src/share/vm/memory/referenceProcessor.cpp

Mon, 21 Nov 2011 07:47:34 +0100

author
brutisso
date
Mon, 21 Nov 2011 07:47:34 +0100
changeset 3290
d06a2d7fcd5b
parent 3210
bf2d2b8b1726
child 3339
e7dead7e90af
permissions
-rw-r--r--

7110718: -XX:MarkSweepAlwaysCompactCount=0 crashes the JVM
Summary: Interpret MarkSweepAlwaysCompactCount < 1 as never do full compaction
Reviewed-by: ysr, tonyp, jmasa, johnc

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/javaClasses.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "gc_interface/collectedHeap.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "memory/referencePolicy.hpp"
    31 #include "memory/referenceProcessor.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "runtime/java.hpp"
    34 #include "runtime/jniHandles.hpp"
    36 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
    37 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
    38 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
    39 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
    41 void referenceProcessor_init() {
    42   ReferenceProcessor::init_statics();
    43 }
    45 void ReferenceProcessor::init_statics() {
    46   jlong now = os::javaTimeMillis();
    48   // Initialize the soft ref timestamp clock.
    49   _soft_ref_timestamp_clock = now;
    50   // Also update the soft ref clock in j.l.r.SoftReference
    51   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
    53   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
    54   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
    55                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
    56   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
    57     vm_exit_during_initialization("Could not allocate reference policy object");
    58   }
    59   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
    60             RefDiscoveryPolicy == ReferentBasedDiscovery,
    61             "Unrecongnized RefDiscoveryPolicy");
    62   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
    63 }
    65 void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_refs) {
    66 #ifdef ASSERT
    67   // Verify that we're not currently discovering refs
    68   assert(!verify_disabled || !_discovering_refs, "nested call?");
    70   if (check_no_refs) {
    71     // Verify that the discovered lists are empty
    72     verify_no_references_recorded();
    73   }
    74 #endif // ASSERT
    76   // Someone could have modified the value of the static
    77   // field in the j.l.r.SoftReference class that holds the
    78   // soft reference timestamp clock using reflection or
    79   // Unsafe between GCs. Unconditionally update the static
    80   // field in ReferenceProcessor here so that we use the new
    81   // value during reference discovery.
    83   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
    84   _discovering_refs = true;
    85 }
    87 ReferenceProcessor::ReferenceProcessor(MemRegion span,
    88                                        bool      mt_processing,
    89                                        int       mt_processing_degree,
    90                                        bool      mt_discovery,
    91                                        int       mt_discovery_degree,
    92                                        bool      atomic_discovery,
    93                                        BoolObjectClosure* is_alive_non_header,
    94                                        bool      discovered_list_needs_barrier)  :
    95   _discovering_refs(false),
    96   _enqueuing_is_done(false),
    97   _is_alive_non_header(is_alive_non_header),
    98   _discovered_list_needs_barrier(discovered_list_needs_barrier),
    99   _bs(NULL),
   100   _processing_is_mt(mt_processing),
   101   _next_id(0)
   102 {
   103   _span = span;
   104   _discovery_is_atomic = atomic_discovery;
   105   _discovery_is_mt     = mt_discovery;
   106   _num_q               = MAX2(1, mt_processing_degree);
   107   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
   108   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
   109                                           _max_num_q * number_of_subclasses_of_ref());
   110   if (_discovered_refs == NULL) {
   111     vm_exit_during_initialization("Could not allocated RefProc Array");
   112   }
   113   _discoveredSoftRefs    = &_discovered_refs[0];
   114   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
   115   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
   116   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
   118   // Initialize all entries to NULL
   119   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   120     _discovered_refs[i].set_head(NULL);
   121     _discovered_refs[i].set_length(0);
   122   }
   124   // If we do barriers, cache a copy of the barrier set.
   125   if (discovered_list_needs_barrier) {
   126     _bs = Universe::heap()->barrier_set();
   127   }
   128   setup_policy(false /* default soft ref policy */);
   129 }
   131 #ifndef PRODUCT
   132 void ReferenceProcessor::verify_no_references_recorded() {
   133   guarantee(!_discovering_refs, "Discovering refs?");
   134   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   135     guarantee(_discovered_refs[i].is_empty(),
   136               "Found non-empty discovered list");
   137   }
   138 }
   139 #endif
   141 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
   142   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   143     if (UseCompressedOops) {
   144       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
   145     } else {
   146       f->do_oop((oop*)_discovered_refs[i].adr_head());
   147     }
   148   }
   149 }
   151 void ReferenceProcessor::update_soft_ref_master_clock() {
   152   // Update (advance) the soft ref master clock field. This must be done
   153   // after processing the soft ref list.
   154   jlong now = os::javaTimeMillis();
   155   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
   156   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
   158   NOT_PRODUCT(
   159   if (now < _soft_ref_timestamp_clock) {
   160     warning("time warp: "INT64_FORMAT" to "INT64_FORMAT,
   161             _soft_ref_timestamp_clock, now);
   162   }
   163   )
   164   // In product mode, protect ourselves from system time being adjusted
   165   // externally and going backward; see note in the implementation of
   166   // GenCollectedHeap::time_since_last_gc() for the right way to fix
   167   // this uniformly throughout the VM; see bug-id 4741166. XXX
   168   if (now > _soft_ref_timestamp_clock) {
   169     _soft_ref_timestamp_clock = now;
   170     java_lang_ref_SoftReference::set_clock(now);
   171   }
   172   // Else leave clock stalled at its old value until time progresses
   173   // past clock value.
   174 }
   176 void ReferenceProcessor::process_discovered_references(
   177   BoolObjectClosure*           is_alive,
   178   OopClosure*                  keep_alive,
   179   VoidClosure*                 complete_gc,
   180   AbstractRefProcTaskExecutor* task_executor) {
   181   NOT_PRODUCT(verify_ok_to_handle_reflists());
   183   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
   184   // Stop treating discovered references specially.
