src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Sun, 11 Oct 2009 16:19:25 -0700

author
jcoomes
date
Sun, 11 Oct 2009 16:19:25 -0700
changeset 1844
cff162798819
parent 1813
9f5b60a14736
child 1846
befdf73d6b82
permissions
-rw-r--r--

6888953: some calls to function-like macros are missing semicolons
Reviewed-by: pbk, kvn

     1 /*
     2  * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
    29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    30 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    31 // fast versions of NegF/NegD and AbsF/AbsD.
    33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    35   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    36   // of 128-bits operands for SSE instructions.
    37   jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
    38   // Store the value to a 128-bits operand.
    39   operand[0] = lo;
    40   operand[1] = hi;
    41   return operand;
    42 }
    44 // Buffer for 128-bits masks used by SSE instructions.
    45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    47 // Static initialization during VM startup.
    48 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    50 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    55 NEEDS_CLEANUP // remove this definitions ?
    56 const Register IC_Klass    = rax;   // where the IC klass is cached
    57 const Register SYNC_header = rax;   // synchronization header
    58 const Register SHIFT_count = rcx;   // where count for shift operations must be
    60 #define __ _masm->
    63 static void select_different_registers(Register preserve,
    64                                        Register extra,
    65                                        Register &tmp1,
    66                                        Register &tmp2) {
    67   if (tmp1 == preserve) {
    68     assert_different_registers(tmp1, tmp2, extra);
    69     tmp1 = extra;
    70   } else if (tmp2 == preserve) {
    71     assert_different_registers(tmp1, tmp2, extra);
    72     tmp2 = extra;
    73   }
    74   assert_different_registers(preserve, tmp1, tmp2);
    75 }
    79 static void select_different_registers(Register preserve,
    80                                        Register extra,
    81                                        Register &tmp1,
    82                                        Register &tmp2,
    83                                        Register &tmp3) {
    84   if (tmp1 == preserve) {
    85     assert_different_registers(tmp1, tmp2, tmp3, extra);
    86     tmp1 = extra;
    87   } else if (tmp2 == preserve) {
    88     assert_different_registers(tmp1, tmp2, tmp3, extra);
    89     tmp2 = extra;
    90   } else if (tmp3 == preserve) {
    91     assert_different_registers(tmp1, tmp2, tmp3, extra);
    92     tmp3 = extra;
    93   }
    94   assert_different_registers(preserve, tmp1, tmp2, tmp3);
    95 }
    99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   100   if (opr->is_constant()) {
   101     LIR_Const* constant = opr->as_constant_ptr();
   102     switch (constant->type()) {
   103       case T_INT: {
   104         return true;
   105       }
   107       default:
   108         return false;
   109     }
   110   }
   111   return false;
   112 }
   115 LIR_Opr LIR_Assembler::receiverOpr() {
   116   return FrameMap::receiver_opr;
   117 }
   119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   120   return receiverOpr();
   121 }
   123 LIR_Opr LIR_Assembler::osrBufferPointer() {
   124   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   125 }
   127 //--------------fpu register translations-----------------------
   130 address LIR_Assembler::float_constant(float f) {
   131   address const_addr = __ float_constant(f);
   132   if (const_addr == NULL) {
   133     bailout("const section overflow");
   134     return __ code()->consts()->start();
   135   } else {
   136     return const_addr;
   137   }
   138 }
   141 address LIR_Assembler::double_constant(double d) {
   142   address const_addr = __ double_constant(d);
   143   if (const_addr == NULL) {
   144     bailout("const section overflow");
   145     return __ code()->consts()->start();
   146   } else {
   147     return const_addr;
   148   }
   149 }
   152 void LIR_Assembler::set_24bit_FPU() {
   153   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   154 }
   156 void LIR_Assembler::reset_FPU() {
   157   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   158 }
   160 void LIR_Assembler::fpop() {
   161   __ fpop();
   162 }
   164 void LIR_Assembler::fxch(int i) {
   165   __ fxch(i);
   166 }
   168 void LIR_Assembler::fld(int i) {
   169   __ fld_s(i);
   170 }
   172 void LIR_Assembler::ffree(int i) {
   173   __ ffree(i);
   174 }
   176 void LIR_Assembler::breakpoint() {
   177   __ int3();
   178 }
   180 void LIR_Assembler::push(LIR_Opr opr) {
   181   if (opr->is_single_cpu()) {
   182     __ push_reg(opr->as_register());
   183   } else if (opr->is_double_cpu()) {
   184     NOT_LP64(__ push_reg(opr->as_register_hi()));
   185     __ push_reg(opr->as_register_lo());
   186   } else if (opr->is_stack()) {
   187     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   188   } else if (opr->is_constant()) {
   189     LIR_Const* const_opr = opr->as_constant_ptr();
   190     if (const_opr->type() == T_OBJECT) {
   191       __ push_oop(const_opr->as_jobject());
   192     } else if (const_opr->type() == T_INT) {
   193       __ push_jint(const_opr->as_jint());
   194     } else {
   195       ShouldNotReachHere();
   196     }
   198   } else {
   199     ShouldNotReachHere();
   200   }
   201 }
   203 void LIR_Assembler::pop(LIR_Opr opr) {
   204   if (opr->is_single_cpu()) {
   205     __ pop_reg(opr->as_register());
   206   } else {
   207     ShouldNotReachHere();
   208   }
   209 }
   211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   212   return addr->base()->is_illegal() && addr->index()->is_illegal();
   213 }
   215 //-------------------------------------------
   217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   218   return as_Address(addr, rscratch1);
   219 }
   221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   222   if (addr->base()->is_illegal()) {
   223     assert(addr->index()->is_illegal(), "must be illegal too");
   224     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   225     if (! __ reachable(laddr)) {
   226       __ movptr(tmp, laddr.addr());
   227       Address res(tmp, 0);
   228       return res;
   229     } else {
   230       return __ as_Address(laddr);
   231     }
   232   }
   234   Register base = addr->base()->as_pointer_register();
   236   if (addr->index()->is_illegal()) {
   237     return Address( base, addr->disp());
   238   } else if (addr->index()->is_cpu_register()) {
   239     Register index = addr->index()->as_pointer_register();
   240     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   241   } else if (addr->index()->is_constant()) {
   242     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   243     assert(Assembler::is_simm32(addr_offset), "must be");
   245     return Address(base, addr_offset);
   246   } else {
   247     Unimplemented();
   248     return Address();
   249   }
   250 }
   253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   254   Address base = as_Address(addr);
   255   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   256 }
   259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   260   return as_Address(addr);
   261 }
   264 void LIR_Assembler::osr_entry() {
   265   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   266   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   267   ValueStack* entry_state = osr_entry->state();
   268   int number_of_locks = entry_state->locks_size();
   270   // we jump here if osr happens with the interpreter
   271   // state set up to continue at the beginning of the
   272   // loop that triggered osr - in particular, we have
   273   // the following registers setup:
   274   //
   275   // rcx: osr buffer
   276   //
   278   // build frame
   279   ciMethod* m = compilation()->method();
   280   __ build_frame(initial_frame_size_in_bytes());
   282   // OSR buffer is
   283   //
   284   // locals[nlocals-1..0]
   285   // monitors[0..number_of_locks]
   286   //
   287   // locals is a direct copy of the interpreter frame so in the osr buffer
   288   // so first slot in the local array is the last local from the interpreter
   289   // and last slot is local[0] (receiver) from the interpreter
   290   //
   291   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   292   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   293   // in the interpreter frame (the method lock if a sync method)
   295   // Initialize monitors in the compiled activation.
   296   //   rcx: pointer to osr buffer
   297   //
   298   // All other registers are dead at this point and the locals will be
   299   // copied into place by code emitted in the IR.
   301   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   302   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   303     int monitor_offset = BytesPerWord * method()->max_locals() +
   304       (2 * BytesPerWord) * (number_of_locks - 1);
   305     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   306     // the OSR buffer using 2 word entries: first the lock and then
   307     // the oop.
   308     for (int i = 0; i < number_of_locks; i++) {
   309       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   310 #ifdef ASSERT
   311       // verify the interpreter's monitor has a non-null object
   312       {
   313         Label L;
   314         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
   315         __ jcc(Assembler::notZero, L);
   316         __ stop("locked object is NULL");
   317         __ bind(L);
   318       }
   319 #endif
   320       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
   321       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   322       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
   323       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   324     }
   325   }
   326 }
   329 // inline cache check; done before the frame is built.
   330 int LIR_Assembler::check_icache() {
   331   Register receiver = FrameMap::receiver_opr->as_register();
   332   Register ic_klass = IC_Klass;
   333   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   335   if (!VerifyOops) {
   336     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   337     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   338       __ nop();
   339     }
   340   }
   341   int offset = __ offset();
   342   __ inline_cache_check(receiver, IC_Klass);
   343   assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
   344   if (VerifyOops) {
   345     // force alignment after the cache check.
   346     // It's been verified to be aligned if !VerifyOops
   347     __ align(CodeEntryAlignment);
   348   }
   349   return offset;
   350 }
   353 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   354   jobject o = NULL;
   355   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   356   __ movoop(reg, o);
   357   patching_epilog(patch, lir_patch_normal, reg, info);
   358 }
   361 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
   362   if (exception->is_valid()) {
   363     // preserve exception
   364     // note: the monitor_exit runtime call is a leaf routine
   365     //       and cannot block => no GC can happen
   366     // The slow case (MonitorAccessStub) uses the first two stack slots
   367     // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
   368     __ movptr (Address(rsp, 2*wordSize), exception);
   369   }
   371   Register obj_reg  = obj_opr->as_register();
   372   Register lock_reg = lock_opr->as_register();
   374   // setup registers (lock_reg must be rax, for lock_object)
   375   assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
   376   Register hdr = lock_reg;
   377   assert(new_hdr == SYNC_header, "wrong register");
   378   lock_reg = new_hdr;
   379   // compute pointer to BasicLock
   380   Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
   381   __ lea(lock_reg, lock_addr);
   382   // unlock object
   383   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
   384   // _slow_case_stubs->append(slow_case);
   385   // temporary fix: must be created after exceptionhandler, therefore as call stub
   386   _slow_case_stubs->append(slow_case);
   387   if (UseFastLocking) {
   388     // try inlined fast unlocking first, revert to slow locking if it fails
   389     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   390     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   391     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   392   } else {
   393     // always do slow unlocking
   394     // note: the slow unlocking code could be inlined here, however if we use
   395     //       slow unlocking, speed doesn't matter anyway and this solution is
   396     //       simpler and requires less duplicated code - additionally, the
   397     //       slow unlocking code is the same in either case which simplifies
   398     //       debugging
   399     __ jmp(*slow_case->entry());
   400   }
   401   // done
   402   __ bind(*slow_case->continuation());
   404   if (exception->is_valid()) {
   405     // restore exception
   406     __ movptr (exception, Address(rsp, 2 * wordSize));
   407   }
   408 }
   410 // This specifies the rsp decrement needed to build the frame
   411 int LIR_Assembler::initial_frame_size_in_bytes() {
   412   // if rounding, must let FrameMap know!
