src/share/vm/gc_implementation/concurrentMarkSweep/binaryTreeDictionary.cpp

Sun, 11 Oct 2009 16:19:25 -0700

author
jcoomes
date
Sun, 11 Oct 2009 16:19:25 -0700
changeset 1844
cff162798819
parent 1580
e018e6884bd8
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6888953: some calls to function-like macros are missing semicolons
Reviewed-by: pbk, kvn

     1 /*
     2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_binaryTreeDictionary.cpp.incl"
    28 ////////////////////////////////////////////////////////////////////////////////
    29 // A binary tree based search structure for free blocks.
    30 // This is currently used in the Concurrent Mark&Sweep implementation.
    31 ////////////////////////////////////////////////////////////////////////////////
    33 TreeChunk* TreeChunk::as_TreeChunk(FreeChunk* fc) {
    34   // Do some assertion checking here.
    35   return (TreeChunk*) fc;
    36 }
    38 void TreeChunk::verifyTreeChunkList() const {
    39   TreeChunk* nextTC = (TreeChunk*)next();
    40   if (prev() != NULL) { // interior list node shouldn'r have tree fields
    41     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
    42               embedded_list()->right()  == NULL, "should be clear");
    43   }
    44   if (nextTC != NULL) {
    45     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
    46     guarantee(nextTC->size() == size(), "wrong size");
    47     nextTC->verifyTreeChunkList();
    48   }
    49 }
    52 TreeList* TreeList::as_TreeList(TreeChunk* tc) {
    53   // This first free chunk in the list will be the tree list.
    54   assert(tc->size() >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
    55   TreeList* tl = tc->embedded_list();
    56   tc->set_list(tl);
    57 #ifdef ASSERT
    58   tl->set_protecting_lock(NULL);
    59 #endif
    60   tl->set_hint(0);
    61   tl->set_size(tc->size());
    62   tl->link_head(tc);
    63   tl->link_tail(tc);
    64   tl->set_count(1);
    65   tl->init_statistics(true /* split_birth */);
    66   tl->setParent(NULL);
    67   tl->setLeft(NULL);
    68   tl->setRight(NULL);
    69   return tl;
    70 }
    72 TreeList* TreeList::as_TreeList(HeapWord* addr, size_t size) {
    73   TreeChunk* tc = (TreeChunk*) addr;
    74   assert(size >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
    75   // The space in the heap will have been mangled initially but
    76   // is not remangled when a free chunk is returned to the free list
    77   // (since it is used to maintain the chunk on the free list).
    78   assert((ZapUnusedHeapArea &&
    79           SpaceMangler::is_mangled((HeapWord*) tc->size_addr()) &&
    80           SpaceMangler::is_mangled((HeapWord*) tc->prev_addr()) &&
    81           SpaceMangler::is_mangled((HeapWord*) tc->next_addr())) ||
    82           (tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL),
    83     "Space should be clear or mangled");
    84   tc->setSize(size);
    85   tc->linkPrev(NULL);
    86   tc->linkNext(NULL);
    87   TreeList* tl = TreeList::as_TreeList(tc);
    88   return tl;
    89 }
    91 TreeList* TreeList::removeChunkReplaceIfNeeded(TreeChunk* tc) {
    93   TreeList* retTL = this;
    94   FreeChunk* list = head();
    95   assert(!list || list != list->next(), "Chunk on list twice");
    96   assert(tc != NULL, "Chunk being removed is NULL");
    97   assert(parent() == NULL || this == parent()->left() ||
    98     this == parent()->right(), "list is inconsistent");
    99   assert(tc->isFree(), "Header is not marked correctly");
   100   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   101   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   103   FreeChunk* prevFC = tc->prev();
   104   TreeChunk* nextTC = TreeChunk::as_TreeChunk(tc->next());
   105   assert(list != NULL, "should have at least the target chunk");
   107   // Is this the first item on the list?
   108   if (tc == list) {
   109     // The "getChunk..." functions for a TreeList will not return the
   110     // first chunk in the list unless it is the last chunk in the list
   111     // because the first chunk is also acting as the tree node.
   112     // When coalescing happens, however, the first chunk in the a tree
   113     // list can be the start of a free range.  Free ranges are removed
   114     // from the free lists so that they are not available to be
   115     // allocated when the sweeper yields (giving up the free list lock)
   116     // to allow mutator activity.  If this chunk is the first in the
   117     // list and is not the last in the list, do the work to copy the
   118     // TreeList from the first chunk to the next chunk and update all
   119     // the TreeList pointers in the chunks in the list.
   120     if (nextTC == NULL) {
   121       assert(prevFC == NULL, "Not last chunk in the list");
   122       set_tail(NULL);
   123       set_head(NULL);
   124     } else {
   125       // copy embedded list.
   126       nextTC->set_embedded_list(tc->embedded_list());
   127       retTL = nextTC->embedded_list();
   128       // Fix the pointer to the list in each chunk in the list.
   129       // This can be slow for a long list.  Consider having
   130       // an option that does not allow the first chunk on the
   131       // list to be coalesced.
   132       for (TreeChunk* curTC = nextTC; curTC != NULL;
   133           curTC = TreeChunk::as_TreeChunk(curTC->next())) {
   134         curTC->set_list(retTL);
   135       }
   136       // Fix the parent to point to the new TreeList.
   137       if (retTL->parent() != NULL) {
   138         if (this == retTL->parent()->left()) {
   139           retTL->parent()->setLeft(retTL);
   140         } else {
   141           assert(this == retTL->parent()->right(), "Parent is incorrect");
   142           retTL->parent()->setRight(retTL);
   143         }
   144       }
   145       // Fix the children's parent pointers to point to the
   146       // new list.
