src/share/vm/runtime/synchronizer.cpp

Tue, 27 Nov 2012 10:13:20 +0100

author
stefank
date
Tue, 27 Nov 2012 10:13:20 +0100
changeset 4298
d0aa87f04bd5
parent 4278
070d523b96a7
child 4299
f34d701e952e
permissions
-rw-r--r--

8003720: NPG: Method in interpreter stack frame can be deallocated
Summary: Pass down a closure during root scanning to keep the class of the method alive.
Reviewed-by: coleenp, jcoomes

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "oops/markOop.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "runtime/biasedLocking.hpp"
    31 #include "runtime/handles.inline.hpp"
    32 #include "runtime/interfaceSupport.hpp"
    33 #include "runtime/mutexLocker.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/objectMonitor.inline.hpp"
    36 #include "runtime/osThread.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #include "runtime/synchronizer.hpp"
    39 #include "utilities/dtrace.hpp"
    40 #include "utilities/events.hpp"
    41 #include "utilities/preserveException.hpp"
    42 #ifdef TARGET_OS_FAMILY_linux
    43 # include "os_linux.inline.hpp"
    44 # include "thread_linux.inline.hpp"
    45 #endif
    46 #ifdef TARGET_OS_FAMILY_solaris
    47 # include "os_solaris.inline.hpp"
    48 # include "thread_solaris.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_FAMILY_windows
    51 # include "os_windows.inline.hpp"
    52 # include "thread_windows.inline.hpp"
    53 #endif
    54 #ifdef TARGET_OS_FAMILY_bsd
    55 # include "os_bsd.inline.hpp"
    56 # include "thread_bsd.inline.hpp"
    57 #endif
    59 #if defined(__GNUC__) && !defined(IA64)
    60   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
    61   #define ATTR __attribute__((noinline))
    62 #else
    63   #define ATTR
    64 #endif
    66 // The "core" versions of monitor enter and exit reside in this file.
    67 // The interpreter and compilers contain specialized transliterated
    68 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
    69 // for instance.  If you make changes here, make sure to modify the
    70 // interpreter, and both C1 and C2 fast-path inline locking code emission.
    71 //
    72 //
    73 // -----------------------------------------------------------------------------
    75 #ifdef DTRACE_ENABLED
    77 // Only bother with this argument setup if dtrace is available
    78 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
    80 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
    81   char* bytes = NULL;                                                      \
    82   int len = 0;                                                             \
    83   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
    84   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
    85   if (klassname != NULL) {                                                 \
    86     bytes = (char*)klassname->bytes();                                     \
    87     len = klassname->utf8_length();                                        \
    88   }
    90 #ifndef USDT2
    91 HS_DTRACE_PROBE_DECL5(hotspot, monitor__wait,
    92   jlong, uintptr_t, char*, int, long);
    93 HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
    94   jlong, uintptr_t, char*, int);
    96 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
    97   {                                                                        \
    98     if (DTraceMonitorProbes) {                                            \
    99       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
   100       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
   101                        (monitor), bytes, len, (millis));                   \
   102     }                                                                      \
   103   }
   105 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
   106   {                                                                        \
   107     if (DTraceMonitorProbes) {                                            \
   108       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
   109       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
   110                        (uintptr_t)(monitor), bytes, len);                  \
   111     }                                                                      \
   112   }
   114 #else /* USDT2 */
   116 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
   117   {                                                                        \
   118     if (DTraceMonitorProbes) {                                            \
   119       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
   120       HOTSPOT_MONITOR_WAIT(jtid,                                           \
   121                            (uintptr_t)(monitor), bytes, len, (millis));  \
   122     }                                                                      \
   123   }
   125 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_PROBE_WAITED
   127 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
   128   {                                                                        \
   129     if (DTraceMonitorProbes) {                                            \
   130       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
   131       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
   132                        (uintptr_t)(monitor), bytes, len);                  \
   133     }                                                                      \
   134   }
   136 #endif /* USDT2 */
   137 #else //  ndef DTRACE_ENABLED
   139 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
   140 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
   142 #endif // ndef DTRACE_ENABLED
   144 // This exists only as a workaround of dtrace bug 6254741
   145 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
   146   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
   147   return 0;
   148 }
   150 #define NINFLATIONLOCKS 256
   151 static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
   153 ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
   154 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
   155 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL ;
   156 int ObjectSynchronizer::gOmInUseCount = 0;
   157 static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
   158 static volatile int MonitorFreeCount  = 0 ;      // # on gFreeList
   159 static volatile int MonitorPopulation = 0 ;      // # Extant -- in circulation
   160 #define CHAINMARKER ((oop)-1)
   162 // -----------------------------------------------------------------------------
   163 //  Fast Monitor Enter/Exit
   164 // This the fast monitor enter. The interpreter and compiler use
   165 // some assembly copies of this code. Make sure update those code
   166 // if the following function is changed. The implementation is
   167 // extremely sensitive to race condition. Be careful.
   169 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
   170  if (UseBiasedLocking) {
   171     if (!SafepointSynchronize::is_at_safepoint()) {
   172       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
   173       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
   174         return;
   175       }
   176     } else {
   177       assert(!attempt_rebias, "can not rebias toward VM thread");
   178       BiasedLocking::revoke_at_safepoint(obj);
   179     }
   180     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   181  }
   183  slow_enter (obj, lock, THREAD) ;
   184 }
   186 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
   187   assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
   188   // if displaced header is null, the previous enter is recursive enter, no-op
   189   markOop dhw = lock->displaced_header();
   190   markOop mark ;
   191   if (dhw == NULL) {
   192      // Recursive stack-lock.
   193      // Diagnostics -- Could be: stack-locked, inflating, inflated.
   194      mark = object->mark() ;
   195      assert (!mark->is_neutral(), "invariant") ;
   196      if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
   197         assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
   198      }
   199      if (mark->has_monitor()) {
   200         ObjectMonitor * m = mark->monitor() ;
   201         assert(((oop)(m->object()))->mark() == mark, "invariant") ;
   202         assert(m->is_entered(THREAD), "invariant") ;
   203      }
   204      return ;
   205   }
   207   mark = object->mark() ;
   209   // If the object is stack-locked by the current thread, try to
   210   // swing the displaced header from the box back to the mark.
   211   if (mark == (markOop) lock) {
   212      assert (dhw->is_neutral(), "invariant") ;
   213      if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
   214         TEVENT (fast_exit: release stacklock) ;
   215         return;
   216      }
   217   }
   219   ObjectSynchronizer::inflate(THREAD, object)->exit (THREAD) ;
   220 }
   222 // -----------------------------------------------------------------------------
   223 // Interpreter/Compiler Slow Case
   224 // This routine is used to handle interpreter/compiler slow case
   225 // We don't need to use fast path here, because it must have been
   226 // failed in the interpreter/compiler code.
   227 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
   228   markOop mark = obj->mark();
   229   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
   231   if (mark->is_neutral()) {
   232     // Anticipate successful CAS -- the ST of the displaced mark must
   233     // be visible <= the ST performed by the CAS.
   234     lock->set_displaced_header(mark);
   235     if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
   236       TEVENT (slow_enter: release stacklock) ;
   237       return ;
   238     }
   239     // Fall through to inflate() ...
   240   } else
   241   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   242     assert(lock != mark->locker(), "must not re-lock the same lock");
   243     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
   244     lock->set_displaced_header(NULL);
   245     return;
   246   }
   248 #if 0
   249   // The following optimization isn't particularly useful.
   250   if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
   251     lock->set_displaced_header (NULL) ;
   252     return ;
   253   }
   254 #endif
   256   // The object header will never be displaced to this lock,
   257   // so it does not matter what the value is, except that it
   258   // must be non-zero to avoid looking like a re-entrant lock,
   259   // and must not look locked either.
