src/share/vm/memory/genCollectedHeap.hpp

Sun, 11 Oct 2009 16:19:25 -0700

author
jcoomes
date
Sun, 11 Oct 2009 16:19:25 -0700
changeset 1844
cff162798819
parent 1601
7b0e9cba0307
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6888953: some calls to function-like macros are missing semicolons
Reviewed-by: pbk, kvn

     1 /*
     2  * Copyright 2000-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class SubTasksDone;
    27 // A "GenCollectedHeap" is a SharedHeap that uses generational
    28 // collection.  It is represented with a sequence of Generation's.
    29 class GenCollectedHeap : public SharedHeap {
    30   friend class GenCollectorPolicy;
    31   friend class Generation;
    32   friend class DefNewGeneration;
    33   friend class TenuredGeneration;
    34   friend class ConcurrentMarkSweepGeneration;
    35   friend class CMSCollector;
    36   friend class GenMarkSweep;
    37   friend class VM_GenCollectForAllocation;
    38   friend class VM_GenCollectForPermanentAllocation;
    39   friend class VM_GenCollectFull;
    40   friend class VM_GenCollectFullConcurrent;
    41   friend class VM_GC_HeapInspection;
    42   friend class VM_HeapDumper;
    43   friend class HeapInspection;
    44   friend class GCCauseSetter;
    45   friend class VMStructs;
    46 public:
    47   enum SomeConstants {
    48     max_gens = 10
    49   };
    51   friend class VM_PopulateDumpSharedSpace;
    53  protected:
    54   // Fields:
    55   static GenCollectedHeap* _gch;
    57  private:
    58   int _n_gens;
    59   Generation* _gens[max_gens];
    60   GenerationSpec** _gen_specs;
    62   // The generational collector policy.
    63   GenCollectorPolicy* _gen_policy;
    65   // If a generation would bail out of an incremental collection,
    66   // it sets this flag.  If the flag is set, satisfy_failed_allocation
    67   // will attempt allocating in all generations before doing a full GC.
    68   bool _incremental_collection_will_fail;
    69   bool _last_incremental_collection_failed;
    71   // In support of ExplicitGCInvokesConcurrent functionality
    72   unsigned int _full_collections_completed;
    74   // Data structure for claiming the (potentially) parallel tasks in
    75   // (gen-specific) strong roots processing.
    76   SubTasksDone* _gen_process_strong_tasks;
    78   // In block contents verification, the number of header words to skip
    79   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
    81   // GC is not allowed during the dump of the shared classes.  Keep track
    82   // of this in order to provide an reasonable error message when terminating.
    83   bool _preloading_shared_classes;
    85 protected:
    86   // Directs each generation up to and including "collectedGen" to recompute
    87   // its desired size.
    88   void compute_new_generation_sizes(int collectedGen);
    90   // Helper functions for allocation
    91   HeapWord* attempt_allocation(size_t size,
    92                                bool   is_tlab,
    93                                bool   first_only);
    95   // Helper function for two callbacks below.
    96   // Considers collection of the first max_level+1 generations.
    97   void do_collection(bool   full,
    98                      bool   clear_all_soft_refs,
    99                      size_t size,
   100                      bool   is_tlab,
   101                      int    max_level);
   103   // Callback from VM_GenCollectForAllocation operation.
   104   // This function does everything necessary/possible to satisfy an
   105   // allocation request that failed in the youngest generation that should
   106   // have handled it (including collection, expansion, etc.)
   107   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
   109   // Callback from VM_GenCollectFull operation.
   110   // Perform a full collection of the first max_level+1 generations.
   111   void do_full_collection(bool clear_all_soft_refs, int max_level);
   113   // Does the "cause" of GC indicate that
   114   // we absolutely __must__ clear soft refs?