   414   // The frame_map records size in slots (32bit word)
   416   // subtract two words to account for return address and link
   417   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   418 }
   421 int LIR_Assembler::emit_exception_handler() {
   422   // if the last instruction is a call (typically to do a throw which
   423   // is coming at the end after block reordering) the return address
   424   // must still point into the code area in order to avoid assertion
   425   // failures when searching for the corresponding bci => add a nop
   426   // (was bug 5/14/1999 - gri)
   427   __ nop();
   429   // generate code for exception handler
   430   address handler_base = __ start_a_stub(exception_handler_size);
   431   if (handler_base == NULL) {
   432     // not enough space left for the handler
   433     bailout("exception handler overflow");
   434     return -1;
   435   }
   437   int offset = code_offset();
   439   // the exception oop and pc are in rax, and rdx
   440   // no other registers need to be preserved, so invalidate them
   441   __ invalidate_registers(false, true, true, false, true, true);
   443   // check that there is really an exception
   444   __ verify_not_null_oop(rax);
   446   // search an exception handler (rax: exception oop, rdx: throwing pc)
   447   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
   449   __ stop("should not reach here");
   451   assert(code_offset() - offset <= exception_handler_size, "overflow");
   452   __ end_a_stub();
   454   return offset;
   455 }
   458 // Emit the code to remove the frame from the stack in the exception
   459 // unwind path.
   460 int LIR_Assembler::emit_unwind_handler() {
   461 #ifndef PRODUCT
   462   if (CommentedAssembly) {
   463     _masm->block_comment("Unwind handler");
   464   }
   465 #endif
   467   int offset = code_offset();
   469   // Fetch the exception from TLS and clear out exception related thread state
   470   __ get_thread(rsi);
   471   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
   472   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
   473   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
   475   __ bind(_unwind_handler_entry);
   476   __ verify_not_null_oop(rax);
   477   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   478     __ mov(rsi, rax);  // Preserve the exception
   479   }
   481   // Preform needed unlocking
   482   MonitorExitStub* stub = NULL;
   483   if (method()->is_synchronized()) {
   484     monitor_address(0, FrameMap::rax_opr);
   485     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
   486     __ unlock_object(rdi, rbx, rax, *stub->entry());
   487     __ bind(*stub->continuation());
   488   }
   490   if (compilation()->env()->dtrace_method_probes()) {
   491     __ movoop(Address(rsp, 0), method()->constant_encoding());
   492     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
   493   }
   495   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   496     __ mov(rax, rsi);  // Restore the exception
   497   }
   499   // remove the activation and dispatch to the unwind handler
   500   __ remove_frame(initial_frame_size_in_bytes());
   501   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   503   // Emit the slow path assembly
   504   if (stub != NULL) {
   505     stub->emit_code(this);
   506   }
   508   return offset;
   509 }
   512 int LIR_Assembler::emit_deopt_handler() {
   513   // if the last instruction is a call (typically to do a throw which
   514   // is coming at the end after block reordering) the return address
   515   // must still point into the code area in order to avoid assertion
   516   // failures when searching for the corresponding bci => add a nop
   517   // (was bug 5/14/1999 - gri)
   518   __ nop();
   520   // generate code for exception handler
   521   address handler_base = __ start_a_stub(deopt_handler_size);
   522   if (handler_base == NULL) {
   523     // not enough space left for the handler
   524     bailout("deopt handler overflow");
   525     return -1;
   526   }
   528   int offset = code_offset();
   529   InternalAddress here(__ pc());
   531   __ pushptr(here.addr());
   532   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   534   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   535   __ end_a_stub();
   537   return offset;
   538 }
   541 // This is the fast version of java.lang.String.compare; it has not
   542 // OSR-entry and therefore, we generate a slow version for OSR's
   543 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   544   __ movptr (rbx, rcx); // receiver is in rcx
   545   __ movptr (rax, arg1->as_register());
   547   // Get addresses of first characters from both Strings
   548   __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   549   __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   550   __ lea    (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   553   // rbx, may be NULL
   554   add_debug_info_for_null_check_here(info);
   555   __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   556   __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   557   __ lea    (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   559   // compute minimum length (in rax) and difference of lengths (on top of stack)
   560   if (VM_Version::supports_cmov()) {
   561     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   562     __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   563     __ mov      (rcx, rbx);
   564     __ subptr   (rbx, rax); // subtract lengths
   565     __ push     (rbx);      // result
   566     __ cmov     (Assembler::lessEqual, rax, rcx);
   567   } else {
   568     Label L;
   569     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   570     __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
   571     __ mov      (rax, rbx);
   572     __ subptr   (rbx, rcx);
   573     __ push     (rbx);
   574     __ jcc      (Assembler::lessEqual, L);
   575     __ mov      (rax, rcx);
   576     __ bind (L);
   577   }
   578   // is minimum length 0?
   579   Label noLoop, haveResult;
   580   __ testptr (rax, rax);
   581   __ jcc (Assembler::zero, noLoop);
   583   // compare first characters
   584   __ load_unsigned_short(rcx, Address(rdi, 0));
   585   __ load_unsigned_short(rbx, Address(rsi, 0));
   586   __ subl(rcx, rbx);
   587   __ jcc(Assembler::notZero, haveResult);
   588   // starting loop
   589   __ decrement(rax); // we already tested index: skip one
   590   __ jcc(Assembler::zero, noLoop);
   592   // set rsi.edi to the end of the arrays (arrays have same length)
   593   // negate the index
   595   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   596   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   597   __ negptr(rax);
   599   // compare the strings in a loop
   601   Label loop;
   602   __ align(wordSize);
   603   __ bind(loop);
   604   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   605   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   606   __ subl(rcx, rbx);
   607   __ jcc(Assembler::notZero, haveResult);
   608   __ increment(rax);
   609   __ jcc(Assembler::notZero, loop);
   611   // strings are equal up to min length
   613   __ bind(noLoop);
   614   __ pop(rax);
   615   return_op(LIR_OprFact::illegalOpr);
   617   __ bind(haveResult);
   618   // leave instruction is going to discard the TOS value
   619   __ mov (rax, rcx); // result of call is in rax,
   620 }
   623 void LIR_Assembler::return_op(LIR_Opr result) {
   624   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   625   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   626     assert(result->fpu() == 0, "result must already be on TOS");
   627   }
   629   // Pop the stack before the safepoint code
   630   __ remove_frame(initial_frame_size_in_bytes());
   632   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   634   // Note: we do not need to round double result; float result has the right precision
   635   // the poll sets the condition code, but no data registers
   636   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   637                               relocInfo::poll_return_type);
   639   // NOTE: the requires that the polling page be reachable else the reloc
   640   // goes to the movq that loads the address and not the faulting instruction
   641   // which breaks the signal handler code
   643   __ test32(rax, polling_page);
   645   __ ret(0);
   646 }
   649 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   650   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   651                               relocInfo::poll_type);
   653   if (info != NULL) {
   654     add_debug_info_for_branch(info);
   655   } else {
   656     ShouldNotReachHere();
   657   }
   659   int offset = __ offset();
   661   // NOTE: the requires that the polling page be reachable else the reloc
   662   // goes to the movq that loads the address and not the faulting instruction
   663   // which breaks the signal handler code
   665   __ test32(rax, polling_page);
   666   return offset;
   667 }
   670 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   671   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   672 }
   674 void LIR_Assembler::swap_reg(Register a, Register b) {
   675   __ xchgptr(a, b);
   676 }
   679 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   680   assert(src->is_constant(), "should not call otherwise");
   681   assert(dest->is_register(), "should not call otherwise");
   682   LIR_Const* c = src->as_constant_ptr();
   684   switch (c->type()) {
   685     case T_INT:
   686     case T_ADDRESS: {
   687       assert(patch_code == lir_patch_none, "no patching handled here");
   688       __ movl(dest->as_register(), c->as_jint());
   689       break;
   690     }
   692     case T_LONG: {
   693       assert(patch_code == lir_patch_none, "no patching handled here");
   694 #ifdef _LP64
   695       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   696 #else
   697       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   698       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   699 #endif // _LP64
   700       break;
   701     }
   703     case T_OBJECT: {
   704       if (patch_code != lir_patch_none) {
   705         jobject2reg_with_patching(dest->as_register(), info);
   706       } else {
   707         __ movoop(dest->as_register(), c->as_jobject());
   708       }
   709       break;
   710     }
   712     case T_FLOAT: {
   713       if (dest->is_single_xmm()) {
   714         if (c->is_zero_float()) {
   715           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   716         } else {
   717           __ movflt(dest->as_xmm_float_reg(),
   718                    InternalAddress(float_constant(c->as_jfloat())));
   719         }
   720       } else {
   721         assert(dest->is_single_fpu(), "must be");
   722         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   723         if (c->is_zero_float()) {
   724           __ fldz();
   725         } else if (c->is_one_float()) {
   726           __ fld1();
   727         } else {
   728           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   729         }
   730       }
   731       break;
   732     }
   734     case T_DOUBLE: {
   735       if (dest->is_double_xmm()) {
   736         if (c->is_zero_double()) {
   737           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   738         } else {
   739           __ movdbl(dest->as_xmm_double_reg(),
