src/share/vm/memory/cardTableRS.cpp

Mon, 21 Nov 2011 07:47:34 +0100

author
brutisso
date
Mon, 21 Nov 2011 07:47:34 +0100
changeset 3290
d06a2d7fcd5b
parent 2889
fc2b798ab316
child 3294
bca17e38de00
permissions
-rw-r--r--

7110718: -XX:MarkSweepAlwaysCompactCount=0 crashes the JVM
Summary: Interpret MarkSweepAlwaysCompactCount < 1 as never do full compaction
Reviewed-by: ysr, tonyp, jmasa, johnc

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "memory/cardTableRS.hpp"
    28 #include "memory/genCollectedHeap.hpp"
    29 #include "memory/generation.hpp"
    30 #include "memory/space.hpp"
    31 #include "oops/oop.inline.hpp"
    32 #include "runtime/java.hpp"
    33 #include "runtime/os.hpp"
    34 #ifndef SERIALGC
    35 #include "gc_implementation/g1/concurrentMark.hpp"
    36 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    37 #endif
    39 CardTableRS::CardTableRS(MemRegion whole_heap,
    40                          int max_covered_regions) :
    41   GenRemSet(),
    42   _cur_youngergen_card_val(youngergenP1_card),
    43   _regions_to_iterate(max_covered_regions - 1)
    44 {
    45 #ifndef SERIALGC
    46   if (UseG1GC) {
    47       _ct_bs = new G1SATBCardTableLoggingModRefBS(whole_heap,
    48                                                   max_covered_regions);
    49   } else {
    50     _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
    51   }
    52 #else
    53   _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
    54 #endif
    55   set_bs(_ct_bs);
    56   _last_cur_val_in_gen = new jbyte[GenCollectedHeap::max_gens + 1];
    57   if (_last_cur_val_in_gen == NULL) {
    58     vm_exit_during_initialization("Could not last_cur_val_in_gen array.");
    59   }
    60   for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
    61     _last_cur_val_in_gen[i] = clean_card_val();
    62   }
    63   _ct_bs->set_CTRS(this);
    64 }
    66 void CardTableRS::resize_covered_region(MemRegion new_region) {
    67   _ct_bs->resize_covered_region(new_region);
    68 }
    70 jbyte CardTableRS::find_unused_youngergenP_card_value() {
    71   for (jbyte v = youngergenP1_card;
    72        v < cur_youngergen_and_prev_nonclean_card;
    73        v++) {
    74     bool seen = false;
    75     for (int g = 0; g < _regions_to_iterate; g++) {
    76       if (_last_cur_val_in_gen[g] == v) {
    77         seen = true;
    78         break;
    79       }
    80     }
    81     if (!seen) return v;
    82   }
    83   ShouldNotReachHere();
    84   return 0;
    85 }
    87 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
    88   // Parallel or sequential, we must always set the prev to equal the
    89   // last one written.
    90   if (parallel) {
    91     // Find a parallel value to be used next.
    92     jbyte next_val = find_unused_youngergenP_card_value();
    93     set_cur_youngergen_card_val(next_val);
    95   } else {
    96     // In an sequential traversal we will always write youngergen, so that
    97     // the inline barrier is  correct.
    98     set_cur_youngergen_card_val(youngergen_card);
    99   }
   100 }
   102 void CardTableRS::younger_refs_iterate(Generation* g,
   103                                        OopsInGenClosure* blk) {
   104   _last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
   105   g->younger_refs_iterate(blk);
   106 }
   108 inline bool ClearNoncleanCardWrapper::clear_card(jbyte* entry) {
   109   if (_is_par) {
   110     return clear_card_parallel(entry);
   111   } else {
   112     return clear_card_serial(entry);
   113   }
   114 }
   116 inline bool ClearNoncleanCardWrapper::clear_card_parallel(jbyte* entry) {
   117   while (true) {
   118     // In the parallel case, we may have to do this several times.