   260   lock->set_displaced_header(markOopDesc::unused_mark());
   261   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
   262 }
   264 // This routine is used to handle interpreter/compiler slow case
   265 // We don't need to use fast path here, because it must have
   266 // failed in the interpreter/compiler code. Simply use the heavy
   267 // weight monitor should be ok, unless someone find otherwise.
   268 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
   269   fast_exit (object, lock, THREAD) ;
   270 }
   272 // -----------------------------------------------------------------------------
   273 // Class Loader  support to workaround deadlocks on the class loader lock objects
   274 // Also used by GC
   275 // complete_exit()/reenter() are used to wait on a nested lock
   276 // i.e. to give up an outer lock completely and then re-enter
   277 // Used when holding nested locks - lock acquisition order: lock1 then lock2
   278 //  1) complete_exit lock1 - saving recursion count
   279 //  2) wait on lock2
   280 //  3) when notified on lock2, unlock lock2
   281 //  4) reenter lock1 with original recursion count
   282 //  5) lock lock2
   283 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
   284 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
   285   TEVENT (complete_exit) ;
   286   if (UseBiasedLocking) {
   287     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   288     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   289   }
   291   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   293   return monitor->complete_exit(THREAD);
   294 }
   296 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
   297 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
   298   TEVENT (reenter) ;
   299   if (UseBiasedLocking) {
   300     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   301     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   302   }
   304   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   306   monitor->reenter(recursion, THREAD);
   307 }
   308 // -----------------------------------------------------------------------------
   309 // JNI locks on java objects
   310 // NOTE: must use heavy weight monitor to handle jni monitor enter
   311 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
   312   // the current locking is from JNI instead of Java code
   313   TEVENT (jni_enter) ;
   314   if (UseBiasedLocking) {
   315     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   316     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   317   }
   318   THREAD->set_current_pending_monitor_is_from_java(false);
   319   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
   320   THREAD->set_current_pending_monitor_is_from_java(true);
   321 }
   323 // NOTE: must use heavy weight monitor to handle jni monitor enter
   324 bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
   325   if (UseBiasedLocking) {
   326     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   327     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   328   }
   330   ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
   331   return monitor->try_enter(THREAD);
   332 }
   335 // NOTE: must use heavy weight monitor to handle jni monitor exit
   336 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
   337   TEVENT (jni_exit) ;
   338   if (UseBiasedLocking) {
   339     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   340   }
   341   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   343   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
   344   // If this thread has locked the object, exit the monitor.  Note:  can't use
   345   // monitor->check(CHECK); must exit even if an exception is pending.
   346   if (monitor->check(THREAD)) {
   347      monitor->exit(THREAD);
   348   }
   349 }
   351 // -----------------------------------------------------------------------------
   352 // Internal VM locks on java objects
   353 // standard constructor, allows locking failures
   354 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
   355   _dolock = doLock;
   356   _thread = thread;
   357   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
   358   _obj = obj;
   360   if (_dolock) {
   361     TEVENT (ObjectLocker) ;
   363     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
   364   }
   365 }
   367 ObjectLocker::~ObjectLocker() {
   368   if (_dolock) {
   369     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
   370   }
   371 }
   374 // -----------------------------------------------------------------------------
   375 //  Wait/Notify/NotifyAll
   376 // NOTE: must use heavy weight monitor to handle wait()
   377 void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
   378   if (UseBiasedLocking) {
   379     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   380     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   381   }
   382   if (millis < 0) {
   383     TEVENT (wait - throw IAX) ;
   384     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
   385   }
   386   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   387   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
   388   monitor->wait(millis, true, THREAD);
   390   /* This dummy call is in place to get around dtrace bug 6254741.  Once
   391      that's fixed we can uncomment the following line and remove the call */
   392   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
   393   dtrace_waited_probe(monitor, obj, THREAD);
   394 }
   396 void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
   397   if (UseBiasedLocking) {
   398     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   399     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   400   }
   401   if (millis < 0) {
   402     TEVENT (wait - throw IAX) ;
   403     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
   404   }
   405   ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
   406 }
   408 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
   409  if (UseBiasedLocking) {
   410     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   411     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   412   }
   414   markOop mark = obj->mark();
   415   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   416     return;
   417   }
   418   ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
   419 }
   421 // NOTE: see comment of notify()
   422 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
   423   if (UseBiasedLocking) {
   424     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   425     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   426   }
   428   markOop mark = obj->mark();
   429   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   430     return;
   431   }
   432   ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
   433 }
   435 // -----------------------------------------------------------------------------
   436 // Hash Code handling
   437 //
   438 // Performance concern:
   439 // OrderAccess::storestore() calls release() which STs 0 into the global volatile
   440 // OrderAccess::Dummy variable.  This store is unnecessary for correctness.
   441 // Many threads STing into a common location causes considerable cache migration
   442 // or "sloshing" on large SMP system.  As such, I avoid using OrderAccess::storestore()
   443 // until it's repaired.  In some cases OrderAccess::fence() -- which incurs local
   444 // latency on the executing processor -- is a better choice as it scales on SMP
   445 // systems.  See http://blogs.sun.com/dave/entry/biased_locking_in_hotspot for a
   446 // discussion of coherency costs.  Note that all our current reference platforms
   447 // provide strong ST-ST order, so the issue is moot on IA32, x64, and SPARC.
   448 //
   449 // As a general policy we use "volatile" to control compiler-based reordering
   450 // and explicit fences (barriers) to control for architectural reordering performed
   451 // by the CPU(s) or platform.
   453 static int  MBFence (int x) { OrderAccess::fence(); return x; }
   455 struct SharedGlobals {
   456     // These are highly shared mostly-read variables.
   457     // To avoid false-sharing they need to be the sole occupants of a $ line.
   458     double padPrefix [8];
   459     volatile int stwRandom ;
   460     volatile int stwCycle ;
   462     // Hot RW variables -- Sequester to avoid false-sharing
   463     double padSuffix [16];
   464     volatile int hcSequence ;
   465     double padFinal [8] ;
   466 } ;
   468 static SharedGlobals GVars ;
   469 static int MonitorScavengeThreshold = 1000000 ;
   470 static volatile int ForceMonitorScavenge = 0 ; // Scavenge required and pending
   472 static markOop ReadStableMark (oop obj) {
   473   markOop mark = obj->mark() ;
   474   if (!mark->is_being_inflated()) {
   475     return mark ;       // normal fast-path return
   476   }
   478   int its = 0 ;
   479   for (;;) {
   480     markOop mark = obj->mark() ;
   481     if (!mark->is_being_inflated()) {
   482       return mark ;    // normal fast-path return
   483     }
   485     // The object is being inflated by some other thread.
   486     // The caller of ReadStableMark() must wait for inflation to complete.
   487     // Avoid live-lock
   488     // TODO: consider calling SafepointSynchronize::do_call_back() while
   489     // spinning to see if there's a safepoint pending.  If so, immediately
   490     // yielding or blocking would be appropriate.  Avoid spinning while
   491     // there is a safepoint pending.
   492     // TODO: add inflation contention performance counters.
   493     // TODO: restrict the aggregate number of spinners.
   495     ++its ;
   496     if (its > 10000 || !os::is_MP()) {
   497        if (its & 1) {
   498          os::NakedYield() ;
   499          TEVENT (Inflate: INFLATING - yield) ;
   500        } else {
   501          // Note that the following code attenuates the livelock problem but is not
   502          // a complete remedy.  A more complete solution would require that the inflating
   503          // thread hold the associated inflation lock.  The following code simply restricts
   504          // the number of spinners to at most one.  We'll have N-2 threads blocked
   505          // on the inflationlock, 1 thread holding the inflation lock and using
   506          // a yield/park strategy, and 1 thread in the midst of inflation.