   185   disable_discovery();
   187   // If discovery was concurrent, someone could have modified
   188   // the value of the static field in the j.l.r.SoftReference
   189   // class that holds the soft reference timestamp clock using
   190   // reflection or Unsafe between when discovery was enabled and
   191   // now. Unconditionally update the static field in ReferenceProcessor
   192   // here so that we use the new value during processing of the
   193   // discovered soft refs.
   195   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
   197   bool trace_time = PrintGCDetails && PrintReferenceGC;
   198   // Soft references
   199   {
   200     TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
   201     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
   202                                is_alive, keep_alive, complete_gc, task_executor);
   203   }
   205   update_soft_ref_master_clock();
   207   // Weak references
   208   {
   209     TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
   210     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
   211                                is_alive, keep_alive, complete_gc, task_executor);
   212   }
   214   // Final references
   215   {
   216     TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
   217     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
   218                                is_alive, keep_alive, complete_gc, task_executor);
   219   }
   221   // Phantom references
   222   {
   223     TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
   224     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
   225                                is_alive, keep_alive, complete_gc, task_executor);
   226   }
   228   // Weak global JNI references. It would make more sense (semantically) to
   229   // traverse these simultaneously with the regular weak references above, but
   230   // that is not how the JDK1.2 specification is. See #4126360. Native code can
   231   // thus use JNI weak references to circumvent the phantom references and
   232   // resurrect a "post-mortem" object.
   233   {
   234     TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
   235     if (task_executor != NULL) {
   236       task_executor->set_single_threaded_mode();
   237     }
   238     process_phaseJNI(is_alive, keep_alive, complete_gc);
   239   }
   240 }
   242 #ifndef PRODUCT
   243 // Calculate the number of jni handles.
   244 uint ReferenceProcessor::count_jni_refs() {
   245   class AlwaysAliveClosure: public BoolObjectClosure {
   246   public:
   247     virtual bool do_object_b(oop obj) { return true; }
   248     virtual void do_object(oop obj) { assert(false, "Don't call"); }
   249   };
   251   class CountHandleClosure: public OopClosure {
   252   private:
   253     int _count;
   254   public:
   255     CountHandleClosure(): _count(0) {}
   256     void do_oop(oop* unused)       { _count++; }
   257     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
   258     int count() { return _count; }
   259   };
   260   CountHandleClosure global_handle_count;
   261   AlwaysAliveClosure always_alive;
   262   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
   263   return global_handle_count.count();
   264 }
   265 #endif
   267 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
   268                                           OopClosure*        keep_alive,
   269                                           VoidClosure*       complete_gc) {
   270 #ifndef PRODUCT
   271   if (PrintGCDetails && PrintReferenceGC) {
   272     unsigned int count = count_jni_refs();
   273     gclog_or_tty->print(", %u refs", count);
   274   }
   275 #endif
   276   JNIHandles::weak_oops_do(is_alive, keep_alive);
   277   complete_gc->do_void();
   278 }
   281 template <class T>
   282 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
   283                                    AbstractRefProcTaskExecutor* task_executor) {
   285   // Remember old value of pending references list
   286   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
   287   T old_pending_list_value = *pending_list_addr;
   289   // Enqueue references that are not made active again, and
   290   // clear the decks for the next collection (cycle).
   291   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
   292   // Do the oop-check on pending_list_addr missed in
   293   // enqueue_discovered_reflist. We should probably
   294   // do a raw oop_check so that future such idempotent
   295   // oop_stores relying on the oop-check side-effect
   296   // may be elided automatically and safely without
   297   // affecting correctness.
   298   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
   300   // Stop treating discovered references specially.
   301   ref->disable_discovery();
   303   // Return true if new pending references were added
   304   return old_pending_list_value != *pending_list_addr;
   305 }
   307 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
   308   NOT_PRODUCT(verify_ok_to_handle_reflists());
   309   if (UseCompressedOops) {
   310     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
   311   } else {
   312     return enqueue_discovered_ref_helper<oop>(this, task_executor);
   313   }
   314 }
   316 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
   317                                                     HeapWord* pending_list_addr) {
   318   // Given a list of refs linked through the "discovered" field
   319   // (java.lang.ref.Reference.discovered), self-loop their "next" field
   320   // thus distinguishing them from active References, then
   321   // prepend them to the pending list.
   322   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
   323   // the "next" field is used to chain the pending list, not the discovered
   324   // field.
   326   if (TraceReferenceGC && PrintGCDetails) {
   327     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
   328                            INTPTR_FORMAT, (address)refs_list.head());
   329   }
   331   oop obj = NULL;
   332   oop next_d = refs_list.head();
   333   if (pending_list_uses_discovered_field()) { // New behaviour
   334     // Walk down the list, self-looping the next field
   335     // so that the References are not considered active.
   336     while (obj != next_d) {
   337       obj = next_d;
   338       assert(obj->is_instanceRef(), "should be reference object");
   339       next_d = java_lang_ref_Reference::discovered(obj);
   340       if (TraceReferenceGC && PrintGCDetails) {
   341         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   342                                obj, next_d);
   343       }
   344       assert(java_lang_ref_Reference::next(obj) == NULL,
   345              "Reference not active; should not be discovered");
   346       // Self-loop next, so as to make Ref not active.
   347       java_lang_ref_Reference::set_next(obj, obj);
   348       if (next_d == obj) {  // obj is last
   349         // Swap refs_list into pendling_list_addr and
   350         // set obj's discovered to what we read from pending_list_addr.
   351         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   352         // Need oop_check on pending_list_addr above;
   353         // see special oop-check code at the end of
   354         // enqueue_discovered_reflists() further below.
   355         java_lang_ref_Reference::set_discovered(obj, old); // old may be NULL
   356       }
   357     }
   358   } else { // Old behaviour
   359     // Walk down the list, copying the discovered field into
   360     // the next field and clearing the discovered field.