   119     jbyte entry_val = *entry;
   120     assert(entry_val != CardTableRS::clean_card_val(),
   121            "We shouldn't be looking at clean cards, and this should "
   122            "be the only place they get cleaned.");
   123     if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
   124         || _ct->is_prev_youngergen_card_val(entry_val)) {
   125       jbyte res =
   126         Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
   127       if (res == entry_val) {
   128         break;
   129       } else {
   130         assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
   131                "The CAS above should only fail if another thread did "
   132                "a GC write barrier.");
   133       }
   134     } else if (entry_val ==
   135                CardTableRS::cur_youngergen_and_prev_nonclean_card) {
   136       // Parallelism shouldn't matter in this case.  Only the thread
   137       // assigned to scan the card should change this value.
   138       *entry = _ct->cur_youngergen_card_val();
   139       break;
   140     } else {
   141       assert(entry_val == _ct->cur_youngergen_card_val(),
   142              "Should be the only possibility.");
   143       // In this case, the card was clean before, and become
   144       // cur_youngergen only because of processing of a promoted object.
   145       // We don't have to look at the card.
   146       return false;
   147     }
   148   }
   149   return true;
   150 }
   153 inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
   154   jbyte entry_val = *entry;
   155   assert(entry_val != CardTableRS::clean_card_val(),
   156          "We shouldn't be looking at clean cards, and this should "
   157          "be the only place they get cleaned.");
   158   assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
   159          "This should be possible in the sequential case.");
   160   *entry = CardTableRS::clean_card_val();
   161   return true;
   162 }
   164 ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
   165   DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct) :
   166     _dirty_card_closure(dirty_card_closure), _ct(ct) {
   167     _is_par = (SharedHeap::heap()->n_par_threads() > 0);
   168 }
   170 void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
   171   assert(mr.word_size() > 0, "Error");
   172   assert(_ct->is_aligned(mr.start()), "mr.start() should be card aligned");
   173   // mr.end() may not necessarily be card aligned.
   174   jbyte* cur_entry = _ct->byte_for(mr.last());
   175   const jbyte* limit = _ct->byte_for(mr.start());
   176   HeapWord* end_of_non_clean = mr.end();
   177   HeapWord* start_of_non_clean = end_of_non_clean;
   178   while (cur_entry >= limit) {
   179     HeapWord* cur_hw = _ct->addr_for(cur_entry);
   180     if ((*cur_entry != CardTableRS::clean_card_val()) && clear_card(cur_entry)) {
   181       // Continue the dirty range by opening the
   182       // dirty window one card to the left.
   183       start_of_non_clean = cur_hw;
   184     } else {
   185       // We hit a "clean" card; process any non-empty
   186       // "dirty" range accumulated so far.
   187       if (start_of_non_clean < end_of_non_clean) {
   188         const MemRegion mrd(start_of_non_clean, end_of_non_clean);
   189         _dirty_card_closure->do_MemRegion(mrd);
   190       }
   191       // Reset the dirty window, while continuing to look
   192       // for the next dirty card that will start a
   193       // new dirty window.
   194       end_of_non_clean = cur_hw;
   195       start_of_non_clean = cur_hw;
   196     }
   197     // Note that "cur_entry" leads "start_of_non_clean" in
   198     // its leftward excursion after this point
   199     // in the loop and, when we hit the left end of "mr",
   200     // will point off of the left end of the card-table
   201     // for "mr".
   202     cur_entry--;
   203   }
   204   // If the first card of "mr" was dirty, we will have
   205   // been left with a dirty window, co-initial with "mr",
   206   // which we now process.
   207   if (start_of_non_clean < end_of_non_clean) {
   208     const MemRegion mrd(start_of_non_clean, end_of_non_clean);
   209     _dirty_card_closure->do_MemRegion(mrd);
   210   }
   211 }
   213 // clean (by dirty->clean before) ==> cur_younger_gen
   214 // dirty                          ==> cur_youngergen_and_prev_nonclean_card
   215 // precleaned                     ==> cur_youngergen_and_prev_nonclean_card
   216 // prev-younger-gen               ==> cur_youngergen_and_prev_nonclean_card
   217 // cur-younger-gen                ==> cur_younger_gen
   218 // cur_youngergen_and_prev_nonclean_card ==> no change.