   507          // A more refined approach would be to change the encoding of INFLATING
   508          // to allow encapsulation of a native thread pointer.  Threads waiting for
   509          // inflation to complete would use CAS to push themselves onto a singly linked
   510          // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
   511          // and calling park().  When inflation was complete the thread that accomplished inflation
   512          // would detach the list and set the markword to inflated with a single CAS and
   513          // then for each thread on the list, set the flag and unpark() the thread.
   514          // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
   515          // wakes at most one thread whereas we need to wake the entire list.
   516          int ix = (intptr_t(obj) >> 5) & (NINFLATIONLOCKS-1) ;
   517          int YieldThenBlock = 0 ;
   518          assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
   519          assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
   520          Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
   521          while (obj->mark() == markOopDesc::INFLATING()) {
   522            // Beware: NakedYield() is advisory and has almost no effect on some platforms
   523            // so we periodically call Self->_ParkEvent->park(1).
   524            // We use a mixed spin/yield/block mechanism.
   525            if ((YieldThenBlock++) >= 16) {
   526               Thread::current()->_ParkEvent->park(1) ;
   527            } else {
   528               os::NakedYield() ;
   529            }
   530          }
   531          Thread::muxRelease (InflationLocks + ix ) ;
   532          TEVENT (Inflate: INFLATING - yield/park) ;
   533        }
   534     } else {
   535        SpinPause() ;       // SMP-polite spinning
   536     }
   537   }
   538 }
   540 // hashCode() generation :
   541 //
   542 // Possibilities:
   543 // * MD5Digest of {obj,stwRandom}
   544 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
   545 // * A DES- or AES-style SBox[] mechanism
   546 // * One of the Phi-based schemes, such as:
   547 //   2654435761 = 2^32 * Phi (golden ratio)
   548 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
   549 // * A variation of Marsaglia's shift-xor RNG scheme.
   550 // * (obj ^ stwRandom) is appealing, but can result
   551 //   in undesirable regularity in the hashCode values of adjacent objects
   552 //   (objects allocated back-to-back, in particular).  This could potentially
   553 //   result in hashtable collisions and reduced hashtable efficiency.
   554 //   There are simple ways to "diffuse" the middle address bits over the
   555 //   generated hashCode values:
   556 //
   558 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
   559   intptr_t value = 0 ;
   560   if (hashCode == 0) {
   561      // This form uses an unguarded global Park-Miller RNG,
   562      // so it's possible for two threads to race and generate the same RNG.
   563      // On MP system we'll have lots of RW access to a global, so the
   564      // mechanism induces lots of coherency traffic.
   565      value = os::random() ;
   566   } else
   567   if (hashCode == 1) {
   568      // This variation has the property of being stable (idempotent)
   569      // between STW operations.  This can be useful in some of the 1-0
   570      // synchronization schemes.
   571      intptr_t addrBits = intptr_t(obj) >> 3 ;
   572      value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
   573   } else
   574   if (hashCode == 2) {
   575      value = 1 ;            // for sensitivity testing
   576   } else
   577   if (hashCode == 3) {
   578      value = ++GVars.hcSequence ;
   579   } else
   580   if (hashCode == 4) {
   581      value = intptr_t(obj) ;
   582   } else {
   583      // Marsaglia's xor-shift scheme with thread-specific state
   584      // This is probably the best overall implementation -- we'll
   585      // likely make this the default in future releases.
   586      unsigned t = Self->_hashStateX ;
   587      t ^= (t << 11) ;
   588      Self->_hashStateX = Self->_hashStateY ;
   589      Self->_hashStateY = Self->_hashStateZ ;
   590      Self->_hashStateZ = Self->_hashStateW ;
   591      unsigned v = Self->_hashStateW ;
   592      v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
   593      Self->_hashStateW = v ;
   594      value = v ;
   595   }
   597   value &= markOopDesc::hash_mask;
   598   if (value == 0) value = 0xBAD ;
   599   assert (value != markOopDesc::no_hash, "invariant") ;
   600   TEVENT (hashCode: GENERATE) ;
   601   return value;
   602 }
   603 //
   604 intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
   605   if (UseBiasedLocking) {
   606     // NOTE: many places throughout the JVM do not expect a safepoint
   607     // to be taken here, in particular most operations on perm gen
   608     // objects. However, we only ever bias Java instances and all of
   609     // the call sites of identity_hash that might revoke biases have
   610     // been checked to make sure they can handle a safepoint. The
   611     // added check of the bias pattern is to avoid useless calls to
   612     // thread-local storage.
   613     if (obj->mark()->has_bias_pattern()) {
   614       // Box and unbox the raw reference just in case we cause a STW safepoint.
   615       Handle hobj (Self, obj) ;
   616       // Relaxing assertion for bug 6320749.
   617       assert (Universe::verify_in_progress() ||
   618               !SafepointSynchronize::is_at_safepoint(),
   619              "biases should not be seen by VM thread here");
   620       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
   621       obj = hobj() ;
   622       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   623     }
   624   }
   626   // hashCode() is a heap mutator ...
   627   // Relaxing assertion for bug 6320749.
   628   assert (Universe::verify_in_progress() ||
   629           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
   630   assert (Universe::verify_in_progress() ||
   631           Self->is_Java_thread() , "invariant") ;
   632   assert (Universe::verify_in_progress() ||
   633          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
   635   ObjectMonitor* monitor = NULL;
   636   markOop temp, test;
   637   intptr_t hash;
   638   markOop mark = ReadStableMark (obj);
   640   // object should remain ineligible for biased locking
   641   assert (!mark->has_bias_pattern(), "invariant") ;
   643   if (mark->is_neutral()) {
   644     hash = mark->hash();              // this is a normal header
   645     if (hash) {                       // if it has hash, just return it
   646       return hash;
   647     }
   648     hash = get_next_hash(Self, obj);  // allocate a new hash code
   649     temp = mark->copy_set_hash(hash); // merge the hash code into header
   650     // use (machine word version) atomic operation to install the hash
   651     test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
   652     if (test == mark) {
   653       return hash;
   654     }
   655     // If atomic operation failed, we must inflate the header
   656     // into heavy weight monitor. We could add more code here
   657     // for fast path, but it does not worth the complexity.
   658   } else if (mark->has_monitor()) {
   659     monitor = mark->monitor();
   660     temp = monitor->header();
   661     assert (temp->is_neutral(), "invariant") ;
   662     hash = temp->hash();
   663     if (hash) {
   664       return hash;
   665     }
   666     // Skip to the following code to reduce code size
   667   } else if (Self->is_lock_owned((address)mark->locker())) {
   668     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
   669     assert (temp->is_neutral(), "invariant") ;
   670     hash = temp->hash();              // by current thread, check if the displaced
   671     if (hash) {                       // header contains hash code
   672       return hash;
   673     }
   674     // WARNING:
   675     //   The displaced header is strictly immutable.
   676     // It can NOT be changed in ANY cases. So we have
   677     // to inflate the header into heavyweight monitor
   678     // even the current thread owns the lock. The reason
   679     // is the BasicLock (stack slot) will be asynchronously
   680     // read by other threads during the inflate() function.
   681     // Any change to stack may not propagate to other threads
   682     // correctly.
   683   }
   685   // Inflate the monitor to set hash code
   686   monitor = ObjectSynchronizer::inflate(Self, obj);
   687   // Load displaced header and check it has hash code
   688   mark = monitor->header();
   689   assert (mark->is_neutral(), "invariant") ;
   690   hash = mark->hash();
   691   if (hash == 0) {
   692     hash = get_next_hash(Self, obj);
   693     temp = mark->copy_set_hash(hash); // merge hash code into header
   694     assert (temp->is_neutral(), "invariant") ;
   695     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
   696     if (test != mark) {
   697       // The only update to the header in the monitor (outside GC)
   698       // is install the hash code. If someone add new usage of
   699       // displaced header, please update this code
   700       hash = test->hash();
   701       assert (test->is_neutral(), "invariant") ;
   702       assert (hash != 0, "Trivial unexpected object/monitor header usage.");
   703     }
   704   }
   705   // We finally get the hash
   706   return hash;
   707 }
   709 // Deprecated -- use FastHashCode() instead.
