src/share/vm/opto/callnode.cpp

Sun, 23 Dec 2012 17:08:22 +0100

author
roland
date
Sun, 23 Dec 2012 17:08:22 +0100
changeset 4409
d092d1b31229
parent 4357
ad5dd04754ee
child 4478
a7114d3d712e
permissions
-rw-r--r--

8005071: Incremental inlining for JSR 292
Summary: post parse inlining driven by number of live nodes.
Reviewed-by: twisti, kvn, jrose

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/bcEscapeAnalyzer.hpp"
    27 #include "compiler/oopMap.hpp"
    28 #include "opto/callGenerator.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/escape.hpp"
    31 #include "opto/locknode.hpp"
    32 #include "opto/machnode.hpp"
    33 #include "opto/matcher.hpp"
    34 #include "opto/parse.hpp"
    35 #include "opto/regalloc.hpp"
    36 #include "opto/regmask.hpp"
    37 #include "opto/rootnode.hpp"
    38 #include "opto/runtime.hpp"
    40 // Portions of code courtesy of Clifford Click
    42 // Optimization - Graph Style
    44 //=============================================================================
    45 uint StartNode::size_of() const { return sizeof(*this); }
    46 uint StartNode::cmp( const Node &n ) const
    47 { return _domain == ((StartNode&)n)._domain; }
    48 const Type *StartNode::bottom_type() const { return _domain; }
    49 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
    50 #ifndef PRODUCT
    51 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
    52 #endif
    54 //------------------------------Ideal------------------------------------------
    55 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
    56   return remove_dead_region(phase, can_reshape) ? this : NULL;
    57 }
    59 //------------------------------calling_convention-----------------------------
    60 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
    61   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
    62 }
    64 //------------------------------Registers--------------------------------------
    65 const RegMask &StartNode::in_RegMask(uint) const {
    66   return RegMask::Empty;
    67 }
    69 //------------------------------match------------------------------------------
    70 // Construct projections for incoming parameters, and their RegMask info
    71 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
    72   switch (proj->_con) {
    73   case TypeFunc::Control:
    74   case TypeFunc::I_O:
    75   case TypeFunc::Memory:
    76     return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
    77   case TypeFunc::FramePtr:
    78     return new (match->C) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
    79   case TypeFunc::ReturnAdr:
    80     return new (match->C) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
    81   case TypeFunc::Parms:
    82   default: {
    83       uint parm_num = proj->_con - TypeFunc::Parms;
    84       const Type *t = _domain->field_at(proj->_con);
    85       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
    86         return new (match->C) ConNode(Type::TOP);
    87       uint ideal_reg = t->ideal_reg();
    88       RegMask &rm = match->_calling_convention_mask[parm_num];
    89       return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
    90     }
    91   }
    92   return NULL;
    93 }
    95 //------------------------------StartOSRNode----------------------------------
    96 // The method start node for an on stack replacement adapter
    98 //------------------------------osr_domain-----------------------------
    99 const TypeTuple *StartOSRNode::osr_domain() {
   100   const Type **fields = TypeTuple::fields(2);
   101   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
   103   return TypeTuple::make(TypeFunc::Parms+1, fields);
   104 }
   106 //=============================================================================
   107 const char * const ParmNode::names[TypeFunc::Parms+1] = {
   108   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
   109 };
   111 #ifndef PRODUCT
   112 void ParmNode::dump_spec(outputStream *st) const {
   113   if( _con < TypeFunc::Parms ) {
   114     st->print(names[_con]);
   115   } else {
   116     st->print("Parm%d: ",_con-TypeFunc::Parms);
   117     // Verbose and WizardMode dump bottom_type for all nodes
   118     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
   119   }
   120 }
   121 #endif
   123 uint ParmNode::ideal_reg() const {
   124   switch( _con ) {
   125   case TypeFunc::Control  : // fall through
   126   case TypeFunc::I_O      : // fall through
   127   case TypeFunc::Memory   : return 0;
   128   case TypeFunc::FramePtr : // fall through
   129   case TypeFunc::ReturnAdr: return Op_RegP;
   130   default                 : assert( _con > TypeFunc::Parms, "" );
   131     // fall through
   132   case TypeFunc::Parms    : {
   133     // Type of argument being passed
   134     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
   135     return t->ideal_reg();
   136   }
   137   }
   138   ShouldNotReachHere();
   139   return 0;
   140 }
   142 //=============================================================================
   143 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
   144   init_req(TypeFunc::Control,cntrl);
   145   init_req(TypeFunc::I_O,i_o);
   146   init_req(TypeFunc::Memory,memory);
   147   init_req(TypeFunc::FramePtr,frameptr);
   148   init_req(TypeFunc::ReturnAdr,retadr);
   149 }
   151 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
   152   return remove_dead_region(phase, can_reshape) ? this : NULL;
   153 }
   155 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
   156   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
   157     ? Type::TOP
   158     : Type::BOTTOM;
   159 }
   161 // Do we Match on this edge index or not?  No edges on return nodes
   162 uint ReturnNode::match_edge(uint idx) const {
   163   return 0;
   164 }
   167 #ifndef PRODUCT
   168 void ReturnNode::dump_req() const {
   169   // Dump the required inputs, enclosed in '(' and ')'
   170   uint i;                       // Exit value of loop
   171   for( i=0; i<req(); i++ ) {    // For all required inputs
   172     if( i == TypeFunc::Parms ) tty->print("returns");
   173     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   174     else tty->print("_ ");
   175   }
   176 }
   177 #endif
   179 //=============================================================================
   180 RethrowNode::RethrowNode(
   181   Node* cntrl,
   182   Node* i_o,
   183   Node* memory,
   184   Node* frameptr,
   185   Node* ret_adr,
   186   Node* exception
   187 ) : Node(TypeFunc::Parms + 1) {
   188   init_req(TypeFunc::Control  , cntrl    );
   189   init_req(TypeFunc::I_O      , i_o      );
   190   init_req(TypeFunc::Memory   , memory   );
   191   init_req(TypeFunc::FramePtr , frameptr );
   192   init_req(TypeFunc::ReturnAdr, ret_adr);
   193   init_req(TypeFunc::Parms    , exception);
   194 }
   196 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
   197   return remove_dead_region(phase, can_reshape) ? this : NULL;
   198 }
   200 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
   201   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
   202     ? Type::TOP
   203     : Type::BOTTOM;
   204 }
   206 uint RethrowNode::match_edge(uint idx) const {
   207   return 0;
   208 }
   210 #ifndef PRODUCT
   211 void RethrowNode::dump_req() const {
   212   // Dump the required inputs, enclosed in '(' and ')'
   213   uint i;                       // Exit value of loop
   214   for( i=0; i<req(); i++ ) {    // For all required inputs
   215     if( i == TypeFunc::Parms ) tty->print("exception");
   216     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   217     else tty->print("_ ");
   218   }
   219 }
   220 #endif
   222 //=============================================================================
   223 // Do we Match on this edge index or not?  Match only target address & method
   224 uint TailCallNode::match_edge(uint idx) const {
   225   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
   226 }
   228 //=============================================================================