   147       assert(right() == retTL->right(), "Should have been copied");
   148       if (retTL->right() != NULL) {
   149         retTL->right()->setParent(retTL);
   150       }
   151       assert(left() == retTL->left(), "Should have been copied");
   152       if (retTL->left() != NULL) {
   153         retTL->left()->setParent(retTL);
   154       }
   155       retTL->link_head(nextTC);
   156       assert(nextTC->isFree(), "Should be a free chunk");
   157     }
   158   } else {
   159     if (nextTC == NULL) {
   160       // Removing chunk at tail of list
   161       link_tail(prevFC);
   162     }
   163     // Chunk is interior to the list
   164     prevFC->linkAfter(nextTC);
   165   }
   167   // Below this point the embeded TreeList being used for the
   168   // tree node may have changed. Don't use "this"
   169   // TreeList*.
   170   // chunk should still be a free chunk (bit set in _prev)
   171   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
   172     "Wrong sized chunk in list");
   173   debug_only(
   174     tc->linkPrev(NULL);
   175     tc->linkNext(NULL);
   176     tc->set_list(NULL);
   177     bool prev_found = false;
   178     bool next_found = false;
   179     for (FreeChunk* curFC = retTL->head();
   180          curFC != NULL; curFC = curFC->next()) {
   181       assert(curFC != tc, "Chunk is still in list");
   182       if (curFC == prevFC) {
   183         prev_found = true;
   184       }
   185       if (curFC == nextTC) {
   186         next_found = true;
   187       }
   188     }
   189     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
   190     assert(nextTC == NULL || next_found, "Chunk was lost from list");
   191     assert(retTL->parent() == NULL ||
   192            retTL == retTL->parent()->left() ||
   193            retTL == retTL->parent()->right(),
   194            "list is inconsistent");
   195   )
   196   retTL->decrement_count();
   198   assert(tc->isFree(), "Should still be a free chunk");
   199   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
   200     "list invariant");
   201   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
   202     "list invariant");
   203   return retTL;
   204 }
   205 void TreeList::returnChunkAtTail(TreeChunk* chunk) {
   206   assert(chunk != NULL, "returning NULL chunk");
   207   assert(chunk->list() == this, "list should be set for chunk");
   208   assert(tail() != NULL, "The tree list is embedded in the first chunk");
   209   // which means that the list can never be empty.
   210   assert(!verifyChunkInFreeLists(chunk), "Double entry");
   211   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   212   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   214   FreeChunk* fc = tail();
   215   fc->linkAfter(chunk);
   216   link_tail(chunk);
   218   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
   219   increment_count();
   220   debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
   221   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   222   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   223 }
   225 // Add this chunk at the head of the list.  "At the head of the list"
   226 // is defined to be after the chunk pointer to by head().  This is
   227 // because the TreeList is embedded in the first TreeChunk in the
   228 // list.  See the definition of TreeChunk.
   229 void TreeList::returnChunkAtHead(TreeChunk* chunk) {
   230   assert(chunk->list() == this, "list should be set for chunk");
   231   assert(head() != NULL, "The tree list is embedded in the first chunk");
   232   assert(chunk != NULL, "returning NULL chunk");
   233   assert(!verifyChunkInFreeLists(chunk), "Double entry");
   234   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   235   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   237   FreeChunk* fc = head()->next();
   238   if (fc != NULL) {
   239     chunk->linkAfter(fc);
   240   } else {
   241     assert(tail() == NULL, "List is inconsistent");
   242     link_tail(chunk);
   243   }
   244   head()->linkAfter(chunk);
   245   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
   246   increment_count();
   247   debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
   248   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   249   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   250 }
   252 TreeChunk* TreeList::head_as_TreeChunk() {
   253   assert(head() == NULL || TreeChunk::as_TreeChunk(head())->list() == this,
   254     "Wrong type of chunk?");
   255   return TreeChunk::as_TreeChunk(head());
   256 }
   258 TreeChunk* TreeList::first_available() {
   259   guarantee(head() != NULL, "The head of the list cannot be NULL");
   260   FreeChunk* fc = head()->next();
   261   TreeChunk* retTC;
   262   if (fc == NULL) {
   263     retTC = head_as_TreeChunk();
   264   } else {
   265     retTC = TreeChunk::as_TreeChunk(fc);
   266   }
   267   assert(retTC->list() == this, "Wrong type of chunk.");
   268   return retTC;
   269 }
   271 // Returns the block with the largest heap address amongst
   272 // those in the list for this size; potentially slow and expensive,
   273 // use with caution!
   274 TreeChunk* TreeList::largest_address() {
   275   guarantee(head() != NULL, "The head of the list cannot be NULL");
   276   FreeChunk* fc = head()->next();
   277   TreeChunk* retTC;
   278   if (fc == NULL) {
   279     retTC = head_as_TreeChunk();
   280   } else {
   281     // walk down the list and return the one with the highest
   282     // heap address among chunks of this size.
   283     FreeChunk* last = fc;
   284     while (fc->next() != NULL) {
   285       if ((HeapWord*)last < (HeapWord*)fc) {
   286         last = fc;
   287       }
   288       fc = fc->next();
   289     }
   290     retTC = TreeChunk::as_TreeChunk(last);
   291   }
   292   assert(retTC->list() == this, "Wrong type of chunk.");
   293   return retTC;
   294 }
   296 BinaryTreeDictionary::BinaryTreeDictionary(MemRegion mr, bool splay):
   297   _splay(splay)
   298 {
   299   assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
   301   reset(mr);
   302   assert(root()->left() == NULL, "reset check failed");
   303   assert(root()->right() == NULL, "reset check failed");
   304   assert(root()->head()->next() == NULL, "reset check failed");
   305   assert(root()->head()->prev() == NULL, "reset check failed");
   306   assert(totalSize() == root()->size(), "reset check failed");
   307   assert(totalFreeBlocks() == 1, "reset check failed");
   308 }
   310 void BinaryTreeDictionary::inc_totalSize(size_t inc) {
   311   _totalSize = _totalSize + inc;
   312 }
   314 void BinaryTreeDictionary::dec_totalSize(size_t dec) {
   315   _totalSize = _totalSize - dec;
   316 }
   318 void BinaryTreeDictionary::reset(MemRegion mr) {
   319   assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
   320   set_root(TreeList::as_TreeList(mr.start(), mr.word_size()));
   321   set_totalSize(mr.word_size());
   322   set_totalFreeBlocks(1);
   323 }
   325 void BinaryTreeDictionary::reset(HeapWord* addr, size_t byte_size) {
   326   MemRegion mr(addr, heap_word_size(byte_size));
   327   reset(mr);
   328 }
   330 void BinaryTreeDictionary::reset() {
   331   set_root(NULL);
   332   set_totalSize(0);
   333   set_totalFreeBlocks(0);
   334 }
   336 // Get a free block of size at least size from tree, or NULL.