   361     while (obj != next_d) {
   362       obj = next_d;
   363       assert(obj->is_instanceRef(), "should be reference object");
   364       next_d = java_lang_ref_Reference::discovered(obj);
   365       if (TraceReferenceGC && PrintGCDetails) {
   366         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   367                                obj, next_d);
   368       }
   369       assert(java_lang_ref_Reference::next(obj) == NULL,
   370              "The reference should not be enqueued");
   371       if (next_d == obj) {  // obj is last
   372         // Swap refs_list into pendling_list_addr and
   373         // set obj's next to what we read from pending_list_addr.
   374         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   375         // Need oop_check on pending_list_addr above;
   376         // see special oop-check code at the end of
   377         // enqueue_discovered_reflists() further below.
   378         if (old == NULL) {
   379           // obj should be made to point to itself, since
   380           // pending list was empty.
   381           java_lang_ref_Reference::set_next(obj, obj);
   382         } else {
   383           java_lang_ref_Reference::set_next(obj, old);
   384         }
   385       } else {
   386         java_lang_ref_Reference::set_next(obj, next_d);
   387       }
   388       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
   389     }
   390   }
   391 }
   393 // Parallel enqueue task
   394 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
   395 public:
   396   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
   397                      DiscoveredList      discovered_refs[],
   398                      HeapWord*           pending_list_addr,
   399                      int                 n_queues)
   400     : EnqueueTask(ref_processor, discovered_refs,
   401                   pending_list_addr, n_queues)
   402   { }
   404   virtual void work(unsigned int work_id) {
   405     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
   406     // Simplest first cut: static partitioning.
   407     int index = work_id;
   408     // The increment on "index" must correspond to the maximum number of queues
   409     // (n_queues) with which that ReferenceProcessor was created.  That
   410     // is because of the "clever" way the discovered references lists were
   411     // allocated and are indexed into.
   412     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
   413     for (int j = 0;
   414          j < ReferenceProcessor::number_of_subclasses_of_ref();
   415          j++, index += _n_queues) {
   416       _ref_processor.enqueue_discovered_reflist(
   417         _refs_lists[index], _pending_list_addr);
   418       _refs_lists[index].set_head(NULL);
   419       _refs_lists[index].set_length(0);
   420     }
   421   }
   422 };
   424 // Enqueue references that are not made active again
   425 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
   426   AbstractRefProcTaskExecutor* task_executor) {
   427   if (_processing_is_mt && task_executor != NULL) {
   428     // Parallel code
   429     RefProcEnqueueTask tsk(*this, _discovered_refs,
   430                            pending_list_addr, _max_num_q);
   431     task_executor->execute(tsk);
   432   } else {
   433     // Serial code: call the parent class's implementation
   434     for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   435       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
   436       _discovered_refs[i].set_head(NULL);
   437       _discovered_refs[i].set_length(0);
   438     }
   439   }
   440 }
   442 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
   443   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
   444   oop discovered = java_lang_ref_Reference::discovered(_ref);
   445   assert(_discovered_addr && discovered->is_oop_or_null(),
   446          "discovered field is bad");
   447   _next = discovered;
   448   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
   449   _referent = java_lang_ref_Reference::referent(_ref);
   450   assert(Universe::heap()->is_in_reserved_or_null(_referent),
   451          "Wrong oop found in java.lang.Reference object");
   452   assert(allow_null_referent ?
   453              _referent->is_oop_or_null()
   454            : _referent->is_oop(),
   455          "bad referent");
   456 }
   458 void DiscoveredListIterator::remove() {
   459   assert(_ref->is_oop(), "Dropping a bad reference");
   460   oop_store_raw(_discovered_addr, NULL);
   462   // First _prev_next ref actually points into DiscoveredList (gross).
   463   oop new_next;
   464   if (_next == _ref) {
   465     // At the end of the list, we should make _prev point to itself.
   466     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
   467     // and _prev will be NULL.
   468     new_next = _prev;
   469   } else {
   470     new_next = _next;
   471   }
   473   if (UseCompressedOops) {
   474     // Remove Reference object from list.
   475     oopDesc::encode_store_heap_oop((narrowOop*)_prev_next, new_next);
   476   } else {
   477     // Remove Reference object from list.
   478     oopDesc::store_heap_oop((oop*)_prev_next, new_next);
   479   }
   480   NOT_PRODUCT(_removed++);
   481   _refs_list.dec_length(1);
   482 }
   484 // Make the Reference object active again.
   485 void DiscoveredListIterator::make_active() {
   486   // For G1 we don't want to use set_next - it
   487   // will dirty the card for the next field of
   488   // the reference object and will fail
   489   // CT verification.
   490   if (UseG1GC) {
   491     BarrierSet* bs = oopDesc::bs();
   492     HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref);
   494     if (UseCompressedOops) {
   495       bs->write_ref_field_pre((narrowOop*)next_addr, NULL);
   496     } else {
   497       bs->write_ref_field_pre((oop*)next_addr, NULL);
   498     }
   499     java_lang_ref_Reference::set_next_raw(_ref, NULL);
   500   } else {
   501     java_lang_ref_Reference::set_next(_ref, NULL);
   502   }
   503 }
   505 void DiscoveredListIterator::clear_referent() {
   506   oop_store_raw(_referent_addr, NULL);
   507 }
   509 // NOTE: process_phase*() are largely similar, and at a high level
   510 // merely iterate over the extant list applying a predicate to
   511 // each of its elements and possibly removing that element from the
   512 // list and applying some further closures to that element.
   513 // We should consider the possibility of replacing these
   514 // process_phase*() methods by abstracting them into
   515 // a single general iterator invocation that receives appropriate
   516 // closures that accomplish this work.
   518 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
   519 // referents are not alive, but that should be kept alive for policy reasons.
   520 // Keep alive the transitive closure of all such referents.
   521 void
   522 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
   523                                    ReferencePolicy*   policy,
   524                                    BoolObjectClosure* is_alive,
   525                                    OopClosure*        keep_alive,
   526                                    VoidClosure*       complete_gc) {
   527   assert(policy != NULL, "Must have a non-NULL policy");
   528   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   529   // Decide which softly reachable refs should be kept alive.