   115   bool must_clear_all_soft_refs();
   117 public:
   118   GenCollectedHeap(GenCollectorPolicy *policy);
   120   GCStats* gc_stats(int level) const;
   122   // Returns JNI_OK on success
   123   virtual jint initialize();
   124   char* allocate(size_t alignment, PermanentGenerationSpec* perm_gen_spec,
   125                  size_t* _total_reserved, int* _n_covered_regions,
   126                  ReservedSpace* heap_rs);
   128   // Does operations required after initialization has been done.
   129   void post_initialize();
   131   // Initialize ("weak") refs processing support
   132   virtual void ref_processing_init();
   134   virtual CollectedHeap::Name kind() const {
   135     return CollectedHeap::GenCollectedHeap;
   136   }
   138   // The generational collector policy.
   139   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
   141   // Adaptive size policy
   142   virtual AdaptiveSizePolicy* size_policy() {
   143     return gen_policy()->size_policy();
   144   }
   146   size_t capacity() const;
   147   size_t used() const;
   149   // Save the "used_region" for generations level and lower,
   150   // and, if perm is true, for perm gen.
   151   void save_used_regions(int level, bool perm);
   153   size_t max_capacity() const;
   155   HeapWord* mem_allocate(size_t size,
   156                          bool   is_large_noref,
   157                          bool   is_tlab,
   158                          bool*  gc_overhead_limit_was_exceeded);
   160   // We may support a shared contiguous allocation area, if the youngest
   161   // generation does.
   162   bool supports_inline_contig_alloc() const;
   163   HeapWord** top_addr() const;
   164   HeapWord** end_addr() const;
   166   // Return an estimate of the maximum allocation that could be performed
   167   // without triggering any collection activity.  In a generational
   168   // collector, for example, this is probably the largest allocation that
   169   // could be supported in the youngest generation.  It is "unsafe" because
   170   // no locks are taken; the result should be treated as an approximation,
   171   // not a guarantee.
   172   size_t unsafe_max_alloc();
   174   // Does this heap support heap inspection? (+PrintClassHistogram)
   175   virtual bool supports_heap_inspection() const { return true; }
   177   // Perform a full collection of the heap; intended for use in implementing
   178   // "System.gc". This implies as full a collection as the CollectedHeap
   179   // supports. Caller does not hold the Heap_lock on entry.
   180   void collect(GCCause::Cause cause);
   182   // This interface assumes that it's being called by the
   183   // vm thread. It collects the heap assuming that the
   184   // heap lock is already held and that we are executing in
   185   // the context of the vm thread.
   186   void collect_as_vm_thread(GCCause::Cause cause);
   188   // The same as above but assume that the caller holds the Heap_lock.
   189   void collect_locked(GCCause::Cause cause);
   191   // Perform a full collection of the first max_level+1 generations.
   192   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
   193   void collect(GCCause::Cause cause, int max_level);
   195   // Returns "TRUE" iff "p" points into the allocated area of the heap.
   196   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
   197   // be expensive to compute in general, so, to prevent
   198   // their inadvertent use in product jvm's, we restrict their use to
   199   // assertion checking or verification only.
   200   bool is_in(const void* p) const;
   202   // override
   203   bool is_in_closed_subset(const void* p) const {
   204     if (UseConcMarkSweepGC) {
   205       return is_in_reserved(p);
   206     } else {
   207       return is_in(p);
   208     }
   209   }
   211   // Returns "TRUE" iff "p" points into the youngest generation.
   212   bool is_in_youngest(void* p);
   214   // Iteration functions.
   215   void oop_iterate(OopClosure* cl);
   216   void oop_iterate(MemRegion mr, OopClosure* cl);
   217   void object_iterate(ObjectClosure* cl);
   218   void safe_object_iterate(ObjectClosure* cl);
   219   void object_iterate_since_last_GC(ObjectClosure* cl);
   220   Space* space_containing(const void* addr) const;
   222   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   223   // each address in the (reserved) heap is a member of exactly
   224   // one block.  The defining characteristic of a block is that it is
   225   // possible to find its size, and thus to progress forward to the next
   226   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   227   // represent Java objects, or they might be free blocks in a
   228   // free-list-based heap (or subheap), as long as the two kinds are
   229   // distinguishable and the size of each is determinable.