   337 // If a splay step is requested, the removal algorithm (only) incorporates
   338 // a splay step as follows:
   339 // . the search proceeds down the tree looking for a possible
   340 //   match. At the (closest) matching location, an appropriate splay step is applied
   341 //   (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
   342 //   if available, and if it's the last chunk, the node is deleted. A deteleted
   343 //   node is replaced in place by its tree successor.
   344 TreeChunk*
   345 BinaryTreeDictionary::getChunkFromTree(size_t size, Dither dither, bool splay)
   346 {
   347   TreeList *curTL, *prevTL;
   348   TreeChunk* retTC = NULL;
   349   assert(size >= MIN_TREE_CHUNK_SIZE, "minimum chunk size");
   350   if (FLSVerifyDictionary) {
   351     verifyTree();
   352   }
   353   // starting at the root, work downwards trying to find match.
   354   // Remember the last node of size too great or too small.
   355   for (prevTL = curTL = root(); curTL != NULL;) {
   356     if (curTL->size() == size) {        // exact match
   357       break;
   358     }
   359     prevTL = curTL;
   360     if (curTL->size() < size) {        // proceed to right sub-tree
   361       curTL = curTL->right();
   362     } else {                           // proceed to left sub-tree
   363       assert(curTL->size() > size, "size inconsistency");
   364       curTL = curTL->left();
   365     }
   366   }
   367   if (curTL == NULL) { // couldn't find exact match
   368     // try and find the next larger size by walking back up the search path
   369     for (curTL = prevTL; curTL != NULL;) {
   370       if (curTL->size() >= size) break;
   371       else curTL = curTL->parent();
   372     }
   373     assert(curTL == NULL || curTL->count() > 0,
   374       "An empty list should not be in the tree");
   375   }
   376   if (curTL != NULL) {
   377     assert(curTL->size() >= size, "size inconsistency");
   378     if (UseCMSAdaptiveFreeLists) {
   380       // A candidate chunk has been found.  If it is already under
   381       // populated, get a chunk associated with the hint for this
   382       // chunk.
   383       if (curTL->surplus() <= 0) {
   384         /* Use the hint to find a size with a surplus, and reset the hint. */
   385         TreeList* hintTL = curTL;
   386         while (hintTL->hint() != 0) {
   387           assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
   388             "hint points in the wrong direction");
   389           hintTL = findList(hintTL->hint());
   390           assert(curTL != hintTL, "Infinite loop");
   391           if (hintTL == NULL ||
   392               hintTL == curTL /* Should not happen but protect against it */ ) {
   393             // No useful hint.  Set the hint to NULL and go on.
   394             curTL->set_hint(0);
   395             break;
   396           }
   397           assert(hintTL->size() > size, "hint is inconsistent");
   398           if (hintTL->surplus() > 0) {
   399             // The hint led to a list that has a surplus.  Use it.
   400             // Set the hint for the candidate to an overpopulated
   401             // size.
   402             curTL->set_hint(hintTL->size());
   403             // Change the candidate.
   404             curTL = hintTL;
   405             break;
   406           }
   407           // The evm code reset the hint of the candidate as
   408           // at an interim point.  Why?  Seems like this leaves
   409           // the hint pointing to a list that didn't work.
   410           // curTL->set_hint(hintTL->size());
   411         }
   412       }
   413     }
   414     // don't waste time splaying if chunk's singleton
   415     if (splay && curTL->head()->next() != NULL) {
   416       semiSplayStep(curTL);
   417     }
   418     retTC = curTL->first_available();
   419     assert((retTC != NULL) && (curTL->count() > 0),
   420       "A list in the binary tree should not be NULL");
   421     assert(retTC->size() >= size,
   422       "A chunk of the wrong size was found");
   423     removeChunkFromTree(retTC);
   424     assert(retTC->isFree(), "Header is not marked correctly");
   425   }
   427   if (FLSVerifyDictionary) {
   428     verify();
   429   }
   430   return retTC;
   431 }
   433 TreeList* BinaryTreeDictionary::findList(size_t size) const {
   434   TreeList* curTL;
   435   for (curTL = root(); curTL != NULL;) {
   436     if (curTL->size() == size) {        // exact match
   437       break;
   438     }
   440     if (curTL->size() < size) {        // proceed to right sub-tree
   441       curTL = curTL->right();
   442     } else {                           // proceed to left sub-tree
   443       assert(curTL->size() > size, "size inconsistency");
   444       curTL = curTL->left();
   445     }
   446   }
   447   return curTL;
   448 }
   451 bool BinaryTreeDictionary::verifyChunkInFreeLists(FreeChunk* tc) const {
   452   size_t size = tc->size();
   453   TreeList* tl = findList(size);
   454   if (tl == NULL) {
   455     return false;
   456   } else {
   457     return tl->verifyChunkInFreeLists(tc);
   458   }
   459 }
   461 FreeChunk* BinaryTreeDictionary::findLargestDict() const {
   462   TreeList *curTL = root();
   463   if (curTL != NULL) {
   464     while(curTL->right() != NULL) curTL = curTL->right();
   465     return curTL->largest_address();
   466   } else {
   467     return NULL;
   468   }
   469 }
   471 // Remove the current chunk from the tree.  If it is not the last
   472 // chunk in a list on a tree node, just unlink it.
   473 // If it is the last chunk in the list (the next link is NULL),
   474 // remove the node and repair the tree.