   219 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
   220   jbyte* entry = ct_bs()->byte_for(field);
   221   do {
   222     jbyte entry_val = *entry;
   223     // We put this first because it's probably the most common case.
   224     if (entry_val == clean_card_val()) {
   225       // No threat of contention with cleaning threads.
   226       *entry = cur_youngergen_card_val();
   227       return;
   228     } else if (card_is_dirty_wrt_gen_iter(entry_val)
   229                || is_prev_youngergen_card_val(entry_val)) {
   230       // Mark it as both cur and prev youngergen; card cleaning thread will
   231       // eventually remove the previous stuff.
   232       jbyte new_val = cur_youngergen_and_prev_nonclean_card;
   233       jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
   234       // Did the CAS succeed?
   235       if (res == entry_val) return;
   236       // Otherwise, retry, to see the new value.
   237       continue;
   238     } else {
   239       assert(entry_val == cur_youngergen_and_prev_nonclean_card
   240              || entry_val == cur_youngergen_card_val(),
   241              "should be only possibilities.");
   242       return;
   243     }
   244   } while (true);
   245 }
   247 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
   248                                                 OopsInGenClosure* cl) {
   249   const MemRegion urasm = sp->used_region_at_save_marks();
   250 #ifdef ASSERT
   251   // Convert the assertion check to a warning if we are running
   252   // CMS+ParNew until related bug is fixed.
   253   MemRegion ur    = sp->used_region();
   254   assert(ur.contains(urasm) || (UseConcMarkSweepGC && UseParNewGC),
   255          err_msg("Did you forget to call save_marks()? "
   256                  "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
   257                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
   258                  urasm.start(), urasm.end(), ur.start(), ur.end()));
   259   // In the case of CMS+ParNew, issue a warning
   260   if (!ur.contains(urasm)) {
   261     assert(UseConcMarkSweepGC && UseParNewGC, "Tautology: see assert above");
   262     warning("CMS+ParNew: Did you forget to call save_marks()? "
   263             "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
   264             "[" PTR_FORMAT ", " PTR_FORMAT ")",
   265              urasm.start(), urasm.end(), ur.start(), ur.end());
   266     MemRegion ur2 = sp->used_region();
   267     MemRegion urasm2 = sp->used_region_at_save_marks();
   268     if (!ur.equals(ur2)) {
   269       warning("CMS+ParNew: Flickering used_region()!!");
   270     }
   271     if (!urasm.equals(urasm2)) {
   272       warning("CMS+ParNew: Flickering used_region_at_save_marks()!!");
   273     }
   274     ShouldNotReachHere();
   275   }
   276 #endif
   277   _ct_bs->non_clean_card_iterate_possibly_parallel(sp, urasm, cl, this);
   278 }
   280 void CardTableRS::clear_into_younger(Generation* gen, bool clear_perm) {
   281   GenCollectedHeap* gch = GenCollectedHeap::heap();
   282   // Generations younger than gen have been evacuated. We can clear
   283   // card table entries for gen (we know that it has no pointers
   284   // to younger gens) and for those below. The card tables for
   285   // the youngest gen need never be cleared, and those for perm gen
   286   // will be cleared based on the parameter clear_perm.
   287   // There's a bit of subtlety in the clear() and invalidate()
   288   // methods that we exploit here and in invalidate_or_clear()
   289   // below to avoid missing cards at the fringes. If clear() or
   290   // invalidate() are changed in the future, this code should
   291   // be revisited. 20040107.ysr
   292   Generation* g = gen;
   293   for(Generation* prev_gen = gch->prev_gen(g);
   294       prev_gen != NULL;
   295       g = prev_gen, prev_gen = gch->prev_gen(g)) {
   296     MemRegion to_be_cleared_mr = g->prev_used_region();
   297     clear(to_be_cleared_mr);
   298   }
   299   // Clear perm gen cards if asked to do so.