   231   // Returns the address of the start of the "block" that contains the
   232   // address "addr".  We say "blocks" instead of "object" since some heaps
   233   // may not pack objects densely; a chunk may either be an object or a
   234   // non-object.
   235   virtual HeapWord* block_start(const void* addr) const;
   237   // Requires "addr" to be the start of a chunk, and returns its size.
   238   // "addr + size" is required to be the start of a new chunk, or the end
   239   // of the active area of the heap. Assumes (and verifies in non-product
   240   // builds) that addr is in the allocated part of the heap and is
   241   // the start of a chunk.
   242   virtual size_t block_size(const HeapWord* addr) const;
   244   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   245   // the block is an object. Assumes (and verifies in non-product
   246   // builds) that addr is in the allocated part of the heap and is
   247   // the start of a chunk.
   248   virtual bool block_is_obj(const HeapWord* addr) const;
   250   // Section on TLAB's.
   251   virtual bool supports_tlab_allocation() const;
   252   virtual size_t tlab_capacity(Thread* thr) const;
   253   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
   254   virtual HeapWord* allocate_new_tlab(size_t size);
   256   // Can a compiler initialize a new object without store barriers?
   257   // This permission only extends from the creation of a new object
   258   // via a TLAB up to the first subsequent safepoint.
   259   virtual bool can_elide_tlab_store_barriers() const {
   260     return true;
   261   }
   263   virtual bool card_mark_must_follow_store() const {
   264     return UseConcMarkSweepGC;
   265   }
   267   // We don't need barriers for stores to objects in the
   268   // young gen and, a fortiori, for initializing stores to
   269   // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
   270   // only and may need to be re-examined in case other
   271   // kinds of collectors are implemented in the future.
   272   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
   273     // We wanted to assert that:-
   274     // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
   275     //       "Check can_elide_initializing_store_barrier() for this collector");
   276     // but unfortunately the flag UseSerialGC need not necessarily always
   277     // be set when DefNew+Tenured are being used.
   278     return is_in_youngest((void*)new_obj);
   279   }
   281   // Can a compiler elide a store barrier when it writes
   282   // a permanent oop into the heap?  Applies when the compiler
   283   // is storing x to the heap, where x->is_perm() is true.
   284   virtual bool can_elide_permanent_oop_store_barriers() const {
   285     // CMS needs to see all, even intra-generational, ref updates.
   286     return !UseConcMarkSweepGC;
   287   }
   289   // The "requestor" generation is performing some garbage collection
   290   // action for which it would be useful to have scratch space.  The
   291   // requestor promises to allocate no more than "max_alloc_words" in any
   292   // older generation (via promotion say.)   Any blocks of space that can
   293   // be provided are returned as a list of ScratchBlocks, sorted by
   294   // decreasing size.
   295   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
   296   // Allow each generation to reset any scratch space that it has
   297   // contributed as it needs.
   298   void release_scratch();
   300   size_t large_typearray_limit();
   302   // Ensure parsability: override
   303   virtual void ensure_parsability(bool retire_tlabs);
   305   // Time in ms since the longest time a collector ran in
   306   // in any generation.
   307   virtual jlong millis_since_last_gc();
   309   // Total number of full collections completed.
   310   unsigned int total_full_collections_completed() {
   311     assert(_full_collections_completed <= _total_full_collections,
   312            "Can't complete more collections than were started");
   313     return _full_collections_completed;
   314   }
   316   // Update above counter, as appropriate, at the end of a stop-world GC cycle
   317   unsigned int update_full_collections_completed();
   318   // Update above counter, as appropriate, at the end of a concurrent GC cycle
   319   unsigned int update_full_collections_completed(unsigned int count);
   321   // Update "time of last gc" for all constituent generations
   322   // to "now".