   229 // Do we Match on this edge index or not?  Match only target address & oop
   230 uint TailJumpNode::match_edge(uint idx) const {
   231   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
   232 }
   234 //=============================================================================
   235 JVMState::JVMState(ciMethod* method, JVMState* caller) :
   236   _method(method) {
   237   assert(method != NULL, "must be valid call site");
   238   _reexecute = Reexecute_Undefined;
   239   debug_only(_bci = -99);  // random garbage value
   240   debug_only(_map = (SafePointNode*)-1);
   241   _caller = caller;
   242   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
   243   _locoff = TypeFunc::Parms;
   244   _stkoff = _locoff + _method->max_locals();
   245   _monoff = _stkoff + _method->max_stack();
   246   _scloff = _monoff;
   247   _endoff = _monoff;
   248   _sp = 0;
   249 }
   250 JVMState::JVMState(int stack_size) :
   251   _method(NULL) {
   252   _bci = InvocationEntryBci;
   253   _reexecute = Reexecute_Undefined;
   254   debug_only(_map = (SafePointNode*)-1);
   255   _caller = NULL;
   256   _depth  = 1;
   257   _locoff = TypeFunc::Parms;
   258   _stkoff = _locoff;
   259   _monoff = _stkoff + stack_size;
   260   _scloff = _monoff;
   261   _endoff = _monoff;
   262   _sp = 0;
   263 }
   265 //--------------------------------of_depth-------------------------------------
   266 JVMState* JVMState::of_depth(int d) const {
   267   const JVMState* jvmp = this;
   268   assert(0 < d && (uint)d <= depth(), "oob");
   269   for (int skip = depth() - d; skip > 0; skip--) {
   270     jvmp = jvmp->caller();
   271   }
   272   assert(jvmp->depth() == (uint)d, "found the right one");
   273   return (JVMState*)jvmp;
   274 }
   276 //-----------------------------same_calls_as-----------------------------------
   277 bool JVMState::same_calls_as(const JVMState* that) const {
   278   if (this == that)                    return true;
   279   if (this->depth() != that->depth())  return false;
   280   const JVMState* p = this;
   281   const JVMState* q = that;
   282   for (;;) {
   283     if (p->_method != q->_method)    return false;
   284     if (p->_method == NULL)          return true;   // bci is irrelevant
   285     if (p->_bci    != q->_bci)       return false;
   286     if (p->_reexecute != q->_reexecute)  return false;
   287     p = p->caller();
   288     q = q->caller();
   289     if (p == q)                      return true;
   290     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
   291   }
   292 }
   294 //------------------------------debug_start------------------------------------
   295 uint JVMState::debug_start()  const {
   296   debug_only(JVMState* jvmroot = of_depth(1));
   297   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
   298   return of_depth(1)->locoff();
   299 }
   301 //-------------------------------debug_end-------------------------------------
   302 uint JVMState::debug_end() const {
   303   debug_only(JVMState* jvmroot = of_depth(1));
   304   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
   305   return endoff();
   306 }
   308 //------------------------------debug_depth------------------------------------
   309 uint JVMState::debug_depth() const {
   310   uint total = 0;
   311   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
   312     total += jvmp->debug_size();
   313   }
   314   return total;
   315 }
   317 #ifndef PRODUCT
   319 //------------------------------format_helper----------------------------------
   320 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
   321 // any defined value or not.  If it does, print out the register or constant.
   322 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
   323   if (n == NULL) { st->print(" NULL"); return; }
   324   if (n->is_SafePointScalarObject()) {
   325     // Scalar replacement.
   326     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
   327     scobjs->append_if_missing(spobj);
   328     int sco_n = scobjs->find(spobj);
   329     assert(sco_n >= 0, "");
   330     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
   331     return;
   332   }
   333   if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
   334     char buf[50];
   335     regalloc->dump_register(n,buf);
   336     st->print(" %s%d]=%s",msg,i,buf);
   337   } else {                      // No register, but might be constant
   338     const Type *t = n->bottom_type();
   339     switch (t->base()) {
   340     case Type::Int:
   341       st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
   342       break;
   343     case Type::AnyPtr:
   344       assert( t == TypePtr::NULL_PTR, "" );
   345       st->print(" %s%d]=#NULL",msg,i);
   346       break;
   347     case Type::AryPtr:
   348     case Type::InstPtr:
   349       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
   350       break;
   351     case Type::KlassPtr:
   352       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_klassptr()->klass());
   353       break;
   354     case Type::MetadataPtr:
   355       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_metadataptr()->metadata());
   356       break;
   357     case Type::NarrowOop:
   358       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_oopptr()->const_oop());
   359       break;
   360     case Type::RawPtr:
   361       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
   362       break;
   363     case Type::DoubleCon:
   364       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
   365       break;
   366     case Type::FloatCon:
   367       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
   368       break;
   369     case Type::Long:
   370       st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
   371       break;
   372     case Type::Half:
   373     case Type::Top:
   374       st->print(" %s%d]=_",msg,i);
   375       break;
   376     default: ShouldNotReachHere();
   377     }
   378   }
   379 }
   381 //------------------------------format-----------------------------------------
   382 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
   383   st->print("        #");
   384   if( _method ) {
   385     _method->print_short_name(st);
   386     st->print(" @ bci:%d ",_bci);
   387   } else {
   388     st->print_cr(" runtime stub ");
   389     return;
   390   }
   391   if (n->is_MachSafePoint()) {
   392     GrowableArray<SafePointScalarObjectNode*> scobjs;
   393     MachSafePointNode *mcall = n->as_MachSafePoint();
   394     uint i;
   395     // Print locals
   396     for( i = 0; i < (uint)loc_size(); i++ )
   397       format_helper( regalloc, st, mcall->local(this, i), "L[", i, &scobjs );
   398     // Print stack
   399     for (i = 0; i < (uint)stk_size(); i++) {
   400       if ((uint)(_stkoff + i) >= mcall->len())
   401         st->print(" oob ");
   402       else
   403        format_helper( regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs );
   404     }
   405     for (i = 0; (int)i < nof_monitors(); i++) {
   406       Node *box = mcall->monitor_box(this, i);
   407       Node *obj = mcall->monitor_obj(this, i);
   408       if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
   409         box = BoxLockNode::box_node(box);
   410         format_helper( regalloc, st, box, "MON-BOX[", i, &scobjs );
   411       } else {
   412         OptoReg::Name box_reg = BoxLockNode::reg(box);
   413         st->print(" MON-BOX%d=%s+%d",
   414                    i,
   415                    OptoReg::regname(OptoReg::c_frame_pointer),
   416                    regalloc->reg2offset(box_reg));
   417       }
   418       const char* obj_msg = "MON-OBJ[";
   419       if (EliminateLocks) {
   420         if (BoxLockNode::box_node(box)->is_eliminated())
   421           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
   422       }
   423       format_helper( regalloc, st, obj, obj_msg, i, &scobjs );
   424     }
   426     for (i = 0; i < (uint)scobjs.length(); i++) {
   427       // Scalar replaced objects.