   711 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
   712   return FastHashCode (Thread::current(), obj()) ;
   713 }
   716 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
   717                                                    Handle h_obj) {
   718   if (UseBiasedLocking) {
   719     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
   720     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   721   }
   723   assert(thread == JavaThread::current(), "Can only be called on current thread");
   724   oop obj = h_obj();
   726   markOop mark = ReadStableMark (obj) ;
   728   // Uncontended case, header points to stack
   729   if (mark->has_locker()) {
   730     return thread->is_lock_owned((address)mark->locker());
   731   }
   732   // Contended case, header points to ObjectMonitor (tagged pointer)
   733   if (mark->has_monitor()) {
   734     ObjectMonitor* monitor = mark->monitor();
   735     return monitor->is_entered(thread) != 0 ;
   736   }
   737   // Unlocked case, header in place
   738   assert(mark->is_neutral(), "sanity check");
   739   return false;
   740 }
   742 // Be aware of this method could revoke bias of the lock object.
   743 // This method querys the ownership of the lock handle specified by 'h_obj'.
   744 // If the current thread owns the lock, it returns owner_self. If no
   745 // thread owns the lock, it returns owner_none. Otherwise, it will return
   746 // ower_other.
   747 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
   748 (JavaThread *self, Handle h_obj) {
   749   // The caller must beware this method can revoke bias, and
   750   // revocation can result in a safepoint.
   751   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
   752   assert (self->thread_state() != _thread_blocked , "invariant") ;
   754   // Possible mark states: neutral, biased, stack-locked, inflated
   756   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
   757     // CASE: biased
   758     BiasedLocking::revoke_and_rebias(h_obj, false, self);
   759     assert(!h_obj->mark()->has_bias_pattern(),
   760            "biases should be revoked by now");
   761   }
   763   assert(self == JavaThread::current(), "Can only be called on current thread");
   764   oop obj = h_obj();
   765   markOop mark = ReadStableMark (obj) ;
   767   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
   768   if (mark->has_locker()) {
   769     return self->is_lock_owned((address)mark->locker()) ?
   770       owner_self : owner_other;
   771   }
   773   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
   774   // The Object:ObjectMonitor relationship is stable as long as we're
   775   // not at a safepoint.
   776   if (mark->has_monitor()) {
   777     void * owner = mark->monitor()->_owner ;
   778     if (owner == NULL) return owner_none ;
   779     return (owner == self ||
   780             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
   781   }
   783   // CASE: neutral
   784   assert(mark->is_neutral(), "sanity check");
   785   return owner_none ;           // it's unlocked
   786 }
   788 // FIXME: jvmti should call this
   789 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
   790   if (UseBiasedLocking) {
   791     if (SafepointSynchronize::is_at_safepoint()) {
   792       BiasedLocking::revoke_at_safepoint(h_obj);
   793     } else {
   794       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
   795     }
   796     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   797   }
   799   oop obj = h_obj();
   800   address owner = NULL;
   802   markOop mark = ReadStableMark (obj) ;
   804   // Uncontended case, header points to stack
   805   if (mark->has_locker()) {
   806     owner = (address) mark->locker();
   807   }
   809   // Contended case, header points to ObjectMonitor (tagged pointer)
   810   if (mark->has_monitor()) {
   811     ObjectMonitor* monitor = mark->monitor();
   812     assert(monitor != NULL, "monitor should be non-null");
   813     owner = (address) monitor->owner();
   814   }
   816   if (owner != NULL) {
   817     return Threads::owning_thread_from_monitor_owner(owner, doLock);
   818   }
   820   // Unlocked case, header in place
   821   // Cannot have assertion since this object may have been
   822   // locked by another thread when reaching here.
   823   // assert(mark->is_neutral(), "sanity check");
   825   return NULL;
   826 }
   827 // Visitors ...
   829 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
   830   ObjectMonitor* block = gBlockList;
   831   ObjectMonitor* mid;
   832   while (block) {
   833     assert(block->object() == CHAINMARKER, "must be a block header");
   834     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
   835       mid = block + i;
   836       oop object = (oop) mid->object();
   837       if (object != NULL) {
   838         closure->do_monitor(mid);
   839       }
   840     }
   841     block = (ObjectMonitor*) block->FreeNext;
   842   }
   843 }
   845 // Get the next block in the block list.
   846 static inline ObjectMonitor* next(ObjectMonitor* block) {
   847   assert(block->object() == CHAINMARKER, "must be a block header");
   848   block = block->FreeNext ;
   849   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
   850   return block;
   851 }
   854 void ObjectSynchronizer::oops_do(OopClosure* f) {
   855   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
   856   for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
   857     assert(block->object() == CHAINMARKER, "must be a block header");
   858     for (int i = 1; i < _BLOCKSIZE; i++) {
   859       ObjectMonitor* mid = &block[i];
   860       if (mid->object() != NULL) {
   861         f->do_oop((oop*)mid->object_addr());
   862       }
   863     }
   864   }
   865 }
   868 // -----------------------------------------------------------------------------
   869 // ObjectMonitor Lifecycle
   870 // -----------------------
   871 // Inflation unlinks monitors from the global gFreeList and
   872 // associates them with objects.  Deflation -- which occurs at
   873 // STW-time -- disassociates idle monitors from objects.  Such
   874 // scavenged monitors are returned to the gFreeList.
   875 //
   876 // The global list is protected by ListLock.  All the critical sections
   877 // are short and operate in constant-time.
   878 //
   879 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
   880 //
   881 // Lifecycle:
   882 // --   unassigned and on the global free list
   883 // --   unassigned and on a thread's private omFreeList
   884 // --   assigned to an object.  The object is inflated and the mark refers
   885 //      to the objectmonitor.
   886 //
   889 // Constraining monitor pool growth via MonitorBound ...
   890 //
   891 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
   892 // the rate of scavenging is driven primarily by GC.  As such,  we can find
   893 // an inordinate number of monitors in circulation.
   894 // To avoid that scenario we can artificially induce a STW safepoint
   895 // if the pool appears to be growing past some reasonable bound.
   896 // Generally we favor time in space-time tradeoffs, but as there's no
   897 // natural back-pressure on the # of extant monitors we need to impose some
   898 // type of limit.  Beware that if MonitorBound is set to too low a value
   899 // we could just loop. In addition, if MonitorBound is set to a low value
   900 // we'll incur more safepoints, which are harmful to performance.
   901 // See also: GuaranteedSafepointInterval
   902 //
   903 // The current implementation uses asynchronous VM operations.
   904 //
   906 static void InduceScavenge (Thread * Self, const char * Whence) {
   907   // Induce STW safepoint to trim monitors
   908   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
   909   // More precisely, trigger an asynchronous STW safepoint as the number
   910   // of active monitors passes the specified threshold.
   911   // TODO: assert thread state is reasonable
   913   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
   914     if (ObjectMonitor::Knob_Verbose) {
   915       ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
   916       ::fflush(stdout) ;
   917     }
   918     // Induce a 'null' safepoint to scavenge monitors
   919     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
   920     // to the VMthread and have a lifespan longer than that of this activation record.
   921     // The VMThread will delete the op when completed.