   323   void update_time_of_last_gc(jlong now) {
   324     for (int i = 0; i < _n_gens; i++) {
   325       _gens[i]->update_time_of_last_gc(now);
   326     }
   327     perm_gen()->update_time_of_last_gc(now);
   328   }
   330   // Update the gc statistics for each generation.
   331   // "level" is the level of the lastest collection
   332   void update_gc_stats(int current_level, bool full) {
   333     for (int i = 0; i < _n_gens; i++) {
   334       _gens[i]->update_gc_stats(current_level, full);
   335     }
   336     perm_gen()->update_gc_stats(current_level, full);
   337   }
   339   // Override.
   340   bool no_gc_in_progress() { return !is_gc_active(); }
   342   // Override.
   343   void prepare_for_verify();
   345   // Override.
   346   void verify(bool allow_dirty, bool silent, bool /* option */);
   348   // Override.
   349   void print() const;
   350   void print_on(outputStream* st) const;
   351   virtual void print_gc_threads_on(outputStream* st) const;
   352   virtual void gc_threads_do(ThreadClosure* tc) const;
   353   virtual void print_tracing_info() const;
   355   // PrintGC, PrintGCDetails support
   356   void print_heap_change(size_t prev_used) const;
   357   void print_perm_heap_change(size_t perm_prev_used) const;
   359   // The functions below are helper functions that a subclass of
   360   // "CollectedHeap" can use in the implementation of its virtual
   361   // functions.
   363   class GenClosure : public StackObj {
   364    public:
   365     virtual void do_generation(Generation* gen) = 0;
   366   };
   368   // Apply "cl.do_generation" to all generations in the heap (not including
   369   // the permanent generation).  If "old_to_young" determines the order.
   370   void generation_iterate(GenClosure* cl, bool old_to_young);
   372   void space_iterate(SpaceClosure* cl);
   374   // Return "true" if all generations (but perm) have reached the
   375   // maximal committed limit that they can reach, without a garbage
   376   // collection.
   377   virtual bool is_maximal_no_gc() const;
   379   // Return the generation before "gen", or else NULL.
   380   Generation* prev_gen(Generation* gen) const {
   381     int l = gen->level();
   382     if (l == 0) return NULL;
   383     else return _gens[l-1];
   384   }
   386   // Return the generation after "gen", or else NULL.
   387   Generation* next_gen(Generation* gen) const {
   388     int l = gen->level() + 1;
   389     if (l == _n_gens) return NULL;
   390     else return _gens[l];
   391   }
   393   Generation* get_gen(int i) const {
   394     if (i >= 0 && i < _n_gens)
   395       return _gens[i];
   396     else
   397       return NULL;
   398   }
   400   int n_gens() const {
   401     assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
   402     return _n_gens;
   403   }
   405   // Convenience function to be used in situations where the heap type can be
   406   // asserted to be this type.
   407   static GenCollectedHeap* heap();
   409   void set_par_threads(int t);
   412   // Invoke the "do_oop" method of one of the closures "not_older_gens"
   413   // or "older_gens" on root locations for the generation at
   414   // "level".  (The "older_gens" closure is used for scanning references
   415   // from older generations; "not_older_gens" is used everywhere else.)
   416   // If "younger_gens_as_roots" is false, younger generations are
   417   // not scanned as roots; in this case, the caller must be arranging to
   418   // scan the younger generations itself.  (For example, a generation might
   419   // explicitly mark reachable objects in younger generations, to avoid
   420   // excess storage retention.)  If "collecting_perm_gen" is false, then
   421   // roots that may only contain references to permGen objects are not
   422   // scanned. The "so" argument determines which of the roots
   423   // the closure is applied to:
   424   // "SO_None" does none;
   425   // "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
   426   // "SO_SystemClasses" to all the "system" classes and loaders;
   427   // "SO_Symbols_and_Strings" applies the closure to all entries in
   428   // SymbolsTable and StringTable.