   428       st->print_cr("");
   429       st->print("        # ScObj" INT32_FORMAT " ", i);
   430       SafePointScalarObjectNode* spobj = scobjs.at(i);
   431       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
   432       assert(cik->is_instance_klass() ||
   433              cik->is_array_klass(), "Not supported allocation.");
   434       ciInstanceKlass *iklass = NULL;
   435       if (cik->is_instance_klass()) {
   436         cik->print_name_on(st);
   437         iklass = cik->as_instance_klass();
   438       } else if (cik->is_type_array_klass()) {
   439         cik->as_array_klass()->base_element_type()->print_name_on(st);
   440         st->print("[%d]", spobj->n_fields());
   441       } else if (cik->is_obj_array_klass()) {
   442         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
   443         if (cie->is_instance_klass()) {
   444           cie->print_name_on(st);
   445         } else if (cie->is_type_array_klass()) {
   446           cie->as_array_klass()->base_element_type()->print_name_on(st);
   447         } else {
   448           ShouldNotReachHere();
   449         }
   450         st->print("[%d]", spobj->n_fields());
   451         int ndim = cik->as_array_klass()->dimension() - 1;
   452         while (ndim-- > 0) {
   453           st->print("[]");
   454         }
   455       }
   456       st->print("={");
   457       uint nf = spobj->n_fields();
   458       if (nf > 0) {
   459         uint first_ind = spobj->first_index();
   460         Node* fld_node = mcall->in(first_ind);
   461         ciField* cifield;
   462         if (iklass != NULL) {
   463           st->print(" [");
   464           cifield = iklass->nonstatic_field_at(0);
   465           cifield->print_name_on(st);
   466           format_helper( regalloc, st, fld_node, ":", 0, &scobjs );
   467         } else {
   468           format_helper( regalloc, st, fld_node, "[", 0, &scobjs );
   469         }
   470         for (uint j = 1; j < nf; j++) {
   471           fld_node = mcall->in(first_ind+j);
   472           if (iklass != NULL) {
   473             st->print(", [");
   474             cifield = iklass->nonstatic_field_at(j);
   475             cifield->print_name_on(st);
   476             format_helper( regalloc, st, fld_node, ":", j, &scobjs );
   477           } else {
   478             format_helper( regalloc, st, fld_node, ", [", j, &scobjs );
   479           }
   480         }
   481       }
   482       st->print(" }");
   483     }
   484   }
   485   st->print_cr("");
   486   if (caller() != NULL)  caller()->format(regalloc, n, st);
   487 }
   490 void JVMState::dump_spec(outputStream *st) const {
   491   if (_method != NULL) {
   492     bool printed = false;
   493     if (!Verbose) {
   494       // The JVMS dumps make really, really long lines.
   495       // Take out the most boring parts, which are the package prefixes.
   496       char buf[500];
   497       stringStream namest(buf, sizeof(buf));
   498       _method->print_short_name(&namest);
   499       if (namest.count() < sizeof(buf)) {
   500         const char* name = namest.base();
   501         if (name[0] == ' ')  ++name;
   502         const char* endcn = strchr(name, ':');  // end of class name
   503         if (endcn == NULL)  endcn = strchr(name, '(');
   504         if (endcn == NULL)  endcn = name + strlen(name);
   505         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
   506           --endcn;
   507         st->print(" %s", endcn);
   508         printed = true;
   509       }
   510     }
   511     if (!printed)
   512       _method->print_short_name(st);
   513     st->print(" @ bci:%d",_bci);
   514     if(_reexecute == Reexecute_True)
   515       st->print(" reexecute");
   516   } else {
   517     st->print(" runtime stub");
   518   }
   519   if (caller() != NULL)  caller()->dump_spec(st);
   520 }
   523 void JVMState::dump_on(outputStream* st) const {
   524   if (_map && !((uintptr_t)_map & 1)) {
   525     if (_map->len() > _map->req()) {  // _map->has_exceptions()
   526       Node* ex = _map->in(_map->req());  // _map->next_exception()
   527       // skip the first one; it's already being printed
   528       while (ex != NULL && ex->len() > ex->req()) {
   529         ex = ex->in(ex->req());  // ex->next_exception()
   530         ex->dump(1);
   531       }
   532     }
   533     _map->dump(2);
   534   }
   535   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
   536              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
   537   if (_method == NULL) {
   538     st->print_cr("(none)");
   539   } else {
   540     _method->print_name(st);
   541     st->cr();
   542     if (bci() >= 0 && bci() < _method->code_size()) {
   543       st->print("    bc: ");
   544       _method->print_codes_on(bci(), bci()+1, st);
   545     }
   546   }
   547   if (caller() != NULL) {
   548     caller()->dump_on(st);
   549   }
   550 }
   552 // Extra way to dump a jvms from the debugger,
   553 // to avoid a bug with C++ member function calls.
   554 void dump_jvms(JVMState* jvms) {
   555   jvms->dump();
   556 }
   557 #endif
   559 //--------------------------clone_shallow--------------------------------------
   560 JVMState* JVMState::clone_shallow(Compile* C) const {
   561   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
   562   n->set_bci(_bci);
   563   n->_reexecute = _reexecute;
   564   n->set_locoff(_locoff);
   565   n->set_stkoff(_stkoff);
   566   n->set_monoff(_monoff);
   567   n->set_scloff(_scloff);
   568   n->set_endoff(_endoff);
   569   n->set_sp(_sp);
   570   n->set_map(_map);
   571   return n;
   572 }
   574 //---------------------------clone_deep----------------------------------------
   575 JVMState* JVMState::clone_deep(Compile* C) const {
   576   JVMState* n = clone_shallow(C);
   577   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
   578     p->_caller = p->_caller->clone_shallow(C);
   579   }
   580   assert(n->depth() == depth(), "sanity");
   581   assert(n->debug_depth() == debug_depth(), "sanity");
   582   return n;
   583 }
   585 //=============================================================================
   586 uint CallNode::cmp( const Node &n ) const
   587 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
   588 #ifndef PRODUCT
   589 void CallNode::dump_req() const {
   590   // Dump the required inputs, enclosed in '(' and ')'
   591   uint i;                       // Exit value of loop
   592   for( i=0; i<req(); i++ ) {    // For all required inputs
   593     if( i == TypeFunc::Parms ) tty->print("(");
   594     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   595     else tty->print("_ ");
   596   }
   597   tty->print(")");
   598 }
   600 void CallNode::dump_spec(outputStream *st) const {
   601   st->print(" ");
   602   tf()->dump_on(st);
   603   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
   604   if (jvms() != NULL)  jvms()->dump_spec(st);
   605 }
   606 #endif
   608 const Type *CallNode::bottom_type() const { return tf()->range(); }
   609 const Type *CallNode::Value(PhaseTransform *phase) const {
   610   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
   611   return tf()->range();
   612 }
   614 //------------------------------calling_convention-----------------------------
   615 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
   616   // Use the standard compiler calling convention
   617   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
   618 }
   621 //------------------------------match------------------------------------------
   622 // Construct projections for control, I/O, memory-fields, ..., and
   623 // return result(s) along with their RegMask info
   624 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
   625   switch (proj->_con) {
   626   case TypeFunc::Control:
   627   case TypeFunc::I_O:
   628   case TypeFunc::Memory:
   629     return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
   631   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
   632     assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
   633     // 2nd half of doubles and longs
   634     return new (match->C) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
   636   case TypeFunc::Parms: {       // Normal returns
   637     uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
   638     OptoRegPair regs = is_CallRuntime()
   639       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
   640       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
   641     RegMask rm = RegMask(regs.first());
   642     if( OptoReg::is_valid(regs.second()) )
   643       rm.Insert( regs.second() );
   644     return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
   645   }
   647   case TypeFunc::ReturnAdr:
   648   case TypeFunc::FramePtr:
   649   default:
   650     ShouldNotReachHere();
   651   }
   652   return NULL;
   653 }
   655 // Do we Match on this edge index or not?  Match no edges
   656 uint CallNode::match_edge(uint idx) const {
   657   return 0;
   658 }
   660 //
   661 // Determine whether the call could modify the field of the specified
   662 // instance at the specified offset.