   300   if (clear_perm) {
   301     MemRegion to_be_cleared_mr = gch->perm_gen()->prev_used_region();
   302     clear(to_be_cleared_mr);
   303   }
   304 }
   306 void CardTableRS::invalidate_or_clear(Generation* gen, bool younger,
   307                                       bool perm) {
   308   GenCollectedHeap* gch = GenCollectedHeap::heap();
   309   // For each generation gen (and younger and/or perm)
   310   // invalidate the cards for the currently occupied part
   311   // of that generation and clear the cards for the
   312   // unoccupied part of the generation (if any, making use
   313   // of that generation's prev_used_region to determine that
   314   // region). No need to do anything for the youngest
   315   // generation. Also see note#20040107.ysr above.
   316   Generation* g = gen;
   317   for(Generation* prev_gen = gch->prev_gen(g); prev_gen != NULL;
   318       g = prev_gen, prev_gen = gch->prev_gen(g))  {
   319     MemRegion used_mr = g->used_region();
   320     MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
   321     if (!to_be_cleared_mr.is_empty()) {
   322       clear(to_be_cleared_mr);
   323     }
   324     invalidate(used_mr);
   325     if (!younger) break;
   326   }
   327   // Clear perm gen cards if asked to do so.
   328   if (perm) {
   329     g = gch->perm_gen();
   330     MemRegion used_mr = g->used_region();
   331     MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
   332     if (!to_be_cleared_mr.is_empty()) {
   333       clear(to_be_cleared_mr);
   334     }
   335     invalidate(used_mr);
   336   }
   337 }
   340 class VerifyCleanCardClosure: public OopClosure {
   341 private:
   342   HeapWord* _boundary;
   343   HeapWord* _begin;
   344   HeapWord* _end;
   345 protected:
   346   template <class T> void do_oop_work(T* p) {
   347     HeapWord* jp = (HeapWord*)p;
   348     assert(jp >= _begin && jp < _end,
   349            err_msg("Error: jp " PTR_FORMAT " should be within "
   350                    "[_begin, _end) = [" PTR_FORMAT "," PTR_FORMAT ")",
   351                    _begin, _end));
   352     oop obj = oopDesc::load_decode_heap_oop(p);
   353     guarantee(obj == NULL || (HeapWord*)obj >= _boundary,
   354               err_msg("pointer " PTR_FORMAT " at " PTR_FORMAT " on "
   355                       "clean card crosses boundary" PTR_FORMAT,
   356                       (HeapWord*)obj, jp, _boundary));
   357   }
   359 public:
   360   VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
   361     _boundary(b), _begin(begin), _end(end) {
   362     assert(b <= begin,
   363            err_msg("Error: boundary " PTR_FORMAT " should be at or below begin " PTR_FORMAT,
   364                    b, begin));
   365     assert(begin <= end,
   366            err_msg("Error: begin " PTR_FORMAT " should be strictly below end " PTR_FORMAT,
   367                    begin, end));
   368   }
   370   virtual void do_oop(oop* p)       { VerifyCleanCardClosure::do_oop_work(p); }
   371   virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
   372 };
   374 class VerifyCTSpaceClosure: public SpaceClosure {
   375 private:
   376   CardTableRS* _ct;
   377   HeapWord* _boundary;
   378 public:
   379   VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
   380     _ct(ct), _boundary(boundary) {}
   381   virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
   382 };
   384 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
   385   CardTableRS* _ct;
   386 public:
   387   VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
   388   void do_generation(Generation* gen) {
   389     // Skip the youngest generation.
   390     if (gen->level() == 0) return;
   391     // Normally, we're interested in pointers to younger generations.
   392     VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
   393     gen->space_iterate(&blk, true);
   394   }
   395 };
   397 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
   398   // We don't need to do young-gen spaces.