   429   void gen_process_strong_roots(int level,
   430                                 bool younger_gens_as_roots,
   431                                 // The remaining arguments are in an order
   432                                 // consistent with SharedHeap::process_strong_roots:
   433                                 bool activate_scope,
   434                                 bool collecting_perm_gen,
   435                                 SharedHeap::ScanningOption so,
   436                                 OopsInGenClosure* not_older_gens,
   437                                 bool do_code_roots,
   438                                 OopsInGenClosure* older_gens);
   440   // Apply "blk" to all the weak roots of the system.  These include
   441   // JNI weak roots, the code cache, system dictionary, symbol table,
   442   // string table, and referents of reachable weak refs.
   443   void gen_process_weak_roots(OopClosure* root_closure,
   444                               CodeBlobClosure* code_roots,
   445                               OopClosure* non_root_closure);
   447   // Set the saved marks of generations, if that makes sense.
   448   // In particular, if any generation might iterate over the oops
   449   // in other generations, it should call this method.
   450   void save_marks();
   452   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
   453   // allocated since the last call to save_marks in generations at or above
   454   // "level" (including the permanent generation.)  The "cur" closure is
   455   // applied to references in the generation at "level", and the "older"
   456   // closure to older (and permanent) generations.
   457 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
   458   void oop_since_save_marks_iterate(int level,                          \
   459                                     OopClosureType* cur,                \
   460                                     OopClosureType* older);
   462   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
   464 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
   466   // Returns "true" iff no allocations have occurred in any generation at
   467   // "level" or above (including the permanent generation) since the last
   468   // call to "save_marks".
   469   bool no_allocs_since_save_marks(int level);
   471   // If a generation bails out of an incremental collection,
   472   // it sets this flag.
   473   bool incremental_collection_will_fail() {
   474     return _incremental_collection_will_fail;
   475   }
   476   void set_incremental_collection_will_fail() {
   477     _incremental_collection_will_fail = true;
   478   }
   479   void clear_incremental_collection_will_fail() {
   480     _incremental_collection_will_fail = false;
   481   }
   483   bool last_incremental_collection_failed() const {
   484     return _last_incremental_collection_failed;
   485   }
   486   void set_last_incremental_collection_failed() {
   487     _last_incremental_collection_failed = true;
   488   }
   489   void clear_last_incremental_collection_failed() {
   490     _last_incremental_collection_failed = false;
   491   }
   493   // Promotion of obj into gen failed.  Try to promote obj to higher non-perm
   494   // gens in ascending order; return the new location of obj if successful.
   495   // Otherwise, try expand-and-allocate for obj in each generation starting at
   496   // gen; return the new location of obj if successful.  Otherwise, return NULL.
   497   oop handle_failed_promotion(Generation* gen,
   498                               oop obj,
   499                               size_t obj_size);
   501 private:
   502   // Accessor for memory state verification support
   503   NOT_PRODUCT(
   504     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
   505   )
   507   // Override
   508   void check_for_non_bad_heap_word_value(HeapWord* addr,
   509     size_t size) PRODUCT_RETURN;
   511   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
   512   // in an essential way: compaction is performed across generations, by
   513   // iterating over spaces.
   514   void prepare_for_compaction();
   516   // Perform a full collection of the first max_level+1 generations.
   517   // This is the low level interface used by the public versions of
   518   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
   519   void collect_locked(GCCause::Cause cause, int max_level);
   521   // Returns success or failure.
   522   bool create_cms_collector();
   524   // In support of ExplicitGCInvokesConcurrent functionality
   525   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   526   void collect_mostly_concurrent(GCCause::Cause cause);
   528   // Save the tops of the spaces in all generations
   529   void record_gen_tops_before_GC() PRODUCT_RETURN;
   531 protected:
   532   virtual void gc_prologue(bool full);
   533   virtual void gc_epilogue(bool full);
   535 public:
   536   virtual void preload_and_dump(TRAPS) KERNEL_RETURN;
   537 };

mercurial