   740                     InternalAddress(double_constant(c->as_jdouble())));
   741         }
   742       } else {
   743         assert(dest->is_double_fpu(), "must be");
   744         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   745         if (c->is_zero_double()) {
   746           __ fldz();
   747         } else if (c->is_one_double()) {
   748           __ fld1();
   749         } else {
   750           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   751         }
   752       }
   753       break;
   754     }
   756     default:
   757       ShouldNotReachHere();
   758   }
   759 }
   761 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   762   assert(src->is_constant(), "should not call otherwise");
   763   assert(dest->is_stack(), "should not call otherwise");
   764   LIR_Const* c = src->as_constant_ptr();
   766   switch (c->type()) {
   767     case T_INT:  // fall through
   768     case T_FLOAT:
   769     case T_ADDRESS:
   770       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   771       break;
   773     case T_OBJECT:
   774       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   775       break;
   777     case T_LONG:  // fall through
   778     case T_DOUBLE:
   779 #ifdef _LP64
   780       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   781                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   782 #else
   783       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   784                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   785       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   786                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   787 #endif // _LP64
   788       break;
   790     default:
   791       ShouldNotReachHere();
   792   }
   793 }
   795 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
   796   assert(src->is_constant(), "should not call otherwise");
   797   assert(dest->is_address(), "should not call otherwise");
   798   LIR_Const* c = src->as_constant_ptr();
   799   LIR_Address* addr = dest->as_address_ptr();
   801   int null_check_here = code_offset();
   802   switch (type) {
   803     case T_INT:    // fall through
   804     case T_FLOAT:
   805     case T_ADDRESS:
   806       __ movl(as_Address(addr), c->as_jint_bits());
   807       break;
   809     case T_OBJECT:  // fall through
   810     case T_ARRAY:
   811       if (c->as_jobject() == NULL) {
   812         __ movptr(as_Address(addr), NULL_WORD);
   813       } else {
   814         if (is_literal_address(addr)) {
   815           ShouldNotReachHere();
   816           __ movoop(as_Address(addr, noreg), c->as_jobject());
   817         } else {
   818 #ifdef _LP64
   819           __ movoop(rscratch1, c->as_jobject());
   820           null_check_here = code_offset();
   821           __ movptr(as_Address_lo(addr), rscratch1);
   822 #else
   823           __ movoop(as_Address(addr), c->as_jobject());
   824 #endif
   825         }
   826       }
   827       break;
   829     case T_LONG:    // fall through
   830     case T_DOUBLE:
   831 #ifdef _LP64
   832       if (is_literal_address(addr)) {
   833         ShouldNotReachHere();
   834         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   835       } else {
   836         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   837         null_check_here = code_offset();
   838         __ movptr(as_Address_lo(addr), r10);
   839       }
   840 #else
   841       // Always reachable in 32bit so this doesn't produce useless move literal
   842       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   843       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   844 #endif // _LP64
   845       break;
   847     case T_BOOLEAN: // fall through
   848     case T_BYTE:
   849       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   850       break;
   852     case T_CHAR:    // fall through
   853     case T_SHORT:
   854       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   855       break;
   857     default:
   858       ShouldNotReachHere();
   859   };
   861   if (info != NULL) {
   862     add_debug_info_for_null_check(null_check_here, info);
   863   }
   864 }
   867 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   868   assert(src->is_register(), "should not call otherwise");
   869   assert(dest->is_register(), "should not call otherwise");
   871   // move between cpu-registers
   872   if (dest->is_single_cpu()) {
   873 #ifdef _LP64
   874     if (src->type() == T_LONG) {
   875       // Can do LONG -> OBJECT
   876       move_regs(src->as_register_lo(), dest->as_register());
   877       return;
   878     }
   879 #endif
   880     assert(src->is_single_cpu(), "must match");
   881     if (src->type() == T_OBJECT) {
   882       __ verify_oop(src->as_register());
   883     }
   884     move_regs(src->as_register(), dest->as_register());
   886   } else if (dest->is_double_cpu()) {
   887 #ifdef _LP64
   888     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   889       // Surprising to me but we can see move of a long to t_object
   890       __ verify_oop(src->as_register());
   891       move_regs(src->as_register(), dest->as_register_lo());
   892       return;
   893     }
   894 #endif
   895     assert(src->is_double_cpu(), "must match");
   896     Register f_lo = src->as_register_lo();
   897     Register f_hi = src->as_register_hi();
   898     Register t_lo = dest->as_register_lo();
   899     Register t_hi = dest->as_register_hi();
   900 #ifdef _LP64
   901     assert(f_hi == f_lo, "must be same");
   902     assert(t_hi == t_lo, "must be same");
   903     move_regs(f_lo, t_lo);
   904 #else
   905     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   908     if (f_lo == t_hi && f_hi == t_lo) {
   909       swap_reg(f_lo, f_hi);
   910     } else if (f_hi == t_lo) {
   911       assert(f_lo != t_hi, "overwriting register");
   912       move_regs(f_hi, t_hi);
   913       move_regs(f_lo, t_lo);
   914     } else {
   915       assert(f_hi != t_lo, "overwriting register");
   916       move_regs(f_lo, t_lo);
   917       move_regs(f_hi, t_hi);
   918     }
   919 #endif // LP64
   921     // special moves from fpu-register to xmm-register
   922     // necessary for method results
   923   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   924     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   925     __ fld_s(Address(rsp, 0));
   926   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   927     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   928     __ fld_d(Address(rsp, 0));
   929   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   930     __ fstp_s(Address(rsp, 0));
   931     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   932   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   933     __ fstp_d(Address(rsp, 0));
   934     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   936     // move between xmm-registers
   937   } else if (dest->is_single_xmm()) {
   938     assert(src->is_single_xmm(), "must match");
   939     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   940   } else if (dest->is_double_xmm()) {
   941     assert(src->is_double_xmm(), "must match");
   942     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   944     // move between fpu-registers (no instruction necessary because of fpu-stack)
   945   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   946     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   947     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   948   } else {
   949     ShouldNotReachHere();
   950   }
   951 }
   953 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   954   assert(src->is_register(), "should not call otherwise");
   955   assert(dest->is_stack(), "should not call otherwise");
   957   if (src->is_single_cpu()) {
   958     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   959     if (type == T_OBJECT || type == T_ARRAY) {
   960       __ verify_oop(src->as_register());
   961       __ movptr (dst, src->as_register());
   962     } else {
   963       __ movl (dst, src->as_register());
   964     }
   966   } else if (src->is_double_cpu()) {
   967     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   968     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   969     __ movptr (dstLO, src->as_register_lo());
   970     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   972   } else if (src->is_single_xmm()) {
   973     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   974     __ movflt(dst_addr, src->as_xmm_float_reg());
   976   } else if (src->is_double_xmm()) {
   977     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   978     __ movdbl(dst_addr, src->as_xmm_double_reg());
   980   } else if (src->is_single_fpu()) {
   981     assert(src->fpu_regnr() == 0, "argument must be on TOS");
   982     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   983     if (pop_fpu_stack)     __ fstp_s (dst_addr);
   984     else                   __ fst_s  (dst_addr);
   986   } else if (src->is_double_fpu()) {
   987     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   988     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   989     if (pop_fpu_stack)     __ fstp_d (dst_addr);
   990     else                   __ fst_d  (dst_addr);
   992   } else {
   993     ShouldNotReachHere();
   994   }
   995 }
   998 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
   999   LIR_Address* to_addr = dest->as_address_ptr();
  1000   PatchingStub* patch = NULL;
  1002   if (type == T_ARRAY || type == T_OBJECT) {
  1003     __ verify_oop(src->as_register());
  1005   if (patch_code != lir_patch_none) {
  1006     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1007     Address toa = as_Address(to_addr);
  1008     assert(toa.disp() != 0, "must have");
  1010   if (info != NULL) {
  1011     add_debug_info_for_null_check_here(info);
  1014   switch (type) {
  1015     case T_FLOAT: {
  1016       if (src->is_single_xmm()) {
  1017         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
  1018       } else {
  1019         assert(src->is_single_fpu(), "must be");
  1020         assert(src->fpu_regnr() == 0, "argument must be on TOS");
  1021         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
  1022         else                    __ fst_s (as_Address(to_addr));
  1024       break;
  1027     case T_DOUBLE: {
  1028       if (src->is_double_xmm()) {
  1029         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
  1030       } else {
  1031         assert(src->is_double_fpu(), "must be");
  1032         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
  1033         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
  1034         else                    __ fst_d (as_Address(to_addr));
  1036       break;
  1039     case T_ADDRESS: // fall through
  1040     case T_ARRAY:   // fall through
  1041     case T_OBJECT:  // fall through
  1042 #ifdef _LP64
  1043       __ movptr(as_Address(to_addr), src->as_register());
  1044       break;
  1045 #endif // _LP64
  1046     case T_INT:
  1047       __ movl(as_Address(to_addr), src->as_register());
  1048       break;
  1050     case T_LONG: {
  1051       Register from_lo = src->as_register_lo();
  1052       Register from_hi = src->as_register_hi();
  1053 #ifdef _LP64
  1054       __ movptr(as_Address_lo(to_addr), from_lo);
  1055 #else
  1056       Register base = to_addr->base()->as_register();
  1057       Register index = noreg;
  1058       if (to_addr->index()->is_register()) {