   663 //
   664 bool CallNode::may_modify(const TypePtr *addr_t, PhaseTransform *phase) {
   665   const TypeOopPtr *adrInst_t  = addr_t->isa_oopptr();
   667   // If not an OopPtr or not an instance type, assume the worst.
   668   // Note: currently this method is called only for instance types.
   669   if (adrInst_t == NULL || !adrInst_t->is_known_instance()) {
   670     return true;
   671   }
   672   // The instance_id is set only for scalar-replaceable allocations which
   673   // are not passed as arguments according to Escape Analysis.
   674   return false;
   675 }
   677 // Does this call have a direct reference to n other than debug information?
   678 bool CallNode::has_non_debug_use(Node *n) {
   679   const TypeTuple * d = tf()->domain();
   680   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   681     Node *arg = in(i);
   682     if (arg == n) {
   683       return true;
   684     }
   685   }
   686   return false;
   687 }
   689 // Returns the unique CheckCastPP of a call
   690 // or 'this' if there are several CheckCastPP
   691 // or returns NULL if there is no one.
   692 Node *CallNode::result_cast() {
   693   Node *cast = NULL;
   695   Node *p = proj_out(TypeFunc::Parms);
   696   if (p == NULL)
   697     return NULL;
   699   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
   700     Node *use = p->fast_out(i);
   701     if (use->is_CheckCastPP()) {
   702       if (cast != NULL) {
   703         return this;  // more than 1 CheckCastPP
   704       }
   705       cast = use;
   706     }
   707   }
   708   return cast;
   709 }
   712 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
   713   projs->fallthrough_proj      = NULL;
   714   projs->fallthrough_catchproj = NULL;
   715   projs->fallthrough_ioproj    = NULL;
   716   projs->catchall_ioproj       = NULL;
   717   projs->catchall_catchproj    = NULL;
   718   projs->fallthrough_memproj   = NULL;
   719   projs->catchall_memproj      = NULL;
   720   projs->resproj               = NULL;
   721   projs->exobj                 = NULL;
   723   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
   724     ProjNode *pn = fast_out(i)->as_Proj();
   725     if (pn->outcnt() == 0) continue;
   726     switch (pn->_con) {
   727     case TypeFunc::Control:
   728       {
   729         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
   730         projs->fallthrough_proj = pn;
   731         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
   732         const Node *cn = pn->fast_out(j);
   733         if (cn->is_Catch()) {
   734           ProjNode *cpn = NULL;
   735           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
   736             cpn = cn->fast_out(k)->as_Proj();
   737             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
   738             if (cpn->_con == CatchProjNode::fall_through_index)
   739               projs->fallthrough_catchproj = cpn;
   740             else {
   741               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
   742               projs->catchall_catchproj = cpn;
   743             }
   744           }
   745         }
   746         break;
   747       }
   748     case TypeFunc::I_O:
   749       if (pn->_is_io_use)
   750         projs->catchall_ioproj = pn;
   751       else
   752         projs->fallthrough_ioproj = pn;
   753       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
   754         Node* e = pn->out(j);
   755         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
   756           assert(projs->exobj == NULL, "only one");
   757           projs->exobj = e;
   758         }
   759       }
   760       break;
   761     case TypeFunc::Memory:
   762       if (pn->_is_io_use)
   763         projs->catchall_memproj = pn;
   764       else
   765         projs->fallthrough_memproj = pn;
   766       break;
   767     case TypeFunc::Parms:
   768       projs->resproj = pn;
   769       break;
   770     default:
   771       assert(false, "unexpected projection from allocation node.");
   772     }
   773   }
   775   // The resproj may not exist because the result couuld be ignored
   776   // and the exception object may not exist if an exception handler
   777   // swallows the exception but all the other must exist and be found.
   778   assert(projs->fallthrough_proj      != NULL, "must be found");
   779   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_catchproj != NULL, "must be found");
   780   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_memproj   != NULL, "must be found");
   781   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_ioproj    != NULL, "must be found");
   782   assert(Compile::current()->inlining_incrementally() || projs->catchall_catchproj    != NULL, "must be found");
   783   if (separate_io_proj) {
   784     assert(Compile::current()->inlining_incrementally() || projs->catchall_memproj    != NULL, "must be found");
   785     assert(Compile::current()->inlining_incrementally() || projs->catchall_ioproj     != NULL, "must be found");
   786   }
   787 }
   789 Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   790   CallGenerator* cg = generator();
   791   if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) {
   792     // Check whether this MH handle call becomes a candidate for inlining
   793     ciMethod* callee = cg->method();
   794     vmIntrinsics::ID iid = callee->intrinsic_id();
   795     if (iid == vmIntrinsics::_invokeBasic) {
   796       if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
   797         phase->C->prepend_late_inline(cg);
   798         set_generator(NULL);
   799       }
   800     } else {
   801       assert(callee->has_member_arg(), "wrong type of call?");
   802       if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
   803         phase->C->prepend_late_inline(cg);
   804         set_generator(NULL);
   805       }
   806     }
   807   }
   808   return SafePointNode::Ideal(phase, can_reshape);
   809 }
   812 //=============================================================================
   813 uint CallJavaNode::size_of() const { return sizeof(*this); }
   814 uint CallJavaNode::cmp( const Node &n ) const {
   815   CallJavaNode &call = (CallJavaNode&)n;
   816   return CallNode::cmp(call) && _method == call._method;
   817 }
   818 #ifndef PRODUCT
   819 void CallJavaNode::dump_spec(outputStream *st) const {
   820   if( _method ) _method->print_short_name(st);
   821   CallNode::dump_spec(st);
   822 }
   823 #endif
   825 //=============================================================================
   826 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
   827 uint CallStaticJavaNode::cmp( const Node &n ) const {
   828   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
   829   return CallJavaNode::cmp(call);
   830 }
   832 //----------------------------uncommon_trap_request----------------------------
   833 // If this is an uncommon trap, return the request code, else zero.