   475 TreeChunk*
   476 BinaryTreeDictionary::removeChunkFromTree(TreeChunk* tc) {
   477   assert(tc != NULL, "Should not call with a NULL chunk");
   478   assert(tc->isFree(), "Header is not marked correctly");
   480   TreeList *newTL, *parentTL;
   481   TreeChunk* retTC;
   482   TreeList* tl = tc->list();
   483   debug_only(
   484     bool removing_only_chunk = false;
   485     if (tl == _root) {
   486       if ((_root->left() == NULL) && (_root->right() == NULL)) {
   487         if (_root->count() == 1) {
   488           assert(_root->head() == tc, "Should only be this one chunk");
   489           removing_only_chunk = true;
   490         }
   491       }
   492     }
   493   )
   494   assert(tl != NULL, "List should be set");
   495   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
   496          tl == tl->parent()->right(), "list is inconsistent");
   498   bool complicatedSplice = false;
   500   retTC = tc;
   501   // Removing this chunk can have the side effect of changing the node
   502   // (TreeList*) in the tree.  If the node is the root, update it.
   503   TreeList* replacementTL = tl->removeChunkReplaceIfNeeded(tc);
   504   assert(tc->isFree(), "Chunk should still be free");
   505   assert(replacementTL->parent() == NULL ||
   506          replacementTL == replacementTL->parent()->left() ||
   507          replacementTL == replacementTL->parent()->right(),
   508          "list is inconsistent");
   509   if (tl == root()) {
   510     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
   511     set_root(replacementTL);
   512   }
   513   debug_only(
   514     if (tl != replacementTL) {
   515       assert(replacementTL->head() != NULL,
   516         "If the tree list was replaced, it should not be a NULL list");
   517       TreeList* rhl = replacementTL->head_as_TreeChunk()->list();
   518       TreeList* rtl = TreeChunk::as_TreeChunk(replacementTL->tail())->list();
   519       assert(rhl == replacementTL, "Broken head");
   520       assert(rtl == replacementTL, "Broken tail");
   521       assert(replacementTL->size() == tc->size(),  "Broken size");
   522     }
   523   )
   525   // Does the tree need to be repaired?
   526   if (replacementTL->count() == 0) {
   527     assert(replacementTL->head() == NULL &&
   528            replacementTL->tail() == NULL, "list count is incorrect");
   529     // Find the replacement node for the (soon to be empty) node being removed.
   530     // if we have a single (or no) child, splice child in our stead
   531     if (replacementTL->left() == NULL) {
   532       // left is NULL so pick right.  right may also be NULL.
   533       newTL = replacementTL->right();
   534       debug_only(replacementTL->clearRight();)
   535     } else if (replacementTL->right() == NULL) {
   536       // right is NULL
   537       newTL = replacementTL->left();
   538       debug_only(replacementTL->clearLeft();)
   539     } else {  // we have both children, so, by patriarchal convention,
   540               // my replacement is least node in right sub-tree
   541       complicatedSplice = true;
   542       newTL = removeTreeMinimum(replacementTL->right());
   543       assert(newTL != NULL && newTL->left() == NULL &&
   544              newTL->right() == NULL, "sub-tree minimum exists");
   545     }
   546     // newTL is the replacement for the (soon to be empty) node.
   547     // newTL may be NULL.
   548     // should verify; we just cleanly excised our replacement
   549     if (FLSVerifyDictionary) {
   550       verifyTree();
   551     }
   552     // first make newTL my parent's child
   553     if ((parentTL = replacementTL->parent()) == NULL) {
   554       // newTL should be root
   555       assert(tl == root(), "Incorrectly replacing root");
   556       set_root(newTL);
   557       if (newTL != NULL) {
   558         newTL->clearParent();
   559       }
   560     } else if (parentTL->right() == replacementTL) {
   561       // replacementTL is a right child
   562       parentTL->setRight(newTL);
   563     } else {                                // replacementTL is a left child
   564       assert(parentTL->left() == replacementTL, "should be left child");
   565       parentTL->setLeft(newTL);
   566     }
   567     debug_only(replacementTL->clearParent();)
   568     if (complicatedSplice) {  // we need newTL to get replacementTL's
   569                               // two children
   570       assert(newTL != NULL &&
   571              newTL->left() == NULL && newTL->right() == NULL,
   572             "newTL should not have encumbrances from the past");
   573       // we'd like to assert as below:
   574       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
   575       //       "else !complicatedSplice");
   576       // ... however, the above assertion is too strong because we aren't
   577       // guaranteed that replacementTL->right() is still NULL.
   578       // Recall that we removed
   579       // the right sub-tree minimum from replacementTL.
   580       // That may well have been its right
   581       // child! So we'll just assert half of the above:
   582       assert(replacementTL->left() != NULL, "else !complicatedSplice");
   583       newTL->setLeft(replacementTL->left());
   584       newTL->setRight(replacementTL->right());
   585       debug_only(
   586         replacementTL->clearRight();
   587         replacementTL->clearLeft();
   588       )
   589     }
   590     assert(replacementTL->right() == NULL &&
   591            replacementTL->left() == NULL &&
   592            replacementTL->parent() == NULL,
   593         "delete without encumbrances");
   594   }
   596   assert(totalSize() >= retTC->size(), "Incorrect total size");
   597   dec_totalSize(retTC->size());     // size book-keeping
   598   assert(totalFreeBlocks() > 0, "Incorrect total count");
   599   set_totalFreeBlocks(totalFreeBlocks() - 1);
   601   assert(retTC != NULL, "null chunk?");
   602   assert(retTC->prev() == NULL && retTC->next() == NULL,
   603          "should return without encumbrances");
   604   if (FLSVerifyDictionary) {
   605     verifyTree();
   606   }
   607   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
   608   return TreeChunk::as_TreeChunk(retTC);
   609 }
   611 // Remove the leftmost node (lm) in the tree and return it.
   612 // If lm has a right child, link it to the left node of
   613 // the parent of lm.
   614 TreeList* BinaryTreeDictionary::removeTreeMinimum(TreeList* tl) {
   615   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
   616   // locate the subtree minimum by walking down left branches
   617   TreeList* curTL = tl;
   618   for (; curTL->left() != NULL; curTL = curTL->left());
   619   // obviously curTL now has at most one child, a right child
   620   if (curTL != root()) {  // Should this test just be removed?