   530   while (iter.has_next()) {
   531     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
   532     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
   533     if (referent_is_dead &&
   534         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
   535       if (TraceReferenceGC) {
   536         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
   537                                iter.obj(), iter.obj()->blueprint()->internal_name());
   538       }
   539       // Remove Reference object from list
   540       iter.remove();
   541       // Make the Reference object active again
   542       iter.make_active();
   543       // keep the referent around
   544       iter.make_referent_alive();
   545       iter.move_to_next();
   546     } else {
   547       iter.next();
   548     }
   549   }
   550   // Close the reachable set
   551   complete_gc->do_void();
   552   NOT_PRODUCT(
   553     if (PrintGCDetails && TraceReferenceGC) {
   554       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
   555         "discovered Refs by policy, from list " INTPTR_FORMAT,
   556         iter.removed(), iter.processed(), (address)refs_list.head());
   557     }
   558   )
   559 }
   561 // Traverse the list and remove any Refs that are not active, or
   562 // whose referents are either alive or NULL.
   563 void
   564 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
   565                              BoolObjectClosure* is_alive,
   566                              OopClosure*        keep_alive) {
   567   assert(discovery_is_atomic(), "Error");
   568   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   569   while (iter.has_next()) {
   570     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   571     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
   572     assert(next == NULL, "Should not discover inactive Reference");
   573     if (iter.is_referent_alive()) {
   574       if (TraceReferenceGC) {
   575         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
   576                                iter.obj(), iter.obj()->blueprint()->internal_name());
   577       }
   578       // The referent is reachable after all.
   579       // Remove Reference object from list.
   580       iter.remove();
   581       // Update the referent pointer as necessary: Note that this
   582       // should not entail any recursive marking because the
   583       // referent must already have been traversed.
   584       iter.make_referent_alive();
   585       iter.move_to_next();
   586     } else {
   587       iter.next();
   588     }
   589   }
   590   NOT_PRODUCT(
   591     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   592       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   593         "Refs in discovered list " INTPTR_FORMAT,
   594         iter.removed(), iter.processed(), (address)refs_list.head());
   595     }
   596   )
   597 }
   599 void
   600 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
   601                                                   BoolObjectClosure* is_alive,
   602                                                   OopClosure*        keep_alive,
   603                                                   VoidClosure*       complete_gc) {
   604   assert(!discovery_is_atomic(), "Error");
   605   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   606   while (iter.has_next()) {
   607     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   608     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
   609     oop next = java_lang_ref_Reference::next(iter.obj());
   610     if ((iter.referent() == NULL || iter.is_referent_alive() ||
   611          next != NULL)) {
   612       assert(next->is_oop_or_null(), "bad next field");
   613       // Remove Reference object from list
   614       iter.remove();
   615       // Trace the cohorts
   616       iter.make_referent_alive();
   617       if (UseCompressedOops) {
   618         keep_alive->do_oop((narrowOop*)next_addr);
   619       } else {
   620         keep_alive->do_oop((oop*)next_addr);
   621       }
   622       iter.move_to_next();
   623     } else {
   624       iter.next();
   625     }
   626   }
   627   // Now close the newly reachable set
   628   complete_gc->do_void();
   629   NOT_PRODUCT(
   630     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   631       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   632         "Refs in discovered list " INTPTR_FORMAT,
   633         iter.removed(), iter.processed(), (address)refs_list.head());
   634     }
   635   )
   636 }
   638 // Traverse the list and process the referents, by either
   639 // clearing them or keeping them (and their reachable
   640 // closure) alive.
   641 void
   642 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
   643                                    bool               clear_referent,
   644                                    BoolObjectClosure* is_alive,
   645                                    OopClosure*        keep_alive,
   646                                    VoidClosure*       complete_gc) {
   647   ResourceMark rm;
   648   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   649   while (iter.has_next()) {
   650     iter.update_discovered();
   651     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   652     if (clear_referent) {
   653       // NULL out referent pointer
   654       iter.clear_referent();
   655     } else {
   656       // keep the referent around
   657       iter.make_referent_alive();
   658     }
   659     if (TraceReferenceGC) {
   660       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
   661                              clear_referent ? "cleared " : "",
   662                              iter.obj(), iter.obj()->blueprint()->internal_name());
   663     }
   664     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
   665     iter.next();
   666   }
   667   // Remember to update the next pointer of the last ref.
   668   iter.update_discovered();
   669   // Close the reachable set
   670   complete_gc->do_void();
   671 }
   673 void
   674 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
   675   oop obj = NULL;
   676   oop next = refs_list.head();
   677   while (next != obj) {
   678     obj = next;
   679     next = java_lang_ref_Reference::discovered(obj);
   680     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
   681   }
   682   refs_list.set_head(NULL);
   683   refs_list.set_length(0);
   684 }
   686 void
   687 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
   688   clear_discovered_references(refs_list);
   689 }
   691 void ReferenceProcessor::abandon_partial_discovery() {
   692   // loop over the lists
   693   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   694     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   695       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
   696     }
   697     abandon_partial_discovered_list(_discovered_refs[i]);
   698   }
   699 }
   701 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
   702 public:
   703   RefProcPhase1Task(ReferenceProcessor& ref_processor,
   704                     DiscoveredList      refs_lists[],
   705                     ReferencePolicy*    policy,
   706                     bool                marks_oops_alive)
   707     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   708       _policy(policy)
   709   { }
   710   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   711                     OopClosure& keep_alive,
   712                     VoidClosure& complete_gc)
   713   {
   714     Thread* thr = Thread::current();
   715     int refs_list_index = ((WorkerThread*)thr)->id();
   716     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
   717                                   &is_alive, &keep_alive, &complete_gc);
   718   }
   719 private:
   720   ReferencePolicy* _policy;
   721 };
   723 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
   724 public:
   725   RefProcPhase2Task(ReferenceProcessor& ref_processor,
   726                     DiscoveredList      refs_lists[],
   727                     bool                marks_oops_alive)
   728     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
   729   { }
   730   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   731                     OopClosure& keep_alive,
   732                     VoidClosure& complete_gc)
   733   {
   734     _ref_processor.process_phase2(_refs_lists[i],
   735                                   &is_alive, &keep_alive, &complete_gc);
   736   }
   737 };
   739 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
   740 public:
   741   RefProcPhase3Task(ReferenceProcessor& ref_processor,
   742                     DiscoveredList      refs_lists[],
   743                     bool                clear_referent,
   744                     bool                marks_oops_alive)
   745     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   746       _clear_referent(clear_referent)
   747   { }
   748   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   749                     OopClosure& keep_alive,
   750                     VoidClosure& complete_gc)
   751   {
   752     // Don't use "refs_list_index" calculated in this way because
   753     // balance_queues() has moved the Ref's into the first n queues.