   834 int CallStaticJavaNode::uncommon_trap_request() const {
   835   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
   836     return extract_uncommon_trap_request(this);
   837   }
   838   return 0;
   839 }
   840 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
   841 #ifndef PRODUCT
   842   if (!(call->req() > TypeFunc::Parms &&
   843         call->in(TypeFunc::Parms) != NULL &&
   844         call->in(TypeFunc::Parms)->is_Con())) {
   845     assert(_in_dump_cnt != 0, "OK if dumping");
   846     tty->print("[bad uncommon trap]");
   847     return 0;
   848   }
   849 #endif
   850   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
   851 }
   853 #ifndef PRODUCT
   854 void CallStaticJavaNode::dump_spec(outputStream *st) const {
   855   st->print("# Static ");
   856   if (_name != NULL) {
   857     st->print("%s", _name);
   858     int trap_req = uncommon_trap_request();
   859     if (trap_req != 0) {
   860       char buf[100];
   861       st->print("(%s)",
   862                  Deoptimization::format_trap_request(buf, sizeof(buf),
   863                                                      trap_req));
   864     }
   865     st->print(" ");
   866   }
   867   CallJavaNode::dump_spec(st);
   868 }
   869 #endif
   871 //=============================================================================
   872 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
   873 uint CallDynamicJavaNode::cmp( const Node &n ) const {
   874   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
   875   return CallJavaNode::cmp(call);
   876 }
   877 #ifndef PRODUCT
   878 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
   879   st->print("# Dynamic ");
   880   CallJavaNode::dump_spec(st);
   881 }
   882 #endif
   884 //=============================================================================
   885 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
   886 uint CallRuntimeNode::cmp( const Node &n ) const {
   887   CallRuntimeNode &call = (CallRuntimeNode&)n;
   888   return CallNode::cmp(call) && !strcmp(_name,call._name);
   889 }
   890 #ifndef PRODUCT
   891 void CallRuntimeNode::dump_spec(outputStream *st) const {
   892   st->print("# ");
   893   st->print(_name);
   894   CallNode::dump_spec(st);
   895 }
   896 #endif
   898 //------------------------------calling_convention-----------------------------
   899 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
   900   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
   901 }
   903 //=============================================================================
   904 //------------------------------calling_convention-----------------------------
   907 //=============================================================================
   908 #ifndef PRODUCT
   909 void CallLeafNode::dump_spec(outputStream *st) const {
   910   st->print("# ");
   911   st->print(_name);
   912   CallNode::dump_spec(st);
   913 }
   914 #endif
   916 //=============================================================================
   918 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
   919   assert(verify_jvms(jvms), "jvms must match");
   920   int loc = jvms->locoff() + idx;
   921   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
   922     // If current local idx is top then local idx - 1 could
   923     // be a long/double that needs to be killed since top could
   924     // represent the 2nd half ofthe long/double.
   925     uint ideal = in(loc -1)->ideal_reg();
   926     if (ideal == Op_RegD || ideal == Op_RegL) {
   927       // set other (low index) half to top
   928       set_req(loc - 1, in(loc));
   929     }
   930   }
   931   set_req(loc, c);
   932 }
   934 uint SafePointNode::size_of() const { return sizeof(*this); }
   935 uint SafePointNode::cmp( const Node &n ) const {
   936   return (&n == this);          // Always fail except on self
   937 }
   939 //-------------------------set_next_exception----------------------------------
   940 void SafePointNode::set_next_exception(SafePointNode* n) {
   941   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
   942   if (len() == req()) {
   943     if (n != NULL)  add_prec(n);
   944   } else {
   945     set_prec(req(), n);
   946   }
   947 }
   950 //----------------------------next_exception-----------------------------------
   951 SafePointNode* SafePointNode::next_exception() const {
   952   if (len() == req()) {
   953     return NULL;
   954   } else {
   955     Node* n = in(req());
   956     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
   957     return (SafePointNode*) n;
   958   }
   959 }
   962 //------------------------------Ideal------------------------------------------
   963 // Skip over any collapsed Regions
   964 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   965   return remove_dead_region(phase, can_reshape) ? this : NULL;
   966 }
   968 //------------------------------Identity---------------------------------------
   969 // Remove obviously duplicate safepoints
   970 Node *SafePointNode::Identity( PhaseTransform *phase ) {
   972   // If you have back to back safepoints, remove one
   973   if( in(TypeFunc::Control)->is_SafePoint() )
   974     return in(TypeFunc::Control);
   976   if( in(0)->is_Proj() ) {
   977     Node *n0 = in(0)->in(0);
   978     // Check if he is a call projection (except Leaf Call)
   979     if( n0->is_Catch() ) {
   980       n0 = n0->in(0)->in(0);
   981       assert( n0->is_Call(), "expect a call here" );
   982     }
   983     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
   984       // Useless Safepoint, so remove it
   985       return in(TypeFunc::Control);
   986     }
   987   }
   989   return this;
   990 }
   992 //------------------------------Value------------------------------------------
   993 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
   994   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
   995   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
   996   return Type::CONTROL;
   997 }
   999 #ifndef PRODUCT
  1000 void SafePointNode::dump_spec(outputStream *st) const {
  1001   st->print(" SafePoint ");
  1003 #endif
  1005 const RegMask &SafePointNode::in_RegMask(uint idx) const {
  1006   if( idx < TypeFunc::Parms ) return RegMask::Empty;
  1007   // Values outside the domain represent debug info
  1008   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
  1010 const RegMask &SafePointNode::out_RegMask() const {
  1011   return RegMask::Empty;
  1015 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
  1016   assert((int)grow_by > 0, "sanity");
  1017   int monoff = jvms->monoff();
  1018   int scloff = jvms->scloff();
  1019   int endoff = jvms->endoff();
  1020   assert(endoff == (int)req(), "no other states or debug info after me");
  1021   Node* top = Compile::current()->top();
  1022   for (uint i = 0; i < grow_by; i++) {
  1023     ins_req(monoff, top);
  1025   jvms->set_monoff(monoff + grow_by);
  1026   jvms->set_scloff(scloff + grow_by);
  1027   jvms->set_endoff(endoff + grow_by);
  1030 void SafePointNode::push_monitor(const FastLockNode *lock) {
  1031   // Add a LockNode, which points to both the original BoxLockNode (the
  1032   // stack space for the monitor) and the Object being locked.
  1033   const int MonitorEdges = 2;
  1034   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
  1035   assert(req() == jvms()->endoff(), "correct sizing");
  1036   int nextmon = jvms()->scloff();
  1037   if (GenerateSynchronizationCode) {
  1038     add_req(lock->box_node());
  1039     add_req(lock->obj_node());
  1040   } else {
  1041     Node* top = Compile::current()->top();
  1042     add_req(top);
  1043     add_req(top);
  1045   jvms()->set_scloff(nextmon+MonitorEdges);
  1046   jvms()->set_endoff(req());
  1049 void SafePointNode::pop_monitor() {
  1050   // Delete last monitor from debug info
  1051   debug_only(int num_before_pop = jvms()->nof_monitors());
  1052   const int MonitorEdges = (1<<JVMState::logMonitorEdges);
  1053   int scloff = jvms()->scloff();
  1054   int endoff = jvms()->endoff();
  1055   int new_scloff = scloff - MonitorEdges;
  1056   int new_endoff = endoff - MonitorEdges;
  1057   jvms()->set_scloff(new_scloff);
  1058   jvms()->set_endoff(new_endoff);
  1059   while (scloff > new_scloff)  del_req(--scloff);
  1060   assert(jvms()->nof_monitors() == num_before_pop-1, "");
  1063 Node *SafePointNode::peek_monitor_box() const {
  1064   int mon = jvms()->nof_monitors() - 1;
  1065   assert(mon >= 0, "most have a monitor");
  1066   return monitor_box(jvms(), mon);
  1069 Node *SafePointNode::peek_monitor_obj() const {
  1070   int mon = jvms()->nof_monitors() - 1;
  1071   assert(mon >= 0, "most have a monitor");
  1072   return monitor_obj(jvms(), mon);
  1075 // Do we Match on this edge index or not?  Match no edges
  1076 uint SafePointNode::match_edge(uint idx) const {
  1077   if( !needs_polling_address_input() )
  1078     return 0;
  1080   return (TypeFunc::Parms == idx);
  1083 //==============  SafePointScalarObjectNode  ==============
  1085 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
  1086 #ifdef ASSERT
  1087                                                      AllocateNode* alloc,
  1088 #endif
  1089                                                      uint first_index,
  1090                                                      uint n_fields) :
  1091   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
  1092 #ifdef ASSERT
  1093   _alloc(alloc),
  1094 #endif
  1095   _first_index(first_index),
  1096   _n_fields(n_fields)
  1098   init_class_id(Class_SafePointScalarObject);
  1101 // Do not allow value-numbering for SafePointScalarObject node.