   922     VMThread::execute (new VM_ForceAsyncSafepoint()) ;
   924     if (ObjectMonitor::Knob_Verbose) {
   925       ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
   926       ::fflush(stdout) ;
   927     }
   928   }
   929 }
   930 /* Too slow for general assert or debug
   931 void ObjectSynchronizer::verifyInUse (Thread *Self) {
   932    ObjectMonitor* mid;
   933    int inusetally = 0;
   934    for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
   935      inusetally ++;
   936    }
   937    assert(inusetally == Self->omInUseCount, "inuse count off");
   939    int freetally = 0;
   940    for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
   941      freetally ++;
   942    }
   943    assert(freetally == Self->omFreeCount, "free count off");
   944 }
   945 */
   946 ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
   947     // A large MAXPRIVATE value reduces both list lock contention
   948     // and list coherency traffic, but also tends to increase the
   949     // number of objectMonitors in circulation as well as the STW
   950     // scavenge costs.  As usual, we lean toward time in space-time
   951     // tradeoffs.
   952     const int MAXPRIVATE = 1024 ;
   953     for (;;) {
   954         ObjectMonitor * m ;
   956         // 1: try to allocate from the thread's local omFreeList.
   957         // Threads will attempt to allocate first from their local list, then
   958         // from the global list, and only after those attempts fail will the thread
   959         // attempt to instantiate new monitors.   Thread-local free lists take
   960         // heat off the ListLock and improve allocation latency, as well as reducing
   961         // coherency traffic on the shared global list.
   962         m = Self->omFreeList ;
   963         if (m != NULL) {
   964            Self->omFreeList = m->FreeNext ;
   965            Self->omFreeCount -- ;
   966            // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
   967            guarantee (m->object() == NULL, "invariant") ;
   968            if (MonitorInUseLists) {
   969              m->FreeNext = Self->omInUseList;
   970              Self->omInUseList = m;
   971              Self->omInUseCount ++;
   972              // verifyInUse(Self);
   973            } else {
   974              m->FreeNext = NULL;
   975            }
   976            return m ;
   977         }
   979         // 2: try to allocate from the global gFreeList
   980         // CONSIDER: use muxTry() instead of muxAcquire().
   981         // If the muxTry() fails then drop immediately into case 3.
   982         // If we're using thread-local free lists then try
   983         // to reprovision the caller's free list.
   984         if (gFreeList != NULL) {
   985             // Reprovision the thread's omFreeList.
   986             // Use bulk transfers to reduce the allocation rate and heat
   987             // on various locks.
   988             Thread::muxAcquire (&ListLock, "omAlloc") ;
   989             for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL; ) {
   990                 MonitorFreeCount --;
   991                 ObjectMonitor * take = gFreeList ;
   992                 gFreeList = take->FreeNext ;
   993                 guarantee (take->object() == NULL, "invariant") ;
   994                 guarantee (!take->is_busy(), "invariant") ;
   995                 take->Recycle() ;
   996                 omRelease (Self, take, false) ;
   997             }
   998             Thread::muxRelease (&ListLock) ;
   999             Self->omFreeProvision += 1 + (Self->omFreeProvision/2) ;
  1000             if (Self->omFreeProvision > MAXPRIVATE ) Self->omFreeProvision = MAXPRIVATE ;
  1001             TEVENT (omFirst - reprovision) ;
  1003             const int mx = MonitorBound ;
  1004             if (mx > 0 && (MonitorPopulation-MonitorFreeCount) > mx) {
  1005               // We can't safely induce a STW safepoint from omAlloc() as our thread
  1006               // state may not be appropriate for such activities and callers may hold
  1007               // naked oops, so instead we defer the action.
  1008               InduceScavenge (Self, "omAlloc") ;
  1010             continue;
  1013         // 3: allocate a block of new ObjectMonitors
  1014         // Both the local and global free lists are empty -- resort to malloc().
  1015         // In the current implementation objectMonitors are TSM - immortal.
  1016         assert (_BLOCKSIZE > 1, "invariant") ;
  1017         ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];
  1019         // NOTE: (almost) no way to recover if allocation failed.
  1020         // We might be able to induce a STW safepoint and scavenge enough
  1021         // objectMonitors to permit progress.
  1022         if (temp == NULL) {
  1023             vm_exit_out_of_memory (sizeof (ObjectMonitor[_BLOCKSIZE]), "Allocate ObjectMonitors") ;
  1026         // Format the block.
  1027         // initialize the linked list, each monitor points to its next
  1028         // forming the single linked free list, the very first monitor
  1029         // will points to next block, which forms the block list.
  1030         // The trick of using the 1st element in the block as gBlockList
  1031         // linkage should be reconsidered.  A better implementation would
  1032         // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
  1034         for (int i = 1; i < _BLOCKSIZE ; i++) {
  1035            temp[i].FreeNext = &temp[i+1];
  1038         // terminate the last monitor as the end of list
  1039         temp[_BLOCKSIZE - 1].FreeNext = NULL ;
  1041         // Element [0] is reserved for global list linkage
  1042         temp[0].set_object(CHAINMARKER);
  1044         // Consider carving out this thread's current request from the
  1045         // block in hand.  This avoids some lock traffic and redundant
  1046         // list activity.
  1048         // Acquire the ListLock to manipulate BlockList and FreeList.
  1049         // An Oyama-Taura-Yonezawa scheme might be more efficient.
  1050         Thread::muxAcquire (&ListLock, "omAlloc [2]") ;
  1051         MonitorPopulation += _BLOCKSIZE-1;
  1052         MonitorFreeCount += _BLOCKSIZE-1;
  1054         // Add the new block to the list of extant blocks (gBlockList).
  1055         // The very first objectMonitor in a block is reserved and dedicated.
  1056         // It serves as blocklist "next" linkage.
  1057         temp[0].FreeNext = gBlockList;
  1058         gBlockList = temp;
  1060         // Add the new string of objectMonitors to the global free list
  1061         temp[_BLOCKSIZE - 1].FreeNext = gFreeList ;
  1062         gFreeList = temp + 1;
  1063         Thread::muxRelease (&ListLock) ;
  1064         TEVENT (Allocate block of monitors) ;
  1068 // Place "m" on the caller's private per-thread omFreeList.
  1069 // In practice there's no need to clamp or limit the number of
  1070 // monitors on a thread's omFreeList as the only time we'll call
  1071 // omRelease is to return a monitor to the free list after a CAS
  1072 // attempt failed.  This doesn't allow unbounded #s of monitors to
  1073 // accumulate on a thread's free list.
  1074 //
  1076 void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
  1077     guarantee (m->object() == NULL, "invariant") ;
  1079     // Remove from omInUseList
  1080     if (MonitorInUseLists && fromPerThreadAlloc) {
  1081       ObjectMonitor* curmidinuse = NULL;
  1082       for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; ) {
  1083        if (m == mid) {
  1084          // extract from per-thread in-use-list
  1085          if (mid == Self->omInUseList) {
  1086            Self->omInUseList = mid->FreeNext;
  1087          } else if (curmidinuse != NULL) {
  1088            curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
  1090          Self->omInUseCount --;
  1091          // verifyInUse(Self);
  1092          break;
  1093        } else {
  1094          curmidinuse = mid;
  1095          mid = mid->FreeNext;
  1100   // FreeNext is used for both onInUseList and omFreeList, so clear old before setting new
  1101   m->FreeNext = Self->omFreeList ;
  1102   Self->omFreeList = m ;
  1103   Self->omFreeCount ++ ;
  1106 // Return the monitors of a moribund thread's local free list to
  1107 // the global free list.  Typically a thread calls omFlush() when
  1108 // it's dying.  We could also consider having the VM thread steal
  1109 // monitors from threads that have not run java code over a few
  1110 // consecutive STW safepoints.  Relatedly, we might decay
  1111 // omFreeProvision at STW safepoints.
  1112 //
  1113 // Also return the monitors of a moribund thread"s omInUseList to
  1114 // a global gOmInUseList under the global list lock so these
  1115 // will continue to be scanned.