   399   if (s->end() <= gen_boundary) return;
   400   MemRegion used = s->used_region();
   402   jbyte* cur_entry = byte_for(used.start());
   403   jbyte* limit = byte_after(used.last());
   404   while (cur_entry < limit) {
   405     if (*cur_entry == CardTableModRefBS::clean_card) {
   406       jbyte* first_dirty = cur_entry+1;
   407       while (first_dirty < limit &&
   408              *first_dirty == CardTableModRefBS::clean_card) {
   409         first_dirty++;
   410       }
   411       // If the first object is a regular object, and it has a
   412       // young-to-old field, that would mark the previous card.
   413       HeapWord* boundary = addr_for(cur_entry);
   414       HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
   415       HeapWord* boundary_block = s->block_start(boundary);
   416       HeapWord* begin = boundary;             // Until proven otherwise.
   417       HeapWord* start_block = boundary_block; // Until proven otherwise.
   418       if (boundary_block < boundary) {
   419         if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
   420           oop boundary_obj = oop(boundary_block);
   421           if (!boundary_obj->is_objArray() &&
   422               !boundary_obj->is_typeArray()) {
   423             guarantee(cur_entry > byte_for(used.start()),
   424                       "else boundary would be boundary_block");
   425             if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
   426               begin = boundary_block + s->block_size(boundary_block);
   427               start_block = begin;
   428             }
   429           }
   430         }
   431       }
   432       // Now traverse objects until end.
   433       if (begin < end) {
   434         MemRegion mr(begin, end);
   435         VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
   436         for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) {
   437           if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
   438             oop(cur)->oop_iterate(&verify_blk, mr);
   439           }
   440         }
   441       }
   442       cur_entry = first_dirty;
   443     } else {
   444       // We'd normally expect that cur_youngergen_and_prev_nonclean_card
   445       // is a transient value, that cannot be in the card table
   446       // except during GC, and thus assert that:
   447       // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
   448       //        "Illegal CT value");
   449       // That however, need not hold, as will become clear in the
   450       // following...
   452       // We'd normally expect that if we are in the parallel case,
   453       // we can't have left a prev value (which would be different
   454       // from the current value) in the card table, and so we'd like to
   455       // assert that:
   456       // guarantee(cur_youngergen_card_val() == youngergen_card
   457       //           || !is_prev_youngergen_card_val(*cur_entry),
   458       //           "Illegal CT value");
   459       // That, however, may not hold occasionally, because of
   460       // CMS or MSC in the old gen. To wit, consider the
   461       // following two simple illustrative scenarios:
   462       // (a) CMS: Consider the case where a large object L
   463       //     spanning several cards is allocated in the old
   464       //     gen, and has a young gen reference stored in it, dirtying
   465       //     some interior cards. A young collection scans the card,
   466       //     finds a young ref and installs a youngergenP_n value.
   467       //     L then goes dead. Now a CMS collection starts,
   468       //     finds L dead and sweeps it up. Assume that L is
   469       //     abutting _unallocated_blk, so _unallocated_blk is
   470       //     adjusted down to (below) L. Assume further that
   471       //     no young collection intervenes during this CMS cycle.
   472       //     The next young gen cycle will not get to look at this
   473       //     youngergenP_n card since it lies in the unoccupied
   474       //     part of the space.
   475       //     Some young collections later the blocks on this
   476       //     card can be re-allocated either due to direct allocation
   477       //     or due to absorbing promotions. At this time, the
   478       //     before-gc verification will fail the above assert.
   479       // (b) MSC: In this case, an object L with a young reference
   480       //     is on a card that (therefore) holds a youngergen_n value.
   481       //     Suppose also that L lies towards the end of the used
   482       //     the used space before GC. An MSC collection
   483       //     occurs that compacts to such an extent that this
   484       //     card is no longer in the occupied part of the space.
   485       //     Since current code in MSC does not always clear cards
   486       //     in the unused part of old gen, this stale youngergen_n
   487       //     value is left behind and can later be covered by
   488       //     an object when promotion or direct allocation
   489       //     re-allocates that part of the heap.