   621     TreeList* parentTL = curTL->parent();
   622     if (parentTL->left() == curTL) { // curTL is a left child
   623       parentTL->setLeft(curTL->right());
   624     } else {
   625       // If the list tl has no left child, then curTL may be
   626       // the right child of parentTL.
   627       assert(parentTL->right() == curTL, "should be a right child");
   628       parentTL->setRight(curTL->right());
   629     }
   630   } else {
   631     // The only use of this method would not pass the root of the
   632     // tree (as indicated by the assertion above that the tree list
   633     // has a parent) but the specification does not explicitly exclude the
   634     // passing of the root so accomodate it.
   635     set_root(NULL);
   636   }
   637   debug_only(
   638     curTL->clearParent();  // Test if this needs to be cleared
   639     curTL->clearRight();    // recall, above, left child is already null
   640   )
   641   // we just excised a (non-root) node, we should still verify all tree invariants
   642   if (FLSVerifyDictionary) {
   643     verifyTree();
   644   }
   645   return curTL;
   646 }
   648 // Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
   649 // The simplifications are the following:
   650 // . we splay only when we delete (not when we insert)
   651 // . we apply a single spay step per deletion/access
   652 // By doing such partial splaying, we reduce the amount of restructuring,
   653 // while getting a reasonably efficient search tree (we think).
   654 // [Measurements will be needed to (in)validate this expectation.]
   656 void BinaryTreeDictionary::semiSplayStep(TreeList* tc) {
   657   // apply a semi-splay step at the given node:
   658   // . if root, norting needs to be done
   659   // . if child of root, splay once
   660   // . else zig-zig or sig-zag depending on path from grandparent
   661   if (root() == tc) return;
   662   warning("*** Splaying not yet implemented; "
   663           "tree operations may be inefficient ***");
   664 }
   666 void BinaryTreeDictionary::insertChunkInTree(FreeChunk* fc) {
   667   TreeList *curTL, *prevTL;
   668   size_t size = fc->size();
   670   assert(size >= MIN_TREE_CHUNK_SIZE, "too small to be a TreeList");
   671   if (FLSVerifyDictionary) {
   672     verifyTree();
   673   }
   674   // XXX: do i need to clear the FreeChunk fields, let me do it just in case
   675   // Revisit this later
   677   fc->clearNext();
   678   fc->linkPrev(NULL);
   680   // work down from the _root, looking for insertion point
   681   for (prevTL = curTL = root(); curTL != NULL;) {
   682     if (curTL->size() == size)  // exact match
   683       break;
   684     prevTL = curTL;
   685     if (curTL->size() > size) { // follow left branch
   686       curTL = curTL->left();
   687     } else {                    // follow right branch
   688       assert(curTL->size() < size, "size inconsistency");
   689       curTL = curTL->right();
   690     }
   691   }
   692   TreeChunk* tc = TreeChunk::as_TreeChunk(fc);
   693   // This chunk is being returned to the binary tree.  Its embedded
   694   // TreeList should be unused at this point.
   695   tc->initialize();
   696   if (curTL != NULL) {          // exact match
   697     tc->set_list(curTL);
   698     curTL->returnChunkAtTail(tc);
   699   } else {                     // need a new node in tree
   700     tc->clearNext();
   701     tc->linkPrev(NULL);
   702     TreeList* newTL = TreeList::as_TreeList(tc);
   703     assert(((TreeChunk*)tc)->list() == newTL,
   704       "List was not initialized correctly");
   705     if (prevTL == NULL) {      // we are the only tree node
   706       assert(root() == NULL, "control point invariant");
   707       set_root(newTL);
   708     } else {                   // insert under prevTL ...
   709       if (prevTL->size() < size) {   // am right child
   710         assert(prevTL->right() == NULL, "control point invariant");
   711         prevTL->setRight(newTL);
   712       } else {                       // am left child
   713         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
   714         prevTL->setLeft(newTL);
   715       }
   716     }
   717   }
   718   assert(tc->list() != NULL, "Tree list should be set");
   720   inc_totalSize(size);
   721   // Method 'totalSizeInTree' walks through the every block in the
   722   // tree, so it can cause significant performance loss if there are
   723   // many blocks in the tree
   724   assert(!FLSVerifyDictionary || totalSizeInTree(root()) == totalSize(), "_totalSize inconsistency");
   725   set_totalFreeBlocks(totalFreeBlocks() + 1);
   726   if (FLSVerifyDictionary) {
   727     verifyTree();
   728   }
   729 }
   731 size_t BinaryTreeDictionary::maxChunkSize() const {
   732   verify_par_locked();
   733   TreeList* tc = root();
   734   if (tc == NULL) return 0;
   735   for (; tc->right() != NULL; tc = tc->right());
   736   return tc->size();
   737 }
   739 size_t BinaryTreeDictionary::totalListLength(TreeList* tl) const {
   740   size_t res;
   741   res = tl->count();
   742 #ifdef ASSERT
   743   size_t cnt;
   744   FreeChunk* tc = tl->head();
   745   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
   746   assert(res == cnt, "The count is not being maintained correctly");
   747 #endif
   748   return res;
   749 }
   751 size_t BinaryTreeDictionary::totalSizeInTree(TreeList* tl) const {
   752   if (tl == NULL)
   753     return 0;
   754   return (tl->size() * totalListLength(tl)) +
   755          totalSizeInTree(tl->left())    +
   756          totalSizeInTree(tl->right());
   757 }
   759 double BinaryTreeDictionary::sum_of_squared_block_sizes(TreeList* const tl) const {
   760   if (tl == NULL) {
   761     return 0.0;
   762   }
   763   double size = (double)(tl->size());
   764   double curr = size * size * totalListLength(tl);
   765   curr += sum_of_squared_block_sizes(tl->left());