  1102 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
  1103 uint SafePointScalarObjectNode::cmp( const Node &n ) const {
  1104   return (&n == this); // Always fail except on self
  1107 uint SafePointScalarObjectNode::ideal_reg() const {
  1108   return 0; // No matching to machine instruction
  1111 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
  1112   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
  1115 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
  1116   return RegMask::Empty;
  1119 uint SafePointScalarObjectNode::match_edge(uint idx) const {
  1120   return 0;
  1123 SafePointScalarObjectNode*
  1124 SafePointScalarObjectNode::clone(int jvms_adj, Dict* sosn_map) const {
  1125   void* cached = (*sosn_map)[(void*)this];
  1126   if (cached != NULL) {
  1127     return (SafePointScalarObjectNode*)cached;
  1129   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
  1130   res->_first_index += jvms_adj;
  1131   sosn_map->Insert((void*)this, (void*)res);
  1132   return res;
  1136 #ifndef PRODUCT
  1137 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
  1138   st->print(" # fields@[%d..%d]", first_index(),
  1139              first_index() + n_fields() - 1);
  1142 #endif
  1144 //=============================================================================
  1145 uint AllocateNode::size_of() const { return sizeof(*this); }
  1147 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
  1148                            Node *ctrl, Node *mem, Node *abio,
  1149                            Node *size, Node *klass_node, Node *initial_test)
  1150   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
  1152   init_class_id(Class_Allocate);
  1153   init_flags(Flag_is_macro);
  1154   _is_scalar_replaceable = false;
  1155   Node *topnode = C->top();
  1157   init_req( TypeFunc::Control  , ctrl );
  1158   init_req( TypeFunc::I_O      , abio );
  1159   init_req( TypeFunc::Memory   , mem );
  1160   init_req( TypeFunc::ReturnAdr, topnode );
  1161   init_req( TypeFunc::FramePtr , topnode );
  1162   init_req( AllocSize          , size);
  1163   init_req( KlassNode          , klass_node);
  1164   init_req( InitialTest        , initial_test);
  1165   init_req( ALength            , topnode);
  1166   C->add_macro_node(this);
  1169 //=============================================================================
  1170 uint AllocateArrayNode::size_of() const { return sizeof(*this); }
  1172 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1173   if (remove_dead_region(phase, can_reshape))  return this;
  1174   // Don't bother trying to transform a dead node
  1175   if (in(0) && in(0)->is_top())  return NULL;
  1177   const Type* type = phase->type(Ideal_length());
  1178   if (type->isa_int() && type->is_int()->_hi < 0) {
  1179     if (can_reshape) {
  1180       PhaseIterGVN *igvn = phase->is_IterGVN();
  1181       // Unreachable fall through path (negative array length),
  1182       // the allocation can only throw so disconnect it.
  1183       Node* proj = proj_out(TypeFunc::Control);
  1184       Node* catchproj = NULL;
  1185       if (proj != NULL) {
  1186         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
  1187           Node *cn = proj->fast_out(i);
  1188           if (cn->is_Catch()) {
  1189             catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
  1190             break;
  1194       if (catchproj != NULL && catchproj->outcnt() > 0 &&
  1195           (catchproj->outcnt() > 1 ||
  1196            catchproj->unique_out()->Opcode() != Op_Halt)) {
  1197         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
  1198         Node* nproj = catchproj->clone();
  1199         igvn->register_new_node_with_optimizer(nproj);
  1201         Node *frame = new (phase->C) ParmNode( phase->C->start(), TypeFunc::FramePtr );
  1202         frame = phase->transform(frame);
  1203         // Halt & Catch Fire
  1204         Node *halt = new (phase->C) HaltNode( nproj, frame );
  1205         phase->C->root()->add_req(halt);
  1206         phase->transform(halt);
  1208         igvn->replace_node(catchproj, phase->C->top());
  1209         return this;
  1211     } else {
  1212       // Can't correct it during regular GVN so register for IGVN
  1213       phase->C->record_for_igvn(this);
  1216   return NULL;
  1219 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
  1220 // CastII, if appropriate.  If we are not allowed to create new nodes, and
  1221 // a CastII is appropriate, return NULL.
  1222 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
  1223   Node *length = in(AllocateNode::ALength);
  1224   assert(length != NULL, "length is not null");
  1226   const TypeInt* length_type = phase->find_int_type(length);
  1227   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
  1229   if (ary_type != NULL && length_type != NULL) {
  1230     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
  1231     if (narrow_length_type != length_type) {
  1232       // Assert one of:
  1233       //   - the narrow_length is 0
  1234       //   - the narrow_length is not wider than length
  1235       assert(narrow_length_type == TypeInt::ZERO ||
  1236              (narrow_length_type->_hi <= length_type->_hi &&
  1237               narrow_length_type->_lo >= length_type->_lo),
  1238              "narrow type must be narrower than length type");
  1240       // Return NULL if new nodes are not allowed
  1241       if (!allow_new_nodes) return NULL;
  1242       // Create a cast which is control dependent on the initialization to
  1243       // propagate the fact that the array length must be positive.
  1244       length = new (phase->C) CastIINode(length, narrow_length_type);
  1245       length->set_req(0, initialization()->proj_out(0));
  1249   return length;
  1252 //=============================================================================
  1253 uint LockNode::size_of() const { return sizeof(*this); }
  1255 // Redundant lock elimination
  1256 //
  1257 // There are various patterns of locking where we release and
  1258 // immediately reacquire a lock in a piece of code where no operations
  1259 // occur in between that would be observable.  In those cases we can
  1260 // skip releasing and reacquiring the lock without violating any
  1261 // fairness requirements.  Doing this around a loop could cause a lock
  1262 // to be held for a very long time so we concentrate on non-looping
  1263 // control flow.  We also require that the operations are fully
  1264 // redundant meaning that we don't introduce new lock operations on
  1265 // some paths so to be able to eliminate it on others ala PRE.  This
  1266 // would probably require some more extensive graph manipulation to
  1267 // guarantee that the memory edges were all handled correctly.
  1268 //
  1269 // Assuming p is a simple predicate which can't trap in any way and s
  1270 // is a synchronized method consider this code:
  1271 //
  1272 //   s();
  1273 //   if (p)
  1274 //     s();
  1275 //   else
  1276 //     s();
  1277 //   s();
  1278 //
  1279 // 1. The unlocks of the first call to s can be eliminated if the
  1280 // locks inside the then and else branches are eliminated.
  1281 //
  1282 // 2. The unlocks of the then and else branches can be eliminated if
  1283 // the lock of the final call to s is eliminated.