  1059         index = to_addr->index()->as_register();
  1061       if (base == from_lo || index == from_lo) {
  1062         assert(base != from_hi, "can't be");
  1063         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1064         __ movl(as_Address_hi(to_addr), from_hi);
  1065         if (patch != NULL) {
  1066           patching_epilog(patch, lir_patch_high, base, info);
  1067           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1068           patch_code = lir_patch_low;
  1070         __ movl(as_Address_lo(to_addr), from_lo);
  1071       } else {
  1072         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1073         __ movl(as_Address_lo(to_addr), from_lo);
  1074         if (patch != NULL) {
  1075           patching_epilog(patch, lir_patch_low, base, info);
  1076           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1077           patch_code = lir_patch_high;
  1079         __ movl(as_Address_hi(to_addr), from_hi);
  1081 #endif // _LP64
  1082       break;
  1085     case T_BYTE:    // fall through
  1086     case T_BOOLEAN: {
  1087       Register src_reg = src->as_register();
  1088       Address dst_addr = as_Address(to_addr);
  1089       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1090       __ movb(dst_addr, src_reg);
  1091       break;
  1094     case T_CHAR:    // fall through
  1095     case T_SHORT:
  1096       __ movw(as_Address(to_addr), src->as_register());
  1097       break;
  1099     default:
  1100       ShouldNotReachHere();
  1103   if (patch_code != lir_patch_none) {
  1104     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1109 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1110   assert(src->is_stack(), "should not call otherwise");
  1111   assert(dest->is_register(), "should not call otherwise");
  1113   if (dest->is_single_cpu()) {
  1114     if (type == T_ARRAY || type == T_OBJECT) {
  1115       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1116       __ verify_oop(dest->as_register());
  1117     } else {
  1118       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1121   } else if (dest->is_double_cpu()) {
  1122     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1123     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1124     __ movptr(dest->as_register_lo(), src_addr_LO);
  1125     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1127   } else if (dest->is_single_xmm()) {
  1128     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1129     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1131   } else if (dest->is_double_xmm()) {
  1132     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1133     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1135   } else if (dest->is_single_fpu()) {
  1136     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1137     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1138     __ fld_s(src_addr);
  1140   } else if (dest->is_double_fpu()) {
  1141     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1142     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1143     __ fld_d(src_addr);
  1145   } else {
  1146     ShouldNotReachHere();
  1151 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1152   if (src->is_single_stack()) {
  1153     if (type == T_OBJECT || type == T_ARRAY) {
  1154       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1155       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1156     } else {
  1157 #ifndef _LP64
  1158       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1159       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1160 #else
  1161       //no pushl on 64bits
  1162       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
  1163       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
  1164 #endif
  1167   } else if (src->is_double_stack()) {
  1168 #ifdef _LP64
  1169     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1170     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1171 #else
  1172     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1173     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1174     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1175     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1176     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1177 #endif // _LP64
  1179   } else {
  1180     ShouldNotReachHere();
  1185 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
  1186   assert(src->is_address(), "should not call otherwise");
  1187   assert(dest->is_register(), "should not call otherwise");
  1189   LIR_Address* addr = src->as_address_ptr();
  1190   Address from_addr = as_Address(addr);
  1192   switch (type) {
  1193     case T_BOOLEAN: // fall through
  1194     case T_BYTE:    // fall through
  1195     case T_CHAR:    // fall through
  1196     case T_SHORT:
  1197       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1198         // on pre P6 processors we may get partial register stalls
  1199         // so blow away the value of to_rinfo before loading a
  1200         // partial word into it.  Do it here so that it precedes
  1201         // the potential patch point below.
  1202         __ xorptr(dest->as_register(), dest->as_register());
  1204       break;
  1207   PatchingStub* patch = NULL;
  1208   if (patch_code != lir_patch_none) {
  1209     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1210     assert(from_addr.disp() != 0, "must have");
  1212   if (info != NULL) {
  1213     add_debug_info_for_null_check_here(info);
  1216   switch (type) {
  1217     case T_FLOAT: {
  1218       if (dest->is_single_xmm()) {
  1219         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1220       } else {
  1221         assert(dest->is_single_fpu(), "must be");
  1222         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1223         __ fld_s(from_addr);
  1225       break;
  1228     case T_DOUBLE: {
  1229       if (dest->is_double_xmm()) {
  1230         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1231       } else {
  1232         assert(dest->is_double_fpu(), "must be");
  1233         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1234         __ fld_d(from_addr);
  1236       break;
  1239     case T_ADDRESS: // fall through
  1240     case T_OBJECT:  // fall through
  1241     case T_ARRAY:   // fall through
  1242 #ifdef _LP64
  1243       __ movptr(dest->as_register(), from_addr);
  1244       break;
  1245 #endif // _L64
  1246     case T_INT:
  1247       // %%% could this be a movl? this is safer but longer instruction
  1248       __ movl2ptr(dest->as_register(), from_addr);
  1249       break;
  1251     case T_LONG: {
  1252       Register to_lo = dest->as_register_lo();
  1253       Register to_hi = dest->as_register_hi();
  1254 #ifdef _LP64
  1255       __ movptr(to_lo, as_Address_lo(addr));
  1256 #else
  1257       Register base = addr->base()->as_register();
  1258       Register index = noreg;
  1259       if (addr->index()->is_register()) {
  1260         index = addr->index()->as_register();
  1262       if ((base == to_lo && index == to_hi) ||
  1263           (base == to_hi && index == to_lo)) {
  1264         // addresses with 2 registers are only formed as a result of
  1265         // array access so this code will never have to deal with
  1266         // patches or null checks.
  1267         assert(info == NULL && patch == NULL, "must be");
  1268         __ lea(to_hi, as_Address(addr));
  1269         __ movl(to_lo, Address(to_hi, 0));
  1270         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1271       } else if (base == to_lo || index == to_lo) {
  1272         assert(base != to_hi, "can't be");
  1273         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1274         __ movl(to_hi, as_Address_hi(addr));
  1275         if (patch != NULL) {
  1276           patching_epilog(patch, lir_patch_high, base, info);
  1277           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1278           patch_code = lir_patch_low;
  1280         __ movl(to_lo, as_Address_lo(addr));
  1281       } else {
  1282         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1283         __ movl(to_lo, as_Address_lo(addr));
  1284         if (patch != NULL) {
  1285           patching_epilog(patch, lir_patch_low, base, info);
  1286           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1287           patch_code = lir_patch_high;
  1289         __ movl(to_hi, as_Address_hi(addr));
  1291 #endif // _LP64
  1292       break;
  1295     case T_BOOLEAN: // fall through
  1296     case T_BYTE: {
  1297       Register dest_reg = dest->as_register();
  1298       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1299       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1300         __ movsbl(dest_reg, from_addr);
  1301       } else {
  1302         __ movb(dest_reg, from_addr);
  1303         __ shll(dest_reg, 24);
  1304         __ sarl(dest_reg, 24);
  1306       // These are unsigned so the zero extension on 64bit is just what we need
  1307       break;
  1310     case T_CHAR: {
  1311       Register dest_reg = dest->as_register();
  1312       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1313       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1314         __ movzwl(dest_reg, from_addr);
  1315       } else {
  1316         __ movw(dest_reg, from_addr);
  1318       // This is unsigned so the zero extension on 64bit is just what we need
  1319       // __ movl2ptr(dest_reg, dest_reg);
  1320       break;
  1323     case T_SHORT: {
  1324       Register dest_reg = dest->as_register();
  1325       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1326         __ movswl(dest_reg, from_addr);
  1327       } else {
  1328         __ movw(dest_reg, from_addr);
  1329         __ shll(dest_reg, 16);
  1330         __ sarl(dest_reg, 16);
  1332       // Might not be needed in 64bit but certainly doesn't hurt (except for code size)
  1333       __ movl2ptr(dest_reg, dest_reg);
  1334       break;
  1337     default:
  1338       ShouldNotReachHere();
  1341   if (patch != NULL) {
  1342     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1345   if (type == T_ARRAY || type == T_OBJECT) {
  1346     __ verify_oop(dest->as_register());
  1351 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1352   LIR_Address* addr = src->as_address_ptr();
  1353   Address from_addr = as_Address(addr);
  1355   if (VM_Version::supports_sse()) {
  1356     switch (ReadPrefetchInstr) {
  1357       case 0:
  1358         __ prefetchnta(from_addr); break;
  1359       case 1:
  1360         __ prefetcht0(from_addr); break;
  1361       case 2:
  1362         __ prefetcht2(from_addr); break;
  1363       default:
  1364         ShouldNotReachHere(); break;
  1366   } else if (VM_Version::supports_3dnow()) {
  1367     __ prefetchr(from_addr);
  1372 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1373   LIR_Address* addr = src->as_address_ptr();
  1374   Address from_addr = as_Address(addr);
  1376   if (VM_Version::supports_sse()) {
  1377     switch (AllocatePrefetchInstr) {
  1378       case 0:
  1379         __ prefetchnta(from_addr); break;
  1380       case 1:
  1381         __ prefetcht0(from_addr); break;
  1382       case 2:
  1383         __ prefetcht2(from_addr); break;
  1384       case 3:
  1385         __ prefetchw(from_addr); break;
  1386       default:
  1387         ShouldNotReachHere(); break;
  1389   } else if (VM_Version::supports_3dnow()) {
  1390     __ prefetchw(from_addr);