   766   curr += sum_of_squared_block_sizes(tl->right());
   767   return curr;
   768 }
   770 size_t BinaryTreeDictionary::totalFreeBlocksInTree(TreeList* tl) const {
   771   if (tl == NULL)
   772     return 0;
   773   return totalListLength(tl) +
   774          totalFreeBlocksInTree(tl->left()) +
   775          totalFreeBlocksInTree(tl->right());
   776 }
   778 size_t BinaryTreeDictionary::numFreeBlocks() const {
   779   assert(totalFreeBlocksInTree(root()) == totalFreeBlocks(),
   780          "_totalFreeBlocks inconsistency");
   781   return totalFreeBlocks();
   782 }
   784 size_t BinaryTreeDictionary::treeHeightHelper(TreeList* tl) const {
   785   if (tl == NULL)
   786     return 0;
   787   return 1 + MAX2(treeHeightHelper(tl->left()),
   788                   treeHeightHelper(tl->right()));
   789 }
   791 size_t BinaryTreeDictionary::treeHeight() const {
   792   return treeHeightHelper(root());
   793 }
   795 size_t BinaryTreeDictionary::totalNodesHelper(TreeList* tl) const {
   796   if (tl == NULL) {
   797     return 0;
   798   }
   799   return 1 + totalNodesHelper(tl->left()) +
   800     totalNodesHelper(tl->right());
   801 }
   803 size_t BinaryTreeDictionary::totalNodesInTree(TreeList* tl) const {
   804   return totalNodesHelper(root());
   805 }
   807 void BinaryTreeDictionary::dictCensusUpdate(size_t size, bool split, bool birth){
   808   TreeList* nd = findList(size);
   809   if (nd) {
   810     if (split) {
   811       if (birth) {
   812         nd->increment_splitBirths();
   813         nd->increment_surplus();
   814       }  else {
   815         nd->increment_splitDeaths();
   816         nd->decrement_surplus();
   817       }
   818     } else {
   819       if (birth) {
   820         nd->increment_coalBirths();
   821         nd->increment_surplus();
   822       } else {
   823         nd->increment_coalDeaths();
   824         nd->decrement_surplus();
   825       }
   826     }
   827   }
   828   // A list for this size may not be found (nd == 0) if
   829   //   This is a death where the appropriate list is now
   830   //     empty and has been removed from the list.
   831   //   This is a birth associated with a LinAB.  The chunk
   832   //     for the LinAB is not in the dictionary.
   833 }
   835 bool BinaryTreeDictionary::coalDictOverPopulated(size_t size) {
   836   if (FLSAlwaysCoalesceLarge) return true;
   838   TreeList* list_of_size = findList(size);
   839   // None of requested size implies overpopulated.
   840   return list_of_size == NULL || list_of_size->coalDesired() <= 0 ||
   841          list_of_size->count() > list_of_size->coalDesired();
   842 }
   844 // Closures for walking the binary tree.
   845 //   do_list() walks the free list in a node applying the closure
   846 //     to each free chunk in the list
   847 //   do_tree() walks the nodes in the binary tree applying do_list()
   848 //     to each list at each node.
   850 class TreeCensusClosure : public StackObj {
   851  protected:
   852   virtual void do_list(FreeList* fl) = 0;
   853  public:
   854   virtual void do_tree(TreeList* tl) = 0;
   855 };
   857 class AscendTreeCensusClosure : public TreeCensusClosure {
   858  public:
   859   void do_tree(TreeList* tl) {
   860     if (tl != NULL) {
   861       do_tree(tl->left());
   862       do_list(tl);
   863       do_tree(tl->right());
   864     }
   865   }
   866 };
   868 class DescendTreeCensusClosure : public TreeCensusClosure {
   869  public:
   870   void do_tree(TreeList* tl) {
   871     if (tl != NULL) {
   872       do_tree(tl->right());
   873       do_list(tl);
   874       do_tree(tl->left());
   875     }
   876   }
   877 };
   879 // For each list in the tree, calculate the desired, desired
   880 // coalesce, count before sweep, and surplus before sweep.
   881 class BeginSweepClosure : public AscendTreeCensusClosure {
   882   double _percentage;
   883   float _inter_sweep_current;
   884   float _inter_sweep_estimate;
   885   float _intra_sweep_estimate;
   887  public:
   888   BeginSweepClosure(double p, float inter_sweep_current,
   889                               float inter_sweep_estimate,
   890                               float intra_sweep_estimate) :
   891    _percentage(p),
   892    _inter_sweep_current(inter_sweep_current),
   893    _inter_sweep_estimate(inter_sweep_estimate),
   894    _intra_sweep_estimate(intra_sweep_estimate) { }
   896   void do_list(FreeList* fl) {
   897     double coalSurplusPercent = _percentage;
   898     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
   899     fl->set_coalDesired((ssize_t)((double)fl->desired() * coalSurplusPercent));
   900     fl->set_beforeSweep(fl->count());
   901     fl->set_bfrSurp(fl->surplus());
   902   }
   903 };
   905 // Used to search the tree until a condition is met.
   906 // Similar to TreeCensusClosure but searches the
   907 // tree and returns promptly when found.
   909 class TreeSearchClosure : public StackObj {
   910  protected:
   911   virtual bool do_list(FreeList* fl) = 0;
   912  public:
   913   virtual bool do_tree(TreeList* tl) = 0;
   914 };
   916 #if 0 //  Don't need this yet but here for symmetry.
   917 class AscendTreeSearchClosure : public TreeSearchClosure {
   918  public:
   919   bool do_tree(TreeList* tl) {
   920     if (tl != NULL) {
   921       if (do_tree(tl->left())) return true;
   922       if (do_list(tl)) return true;
   923       if (do_tree(tl->right())) return true;
   924     }
   925     return false;
   926   }
   927 };
   928 #endif
   930 class DescendTreeSearchClosure : public TreeSearchClosure {
   931  public:
   932   bool do_tree(TreeList* tl) {
   933     if (tl != NULL) {
   934       if (do_tree(tl->right())) return true;
   935       if (do_list(tl)) return true;
   936       if (do_tree(tl->left())) return true;
   937     }
   938     return false;
   939   }
   940 };
   942 // Searches the tree for a chunk that ends at the
   943 // specified address.
