merge_traces(false);
  1407   // Re-order all the remaining traces by frequency
  1408   reorder_traces(size);
  1410   assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink");
  1414 //------------------------------backedge---------------------------------------
  1415 // Edge e completes a loop in a trace. If the target block is head of the
  1416 // loop, rotate the loop block so that the loop ends in a conditional branch.
  1417 bool Trace::backedge(CFGEdge *e) {
  1418   bool loop_rotated = false;
  1419   Block *src_block  = e->from();
  1420   Block *targ_block    = e->to();
  1422   assert(last_block() == src_block, "loop discovery at back branch");
  1423   if (first_block() == targ_block) {
  1424     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
  1425       // Find the last block in the trace that has a conditional
  1426       // branch.
  1427       Block *b;
  1428       for (b = last_block(); b != NULL; b = prev(b)) {
  1429         if (b->num_fall_throughs() == 2) {
  1430           break;
  1434       if (b != last_block() && b != NULL) {
  1435         loop_rotated = true;
  1437         // Rotate the loop by doing two-part linked-list surgery.
  1438         append(first_block());
  1439         break_loop_after(b);
  1443     // Backbranch to the top of a trace
  1444     // Scroll forward through the trace from the targ_block. If we find
  1445     // a loop head before another loop top, use the the loop head alignment.
  1446     for (Block *b = targ_block; b != NULL; b = next(b)) {
  1447       if (b->has_loop_alignment()) {
  1448         break;
  1450       if (b->head()->is_Loop()) {
  1451         targ_block = b;
  1452         break;
  1456     first_block()->set_loop_alignment(targ_block);
  1458   } else {
  1459     // Backbranch into the middle of a trace
  1460     targ_block->set_loop_alignment(targ_block);
  1463   return loop_rotated;
  1466 //------------------------------fixup_blocks-----------------------------------
  1467 // push blocks onto the CFG list
  1468 // ensure that blocks have the correct two-way branch sense
  1469 void Trace::fixup_blocks(PhaseCFG &cfg) {
  1470   Block *last = last_block();
  1471   for (Block *b = first_block(); b != NULL; b = next(b)) {
  1472     cfg._blocks.push(b);
  1473     cfg._num_blocks++;
  1474     if (!b->is_connector()) {
  1475       int nfallthru = b->num_fall_throughs();
  1476       if (b != last) {
  1477         if (nfallthru == 2) {
  1478           // Ensure that the sense of the branch is correct
  1479           Block *bnext = next(b);
  1480           Block *bs0 = b->non_connector_successor(0);
  1482           MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
  1483           ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
  1484           ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
  1486           if (bnext == bs0) {
  1487             // Fall-thru case in succs[0], should be in succs[1]
  1489             // Flip targets in _succs map
  1490             Block *tbs0 = b->_succs[0];
  1491             Block *tbs1 = b->_succs[1];
  1492             b->_succs.map( 0, tbs1 );
  1493             b->_succs.map( 1, tbs0 );
  1495             // Flip projections to match targets
  1496             b->_nodes.map(b->_nodes.size()-2, proj1);
  1497             b->_nodes.map(b->_nodes.size()-1, proj0);

mercurial