  1284 //
  1285 // Either of these cases subsumes the simple case of sequential control flow
  1286 //
  1287 // Addtionally we can eliminate versions without the else case:
  1288 //
  1289 //   s();
  1290 //   if (p)
  1291 //     s();
  1292 //   s();
  1293 //
  1294 // 3. In this case we eliminate the unlock of the first s, the lock
  1295 // and unlock in the then case and the lock in the final s.
  1296 //
  1297 // Note also that in all these cases the then/else pieces don't have
  1298 // to be trivial as long as they begin and end with synchronization
  1299 // operations.
  1300 //
  1301 //   s();
  1302 //   if (p)
  1303 //     s();
  1304 //     f();
  1305 //     s();
  1306 //   s();
  1307 //
  1308 // The code will work properly for this case, leaving in the unlock
  1309 // before the call to f and the relock after it.
  1310 //
  1311 // A potentially interesting case which isn't handled here is when the
  1312 // locking is partially redundant.
  1313 //
  1314 //   s();
  1315 //   if (p)
  1316 //     s();
  1317 //
  1318 // This could be eliminated putting unlocking on the else case and
  1319 // eliminating the first unlock and the lock in the then side.
  1320 // Alternatively the unlock could be moved out of the then side so it
  1321 // was after the merge and the first unlock and second lock
  1322 // eliminated.  This might require less manipulation of the memory
  1323 // state to get correct.
  1324 //
  1325 // Additionally we might allow work between a unlock and lock before
  1326 // giving up eliminating the locks.  The current code disallows any
  1327 // conditional control flow between these operations.  A formulation
  1328 // similar to partial redundancy elimination computing the
  1329 // availability of unlocking and the anticipatability of locking at a
  1330 // program point would allow detection of fully redundant locking with
  1331 // some amount of work in between.  I'm not sure how often I really
  1332 // think that would occur though.  Most of the cases I've seen
  1333 // indicate it's likely non-trivial work would occur in between.
  1334 // There may be other more complicated constructs where we could
  1335 // eliminate locking but I haven't seen any others appear as hot or
  1336 // interesting.
  1337 //
  1338 // Locking and unlocking have a canonical form in ideal that looks
  1339 // roughly like this:
  1340 //
  1341 //              <obj>
  1342 //                | \\------+
  1343 //                |  \       \
  1344 //                | BoxLock   \
  1345 //                |  |   |     \
  1346 //                |  |    \     \
  1347 //                |  |   FastLock
  1348 //                |  |   /
  1349 //                |  |  /
  1350 //                |  |  |
  1351 //
  1352 //               Lock
  1353 //                |
  1354 //            Proj #0
  1355 //                |
  1356 //            MembarAcquire
  1357 //                |
  1358 //            Proj #0
  1359 //
  1360 //            MembarRelease
  1361 //                |
  1362 //            Proj #0
  1363 //                |
  1364 //              Unlock
  1365 //                |
  1366 //            Proj #0
  1367 //
  1368 //
  1369 // This code proceeds by processing Lock nodes during PhaseIterGVN
  1370 // and searching back through its control for the proper code
  1371 // patterns.  Once it finds a set of lock and unlock operations to
  1372 // eliminate they are marked as eliminatable which causes the
  1373 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
  1374 //
  1375 //=============================================================================
  1377 //
  1378 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
  1379 //   - copy regions.  (These may not have been optimized away yet.)
  1380 //   - eliminated locking nodes
  1381 //
  1382 static Node *next_control(Node *ctrl) {
  1383   if (ctrl == NULL)
  1384     return NULL;
  1385   while (1) {
  1386     if (ctrl->is_Region()) {
  1387       RegionNode *r = ctrl->as_Region();
  1388       Node *n = r->is_copy();
  1389       if (n == NULL)
  1390         break;  // hit a region, return it
  1391       else
  1392         ctrl = n;
  1393     } else if (ctrl->is_Proj()) {
  1394       Node *in0 = ctrl->in(0);
  1395       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
  1396         ctrl = in0->in(0);
  1397       } else {
  1398         break;
  1400     } else {
  1401       break; // found an interesting control
  1404   return ctrl;
  1406 //
  1407 // Given a control, see if it's the control projection of an Unlock which
  1408 // operating on the same object as lock.
  1409 //
  1410 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
  1411                                             GrowableArray<AbstractLockNode*> &lock_ops) {
  1412   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
  1413   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
  1414     Node *n = ctrl_proj->in(0);
  1415     if (n != NULL && n->is_Unlock()) {
  1416       UnlockNode *unlock = n->as_Unlock();
  1417       if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
  1418           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
  1419           !unlock->is_eliminated()) {
  1420         lock_ops.append(unlock);
  1421         return true;
  1425   return false;
  1428 //
  1429 // Find the lock matching an unlock.  Returns null if a safepoint
  1430 // or complicated control is encountered first.
  1431 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
  1432   LockNode *lock_result = NULL;
  1433   // find the matching lock, or an intervening safepoint
  1434   Node *ctrl = next_control(unlock->in(0));
  1435   while (1) {
  1436     assert(ctrl != NULL, "invalid control graph");
  1437     assert(!ctrl->is_Start(), "missing lock for unlock");
  1438     if (ctrl->is_top()) break;  // dead control path
  1439     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
  1440     if (ctrl->is_SafePoint()) {
  1441         break;  // found a safepoint (may be the lock we are searching for)
  1442     } else if (ctrl->is_Region()) {
  1443       // Check for a simple diamond pattern.  Punt on anything more complicated
  1444       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
  1445         Node *in1 = next_control(ctrl->in(1));
  1446         Node *in2 = next_control(ctrl->in(2));
  1447         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
  1448              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
  1449           ctrl = next_control(in1->in(0)->in(0));
  1450         } else {
  1451           break;
  1453       } else {
  1454         break;
  1456     } else {
  1457       ctrl = next_control(ctrl->in(0));  // keep searching
  1460   if (ctrl->is_Lock()) {
  1461     LockNode *lock = ctrl->as_Lock();
  1462     if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
  1463         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
  1464       lock_result = lock;
  1467   return lock_result;
  1470 // This code corresponds to case 3 above.
  1472 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
  1473                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
  1474   Node* if_node = node->in(0);
  1475   bool  if_true = node->is_IfTrue();
  1477   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
  1478     Node *lock_ctrl = next_control(if_node->in(0));
  1479     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
  1480       Node* lock1_node = NULL;
  1481       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
  1482       if (if_true) {
  1483         if (proj->is_IfFalse() && proj->outcnt() == 1) {
  1484           lock1_node = proj->unique_out();
  1486       } else {
  1487         if (proj->is_IfTrue() && proj->outcnt() == 1) {
  1488           lock1_node = proj->unique_out();
  1491       if (lock1_node != NULL && lock1_node->is_Lock()) {
  1492         LockNode *lock1 = lock1_node->as_Lock();
  1493         if (lock->obj_node()->eqv_uncast(lock1->obj_node()) &&
  1494             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
  1495             !lock1->is_eliminated()) {
  1496           lock_ops.append(lock1);
  1497           return true;
  1503   lock_ops.trunc_to(0);
  1504   return false;
  1507 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
  1508                                GrowableArray<AbstractLockNode*> &lock_ops) {
  1509   // check each control merging at this point for a matching unlock.