   944 class EndTreeSearchClosure : public DescendTreeSearchClosure {
   945   HeapWord* _target;
   946   FreeChunk* _found;
   948  public:
   949   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
   950   bool do_list(FreeList* fl) {
   951     FreeChunk* item = fl->head();
   952     while (item != NULL) {
   953       if (item->end() == _target) {
   954         _found = item;
   955         return true;
   956       }
   957       item = item->next();
   958     }
   959     return false;
   960   }
   961   FreeChunk* found() { return _found; }
   962 };
   964 FreeChunk* BinaryTreeDictionary::find_chunk_ends_at(HeapWord* target) const {
   965   EndTreeSearchClosure etsc(target);
   966   bool found_target = etsc.do_tree(root());
   967   assert(found_target || etsc.found() == NULL, "Consistency check");
   968   assert(!found_target || etsc.found() != NULL, "Consistency check");
   969   return etsc.found();
   970 }
   972 void BinaryTreeDictionary::beginSweepDictCensus(double coalSurplusPercent,
   973   float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
   974   BeginSweepClosure bsc(coalSurplusPercent, inter_sweep_current,
   975                                             inter_sweep_estimate,
   976                                             intra_sweep_estimate);
   977   bsc.do_tree(root());
   978 }
   980 // Closures and methods for calculating total bytes returned to the
   981 // free lists in the tree.
   982 NOT_PRODUCT(
   983   class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure {
   984    public:
   985     void do_list(FreeList* fl) {
   986       fl->set_returnedBytes(0);
   987     }
   988   };
   990   void BinaryTreeDictionary::initializeDictReturnedBytes() {
   991     InitializeDictReturnedBytesClosure idrb;
   992     idrb.do_tree(root());
   993   }
   995   class ReturnedBytesClosure : public AscendTreeCensusClosure {
   996     size_t _dictReturnedBytes;
   997    public:
   998     ReturnedBytesClosure() { _dictReturnedBytes = 0; }
   999     void do_list(FreeList* fl) {
  1000       _dictReturnedBytes += fl->returnedBytes();
  1002     size_t dictReturnedBytes() { return _dictReturnedBytes; }
  1003   };
  1005   size_t BinaryTreeDictionary::sumDictReturnedBytes() {
  1006     ReturnedBytesClosure rbc;
  1007     rbc.do_tree(root());
  1009     return rbc.dictReturnedBytes();
  1012   // Count the number of entries in the tree.
  1013   class treeCountClosure : public DescendTreeCensusClosure {
  1014    public:
  1015     uint count;
  1016     treeCountClosure(uint c) { count = c; }
  1017     void do_list(FreeList* fl) {
  1018       count++;
  1020   };
  1022   size_t BinaryTreeDictionary::totalCount() {
  1023     treeCountClosure ctc(0);
  1024     ctc.do_tree(root());
  1025     return ctc.count;
  1029 // Calculate surpluses for the lists in the tree.
  1030 class setTreeSurplusClosure : public AscendTreeCensusClosure {
  1031   double percentage;
  1032  public:
  1033   setTreeSurplusClosure(double v) { percentage = v; }
  1034   void do_list(FreeList* fl) {
  1035     double splitSurplusPercent = percentage;
  1036     fl->set_surplus(fl->count() -
  1037                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
  1039 };
  1041 void BinaryTreeDictionary::setTreeSurplus(double splitSurplusPercent) {
  1042   setTreeSurplusClosure sts(splitSurplusPercent);
  1043   sts.do_tree(root());
  1046 // Set hints for the lists in the tree.
  1047 class setTreeHintsClosure : public DescendTreeCensusClosure {
  1048   size_t hint;
  1049  public:
  1050   setTreeHintsClosure(size_t v) { hint = v; }
  1051   void do_list(FreeList* fl) {
  1052     fl->set_hint(hint);
  1053     assert(fl->hint() == 0 || fl->hint() > fl->size(),
  1054       "Current hint is inconsistent");
  1055     if (fl->surplus() > 0) {
  1056       hint = fl->size();
  1059 };
  1061 void BinaryTreeDictionary::setTreeHints(void) {
  1062   setTreeHintsClosure sth(0);
  1063   sth.do_tree(root());
  1066 // Save count before previous sweep and splits and coalesces.
  1067 class clearTreeCensusClosure : public AscendTreeCensusClosure {
  1068   void do_list(FreeList* fl) {
  1069     fl->set_prevSweep(fl->count());
  1070     fl->set_coalBirths(0);
  1071     fl->set_coalDeaths(0);
  1072     fl->set_splitBirths(0);
  1073     fl->set_splitDeaths(0);
  1075 };
  1077 void BinaryTreeDictionary::clearTreeCensus(void) {
  1078   clearTreeCensusClosure ctc;
  1079   ctc.do_tree(root());
  1082 // Do reporting and post sweep clean up.
  1083 void BinaryTreeDictionary::endSweepDictCensus(double splitSurplusPercent) {
  1084   // Does walking the tree 3 times hurt?
  1085   setTreeSurplus(splitSurplusPercent);
  1086   setTreeHints();
  1087   if (PrintGC && Verbose) {
  1088     reportStatistics();
  1090   clearTreeCensus();
  1093 // Print summary statistics
  1094 void BinaryTreeDictionary::reportStatistics() const {
  1095   verify_par_locked();
  1096   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
  1097          "------------------------------------\n");
  1098   size_t totalSize = totalChunkSize(debug_only(NULL));
  1099   size_t    freeBlocks = numFreeBlocks();
  1100   gclog_or_tty->print("Total Free Space: %d\n", totalSize);
  1101   gclog_or_tty->print("Max   Chunk Size: %d\n", maxChunkSize());
  1102   gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
  1103   if (freeBlocks > 0) {
  1104     gclog_or_tty->print("Av.  Block  Size: %d\n", totalSize/freeBlocks);
  1106   gclog_or_tty->print("Tree      Height: %d\n", treeHeight());
  1109 // Print census information - counts, births, deaths, etc.