  1116 //
  1117 // We currently call omFlush() from the Thread:: dtor _after the thread
  1118 // has been excised from the thread list and is no longer a mutator.
  1119 // That means that omFlush() can run concurrently with a safepoint and
  1120 // the scavenge operator.  Calling omFlush() from JavaThread::exit() might
  1121 // be a better choice as we could safely reason that that the JVM is
  1122 // not at a safepoint at the time of the call, and thus there could
  1123 // be not inopportune interleavings between omFlush() and the scavenge
  1124 // operator.
  1126 void ObjectSynchronizer::omFlush (Thread * Self) {
  1127     ObjectMonitor * List = Self->omFreeList ;  // Null-terminated SLL
  1128     Self->omFreeList = NULL ;
  1129     ObjectMonitor * Tail = NULL ;
  1130     int Tally = 0;
  1131     if (List != NULL) {
  1132       ObjectMonitor * s ;
  1133       for (s = List ; s != NULL ; s = s->FreeNext) {
  1134           Tally ++ ;
  1135           Tail = s ;
  1136           guarantee (s->object() == NULL, "invariant") ;
  1137           guarantee (!s->is_busy(), "invariant") ;
  1138           s->set_owner (NULL) ;   // redundant but good hygiene
  1139           TEVENT (omFlush - Move one) ;
  1141       guarantee (Tail != NULL && List != NULL, "invariant") ;
  1144     ObjectMonitor * InUseList = Self->omInUseList;
  1145     ObjectMonitor * InUseTail = NULL ;
  1146     int InUseTally = 0;
  1147     if (InUseList != NULL) {
  1148       Self->omInUseList = NULL;
  1149       ObjectMonitor *curom;
  1150       for (curom = InUseList; curom != NULL; curom = curom->FreeNext) {
  1151         InUseTail = curom;
  1152         InUseTally++;
  1154 // TODO debug
  1155       assert(Self->omInUseCount == InUseTally, "inuse count off");
  1156       Self->omInUseCount = 0;
  1157       guarantee (InUseTail != NULL && InUseList != NULL, "invariant");
  1160     Thread::muxAcquire (&ListLock, "omFlush") ;
  1161     if (Tail != NULL) {
  1162       Tail->FreeNext = gFreeList ;
  1163       gFreeList = List ;
  1164       MonitorFreeCount += Tally;
  1167     if (InUseTail != NULL) {
  1168       InUseTail->FreeNext = gOmInUseList;
  1169       gOmInUseList = InUseList;
  1170       gOmInUseCount += InUseTally;
  1173     Thread::muxRelease (&ListLock) ;
  1174     TEVENT (omFlush) ;
  1177 // Fast path code shared by multiple functions
  1178 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
  1179   markOop mark = obj->mark();
  1180   if (mark->has_monitor()) {
  1181     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
  1182     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
  1183     return mark->monitor();
  1185   return ObjectSynchronizer::inflate(Thread::current(), obj);
  1189 // Note that we could encounter some performance loss through false-sharing as
  1190 // multiple locks occupy the same $ line.  Padding might be appropriate.
  1193 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
  1194   // Inflate mutates the heap ...
  1195   // Relaxing assertion for bug 6320749.
  1196   assert (Universe::verify_in_progress() ||
  1197           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
  1199   for (;;) {
  1200       const markOop mark = object->mark() ;
  1201       assert (!mark->has_bias_pattern(), "invariant") ;
  1203       // The mark can be in one of the following states:
  1204       // *  Inflated     - just return
  1205       // *  Stack-locked - coerce it to inflated
  1206       // *  INFLATING    - busy wait for conversion to complete
  1207       // *  Neutral      - aggressively inflate the object.
  1208       // *  BIASED       - Illegal.  We should never see this
  1210       // CASE: inflated
  1211       if (mark->has_monitor()) {
  1212           ObjectMonitor * inf = mark->monitor() ;
  1213           assert (inf->header()->is_neutral(), "invariant");
  1214           assert (inf->object() == object, "invariant") ;
  1215           assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
  1216           return inf ;
  1219       // CASE: inflation in progress - inflating over a stack-lock.
  1220       // Some other thread is converting from stack-locked to inflated.
  1221       // Only that thread can complete inflation -- other threads must wait.
  1222       // The INFLATING value is transient.
  1223       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
  1224       // We could always eliminate polling by parking the thread on some auxiliary list.
  1225       if (mark == markOopDesc::INFLATING()) {
  1226          TEVENT (Inflate: spin while INFLATING) ;
  1227          ReadStableMark(object) ;
  1228          continue ;
  1231       // CASE: stack-locked
  1232       // Could be stack-locked either by this thread or by some other thread.
  1233       //
  1234       // Note that we allocate the objectmonitor speculatively, _before_ attempting
  1235       // to install INFLATING into the mark word.  We originally installed INFLATING,
  1236       // allocated the objectmonitor, and then finally STed the address of the
  1237       // objectmonitor into the mark.  This was correct, but artificially lengthened
  1238       // the interval in which INFLATED appeared in the mark, thus increasing
  1239       // the odds of inflation contention.
  1240       //
  1241       // We now use per-thread private objectmonitor free lists.
  1242       // These list are reprovisioned from the global free list outside the
  1243       // critical INFLATING...ST interval.  A thread can transfer
  1244       // multiple objectmonitors en-mass from the global free list to its local free list.
  1245       // This reduces coherency traffic and lock contention on the global free list.
  1246       // Using such local free lists, it doesn't matter if the omAlloc() call appears
  1247       // before or after the CAS(INFLATING) operation.
  1248       // See the comments in omAlloc().
  1250       if (mark->has_locker()) {
  1251           ObjectMonitor * m = omAlloc (Self) ;
  1252           // Optimistically prepare the objectmonitor - anticipate successful CAS
  1253           // We do this before the CAS in order to minimize the length of time
  1254           // in which INFLATING appears in the mark.
  1255           m->Recycle();
  1256           m->_Responsible  = NULL ;
  1257           m->OwnerIsThread = 0 ;
  1258           m->_recursions   = 0 ;
  1259           m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;   // Consider: maintain by type/class
  1261           markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
  1262           if (cmp != mark) {
  1263              omRelease (Self, m, true) ;
  1264              continue ;       // Interference -- just retry
  1267           // We've successfully installed INFLATING (0) into the mark-word.
  1268           // This is the only case where 0 will appear in a mark-work.
  1269           // Only the singular thread that successfully swings the mark-word
  1270           // to 0 can perform (or more precisely, complete) inflation.
  1271           //
  1272           // Why do we CAS a 0 into the mark-word instead of just CASing the
  1273           // mark-word from the stack-locked value directly to the new inflated state?
  1274           // Consider what happens when a thread unlocks a stack-locked object.
  1275           // It attempts to use CAS to swing the displaced header value from the
  1276           // on-stack basiclock back into the object header.  Recall also that the
  1277           // header value (hashcode, etc) can reside in (a) the object header, or
  1278           // (b) a displaced header associated with the stack-lock, or (c) a displaced
  1279           // header in an objectMonitor.  The inflate() routine must copy the header
  1280           // value from the basiclock on the owner's stack to the objectMonitor, all
  1281           // the while preserving the hashCode stability invariants.  If the owner
  1282           // decides to release the lock while the value is 0, the unlock will fail
  1283           // and control will eventually pass from slow_exit() to inflate.  The owner
  1284           // will then spin, waiting for the 0 value to disappear.   Put another way,
  1285           // the 0 causes the owner to stall if the owner happens to try to
  1286           // drop the lock (restoring the header from the basiclock to the object)
  1287           // while inflation is in-progress.  This protocol avoids races that might
  1288           // would otherwise permit hashCode values to change or "flicker" for an object.