  1395 NEEDS_CLEANUP; // This could be static?
  1396 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1397   int elem_size = type2aelembytes(type);
  1398   switch (elem_size) {
  1399     case 1: return Address::times_1;
  1400     case 2: return Address::times_2;
  1401     case 4: return Address::times_4;
  1402     case 8: return Address::times_8;
  1404   ShouldNotReachHere();
  1405   return Address::no_scale;
  1409 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1410   switch (op->code()) {
  1411     case lir_idiv:
  1412     case lir_irem:
  1413       arithmetic_idiv(op->code(),
  1414                       op->in_opr1(),
  1415                       op->in_opr2(),
  1416                       op->in_opr3(),
  1417                       op->result_opr(),
  1418                       op->info());
  1419       break;
  1420     default:      ShouldNotReachHere(); break;
  1424 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1425 #ifdef ASSERT
  1426   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1427   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1428   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1429 #endif
  1431   if (op->cond() == lir_cond_always) {
  1432     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1433     __ jmp (*(op->label()));
  1434   } else {
  1435     Assembler::Condition acond = Assembler::zero;
  1436     if (op->code() == lir_cond_float_branch) {
  1437       assert(op->ublock() != NULL, "must have unordered successor");
  1438       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1439       switch(op->cond()) {
  1440         case lir_cond_equal:        acond = Assembler::equal;      break;
  1441         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1442         case lir_cond_less:         acond = Assembler::below;      break;
  1443         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1444         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1445         case lir_cond_greater:      acond = Assembler::above;      break;
  1446         default:                         ShouldNotReachHere();
  1448     } else {
  1449       switch (op->cond()) {
  1450         case lir_cond_equal:        acond = Assembler::equal;       break;
  1451         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1452         case lir_cond_less:         acond = Assembler::less;        break;
  1453         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1454         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1455         case lir_cond_greater:      acond = Assembler::greater;     break;
  1456         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1457         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1458         default:                         ShouldNotReachHere();
  1461     __ jcc(acond,*(op->label()));
  1465 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1466   LIR_Opr src  = op->in_opr();
  1467   LIR_Opr dest = op->result_opr();
  1469   switch (op->bytecode()) {
  1470     case Bytecodes::_i2l:
  1471 #ifdef _LP64
  1472       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1473 #else
  1474       move_regs(src->as_register(), dest->as_register_lo());
  1475       move_regs(src->as_register(), dest->as_register_hi());
  1476       __ sarl(dest->as_register_hi(), 31);
  1477 #endif // LP64
  1478       break;
  1480     case Bytecodes::_l2i:
  1481       move_regs(src->as_register_lo(), dest->as_register());
  1482       break;
  1484     case Bytecodes::_i2b:
  1485       move_regs(src->as_register(), dest->as_register());
  1486       __ sign_extend_byte(dest->as_register());
  1487       break;
  1489     case Bytecodes::_i2c:
  1490       move_regs(src->as_register(), dest->as_register());
  1491       __ andl(dest->as_register(), 0xFFFF);
  1492       break;
  1494     case Bytecodes::_i2s:
  1495       move_regs(src->as_register(), dest->as_register());
  1496       __ sign_extend_short(dest->as_register());
  1497       break;
  1500     case Bytecodes::_f2d:
  1501     case Bytecodes::_d2f:
  1502       if (dest->is_single_xmm()) {
  1503         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1504       } else if (dest->is_double_xmm()) {
  1505         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1506       } else {
  1507         assert(src->fpu() == dest->fpu(), "register must be equal");
  1508         // do nothing (float result is rounded later through spilling)
  1510       break;
  1512     case Bytecodes::_i2f:
  1513     case Bytecodes::_i2d:
  1514       if (dest->is_single_xmm()) {
  1515         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1516       } else if (dest->is_double_xmm()) {
  1517         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1518       } else {
  1519         assert(dest->fpu() == 0, "result must be on TOS");
  1520         __ movl(Address(rsp, 0), src->as_register());
  1521         __ fild_s(Address(rsp, 0));
  1523       break;
  1525     case Bytecodes::_f2i:
  1526     case Bytecodes::_d2i:
  1527       if (src->is_single_xmm()) {
  1528         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1529       } else if (src->is_double_xmm()) {
  1530         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1531       } else {
  1532         assert(src->fpu() == 0, "input must be on TOS");
  1533         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1534         __ fist_s(Address(rsp, 0));
  1535         __ movl(dest->as_register(), Address(rsp, 0));
  1536         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1539       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1540       assert(op->stub() != NULL, "stub required");
  1541       __ cmpl(dest->as_register(), 0x80000000);
  1542       __ jcc(Assembler::equal, *op->stub()->entry());
  1543       __ bind(*op->stub()->continuation());
  1544       break;
  1546     case Bytecodes::_l2f:
  1547     case Bytecodes::_l2d:
  1548       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1549       assert(dest->fpu() == 0, "result must be on TOS");
  1551       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1552       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1553       __ fild_d(Address(rsp, 0));
  1554       // float result is rounded later through spilling
  1555       break;
  1557     case Bytecodes::_f2l:
  1558     case Bytecodes::_d2l:
  1559       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1560       assert(src->fpu() == 0, "input must be on TOS");
  1561       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1563       // instruction sequence too long to inline it here
  1565         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1567       break;
  1569     default: ShouldNotReachHere();
  1573 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1574   if (op->init_check()) {
  1575     __ cmpl(Address(op->klass()->as_register(),
  1576                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
  1577             instanceKlass::fully_initialized);
  1578     add_debug_info_for_null_check_here(op->stub()->info());
  1579     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1581   __ allocate_object(op->obj()->as_register(),
  1582                      op->tmp1()->as_register(),
  1583                      op->tmp2()->as_register(),
  1584                      op->header_size(),
  1585                      op->object_size(),
  1586                      op->klass()->as_register(),
  1587                      *op->stub()->entry());
  1588   __ bind(*op->stub()->continuation());
  1591 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1592   if (UseSlowPath ||
  1593       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1594       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1595     __ jmp(*op->stub()->entry());
  1596   } else {
  1597     Register len =  op->len()->as_register();
  1598     Register tmp1 = op->tmp1()->as_register();
  1599     Register tmp2 = op->tmp2()->as_register();
  1600     Register tmp3 = op->tmp3()->as_register();
  1601     if (len == tmp1) {
  1602       tmp1 = tmp3;
  1603     } else if (len == tmp2) {
  1604       tmp2 = tmp3;
  1605     } else if (len == tmp3) {
  1606       // everything is ok
  1607     } else {
  1608       __ mov(tmp3, len);
  1610     __ allocate_array(op->obj()->as_register(),
  1611                       len,
  1612                       tmp1,
  1613                       tmp2,
  1614                       arrayOopDesc::header_size(op->type()),
  1615                       array_element_size(op->type()),
  1616                       op->klass()->as_register(),
  1617                       *op->stub()->entry());
  1619   __ bind(*op->stub()->continuation());
  1624 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1625   LIR_Code code = op->code();
  1626   if (code == lir_store_check) {
  1627     Register value = op->object()->as_register();
  1628     Register array = op->array()->as_register();
  1629     Register k_RInfo = op->tmp1()->as_register();
  1630     Register klass_RInfo = op->tmp2()->as_register();
  1631     Register Rtmp1 = op->tmp3()->as_register();
  1633     CodeStub* stub = op->stub();
  1634     Label done;
  1635     __ cmpptr(value, (int32_t)NULL_WORD);
  1636     __ jcc(Assembler::equal, done);
  1637     add_debug_info_for_null_check_here(op->info_for_exception());
  1638     __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
  1639     __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
  1641     // get instance klass
  1642     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
  1643     // perform the fast part of the checking logic
  1644     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
  1645     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1646     __ push(klass_RInfo);
  1647     __ push(k_RInfo);
  1648     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1649     __ pop(klass_RInfo);
  1650     __ pop(k_RInfo);
  1651     // result is a boolean
  1652     __ cmpl(k_RInfo, 0);
  1653     __ jcc(Assembler::equal, *stub->entry());
  1654     __ bind(done);
  1655   } else if (op->code() == lir_checkcast) {
  1656     // we always need a stub for the failure case.
  1657     CodeStub* stub = op->stub();
  1658     Register obj = op->object()->as_register();
  1659     Register k_RInfo = op->tmp1()->as_register();
  1660     Register klass_RInfo = op->tmp2()->as_register();
  1661     Register dst = op->result_opr()->as_register();
  1662     ciKlass* k = op->klass();
  1663     Register Rtmp1 = noreg;
  1665     Label done;
  1666     if (obj == k_RInfo) {
  1667       k_RInfo = dst;
  1668     } else if (obj == klass_RInfo) {
  1669       klass_RInfo = dst;
  1671     if (k->is_loaded()) {
  1672       select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1673     } else {
  1674       Rtmp1 = op->tmp3()->as_register();
  1675       select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1678     assert_different_registers(obj, k_RInfo, klass_RInfo);
  1679     if (!k->is_loaded()) {
  1680       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1681     } else {
  1682 #ifdef _LP64
  1683       __ movoop(k_RInfo, k->constant_encoding());
  1684 #else
  1685       k_RInfo = noreg;
  1686 #endif // _LP64
  1688     assert(obj != k_RInfo, "must be different");
  1689     __ cmpptr(obj, (int32_t)NULL_WORD);
  1690     if (op->profiled_method() != NULL) {
  1691       ciMethod* method = op->profiled_method();
  1692       int bci          = op->profiled_bci();
  1694       Label profile_done;
  1695       __ jcc(Assembler::notEqual, profile_done);
  1696       // Object is null; update methodDataOop
  1697       ciMethodData* md = method->method_data();
  1698       if (md == NULL) {
  1699         bailout("out of memory building methodDataOop");
  1700         return;
  1702       ciProfileData* data = md->bci_to_data(bci);
  1703       assert(data != NULL,       "need data for checkcast");
  1704       assert(data->is_BitData(), "need BitData for checkcast");
  1705       Register mdo  = klass_RInfo;
  1706       __ movoop(mdo, md->constant_encoding());
  1707       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1708       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1709       __ orl(data_addr, header_bits);
  1710       __ jmp(done);