   490       //
   491       // Fortunately, the presence of such stale card values is
   492       // "only" a minor annoyance in that subsequent young collections
   493       // might needlessly scan such cards, but would still never corrupt
   494       // the heap as a result. However, it's likely not to be a significant
   495       // performance inhibitor in practice. For instance,
   496       // some recent measurements with unoccupied cards eagerly cleared
   497       // out to maintain this invariant, showed next to no
   498       // change in young collection times; of course one can construct
   499       // degenerate examples where the cost can be significant.)
   500       // Note, in particular, that if the "stale" card is modified
   501       // after re-allocation, it would be dirty, not "stale". Thus,
   502       // we can never have a younger ref in such a card and it is
   503       // safe not to scan that card in any collection. [As we see
   504       // below, we do some unnecessary scanning
   505       // in some cases in the current parallel scanning algorithm.]
   506       //
   507       // The main point below is that the parallel card scanning code
   508       // deals correctly with these stale card values. There are two main
   509       // cases to consider where we have a stale "younger gen" value and a
   510       // "derivative" case to consider, where we have a stale
   511       // "cur_younger_gen_and_prev_non_clean" value, as will become
   512       // apparent in the case analysis below.
   513       // o Case 1. If the stale value corresponds to a younger_gen_n
   514       //   value other than the cur_younger_gen value then the code
   515       //   treats this as being tantamount to a prev_younger_gen
   516       //   card. This means that the card may be unnecessarily scanned.
   517       //   There are two sub-cases to consider:
   518       //   o Case 1a. Let us say that the card is in the occupied part
   519       //     of the generation at the time the collection begins. In
   520       //     that case the card will be either cleared when it is scanned
   521       //     for young pointers, or will be set to cur_younger_gen as a
   522       //     result of promotion. (We have elided the normal case where
   523       //     the scanning thread and the promoting thread interleave
   524       //     possibly resulting in a transient
   525       //     cur_younger_gen_and_prev_non_clean value before settling
   526       //     to cur_younger_gen. [End Case 1a.]
   527       //   o Case 1b. Consider now the case when the card is in the unoccupied
   528       //     part of the space which becomes occupied because of promotions
   529       //     into it during the current young GC. In this case the card
   530       //     will never be scanned for young references. The current
   531       //     code will set the card value to either
   532       //     cur_younger_gen_and_prev_non_clean or leave
   533       //     it with its stale value -- because the promotions didn't
   534       //     result in any younger refs on that card. Of these two
   535       //     cases, the latter will be covered in Case 1a during
   536       //     a subsequent scan. To deal with the former case, we need
   537       //     to further consider how we deal with a stale value of
   538       //     cur_younger_gen_and_prev_non_clean in our case analysis
   539       //     below. This we do in Case 3 below. [End Case 1b]
   540       //   [End Case 1]
   541       // o Case 2. If the stale value corresponds to cur_younger_gen being
   542       //   a value not necessarily written by a current promotion, the
   543       //   card will not be scanned by the younger refs scanning code.
   544       //   (This is OK since as we argued above such cards cannot contain
   545       //   any younger refs.) The result is that this value will be
   546       //   treated as a prev_younger_gen value in a subsequent collection,
   547       //   which is addressed in Case 1 above. [End Case 2]
   548       // o Case 3. We here consider the "derivative" case from Case 1b. above
   549       //   because of which we may find a stale
   550       //   cur_younger_gen_and_prev_non_clean card value in the table.
   551       //   Once again, as in Case 1, we consider two subcases, depending
   552       //   on whether the card lies in the occupied or unoccupied part
   553       //   of the space at the start of the young collection.