  1510   // in(0) should be self edge so skip it.
  1511   for (int i = 1; i < (int)region->req(); i++) {
  1512     Node *in_node = next_control(region->in(i));
  1513     if (in_node != NULL) {
  1514       if (find_matching_unlock(in_node, lock, lock_ops)) {
  1515         // found a match so keep on checking.
  1516         continue;
  1517       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
  1518         continue;
  1521       // If we fall through to here then it was some kind of node we
  1522       // don't understand or there wasn't a matching unlock, so give
  1523       // up trying to merge locks.
  1524       lock_ops.trunc_to(0);
  1525       return false;
  1528   return true;
  1532 #ifndef PRODUCT
  1533 //
  1534 // Create a counter which counts the number of times this lock is acquired
  1535 //
  1536 void AbstractLockNode::create_lock_counter(JVMState* state) {
  1537   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
  1540 void AbstractLockNode::set_eliminated_lock_counter() {
  1541   if (_counter) {
  1542     // Update the counter to indicate that this lock was eliminated.
  1543     // The counter update code will stay around even though the
  1544     // optimizer will eliminate the lock operation itself.
  1545     _counter->set_tag(NamedCounter::EliminatedLockCounter);
  1548 #endif
  1550 //=============================================================================
  1551 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1553   // perform any generic optimizations first (returns 'this' or NULL)
  1554   Node *result = SafePointNode::Ideal(phase, can_reshape);
  1555   if (result != NULL)  return result;
  1556   // Don't bother trying to transform a dead node
  1557   if (in(0) && in(0)->is_top())  return NULL;
  1559   // Now see if we can optimize away this lock.  We don't actually
  1560   // remove the locking here, we simply set the _eliminate flag which
  1561   // prevents macro expansion from expanding the lock.  Since we don't
  1562   // modify the graph, the value returned from this function is the
  1563   // one computed above.
  1564   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
  1565     //
  1566     // If we are locking an unescaped object, the lock/unlock is unnecessary
  1567     //
  1568     ConnectionGraph *cgr = phase->C->congraph();
  1569     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
  1570       assert(!is_eliminated() || is_coarsened(), "sanity");
  1571       // The lock could be marked eliminated by lock coarsening
  1572       // code during first IGVN before EA. Replace coarsened flag
  1573       // to eliminate all associated locks/unlocks.
  1574       this->set_non_esc_obj();
  1575       return result;
  1578     //
  1579     // Try lock coarsening
  1580     //
  1581     PhaseIterGVN* iter = phase->is_IterGVN();
  1582     if (iter != NULL && !is_eliminated()) {
  1584       GrowableArray<AbstractLockNode*>   lock_ops;
  1586       Node *ctrl = next_control(in(0));
  1588       // now search back for a matching Unlock
  1589       if (find_matching_unlock(ctrl, this, lock_ops)) {
  1590         // found an unlock directly preceding this lock.  This is the
  1591         // case of single unlock directly control dependent on a
  1592         // single lock which is the trivial version of case 1 or 2.
  1593       } else if (ctrl->is_Region() ) {
  1594         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
  1595         // found lock preceded by multiple unlocks along all paths
  1596         // joining at this point which is case 3 in description above.
  1598       } else {
  1599         // see if this lock comes from either half of an if and the
  1600         // predecessors merges unlocks and the other half of the if
  1601         // performs a lock.
  1602         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
  1603           // found unlock splitting to an if with locks on both branches.
  1607       if (lock_ops.length() > 0) {
  1608         // add ourselves to the list of locks to be eliminated.
  1609         lock_ops.append(this);
  1611   #ifndef PRODUCT
  1612         if (PrintEliminateLocks) {
  1613           int locks = 0;
  1614           int unlocks = 0;
  1615           for (int i = 0; i < lock_ops.length(); i++) {
  1616             AbstractLockNode* lock = lock_ops.at(i);
  1617             if (lock->Opcode() == Op_Lock)
  1618               locks++;
  1619             else
  1620               unlocks++;
  1621             if (Verbose) {
  1622               lock->dump(1);
  1625           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
  1627   #endif
  1629         // for each of the identified locks, mark them
  1630         // as eliminatable
  1631         for (int i = 0; i < lock_ops.length(); i++) {
  1632           AbstractLockNode* lock = lock_ops.at(i);
  1634           // Mark it eliminated by coarsening and update any counters
  1635           lock->set_coarsened();
  1637       } else if (ctrl->is_Region() &&
  1638                  iter->_worklist.member(ctrl)) {
  1639         // We weren't able to find any opportunities but the region this
  1640         // lock is control dependent on hasn't been processed yet so put
  1641         // this lock back on the worklist so we can check again once any
  1642         // region simplification has occurred.
  1643         iter->_worklist.push(this);
  1648   return result;
  1651 //=============================================================================
  1652 bool LockNode::is_nested_lock_region() {
  1653   BoxLockNode* box = box_node()->as_BoxLock();
  1654   int stk_slot = box->stack_slot();
  1655   if (stk_slot <= 0)
  1656     return false; // External lock or it is not Box (Phi node).
  1658   // Ignore complex cases: merged locks or multiple locks.
  1659   Node* obj = obj_node();
  1660   LockNode* unique_lock = NULL;
  1661   if (!box->is_simple_lock_region(&unique_lock, obj) ||
  1662       (unique_lock != this)) {
  1663     return false;
  1666   // Look for external lock for the same object.
  1667   SafePointNode* sfn = this->as_SafePoint();
  1668   JVMState* youngest_jvms = sfn->jvms();
  1669   int max_depth = youngest_jvms->depth();
  1670   for (int depth = 1; depth <= max_depth; depth++) {
  1671     JVMState* jvms = youngest_jvms->of_depth(depth);
  1672     int num_mon  = jvms->nof_monitors();
  1673     // Loop over monitors
  1674     for (int idx = 0; idx < num_mon; idx++) {
  1675       Node* obj_node = sfn->monitor_obj(jvms, idx);
  1676       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
  1677       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
  1678         return true;
  1682   return false;
  1685 //=============================================================================
  1686 uint UnlockNode::size_of() const { return sizeof(*this); }
  1688 //=============================================================================
  1689 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1691   // perform any generic optimizations first (returns 'this' or NULL)
  1692   Node *result = SafePointNode::Ideal(phase, can_reshape);
  1693   if (result != NULL)  return result;
  1694   // Don't bother trying to transform a dead node
  1695   if (in(0) && in(0)->is_top())  return NULL;
  1697   // Now see if we can optimize away this unlock.  We don't actually
  1698   // remove the unlocking here, we simply set the _eliminate flag which
  1699   // prevents macro expansion from expanding the unlock.  Since we don't
  1700   // modify the graph, the value returned from this function is the
  1701   // one computed above.
  1702   // Escape state is defined after Parse phase.
  1703   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
  1704     //
  1705     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
  1706     //
  1707     ConnectionGraph *cgr = phase->C->congraph();
  1708     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
  1709       assert(!is_eliminated() || is_coarsened(), "sanity");
  1710       // The lock could be marked eliminated by lock coarsening
  1711       // code during first IGVN before EA. Replace coarsened flag
  1712       // to eliminate all associated locks/unlocks.
  1713       this->set_non_esc_obj();
  1716   return result;

mercurial