  1711       __ bind(profile_done);
  1712     } else {
  1713       __ jcc(Assembler::equal, done);
  1715     __ verify_oop(obj);
  1717     if (op->fast_check()) {
  1718       // get object classo
  1719       // not a safepoint as obj null check happens earlier
  1720       if (k->is_loaded()) {
  1721 #ifdef _LP64
  1722         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1723 #else
  1724         __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
  1725 #endif // _LP64
  1726       } else {
  1727         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1730       __ jcc(Assembler::notEqual, *stub->entry());
  1731       __ bind(done);
  1732     } else {
  1733       // get object class
  1734       // not a safepoint as obj null check happens earlier
  1735       __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1736       if (k->is_loaded()) {
  1737         // See if we get an immediate positive hit
  1738 #ifdef _LP64
  1739         __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1740 #else
  1741         __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1742 #endif // _LP64
  1743         if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
  1744           __ jcc(Assembler::notEqual, *stub->entry());
  1745         } else {
  1746           // See if we get an immediate positive hit
  1747           __ jcc(Assembler::equal, done);
  1748           // check for self
  1749 #ifdef _LP64
  1750           __ cmpptr(klass_RInfo, k_RInfo);
  1751 #else
  1752           __ cmpoop(klass_RInfo, k->constant_encoding());
  1753 #endif // _LP64
  1754           __ jcc(Assembler::equal, done);
  1756           __ push(klass_RInfo);
  1757 #ifdef _LP64
  1758           __ push(k_RInfo);
  1759 #else
  1760           __ pushoop(k->constant_encoding());
  1761 #endif // _LP64
  1762           __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1763           __ pop(klass_RInfo);
  1764           __ pop(klass_RInfo);
  1765           // result is a boolean
  1766           __ cmpl(klass_RInfo, 0);
  1767           __ jcc(Assembler::equal, *stub->entry());
  1769         __ bind(done);
  1770       } else {
  1771         // perform the fast part of the checking logic
  1772         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
  1773         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1774         __ push(klass_RInfo);
  1775         __ push(k_RInfo);
  1776         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1777         __ pop(klass_RInfo);
  1778         __ pop(k_RInfo);
  1779         // result is a boolean
  1780         __ cmpl(k_RInfo, 0);
  1781         __ jcc(Assembler::equal, *stub->entry());
  1782         __ bind(done);
  1786     if (dst != obj) {
  1787       __ mov(dst, obj);
  1789   } else if (code == lir_instanceof) {
  1790     Register obj = op->object()->as_register();
  1791     Register k_RInfo = op->tmp1()->as_register();
  1792     Register klass_RInfo = op->tmp2()->as_register();
  1793     Register dst = op->result_opr()->as_register();
  1794     ciKlass* k = op->klass();
  1796     Label done;
  1797     Label zero;
  1798     Label one;
  1799     if (obj == k_RInfo) {
  1800       k_RInfo = klass_RInfo;
  1801       klass_RInfo = obj;
  1803     // patching may screw with our temporaries on sparc,
  1804     // so let's do it before loading the class
  1805     if (!k->is_loaded()) {
  1806       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1807     } else {
  1808       LP64_ONLY(__ movoop(k_RInfo, k->constant_encoding()));
  1810     assert(obj != k_RInfo, "must be different");
  1812     __ verify_oop(obj);
  1813     if (op->fast_check()) {
  1814       __ cmpptr(obj, (int32_t)NULL_WORD);
  1815       __ jcc(Assembler::equal, zero);
  1816       // get object class
  1817       // not a safepoint as obj null check happens earlier
  1818       if (LP64_ONLY(false &&) k->is_loaded()) {
  1819         NOT_LP64(__ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()));
  1820         k_RInfo = noreg;
  1821       } else {
  1822         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1825       __ jcc(Assembler::equal, one);
  1826     } else {
  1827       // get object class
  1828       // not a safepoint as obj null check happens earlier
  1829       __ cmpptr(obj, (int32_t)NULL_WORD);
  1830       __ jcc(Assembler::equal, zero);
  1831       __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1833 #ifndef _LP64
  1834       if (k->is_loaded()) {
  1835         // See if we get an immediate positive hit
  1836         __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1837         __ jcc(Assembler::equal, one);
  1838         if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
  1839           // check for self
  1840           __ cmpoop(klass_RInfo, k->constant_encoding());
  1841           __ jcc(Assembler::equal, one);
  1842           __ push(klass_RInfo);
  1843           __ pushoop(k->constant_encoding());
  1844           __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1845           __ pop(klass_RInfo);
  1846           __ pop(dst);
  1847           __ jmp(done);
  1850         else // next block is unconditional if LP64:
  1851 #endif // LP64
  1853         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
  1855         // perform the fast part of the checking logic
  1856         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, dst, &one, &zero, NULL);
  1857         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1858         __ push(klass_RInfo);
  1859         __ push(k_RInfo);
  1860         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1861         __ pop(klass_RInfo);
  1862         __ pop(dst);
  1863         __ jmp(done);
  1866     __ bind(zero);
  1867     __ xorptr(dst, dst);
  1868     __ jmp(done);
  1869     __ bind(one);
  1870     __ movptr(dst, 1);
  1871     __ bind(done);
  1872   } else {
  1873     ShouldNotReachHere();
  1879 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1880   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1881     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1882     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1883     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1884     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1885     Register addr = op->addr()->as_register();
  1886     if (os::is_MP()) {
  1887       __ lock();
  1889     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1891   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1892     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1893     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1894     Register newval = op->new_value()->as_register();
  1895     Register cmpval = op->cmp_value()->as_register();
  1896     assert(cmpval == rax, "wrong register");
  1897     assert(newval != NULL, "new val must be register");
  1898     assert(cmpval != newval, "cmp and new values must be in different registers");
  1899     assert(cmpval != addr, "cmp and addr must be in different registers");
  1900     assert(newval != addr, "new value and addr must be in different registers");
  1901     if (os::is_MP()) {
  1902       __ lock();
  1904     if ( op->code() == lir_cas_obj) {
  1905       __ cmpxchgptr(newval, Address(addr, 0));
  1906     } else if (op->code() == lir_cas_int) {
  1907       __ cmpxchgl(newval, Address(addr, 0));
  1908     } else {
  1909       LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
  1911 #ifdef _LP64
  1912   } else if (op->code() == lir_cas_long) {
  1913     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1914     Register newval = op->new_value()->as_register_lo();
  1915     Register cmpval = op->cmp_value()->as_register_lo();
  1916     assert(cmpval == rax, "wrong register");
  1917     assert(newval != NULL, "new val must be register");
  1918     assert(cmpval != newval, "cmp and new values must be in different registers");
  1919     assert(cmpval != addr, "cmp and addr must be in different registers");
  1920     assert(newval != addr, "new value and addr must be in different registers");
  1921     if (os::is_MP()) {
  1922       __ lock();
  1924     __ cmpxchgq(newval, Address(addr, 0));
  1925 #endif // _LP64
  1926   } else {
  1927     Unimplemented();
  1932 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
  1933   Assembler::Condition acond, ncond;
  1934   switch (condition) {
  1935     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  1936     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  1937     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  1938     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  1939     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  1940     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  1941     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  1942     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  1943     default:                    ShouldNotReachHere();
  1946   if (opr1->is_cpu_register()) {
  1947     reg2reg(opr1, result);
  1948   } else if (opr1->is_stack()) {
  1949     stack2reg(opr1, result, result->type());
  1950   } else if (opr1->is_constant()) {
  1951     const2reg(opr1, result, lir_patch_none, NULL);
  1952   } else {
  1953     ShouldNotReachHere();
  1956   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  1957     // optimized version that does not require a branch
  1958     if (opr2->is_single_cpu()) {
  1959       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  1960       __ cmov(ncond, result->as_register(), opr2->as_register());
  1961     } else if (opr2->is_double_cpu()) {
  1962       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  1963       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  1964       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  1965       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  1966     } else if (opr2->is_single_stack()) {
  1967       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  1968     } else if (opr2->is_double_stack()) {
  1969       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  1970       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  1971     } else {
  1972       ShouldNotReachHere();
  1975   } else {
  1976     Label skip;
  1977     __ jcc (acond, skip);
  1978     if (opr2->is_cpu_register()) {
  1979       reg2reg(opr2, result);
  1980     } else if (opr2->is_stack()) {
  1981       stack2reg(opr2, result, result->type());
  1982     } else if (opr2->is_constant()) {
  1983       const2reg(opr2, result, lir_patch_none, NULL);
  1984     } else {
  1985       ShouldNotReachHere();
  1987     __ bind(skip);
  1992 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1993   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  1995   if (left->is_single_cpu()) {
  1996     assert(left == dest, "left and dest must be equal");
  1997     Register lreg = left->as_register();
  1999     if (right->is_single_cpu()) {
  2000       // cpu register - cpu register
  2001       Register rreg = right->as_register();
  2002       switch (code) {
  2003         case lir_add: __ addl (lreg, rreg); break;
  2004         case lir_sub: __ subl (lreg, rreg); break;
  2005         case lir_mul: __ imull(lreg, rreg); break;
  2006         default:      ShouldNotReachHere();
  2009     } else if (right->is_stack()) {
  2010       // cpu register - stack
  2011       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2012       switch (code) {
  2013         case lir_add: __ addl(lreg, raddr); break;
  2014         case lir_sub: __ subl(lreg, raddr); break;
  2015         default:      ShouldNotReachHere();
  2018     } else if (right->is_constant()) {
  2019       // cpu register - constant
  2020       jint c = right->as_constant_ptr()->as_jint();
  2021       switch (code) {
  2022         case lir_add: {
  2023           __ increment(lreg, c);
  2024           break;
  2026         case lir_sub: {
  2027           __ decrement(lreg, c);
  2028           break;
  2030         default: ShouldNotReachHere();
  2033     } else {
  2034       ShouldNotReachHere();
  2037   } else if (left->is_double_cpu()) {
  2038     assert(left == dest, "left and dest must be equal");
  2039     Register lreg_lo = left->as_register_lo();