   754     // Thread* thr = Thread::current();
   755     // int refs_list_index = ((WorkerThread*)thr)->id();
   756     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
   757     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
   758                                   &is_alive, &keep_alive, &complete_gc);
   759   }
   760 private:
   761   bool _clear_referent;
   762 };
   764 void ReferenceProcessor::set_discovered(oop ref, oop value) {
   765   if (_discovered_list_needs_barrier) {
   766     java_lang_ref_Reference::set_discovered(ref, value);
   767   } else {
   768     java_lang_ref_Reference::set_discovered_raw(ref, value);
   769   }
   770 }
   772 // Balances reference queues.
   773 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
   774 // queues[0, 1, ..., _num_q-1] because only the first _num_q
   775 // corresponding to the active workers will be processed.
   776 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
   777 {
   778   // calculate total length
   779   size_t total_refs = 0;
   780   if (TraceReferenceGC && PrintGCDetails) {
   781     gclog_or_tty->print_cr("\nBalance ref_lists ");
   782   }
   784   for (int i = 0; i < _max_num_q; ++i) {
   785     total_refs += ref_lists[i].length();
   786     if (TraceReferenceGC && PrintGCDetails) {
   787       gclog_or_tty->print("%d ", ref_lists[i].length());
   788     }
   789   }
   790   if (TraceReferenceGC && PrintGCDetails) {
   791     gclog_or_tty->print_cr(" = %d", total_refs);
   792   }
   793   size_t avg_refs = total_refs / _num_q + 1;
   794   int to_idx = 0;
   795   for (int from_idx = 0; from_idx < _max_num_q; from_idx++) {
   796     bool move_all = false;
   797     if (from_idx >= _num_q) {
   798       move_all = ref_lists[from_idx].length() > 0;
   799     }
   800     while ((ref_lists[from_idx].length() > avg_refs) ||
   801            move_all) {
   802       assert(to_idx < _num_q, "Sanity Check!");
   803       if (ref_lists[to_idx].length() < avg_refs) {
   804         // move superfluous refs
   805         size_t refs_to_move;
   806         // Move all the Ref's if the from queue will not be processed.
   807         if (move_all) {
   808           refs_to_move = MIN2(ref_lists[from_idx].length(),
   809                               avg_refs - ref_lists[to_idx].length());
   810         } else {
   811           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
   812                               avg_refs - ref_lists[to_idx].length());
   813         }
   815         assert(refs_to_move > 0, "otherwise the code below will fail");
   817         oop move_head = ref_lists[from_idx].head();
   818         oop move_tail = move_head;
   819         oop new_head  = move_head;
   820         // find an element to split the list on
   821         for (size_t j = 0; j < refs_to_move; ++j) {
   822           move_tail = new_head;
   823           new_head = java_lang_ref_Reference::discovered(new_head);
   824         }
   826         // Add the chain to the to list.
   827         if (ref_lists[to_idx].head() == NULL) {
   828           // to list is empty. Make a loop at the end.
   829           set_discovered(move_tail, move_tail);
   830         } else {
   831           set_discovered(move_tail, ref_lists[to_idx].head());
   832         }
   833         ref_lists[to_idx].set_head(move_head);
   834         ref_lists[to_idx].inc_length(refs_to_move);
   836         // Remove the chain from the from list.
   837         if (move_tail == new_head) {
   838           // We found the end of the from list.
   839           ref_lists[from_idx].set_head(NULL);
   840         } else {
   841           ref_lists[from_idx].set_head(new_head);
   842         }
   843         ref_lists[from_idx].dec_length(refs_to_move);
   844         if (ref_lists[from_idx].length() == 0) {
   845           break;
   846         }
   847       } else {
   848         to_idx = (to_idx + 1) % _num_q;
   849       }
   850     }
   851   }
   852 #ifdef ASSERT
   853   size_t balanced_total_refs = 0;
   854   for (int i = 0; i < _max_num_q; ++i) {
   855     balanced_total_refs += ref_lists[i].length();
   856     if (TraceReferenceGC && PrintGCDetails) {
   857       gclog_or_tty->print("%d ", ref_lists[i].length());
   858     }
   859   }
   860   if (TraceReferenceGC && PrintGCDetails) {
   861     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
   862     gclog_or_tty->flush();
   863   }
   864   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
   865 #endif
   866 }
   868 void ReferenceProcessor::balance_all_queues() {
   869   balance_queues(_discoveredSoftRefs);
   870   balance_queues(_discoveredWeakRefs);
   871   balance_queues(_discoveredFinalRefs);
   872   balance_queues(_discoveredPhantomRefs);
   873 }
   875 void
   876 ReferenceProcessor::process_discovered_reflist(
   877   DiscoveredList               refs_lists[],
   878   ReferencePolicy*             policy,
   879   bool                         clear_referent,
   880   BoolObjectClosure*           is_alive,
   881   OopClosure*                  keep_alive,
   882   VoidClosure*                 complete_gc,
   883   AbstractRefProcTaskExecutor* task_executor)
   884 {
   885   bool mt_processing = task_executor != NULL && _processing_is_mt;
   886   // If discovery used MT and a dynamic number of GC threads, then
   887   // the queues must be balanced for correctness if fewer than the
   888   // maximum number of queues were used.  The number of queue used
   889   // during discovery may be different than the number to be used
   890   // for processing so don't depend of _num_q < _max_num_q as part
   891   // of the test.