   554       //   o Case 3a. Let us say the card is in the occupied part of
   555       //     the old gen at the start of the young collection. In that
   556       //     case, the card will be scanned by the younger refs scanning
   557       //     code which will set it to cur_younger_gen. In a subsequent
   558       //     scan, the card will be considered again and get its final
   559       //     correct value. [End Case 3a]
   560       //   o Case 3b. Now consider the case where the card is in the
   561       //     unoccupied part of the old gen, and is occupied as a result
   562       //     of promotions during thus young gc. In that case,
   563       //     the card will not be scanned for younger refs. The presence
   564       //     of newly promoted objects on the card will then result in
   565       //     its keeping the value cur_younger_gen_and_prev_non_clean
   566       //     value, which we have dealt with in Case 3 here. [End Case 3b]
   567       //   [End Case 3]
   568       //
   569       // (Please refer to the code in the helper class
   570       // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
   571       //
   572       // The informal arguments above can be tightened into a formal
   573       // correctness proof and it behooves us to write up such a proof,
   574       // or to use model checking to prove that there are no lingering
   575       // concerns.
   576       //
   577       // Clearly because of Case 3b one cannot bound the time for
   578       // which a card will retain what we have called a "stale" value.
   579       // However, one can obtain a Loose upper bound on the redundant
   580       // work as a result of such stale values. Note first that any
   581       // time a stale card lies in the occupied part of the space at
   582       // the start of the collection, it is scanned by younger refs
   583       // code and we can define a rank function on card values that
   584       // declines when this is so. Note also that when a card does not
   585       // lie in the occupied part of the space at the beginning of a
   586       // young collection, its rank can either decline or stay unchanged.
   587       // In this case, no extra work is done in terms of redundant
   588       // younger refs scanning of that card.
   589       // Then, the case analysis above reveals that, in the worst case,
   590       // any such stale card will be scanned unnecessarily at most twice.
   591       //
   592       // It is nonethelss advisable to try and get rid of some of this
   593       // redundant work in a subsequent (low priority) re-design of
   594       // the card-scanning code, if only to simplify the underlying
   595       // state machine analysis/proof. ysr 1/28/2002. XXX
   596       cur_entry++;
   597     }
   598   }
   599 }
   601 void CardTableRS::verify() {
   602   // At present, we only know how to verify the card table RS for
   603   // generational heaps.
   604   VerifyCTGenClosure blk(this);
   605   CollectedHeap* ch = Universe::heap();
   606   // We will do the perm-gen portion of the card table, too.
   607   Generation* pg = SharedHeap::heap()->perm_gen();
   608   HeapWord* pg_boundary = pg->reserved().start();
   610   if (ch->kind() == CollectedHeap::GenCollectedHeap) {
   611     GenCollectedHeap::heap()->generation_iterate(&blk, false);
   612     _ct_bs->verify();
   614     // If the old gen collections also collect perm, then we are only
   615     // interested in perm-to-young pointers, not perm-to-old pointers.
   616     GenCollectedHeap* gch = GenCollectedHeap::heap();
   617     CollectorPolicy* cp = gch->collector_policy();
   618     if (cp->is_mark_sweep_policy() || cp->is_concurrent_mark_sweep_policy()) {
   619       pg_boundary = gch->get_gen(1)->reserved().start();
   620     }
   621   }
   622   VerifyCTSpaceClosure perm_space_blk(this, pg_boundary);
   623   SharedHeap::heap()->perm_gen()->space_iterate(&perm_space_blk, true);
   624 }
   627 void CardTableRS::verify_aligned_region_empty(MemRegion mr) {
   628   if (!mr.is_empty()) {
   629     jbyte* cur_entry = byte_for(mr.start());
   630     jbyte* limit = byte_after(mr.last());
   631     // The region mr may not start on a card boundary so
   632     // the first card may reflect a write to the space
   633     // just prior to mr.
   634     if (!is_aligned(mr.start())) {
   635       cur_entry++;
   636     }
   637     for (;cur_entry < limit; cur_entry++) {
   638       guarantee(*cur_entry == CardTableModRefBS::clean_card,
   639                 "Unexpected dirty card found");
   640     }
   641   }
   642 }

mercurial