  2040     Register lreg_hi = left->as_register_hi();
  2042     if (right->is_double_cpu()) {
  2043       // cpu register - cpu register
  2044       Register rreg_lo = right->as_register_lo();
  2045       Register rreg_hi = right->as_register_hi();
  2046       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2047       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2048       switch (code) {
  2049         case lir_add:
  2050           __ addptr(lreg_lo, rreg_lo);
  2051           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2052           break;
  2053         case lir_sub:
  2054           __ subptr(lreg_lo, rreg_lo);
  2055           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2056           break;
  2057         case lir_mul:
  2058 #ifdef _LP64
  2059           __ imulq(lreg_lo, rreg_lo);
  2060 #else
  2061           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2062           __ imull(lreg_hi, rreg_lo);
  2063           __ imull(rreg_hi, lreg_lo);
  2064           __ addl (rreg_hi, lreg_hi);
  2065           __ mull (rreg_lo);
  2066           __ addl (lreg_hi, rreg_hi);
  2067 #endif // _LP64
  2068           break;
  2069         default:
  2070           ShouldNotReachHere();
  2073     } else if (right->is_constant()) {
  2074       // cpu register - constant
  2075 #ifdef _LP64
  2076       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2077       __ movptr(r10, (intptr_t) c);
  2078       switch (code) {
  2079         case lir_add:
  2080           __ addptr(lreg_lo, r10);
  2081           break;
  2082         case lir_sub:
  2083           __ subptr(lreg_lo, r10);
  2084           break;
  2085         default:
  2086           ShouldNotReachHere();
  2088 #else
  2089       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2090       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2091       switch (code) {
  2092         case lir_add:
  2093           __ addptr(lreg_lo, c_lo);
  2094           __ adcl(lreg_hi, c_hi);
  2095           break;
  2096         case lir_sub:
  2097           __ subptr(lreg_lo, c_lo);
  2098           __ sbbl(lreg_hi, c_hi);
  2099           break;
  2100         default:
  2101           ShouldNotReachHere();
  2103 #endif // _LP64
  2105     } else {
  2106       ShouldNotReachHere();
  2109   } else if (left->is_single_xmm()) {
  2110     assert(left == dest, "left and dest must be equal");
  2111     XMMRegister lreg = left->as_xmm_float_reg();
  2113     if (right->is_single_xmm()) {
  2114       XMMRegister rreg = right->as_xmm_float_reg();
  2115       switch (code) {
  2116         case lir_add: __ addss(lreg, rreg);  break;
  2117         case lir_sub: __ subss(lreg, rreg);  break;
  2118         case lir_mul_strictfp: // fall through
  2119         case lir_mul: __ mulss(lreg, rreg);  break;
  2120         case lir_div_strictfp: // fall through
  2121         case lir_div: __ divss(lreg, rreg);  break;
  2122         default: ShouldNotReachHere();
  2124     } else {
  2125       Address raddr;
  2126       if (right->is_single_stack()) {
  2127         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2128       } else if (right->is_constant()) {
  2129         // hack for now
  2130         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2131       } else {
  2132         ShouldNotReachHere();
  2134       switch (code) {
  2135         case lir_add: __ addss(lreg, raddr);  break;
  2136         case lir_sub: __ subss(lreg, raddr);  break;
  2137         case lir_mul_strictfp: // fall through
  2138         case lir_mul: __ mulss(lreg, raddr);  break;
  2139         case lir_div_strictfp: // fall through
  2140         case lir_div: __ divss(lreg, raddr);  break;
  2141         default: ShouldNotReachHere();
  2145   } else if (left->is_double_xmm()) {
  2146     assert(left == dest, "left and dest must be equal");
  2148     XMMRegister lreg = left->as_xmm_double_reg();
  2149     if (right->is_double_xmm()) {
  2150       XMMRegister rreg = right->as_xmm_double_reg();
  2151       switch (code) {
  2152         case lir_add: __ addsd(lreg, rreg);  break;
  2153         case lir_sub: __ subsd(lreg, rreg);  break;
  2154         case lir_mul_strictfp: // fall through
  2155         case lir_mul: __ mulsd(lreg, rreg);  break;
  2156         case lir_div_strictfp: // fall through
  2157         case lir_div: __ divsd(lreg, rreg);  break;
  2158         default: ShouldNotReachHere();
  2160     } else {
  2161       Address raddr;
  2162       if (right->is_double_stack()) {
  2163         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2164       } else if (right->is_constant()) {
  2165         // hack for now
  2166         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2167       } else {
  2168         ShouldNotReachHere();
  2170       switch (code) {
  2171         case lir_add: __ addsd(lreg, raddr);  break;
  2172         case lir_sub: __ subsd(lreg, raddr);  break;
  2173         case lir_mul_strictfp: // fall through
  2174         case lir_mul: __ mulsd(lreg, raddr);  break;
  2175         case lir_div_strictfp: // fall through
  2176         case lir_div: __ divsd(lreg, raddr);  break;
  2177         default: ShouldNotReachHere();
  2181   } else if (left->is_single_fpu()) {
  2182     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2184     if (right->is_single_fpu()) {
  2185       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2187     } else {
  2188       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2189       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2191       Address raddr;
  2192       if (right->is_single_stack()) {
  2193         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2194       } else if (right->is_constant()) {
  2195         address const_addr = float_constant(right->as_jfloat());
  2196         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2197         // hack for now
  2198         raddr = __ as_Address(InternalAddress(const_addr));
  2199       } else {
  2200         ShouldNotReachHere();
  2203       switch (code) {
  2204         case lir_add: __ fadd_s(raddr); break;
  2205         case lir_sub: __ fsub_s(raddr); break;
  2206         case lir_mul_strictfp: // fall through
  2207         case lir_mul: __ fmul_s(raddr); break;
  2208         case lir_div_strictfp: // fall through
  2209         case lir_div: __ fdiv_s(raddr); break;
  2210         default:      ShouldNotReachHere();
  2214   } else if (left->is_double_fpu()) {
  2215     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2217     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2218       // Double values require special handling for strictfp mul/div on x86
  2219       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2220       __ fmulp(left->fpu_regnrLo() + 1);
  2223     if (right->is_double_fpu()) {
  2224       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2226     } else {
  2227       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2228       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2230       Address raddr;
  2231       if (right->is_double_stack()) {
  2232         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2233       } else if (right->is_constant()) {
  2234         // hack for now
  2235         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2236       } else {
  2237         ShouldNotReachHere();
  2240       switch (code) {
  2241         case lir_add: __ fadd_d(raddr); break;
  2242         case lir_sub: __ fsub_d(raddr); break;
  2243         case lir_mul_strictfp: // fall through
  2244         case lir_mul: __ fmul_d(raddr); break;
  2245         case lir_div_strictfp: // fall through
  2246         case lir_div: __ fdiv_d(raddr); break;
  2247         default: ShouldNotReachHere();
  2251     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2252       // Double values require special handling for strictfp mul/div on x86
  2253       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2254       __ fmulp(dest->fpu_regnrLo() + 1);
  2257   } else if (left->is_single_stack() || left->is_address()) {
  2258     assert(left == dest, "left and dest must be equal");
  2260     Address laddr;
  2261     if (left->is_single_stack()) {
  2262       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2263     } else if (left->is_address()) {
  2264       laddr = as_Address(left->as_address_ptr());
  2265     } else {
  2266       ShouldNotReachHere();
  2269     if (right->is_single_cpu()) {
  2270       Register rreg = right->as_register();
  2271       switch (code) {
  2272         case lir_add: __ addl(laddr, rreg); break;
  2273         case lir_sub: __ subl(laddr, rreg); break;
  2274         default:      ShouldNotReachHere();
  2276     } else if (right->is_constant()) {
  2277       jint c = right->as_constant_ptr()->as_jint();
  2278       switch (code) {
  2279         case lir_add: {
  2280           __ incrementl(laddr, c);
  2281           break;
  2283         case lir_sub: {
  2284           __ decrementl(laddr, c);
  2285           break;
  2287         default: ShouldNotReachHere();
  2289     } else {
  2290       ShouldNotReachHere();
  2293   } else {
  2294     ShouldNotReachHere();
  2298 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2299   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2300   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2301   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2303   bool left_is_tos = (left_index == 0);
  2304   bool dest_is_tos = (dest_index == 0);
  2305   int non_tos_index = (left_is_tos ? right_index : left_index);
  2307   switch (code) {
  2308     case lir_add:
  2309       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2310       else if (dest_is_tos)    __ fadd (non_tos_index);
  2311       else                     __ fadda(non_tos_index);
  2312       break;
  2314     case lir_sub:
  2315       if (left_is_tos) {
  2316         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2317         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2318         else                   __ fsubra(non_tos_index);
  2319       } else {
  2320         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2321         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2322         else                   __ fsuba (non_tos_index);
  2324       break;
  2326     case lir_mul_strictfp: // fall through
  2327     case lir_mul:
  2328       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2329       else if (dest_is_tos)    __ fmul (non_tos_index);
  2330       else                     __ fmula(non_tos_index);
  2331       break;
  2333     case lir_div_strictfp: // fall through
  2334     case lir_div:
  2335       if (left_is_tos) {
  2336         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2337         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2338         else                   __ fdivra(non_tos_index);
  2339       } else {
  2340         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2341         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2342         else                   __ fdiva (non_tos_index);
  2344       break;
  2346     case lir_rem:
  2347       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2348       __ fremr(noreg);
  2349       break;
  2351     default:
  2352       ShouldNotReachHere();
  2357 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2358   if (value->is_double_xmm()) {
  2359     switch(code) {
  2360       case lir_abs :
  2362           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2363             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2365           __ andpd(dest->as_xmm_double_reg(),
  2366                     ExternalAddress((address)double_signmask_pool));
  2368         break;
  2370       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2371       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2372       default      : ShouldNotReachHere();
  2375   } else if (value->is_double_fpu()) {
  2376     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2377     switch(code) {
  2378       case lir_log   : __ flog() ; break;
  2379       case lir_log10 : __ flog10() ; break;
  2380       case lir_abs   : __ fabs() ; break;
  2381       case lir_sqrt  : __ fsqrt(); break;
  2382       case lir_sin   :