   892   bool must_balance = _discovery_is_mt;
   894   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
   895       must_balance) {
   896     balance_queues(refs_lists);
   897   }
   898   if (PrintReferenceGC && PrintGCDetails) {
   899     size_t total = 0;
   900     for (int i = 0; i < _max_num_q; ++i) {
   901       total += refs_lists[i].length();
   902     }
   903     gclog_or_tty->print(", %u refs", total);
   904   }
   906   // Phase 1 (soft refs only):
   907   // . Traverse the list and remove any SoftReferences whose
   908   //   referents are not alive, but that should be kept alive for
   909   //   policy reasons. Keep alive the transitive closure of all
   910   //   such referents.
   911   if (policy != NULL) {
   912     if (mt_processing) {
   913       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
   914       task_executor->execute(phase1);
   915     } else {
   916       for (int i = 0; i < _max_num_q; i++) {
   917         process_phase1(refs_lists[i], policy,
   918                        is_alive, keep_alive, complete_gc);
   919       }
   920     }
   921   } else { // policy == NULL
   922     assert(refs_lists != _discoveredSoftRefs,
   923            "Policy must be specified for soft references.");
   924   }
   926   // Phase 2:
   927   // . Traverse the list and remove any refs whose referents are alive.
   928   if (mt_processing) {
   929     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
   930     task_executor->execute(phase2);
   931   } else {
   932     for (int i = 0; i < _max_num_q; i++) {
   933       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
   934     }
   935   }
   937   // Phase 3:
   938   // . Traverse the list and process referents as appropriate.
   939   if (mt_processing) {
   940     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
   941     task_executor->execute(phase3);
   942   } else {
   943     for (int i = 0; i < _max_num_q; i++) {
   944       process_phase3(refs_lists[i], clear_referent,
   945                      is_alive, keep_alive, complete_gc);
   946     }
   947   }
   948 }
   950 void ReferenceProcessor::clean_up_discovered_references() {
   951   // loop over the lists
   952   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   953     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   954       gclog_or_tty->print_cr(
   955         "\nScrubbing %s discovered list of Null referents",
   956         list_name(i));
   957     }
   958     clean_up_discovered_reflist(_discovered_refs[i]);
   959   }
   960 }
   962 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
   963   assert(!discovery_is_atomic(), "Else why call this method?");
   964   DiscoveredListIterator iter(refs_list, NULL, NULL);
   965   while (iter.has_next()) {
   966     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   967     oop next = java_lang_ref_Reference::next(iter.obj());
   968     assert(next->is_oop_or_null(), "bad next field");
   969     // If referent has been cleared or Reference is not active,
   970     // drop it.
   971     if (iter.referent() == NULL || next != NULL) {
   972       debug_only(
   973         if (PrintGCDetails && TraceReferenceGC) {
   974           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
   975             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
   976             " and referent: " INTPTR_FORMAT,
   977             iter.obj(), next, iter.referent());
   978         }
   979       )
   980       // Remove Reference object from list
   981       iter.remove();
   982       iter.move_to_next();
   983     } else {
   984       iter.next();
   985     }
   986   }
   987   NOT_PRODUCT(
   988     if (PrintGCDetails && TraceReferenceGC) {
   989       gclog_or_tty->print(
   990         " Removed %d Refs with NULL referents out of %d discovered Refs",
   991         iter.removed(), iter.processed());
   992     }
   993   )
   994 }
   996 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
   997   int id = 0;
   998   // Determine the queue index to use for this object.
   999   if (_discovery_is_mt) {
  1000     // During a multi-threaded discovery phase,
  1001     // each thread saves to its "own" list.
  1002     Thread* thr = Thread::current();
  1003     id = thr->as_Worker_thread()->id();
  1004   } else {
  1005     // single-threaded discovery, we save in round-robin
  1006     // fashion to each of the lists.
  1007     if (_processing_is_mt) {
  1008       id = next_id();
  1011   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
  1013   // Get the discovered queue to which we will add
  1014   DiscoveredList* list = NULL;
  1015   switch (rt) {
  1016     case REF_OTHER:
  1017       // Unknown reference type, no special treatment
  1018       break;
  1019     case REF_SOFT:
  1020       list = &_discoveredSoftRefs[id];
  1021       break;
  1022     case REF_WEAK:
  1023       list = &_discoveredWeakRefs[id];
  1024       break;
  1025     case REF_FINAL:
  1026       list = &_discoveredFinalRefs[id];
  1027       break;
  1028     case REF_PHANTOM:
  1029       list = &_discoveredPhantomRefs[id];
  1030       break;
  1031     case REF_NONE:
  1032       // we should not reach here if we are an instanceRefKlass
  1033     default:
  1034       ShouldNotReachHere();
  1036   if (TraceReferenceGC && PrintGCDetails) {
  1037     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
  1039   return list;
  1042 inline void
  1043 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
  1044                                               oop             obj,
  1045                                               HeapWord*       discovered_addr) {
  1046   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
  1047   // First we must make sure this object is only enqueued once. CAS in a non null
  1048   // discovered_addr.
  1049   oop current_head = refs_list.head();
  1050   // The last ref must have its discovered field pointing to itself.
  1051   oop next_discovered = (current_head != NULL) ? current_head : obj;
  1053   // Note: In the case of G1, this specific pre-barrier is strictly
  1054   // not necessary because the only case we are interested in
  1055   // here is when *discovered_addr is NULL (see the CAS further below),
  1056   // so this will expand to nothing. As a result, we have manually
  1057   // elided this out for G1, but left in the test for some future
  1058   // collector that might have need for a pre-barrier here, e.g.:-
  1059   // _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
  1060   assert(!_discovered_list_needs_barrier || UseG1GC,
  1061          "Need to check non-G1 collector: "
  1062          "may need a pre-write-barrier for CAS from NULL below");
  1063   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
  1064                                                     NULL);
  1065   if (retest == NULL) {
  1066     // This thread just won the right to enqueue the object.
  1067     // We have separate lists for enqueueing, so no synchronization
  1068     // is necessary.