  1289           // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
  1290           // 0 serves as a "BUSY" inflate-in-progress indicator.
  1293           // fetch the displaced mark from the owner's stack.
  1294           // The owner can't die or unwind past the lock while our INFLATING
  1295           // object is in the mark.  Furthermore the owner can't complete
  1296           // an unlock on the object, either.
  1297           markOop dmw = mark->displaced_mark_helper() ;
  1298           assert (dmw->is_neutral(), "invariant") ;
  1300           // Setup monitor fields to proper values -- prepare the monitor
  1301           m->set_header(dmw) ;
  1303           // Optimization: if the mark->locker stack address is associated
  1304           // with this thread we could simply set m->_owner = Self and
  1305           // m->OwnerIsThread = 1. Note that a thread can inflate an object
  1306           // that it has stack-locked -- as might happen in wait() -- directly
  1307           // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
  1308           m->set_owner(mark->locker());
  1309           m->set_object(object);
  1310           // TODO-FIXME: assert BasicLock->dhw != 0.
  1312           // Must preserve store ordering. The monitor state must
  1313           // be stable at the time of publishing the monitor address.
  1314           guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
  1315           object->release_set_mark(markOopDesc::encode(m));
  1317           // Hopefully the performance counters are allocated on distinct cache lines
  1318           // to avoid false sharing on MP systems ...
  1319           if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
  1320           TEVENT(Inflate: overwrite stacklock) ;
  1321           if (TraceMonitorInflation) {
  1322             if (object->is_instance()) {
  1323               ResourceMark rm;
  1324               tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1325                 (intptr_t) object, (intptr_t) object->mark(),
  1326                 object->klass()->external_name());
  1329           return m ;
  1332       // CASE: neutral
  1333       // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
  1334       // If we know we're inflating for entry it's better to inflate by swinging a
  1335       // pre-locked objectMonitor pointer into the object header.   A successful
  1336       // CAS inflates the object *and* confers ownership to the inflating thread.
  1337       // In the current implementation we use a 2-step mechanism where we CAS()
  1338       // to inflate and then CAS() again to try to swing _owner from NULL to Self.
  1339       // An inflateTry() method that we could call from fast_enter() and slow_enter()
  1340       // would be useful.
  1342       assert (mark->is_neutral(), "invariant");
  1343       ObjectMonitor * m = omAlloc (Self) ;
  1344       // prepare m for installation - set monitor to initial state
  1345       m->Recycle();
  1346       m->set_header(mark);
  1347       m->set_owner(NULL);
  1348       m->set_object(object);
  1349       m->OwnerIsThread = 1 ;
  1350       m->_recursions   = 0 ;
  1351       m->_Responsible  = NULL ;
  1352       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;       // consider: keep metastats by type/class
  1354       if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
  1355           m->set_object (NULL) ;
  1356           m->set_owner  (NULL) ;
  1357           m->OwnerIsThread = 0 ;
  1358           m->Recycle() ;
  1359           omRelease (Self, m, true) ;
  1360           m = NULL ;
  1361           continue ;
  1362           // interference - the markword changed - just retry.
  1363           // The state-transitions are one-way, so there's no chance of
  1364           // live-lock -- "Inflated" is an absorbing state.
  1367       // Hopefully the performance counters are allocated on distinct
  1368       // cache lines to avoid false sharing on MP systems ...
  1369       if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
  1370       TEVENT(Inflate: overwrite neutral) ;
  1371       if (TraceMonitorInflation) {
  1372         if (object->is_instance()) {
  1373           ResourceMark rm;
  1374           tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1375             (intptr_t) object, (intptr_t) object->mark(),
  1376             object->klass()->external_name());
  1379       return m ;
  1383 // Note that we could encounter some performance loss through false-sharing as
  1384 // multiple locks occupy the same $ line.  Padding might be appropriate.
  1387 // Deflate_idle_monitors() is called at all safepoints, immediately
  1388 // after all mutators are stopped, but before any objects have moved.
  1389 // It traverses the list of known monitors, deflating where possible.
  1390 // The scavenged monitor are returned to the monitor free list.
  1391 //
  1392 // Beware that we scavenge at *every* stop-the-world point.
  1393 // Having a large number of monitors in-circulation negatively
  1394 // impacts the performance of some applications (e.g., PointBase).
  1395 // Broadly, we want to minimize the # of monitors in circulation.
  1396 //
  1397 // We have added a flag, MonitorInUseLists, which creates a list
  1398 // of active monitors for each thread. deflate_idle_monitors()
  1399 // only scans the per-thread inuse lists. omAlloc() puts all
  1400 // assigned monitors on the per-thread list. deflate_idle_monitors()
  1401 // returns the non-busy monitors to the global free list.
  1402 // When a thread dies, omFlush() adds the list of active monitors for
  1403 // that thread to a global gOmInUseList acquiring the
  1404 // global list lock. deflate_idle_monitors() acquires the global
  1405 // list lock to scan for non-busy monitors to the global free list.
  1406 // An alternative could have used a single global inuse list. The
  1407 // downside would have been the additional cost of acquiring the global list lock
  1408 // for every omAlloc().
  1409 //
  1410 // Perversely, the heap size -- and thus the STW safepoint rate --
  1411 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
  1412 // which in turn can mean large(r) numbers of objectmonitors in circulation.
  1413 // This is an unfortunate aspect of this design.
  1414 //
  1416 enum ManifestConstants {
  1417     ClearResponsibleAtSTW   = 0,
  1418     MaximumRecheckInterval  = 1000
  1419 } ;
  1421 // Deflate a single monitor if not in use
  1422 // Return true if deflated, false if in use
  1423 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
  1424                                          ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
  1425   bool deflated;
  1426   // Normal case ... The monitor is associated with obj.
  1427   guarantee (obj->mark() == markOopDesc::encode(mid), "invariant") ;
  1428   guarantee (mid == obj->mark()->monitor(), "invariant");
  1429   guarantee (mid->header()->is_neutral(), "invariant");
  1431   if (mid->is_busy()) {
  1432      if (ClearResponsibleAtSTW) mid->_Responsible = NULL ;
  1433      deflated = false;
  1434   } else {
  1435      // Deflate the monitor if it is no longer being used
  1436      // It's idle - scavenge and return to the global free list
  1437      // plain old deflation ...
  1438      TEVENT (deflate_idle_monitors - scavenge1) ;
  1439      if (TraceMonitorInflation) {
  1440        if (obj->is_instance()) {
  1441          ResourceMark rm;
  1442            tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1443                 (intptr_t) obj, (intptr_t) obj->mark(), obj->klass()->external_name());
  1447      // Restore the header back to obj
  1448      obj->release_set_mark(mid->header());
  1449      mid->clear();
  1451      assert (mid->object() == NULL, "invariant") ;
  1453      // Move the object to the working free list defined by FreeHead,FreeTail.