  1110 // for each list in the tree.  Also print some summary
  1111 // information.
  1112 class PrintTreeCensusClosure : public AscendTreeCensusClosure {
  1113   int _print_line;
  1114   size_t _totalFree;
  1115   FreeList _total;
  1117  public:
  1118   PrintTreeCensusClosure() {
  1119     _print_line = 0;
  1120     _totalFree = 0;
  1122   FreeList* total() { return &_total; }
  1123   size_t totalFree() { return _totalFree; }
  1124   void do_list(FreeList* fl) {
  1125     if (++_print_line >= 40) {
  1126       FreeList::print_labels_on(gclog_or_tty, "size");
  1127       _print_line = 0;
  1129     fl->print_on(gclog_or_tty);
  1130     _totalFree +=            fl->count()            * fl->size()        ;
  1131     total()->set_count(      total()->count()       + fl->count()      );
  1132     total()->set_bfrSurp(    total()->bfrSurp()     + fl->bfrSurp()    );
  1133     total()->set_surplus(    total()->splitDeaths() + fl->surplus()    );
  1134     total()->set_desired(    total()->desired()     + fl->desired()    );
  1135     total()->set_prevSweep(  total()->prevSweep()   + fl->prevSweep()  );
  1136     total()->set_beforeSweep(total()->beforeSweep() + fl->beforeSweep());
  1137     total()->set_coalBirths( total()->coalBirths()  + fl->coalBirths() );
  1138     total()->set_coalDeaths( total()->coalDeaths()  + fl->coalDeaths() );
  1139     total()->set_splitBirths(total()->splitBirths() + fl->splitBirths());
  1140     total()->set_splitDeaths(total()->splitDeaths() + fl->splitDeaths());
  1142 };
  1144 void BinaryTreeDictionary::printDictCensus(void) const {
  1146   gclog_or_tty->print("\nBinaryTree\n");
  1147   FreeList::print_labels_on(gclog_or_tty, "size");
  1148   PrintTreeCensusClosure ptc;
  1149   ptc.do_tree(root());
  1151   FreeList* total = ptc.total();
  1152   FreeList::print_labels_on(gclog_or_tty, " ");
  1153   total->print_on(gclog_or_tty, "TOTAL\t");
  1154   gclog_or_tty->print(
  1155               "totalFree(words): " SIZE_FORMAT_W(16)
  1156               " growth: %8.5f  deficit: %8.5f\n",
  1157               ptc.totalFree(),
  1158               (double)(total->splitBirths() + total->coalBirths()
  1159                      - total->splitDeaths() - total->coalDeaths())
  1160               /(total->prevSweep() != 0 ? (double)total->prevSweep() : 1.0),
  1161              (double)(total->desired() - total->count())
  1162              /(total->desired() != 0 ? (double)total->desired() : 1.0));
  1165 class PrintFreeListsClosure : public AscendTreeCensusClosure {
  1166   outputStream* _st;
  1167   int _print_line;
  1169  public:
  1170   PrintFreeListsClosure(outputStream* st) {
  1171     _st = st;
  1172     _print_line = 0;
  1174   void do_list(FreeList* fl) {
  1175     if (++_print_line >= 40) {
  1176       FreeList::print_labels_on(_st, "size");
  1177       _print_line = 0;
  1179     fl->print_on(gclog_or_tty);
  1180     size_t sz = fl->size();
  1181     for (FreeChunk* fc = fl->head(); fc != NULL;
  1182          fc = fc->next()) {
  1183       _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
  1184                     fc, (HeapWord*)fc + sz,
  1185                     fc->cantCoalesce() ? "\t CC" : "");
  1188 };
  1190 void BinaryTreeDictionary::print_free_lists(outputStream* st) const {
  1192   FreeList::print_labels_on(st, "size");
  1193   PrintFreeListsClosure pflc(st);
  1194   pflc.do_tree(root());
  1197 // Verify the following tree invariants:
  1198 // . _root has no parent
  1199 // . parent and child point to each other
  1200 // . each node's key correctly related to that of its child(ren)
  1201 void BinaryTreeDictionary::verifyTree() const {
  1202   guarantee(root() == NULL || totalFreeBlocks() == 0 ||
  1203     totalSize() != 0, "_totalSize should't be 0?");
  1204   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
  1205   verifyTreeHelper(root());
  1208 size_t BinaryTreeDictionary::verifyPrevFreePtrs(TreeList* tl) {
  1209   size_t ct = 0;
  1210   for (FreeChunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
  1211     ct++;
  1212     assert(curFC->prev() == NULL || curFC->prev()->isFree(),
  1213       "Chunk should be free");
  1215   return ct;
  1218 // Note: this helper is recursive rather than iterative, so use with
  1219 // caution on very deep trees; and watch out for stack overflow errors;
  1220 // In general, to be used only for debugging.
  1221 void BinaryTreeDictionary::verifyTreeHelper(TreeList* tl) const {
  1222   if (tl == NULL)
  1223     return;
  1224   guarantee(tl->size() != 0, "A list must has a size");
  1225   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
  1226          "parent<-/->left");
  1227   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
  1228          "parent<-/->right");;
  1229   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
  1230          "parent !> left");
  1231   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
  1232          "parent !< left");
  1233   guarantee(tl->head() == NULL || tl->head()->isFree(), "!Free");
  1234   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
  1235     "list inconsistency");
  1236   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
  1237     "list count is inconsistent");
  1238   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
  1239     "list is incorrectly constructed");
  1240   size_t count = verifyPrevFreePtrs(tl);
  1241   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
  1242   if (tl->head() != NULL) {
  1243     tl->head_as_TreeChunk()->verifyTreeChunkList();
  1245   verifyTreeHelper(tl->left());
  1246   verifyTreeHelper(tl->right());
  1249 void BinaryTreeDictionary::verify() const {
  1250   verifyTree();
  1251   guarantee(totalSize() == totalSizeInTree(root()), "Total Size inconsistency");

mercurial