  1069     refs_list.set_head(obj);
  1070     refs_list.inc_length(1);
  1071     if (_discovered_list_needs_barrier) {
  1072       _bs->write_ref_field((void*)discovered_addr, next_discovered);
  1075     if (TraceReferenceGC) {
  1076       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
  1077                              obj, obj->blueprint()->internal_name());
  1079   } else {
  1080     // If retest was non NULL, another thread beat us to it:
  1081     // The reference has already been discovered...
  1082     if (TraceReferenceGC) {
  1083       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1084                              obj, obj->blueprint()->internal_name());
  1089 #ifndef PRODUCT
  1090 // Non-atomic (i.e. concurrent) discovery might allow us
  1091 // to observe j.l.References with NULL referents, being those
  1092 // cleared concurrently by mutators during (or after) discovery.
  1093 void ReferenceProcessor::verify_referent(oop obj) {
  1094   bool da = discovery_is_atomic();
  1095   oop referent = java_lang_ref_Reference::referent(obj);
  1096   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
  1097          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
  1098                  INTPTR_FORMAT " during %satomic discovery ",
  1099                  (intptr_t)referent, (intptr_t)obj, da ? "" : "non-"));
  1101 #endif
  1103 // We mention two of several possible choices here:
  1104 // #0: if the reference object is not in the "originating generation"
  1105 //     (or part of the heap being collected, indicated by our "span"
  1106 //     we don't treat it specially (i.e. we scan it as we would
  1107 //     a normal oop, treating its references as strong references).
  1108 //     This means that references can't be discovered unless their
  1109 //     referent is also in the same span. This is the simplest,
  1110 //     most "local" and most conservative approach, albeit one
  1111 //     that may cause weak references to be enqueued least promptly.
  1112 //     We call this choice the "ReferenceBasedDiscovery" policy.
  1113 // #1: the reference object may be in any generation (span), but if
  1114 //     the referent is in the generation (span) being currently collected
  1115 //     then we can discover the reference object, provided
  1116 //     the object has not already been discovered by
  1117 //     a different concurrently running collector (as may be the
  1118 //     case, for instance, if the reference object is in CMS and
  1119 //     the referent in DefNewGeneration), and provided the processing
  1120 //     of this reference object by the current collector will
  1121 //     appear atomic to every other collector in the system.
  1122 //     (Thus, for instance, a concurrent collector may not
  1123 //     discover references in other generations even if the
  1124 //     referent is in its own generation). This policy may,
  1125 //     in certain cases, enqueue references somewhat sooner than
  1126 //     might Policy #0 above, but at marginally increased cost
  1127 //     and complexity in processing these references.
  1128 //     We call this choice the "RefeferentBasedDiscovery" policy.
  1129 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
  1130   // Make sure we are discovering refs (rather than processing discovered refs).
  1131   if (!_discovering_refs || !RegisterReferences) {
  1132     return false;
  1134   // We only discover active references.
  1135   oop next = java_lang_ref_Reference::next(obj);
  1136   if (next != NULL) {   // Ref is no longer active
  1137     return false;
  1140   HeapWord* obj_addr = (HeapWord*)obj;
  1141   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1142       !_span.contains(obj_addr)) {
  1143     // Reference is not in the originating generation;
  1144     // don't treat it specially (i.e. we want to scan it as a normal
  1145     // object with strong references).
  1146     return false;
  1149   // We only discover references whose referents are not (yet)
  1150   // known to be strongly reachable.
  1151   if (is_alive_non_header() != NULL) {
  1152     verify_referent(obj);
  1153     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
  1154       return false;  // referent is reachable
  1157   if (rt == REF_SOFT) {
  1158     // For soft refs we can decide now if these are not
  1159     // current candidates for clearing, in which case we
  1160     // can mark through them now, rather than delaying that
  1161     // to the reference-processing phase. Since all current
  1162     // time-stamp policies advance the soft-ref clock only
  1163     // at a major collection cycle, this is always currently
  1164     // accurate.
  1165     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
  1166       return false;
  1170   ResourceMark rm;      // Needed for tracing.
  1172   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
  1173   const oop  discovered = java_lang_ref_Reference::discovered(obj);
  1174   assert(discovered->is_oop_or_null(), "bad discovered field");
  1175   if (discovered != NULL) {
  1176     // The reference has already been discovered...
  1177     if (TraceReferenceGC) {
  1178       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1179                              obj, obj->blueprint()->internal_name());
  1181     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1182       // assumes that an object is not processed twice;
  1183       // if it's been already discovered it must be on another
  1184       // generation's discovered list; so we won't discover it.
  1185       return false;
  1186     } else {
  1187       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
  1188              "Unrecognized policy");
  1189       // Check assumption that an object is not potentially
  1190       // discovered twice except by concurrent collectors that potentially
  1191       // trace the same Reference object twice.
  1192       assert(UseConcMarkSweepGC || UseG1GC,
  1193              "Only possible with a concurrent marking collector");
  1194       return true;
  1198   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1199     verify_referent(obj);
  1200     // Discover if and only if EITHER:
  1201     // .. reference is in our span, OR
  1202     // .. we are an atomic collector and referent is in our span
  1203     if (_span.contains(obj_addr) ||
  1204         (discovery_is_atomic() &&
  1205          _span.contains(java_lang_ref_Reference::referent(obj)))) {
  1206       // should_enqueue = true;
  1207     } else {
  1208       return false;
  1210   } else {
  1211     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1212            _span.contains(obj_addr), "code inconsistency");
  1215   // Get the right type of discovered queue head.
  1216   DiscoveredList* list = get_discovered_list(rt);
  1217   if (list == NULL) {
  1218     return false;   // nothing special needs to be done
  1221   if (_discovery_is_mt) {
  1222     add_to_discovered_list_mt(*list, obj, discovered_addr);
  1223   } else {
  1224     // If "_discovered_list_needs_barrier", we do write barriers when
  1225     // updating the discovered reference list.  Otherwise, we do a raw store
  1226     // here: the field will be visited later when processing the discovered
  1227     // references.