  1454      if (*FreeHeadp == NULL) *FreeHeadp = mid;
  1455      if (*FreeTailp != NULL) {
  1456        ObjectMonitor * prevtail = *FreeTailp;
  1457        assert(prevtail->FreeNext == NULL, "cleaned up deflated?"); // TODO KK
  1458        prevtail->FreeNext = mid;
  1460      *FreeTailp = mid;
  1461      deflated = true;
  1463   return deflated;
  1466 // Caller acquires ListLock
  1467 int ObjectSynchronizer::walk_monitor_list(ObjectMonitor** listheadp,
  1468                                           ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
  1469   ObjectMonitor* mid;
  1470   ObjectMonitor* next;
  1471   ObjectMonitor* curmidinuse = NULL;
  1472   int deflatedcount = 0;
  1474   for (mid = *listheadp; mid != NULL; ) {
  1475      oop obj = (oop) mid->object();
  1476      bool deflated = false;
  1477      if (obj != NULL) {
  1478        deflated = deflate_monitor(mid, obj, FreeHeadp, FreeTailp);
  1480      if (deflated) {
  1481        // extract from per-thread in-use-list
  1482        if (mid == *listheadp) {
  1483          *listheadp = mid->FreeNext;
  1484        } else if (curmidinuse != NULL) {
  1485          curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
  1487        next = mid->FreeNext;
  1488        mid->FreeNext = NULL;  // This mid is current tail in the FreeHead list
  1489        mid = next;
  1490        deflatedcount++;
  1491      } else {
  1492        curmidinuse = mid;
  1493        mid = mid->FreeNext;
  1496   return deflatedcount;
  1499 void ObjectSynchronizer::deflate_idle_monitors() {
  1500   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
  1501   int nInuse = 0 ;              // currently associated with objects
  1502   int nInCirculation = 0 ;      // extant
  1503   int nScavenged = 0 ;          // reclaimed
  1504   bool deflated = false;
  1506   ObjectMonitor * FreeHead = NULL ;  // Local SLL of scavenged monitors
  1507   ObjectMonitor * FreeTail = NULL ;
  1509   TEVENT (deflate_idle_monitors) ;
  1510   // Prevent omFlush from changing mids in Thread dtor's during deflation
  1511   // And in case the vm thread is acquiring a lock during a safepoint
  1512   // See e.g. 6320749
  1513   Thread::muxAcquire (&ListLock, "scavenge - return") ;
  1515   if (MonitorInUseLists) {
  1516     int inUse = 0;
  1517     for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
  1518       nInCirculation+= cur->omInUseCount;
  1519       int deflatedcount = walk_monitor_list(cur->omInUseList_addr(), &FreeHead, &FreeTail);
  1520       cur->omInUseCount-= deflatedcount;
  1521       // verifyInUse(cur);
  1522       nScavenged += deflatedcount;
  1523       nInuse += cur->omInUseCount;
  1526    // For moribund threads, scan gOmInUseList
  1527    if (gOmInUseList) {
  1528      nInCirculation += gOmInUseCount;
  1529      int deflatedcount = walk_monitor_list((ObjectMonitor **)&gOmInUseList, &FreeHead, &FreeTail);
  1530      gOmInUseCount-= deflatedcount;
  1531      nScavenged += deflatedcount;
  1532      nInuse += gOmInUseCount;
  1535   } else for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
  1536   // Iterate over all extant monitors - Scavenge all idle monitors.
  1537     assert(block->object() == CHAINMARKER, "must be a block header");
  1538     nInCirculation += _BLOCKSIZE ;
  1539     for (int i = 1 ; i < _BLOCKSIZE; i++) {
  1540       ObjectMonitor* mid = &block[i];
  1541       oop obj = (oop) mid->object();
  1543       if (obj == NULL) {
  1544         // The monitor is not associated with an object.
  1545         // The monitor should either be a thread-specific private
  1546         // free list or the global free list.
  1547         // obj == NULL IMPLIES mid->is_busy() == 0
  1548         guarantee (!mid->is_busy(), "invariant") ;
  1549         continue ;
  1551       deflated = deflate_monitor(mid, obj, &FreeHead, &FreeTail);
  1553       if (deflated) {
  1554         mid->FreeNext = NULL ;
  1555         nScavenged ++ ;
  1556       } else {
  1557         nInuse ++;
  1562   MonitorFreeCount += nScavenged;
  1564   // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.
  1566   if (ObjectMonitor::Knob_Verbose) {
  1567     ::printf ("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
  1568         nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
  1569         MonitorPopulation, MonitorFreeCount) ;
  1570     ::fflush(stdout) ;
  1573   ForceMonitorScavenge = 0;    // Reset
  1575   // Move the scavenged monitors back to the global free list.
  1576   if (FreeHead != NULL) {
  1577      guarantee (FreeTail != NULL && nScavenged > 0, "invariant") ;
  1578      assert (FreeTail->FreeNext == NULL, "invariant") ;
  1579      // constant-time list splice - prepend scavenged segment to gFreeList
  1580      FreeTail->FreeNext = gFreeList ;
  1581      gFreeList = FreeHead ;
  1583   Thread::muxRelease (&ListLock) ;
  1585   if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged) ;
  1586   if (ObjectMonitor::_sync_MonExtant  != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
  1588   // TODO: Add objectMonitor leak detection.
  1589   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
  1590   GVars.stwRandom = os::random() ;
  1591   GVars.stwCycle ++ ;
  1594 // Monitor cleanup on JavaThread::exit
  1596 // Iterate through monitor cache and attempt to release thread's monitors
  1597 // Gives up on a particular monitor if an exception occurs, but continues
  1598 // the overall iteration, swallowing the exception.
  1599 class ReleaseJavaMonitorsClosure: public MonitorClosure {
  1600 private:
  1601   TRAPS;
  1603 public:
  1604   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
  1605   void do_monitor(ObjectMonitor* mid) {
  1606     if (mid->owner() == THREAD) {
  1607       (void)mid->complete_exit(CHECK);
  1610 };
  1612 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
  1613 // ignored.  This is meant to be called during JNI thread detach which assumes
  1614 // all remaining monitors are heavyweight.  All exceptions are swallowed.
  1615 // Scanning the extant monitor list can be time consuming.
  1616 // A simple optimization is to add a per-thread flag that indicates a thread
  1617 // called jni_monitorenter() during its lifetime.
  1618 //
  1619 // Instead of No_Savepoint_Verifier it might be cheaper to
  1620 // use an idiom of the form:
  1621 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
  1622 //   <code that must not run at safepoint>
  1623 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
  1624 // Since the tests are extremely cheap we could leave them enabled
  1625 // for normal product builds.
  1627 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
  1628   assert(THREAD == JavaThread::current(), "must be current Java thread");
  1629   No_Safepoint_Verifier nsv ;
  1630   ReleaseJavaMonitorsClosure rjmc(THREAD);
  1631   Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
  1632   ObjectSynchronizer::monitors_iterate(&rjmc);
  1633   Thread::muxRelease(&ListLock);
  1634   THREAD->clear_pending_exception();
  1637 //------------------------------------------------------------------------------
  1638 // Non-product code
  1640 #ifndef PRODUCT
  1642 void ObjectSynchronizer::trace_locking(Handle locking_obj, bool is_compiled,
  1643                                        bool is_method, bool is_locking) {
  1644   // Don't know what to do here
  1647 // Verify all monitors in the monitor cache, the verification is weak.
  1648 void ObjectSynchronizer::verify() {
  1649   ObjectMonitor* block = gBlockList;
  1650   ObjectMonitor* mid;
  1651   while (block) {
  1652     assert(block->object() == CHAINMARKER, "must be a block header");
  1653     for (int i = 1; i < _BLOCKSIZE; i++) {
  1654       mid = block + i;
  1655       oop object = (oop) mid->object();
  1656       if (object != NULL) {
  1657         mid->verify();
  1660     block = (ObjectMonitor*) block->FreeNext;
  1664 // Check if monitor belongs to the monitor cache
  1665 // The list is grow-only so it's *relatively* safe to traverse
  1666 // the list of extant blocks without taking a lock.
  1668 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
  1669   ObjectMonitor* block = gBlockList;
  1671   while (block) {
  1672     assert(block->object() == CHAINMARKER, "must be a block header");
  1673     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
  1674       address mon = (address) monitor;
  1675       address blk = (address) block;
  1676       size_t diff = mon - blk;
  1677       assert((diff % sizeof(ObjectMonitor)) == 0, "check");
  1678       return 1;
  1680     block = (ObjectMonitor*) block->FreeNext;
  1682   return 0;
  1685 #endif

mercurial