  1228     oop current_head = list->head();
  1229     // The last ref must have its discovered field pointing to itself.
  1230     oop next_discovered = (current_head != NULL) ? current_head : obj;
  1232     // As in the case further above, since we are over-writing a NULL
  1233     // pre-value, we can safely elide the pre-barrier here for the case of G1.
  1234     // e.g.:- _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
  1235     assert(discovered == NULL, "control point invariant");
  1236     assert(!_discovered_list_needs_barrier || UseG1GC,
  1237            "For non-G1 collector, may need a pre-write-barrier for CAS from NULL below");
  1238     oop_store_raw(discovered_addr, next_discovered);
  1239     if (_discovered_list_needs_barrier) {
  1240       _bs->write_ref_field((void*)discovered_addr, next_discovered);
  1242     list->set_head(obj);
  1243     list->inc_length(1);
  1245     if (TraceReferenceGC) {
  1246       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
  1247                                 obj, obj->blueprint()->internal_name());
  1250   assert(obj->is_oop(), "Discovered a bad reference");
  1251   verify_referent(obj);
  1252   return true;
  1255 // Preclean the discovered references by removing those
  1256 // whose referents are alive, and by marking from those that
  1257 // are not active. These lists can be handled here
  1258 // in any order and, indeed, concurrently.
  1259 void ReferenceProcessor::preclean_discovered_references(
  1260   BoolObjectClosure* is_alive,
  1261   OopClosure* keep_alive,
  1262   VoidClosure* complete_gc,
  1263   YieldClosure* yield,
  1264   bool should_unload_classes) {
  1266   NOT_PRODUCT(verify_ok_to_handle_reflists());
  1268 #ifdef ASSERT
  1269   bool must_remember_klasses = ClassUnloading && !UseConcMarkSweepGC ||
  1270                                CMSClassUnloadingEnabled && UseConcMarkSweepGC ||
  1271                                ExplicitGCInvokesConcurrentAndUnloadsClasses &&
  1272                                  UseConcMarkSweepGC && should_unload_classes;
  1273   RememberKlassesChecker mx(must_remember_klasses);
  1274 #endif
  1275   // Soft references
  1277     TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
  1278               false, gclog_or_tty);
  1279     for (int i = 0; i < _max_num_q; i++) {
  1280       if (yield->should_return()) {
  1281         return;
  1283       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
  1284                                   keep_alive, complete_gc, yield);
  1288   // Weak references
  1290     TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
  1291               false, gclog_or_tty);
  1292     for (int i = 0; i < _max_num_q; i++) {
  1293       if (yield->should_return()) {
  1294         return;
  1296       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
  1297                                   keep_alive, complete_gc, yield);
  1301   // Final references
  1303     TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
  1304               false, gclog_or_tty);
  1305     for (int i = 0; i < _max_num_q; i++) {
  1306       if (yield->should_return()) {
  1307         return;
  1309       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
  1310                                   keep_alive, complete_gc, yield);
  1314   // Phantom references
  1316     TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
  1317               false, gclog_or_tty);
  1318     for (int i = 0; i < _max_num_q; i++) {
  1319       if (yield->should_return()) {
  1320         return;
  1322       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
  1323                                   keep_alive, complete_gc, yield);
  1328 // Walk the given discovered ref list, and remove all reference objects
  1329 // whose referents are still alive, whose referents are NULL or which
  1330 // are not active (have a non-NULL next field). NOTE: When we are
  1331 // thus precleaning the ref lists (which happens single-threaded today),
  1332 // we do not disable refs discovery to honour the correct semantics of
  1333 // java.lang.Reference. As a result, we need to be careful below
  1334 // that ref removal steps interleave safely with ref discovery steps
  1335 // (in this thread).
  1336 void
  1337 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
  1338                                                 BoolObjectClosure* is_alive,
  1339                                                 OopClosure*        keep_alive,
  1340                                                 VoidClosure*       complete_gc,
  1341                                                 YieldClosure*      yield) {
  1342   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
  1343   while (iter.has_next()) {
  1344     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
  1345     oop obj = iter.obj();
  1346     oop next = java_lang_ref_Reference::next(obj);
  1347     if (iter.referent() == NULL || iter.is_referent_alive() ||
  1348         next != NULL) {
  1349       // The referent has been cleared, or is alive, or the Reference is not
  1350       // active; we need to trace and mark its cohort.
  1351       if (TraceReferenceGC) {
  1352         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
  1353                                iter.obj(), iter.obj()->blueprint()->internal_name());
  1355       // Remove Reference object from list
  1356       iter.remove();
  1357       // Keep alive its cohort.
  1358       iter.make_referent_alive();
  1359       if (UseCompressedOops) {
  1360         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
  1361         keep_alive->do_oop(next_addr);
  1362       } else {
  1363         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
  1364         keep_alive->do_oop(next_addr);
  1366       iter.move_to_next();
  1367     } else {
  1368       iter.next();
  1371   // Close the reachable set
  1372   complete_gc->do_void();
  1374   NOT_PRODUCT(
  1375     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
  1376       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
  1377         "Refs in discovered list " INTPTR_FORMAT,
  1378         iter.removed(), iter.processed(), (address)refs_list.head());
  1383 const char* ReferenceProcessor::list_name(int i) {
  1384    assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
  1385           "Out of bounds index");
  1387    int j = i / _max_num_q;
  1388    switch (j) {
  1389      case 0: return "SoftRef";
  1390      case 1: return "WeakRef";
  1391      case 2: return "FinalRef";
  1392      case 3: return "PhantomRef";
  1394    ShouldNotReachHere();
  1395    return NULL;
  1398 #ifndef PRODUCT
  1399 void ReferenceProcessor::verify_ok_to_handle_reflists() {
  1400   // empty for now
  1402 #endif
  1404 #ifndef PRODUCT
  1405 void ReferenceProcessor::clear_discovered_references() {
  1406   guarantee(!_discovering_refs, "Discovering refs?");
  1407   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
  1408     clear_discovered_references(_discovered_refs[i]);
  1412 #endif // PRODUCT

mercurial