  2383         // Should consider not saving rbx, if not necessary
  2384         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2385         break;
  2386       case lir_cos :
  2387         // Should consider not saving rbx, if not necessary
  2388         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2389         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2390         break;
  2391       case lir_tan :
  2392         // Should consider not saving rbx, if not necessary
  2393         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2394         break;
  2395       default      : ShouldNotReachHere();
  2397   } else {
  2398     Unimplemented();
  2402 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2403   // assert(left->destroys_register(), "check");
  2404   if (left->is_single_cpu()) {
  2405     Register reg = left->as_register();
  2406     if (right->is_constant()) {
  2407       int val = right->as_constant_ptr()->as_jint();
  2408       switch (code) {
  2409         case lir_logic_and: __ andl (reg, val); break;
  2410         case lir_logic_or:  __ orl  (reg, val); break;
  2411         case lir_logic_xor: __ xorl (reg, val); break;
  2412         default: ShouldNotReachHere();
  2414     } else if (right->is_stack()) {
  2415       // added support for stack operands
  2416       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2417       switch (code) {
  2418         case lir_logic_and: __ andl (reg, raddr); break;
  2419         case lir_logic_or:  __ orl  (reg, raddr); break;
  2420         case lir_logic_xor: __ xorl (reg, raddr); break;
  2421         default: ShouldNotReachHere();
  2423     } else {
  2424       Register rright = right->as_register();
  2425       switch (code) {
  2426         case lir_logic_and: __ andptr (reg, rright); break;
  2427         case lir_logic_or : __ orptr  (reg, rright); break;
  2428         case lir_logic_xor: __ xorptr (reg, rright); break;
  2429         default: ShouldNotReachHere();
  2432     move_regs(reg, dst->as_register());
  2433   } else {
  2434     Register l_lo = left->as_register_lo();
  2435     Register l_hi = left->as_register_hi();
  2436     if (right->is_constant()) {
  2437 #ifdef _LP64
  2438       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2439       switch (code) {
  2440         case lir_logic_and:
  2441           __ andq(l_lo, rscratch1);
  2442           break;
  2443         case lir_logic_or:
  2444           __ orq(l_lo, rscratch1);
  2445           break;
  2446         case lir_logic_xor:
  2447           __ xorq(l_lo, rscratch1);
  2448           break;
  2449         default: ShouldNotReachHere();
  2451 #else
  2452       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2453       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2454       switch (code) {
  2455         case lir_logic_and:
  2456           __ andl(l_lo, r_lo);
  2457           __ andl(l_hi, r_hi);
  2458           break;
  2459         case lir_logic_or:
  2460           __ orl(l_lo, r_lo);
  2461           __ orl(l_hi, r_hi);
  2462           break;
  2463         case lir_logic_xor:
  2464           __ xorl(l_lo, r_lo);
  2465           __ xorl(l_hi, r_hi);
  2466           break;
  2467         default: ShouldNotReachHere();
  2469 #endif // _LP64
  2470     } else {
  2471       Register r_lo = right->as_register_lo();
  2472       Register r_hi = right->as_register_hi();
  2473       assert(l_lo != r_hi, "overwriting registers");
  2474       switch (code) {
  2475         case lir_logic_and:
  2476           __ andptr(l_lo, r_lo);
  2477           NOT_LP64(__ andptr(l_hi, r_hi);)
  2478           break;
  2479         case lir_logic_or:
  2480           __ orptr(l_lo, r_lo);
  2481           NOT_LP64(__ orptr(l_hi, r_hi);)
  2482           break;
  2483         case lir_logic_xor:
  2484           __ xorptr(l_lo, r_lo);
  2485           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2486           break;
  2487         default: ShouldNotReachHere();
  2491     Register dst_lo = dst->as_register_lo();
  2492     Register dst_hi = dst->as_register_hi();
  2494 #ifdef _LP64
  2495     move_regs(l_lo, dst_lo);
  2496 #else
  2497     if (dst_lo == l_hi) {
  2498       assert(dst_hi != l_lo, "overwriting registers");
  2499       move_regs(l_hi, dst_hi);
  2500       move_regs(l_lo, dst_lo);
  2501     } else {
  2502       assert(dst_lo != l_hi, "overwriting registers");
  2503       move_regs(l_lo, dst_lo);
  2504       move_regs(l_hi, dst_hi);
  2506 #endif // _LP64
  2511 // we assume that rax, and rdx can be overwritten
  2512 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2514   assert(left->is_single_cpu(),   "left must be register");
  2515   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2516   assert(result->is_single_cpu(), "result must be register");
  2518   //  assert(left->destroys_register(), "check");
  2519   //  assert(right->destroys_register(), "check");
  2521   Register lreg = left->as_register();
  2522   Register dreg = result->as_register();
  2524   if (right->is_constant()) {
  2525     int divisor = right->as_constant_ptr()->as_jint();
  2526     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2527     if (code == lir_idiv) {
  2528       assert(lreg == rax, "must be rax,");
  2529       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2530       __ cdql(); // sign extend into rdx:rax
  2531       if (divisor == 2) {
  2532         __ subl(lreg, rdx);
  2533       } else {
  2534         __ andl(rdx, divisor - 1);
  2535         __ addl(lreg, rdx);
  2537       __ sarl(lreg, log2_intptr(divisor));
  2538       move_regs(lreg, dreg);
  2539     } else if (code == lir_irem) {
  2540       Label done;
  2541       __ mov(dreg, lreg);
  2542       __ andl(dreg, 0x80000000 | (divisor - 1));
  2543       __ jcc(Assembler::positive, done);
  2544       __ decrement(dreg);
  2545       __ orl(dreg, ~(divisor - 1));
  2546       __ increment(dreg);
  2547       __ bind(done);
  2548     } else {
  2549       ShouldNotReachHere();
  2551   } else {
  2552     Register rreg = right->as_register();
  2553     assert(lreg == rax, "left register must be rax,");
  2554     assert(rreg != rdx, "right register must not be rdx");
  2555     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2557     move_regs(lreg, rax);
  2559     int idivl_offset = __ corrected_idivl(rreg);
  2560     add_debug_info_for_div0(idivl_offset, info);
  2561     if (code == lir_irem) {
  2562       move_regs(rdx, dreg); // result is in rdx
  2563     } else {
  2564       move_regs(rax, dreg);
  2570 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2571   if (opr1->is_single_cpu()) {
  2572     Register reg1 = opr1->as_register();
  2573     if (opr2->is_single_cpu()) {
  2574       // cpu register - cpu register
  2575       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2576         __ cmpptr(reg1, opr2->as_register());
  2577       } else {
  2578         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2579         __ cmpl(reg1, opr2->as_register());
  2581     } else if (opr2->is_stack()) {
  2582       // cpu register - stack
  2583       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2584         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2585       } else {
  2586         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2588     } else if (opr2->is_constant()) {
  2589       // cpu register - constant
  2590       LIR_Const* c = opr2->as_constant_ptr();
  2591       if (c->type() == T_INT) {
  2592         __ cmpl(reg1, c->as_jint());
  2593       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2594         // In 64bit oops are single register
  2595         jobject o = c->as_jobject();
  2596         if (o == NULL) {
  2597           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2598         } else {
  2599 #ifdef _LP64
  2600           __ movoop(rscratch1, o);
  2601           __ cmpptr(reg1, rscratch1);
  2602 #else
  2603           __ cmpoop(reg1, c->as_jobject());
  2604 #endif // _LP64
  2606       } else {
  2607         ShouldNotReachHere();
  2609       // cpu register - address
  2610     } else if (opr2->is_address()) {
  2611       if (op->info() != NULL) {
  2612         add_debug_info_for_null_check_here(op->info());
  2614       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2615     } else {
  2616       ShouldNotReachHere();
  2619   } else if(opr1->is_double_cpu()) {
  2620     Register xlo = opr1->as_register_lo();
  2621     Register xhi = opr1->as_register_hi();
  2622     if (opr2->is_double_cpu()) {
  2623 #ifdef _LP64
  2624       __ cmpptr(xlo, opr2->as_register_lo());
  2625 #else
  2626       // cpu register - cpu register
  2627       Register ylo = opr2->as_register_lo();
  2628       Register yhi = opr2->as_register_hi();
  2629       __ subl(xlo, ylo);
  2630       __ sbbl(xhi, yhi);
  2631       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2632         __ orl(xhi, xlo);
  2634 #endif // _LP64
  2635     } else if (opr2->is_constant()) {
  2636       // cpu register - constant 0
  2637       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2638 #ifdef _LP64
  2639       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2640 #else
  2641       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2642       __ orl(xhi, xlo);
  2643 #endif // _LP64
  2644     } else {
  2645       ShouldNotReachHere();
  2648   } else if (opr1->is_single_xmm()) {
  2649     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2650     if (opr2->is_single_xmm()) {
  2651       // xmm register - xmm register
  2652       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2653     } else if (opr2->is_stack()) {
  2654       // xmm register - stack
  2655       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2656     } else if (opr2->is_constant()) {
  2657       // xmm register - constant
  2658       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2659     } else if (opr2->is_address()) {
  2660       // xmm register - address
  2661       if (op->info() != NULL) {
  2662         add_debug_info_for_null_check_here(op->info());
  2664       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2665     } else {
  2666       ShouldNotReachHere();
  2669   } else if (opr1->is_double_xmm()) {
  2670     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2671     if (opr2->is_double_xmm()) {
  2672       // xmm register - xmm register
  2673       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2674     } else if (opr2->is_stack()) {
  2675       // xmm register - stack
  2676       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2677     } else if (opr2->is_constant()) {
  2678       // xmm register - constant
  2679       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2680     } else if (opr2->is_address()) {
  2681       // xmm register - address
  2682       if (op->info() != NULL) {
  2683         add_debug_info_for_null_check_here(op->info());
  2685       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2686     } else {
  2687       ShouldNotReachHere();
  2690   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2691     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2692     assert(opr2->is_fpu_register(), "both must be registers");
  2693     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2695   } else if (opr1->is_address() && opr2->is_constant()) {
  2696     LIR_Const* c = opr2->as_constant_ptr();
  2697 #ifdef _LP64
  2698     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2699       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2700       __ movoop(rscratch1, c->as_jobject());
  2702 #endif // LP64
  2703     if (op->info() != NULL) {
  2704       add_debug_info_for_null_check_here(op->info());
  2706     // special case: address - constant
  2707     LIR_Address* addr = opr1->as_address_ptr();
  2708     if (c->type() == T_INT) {
  2709       __ cmpl(as_Address(addr), c->as_jint());
  2710     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2711 #ifdef _LP64
  2712       // %%% Make this explode if addr isn't reachable until we figure out a
  2713       // better strategy by giving noreg as the temp for as_Address
  2714       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2715 #else
  2716       __ cmpoop(as_Address(addr), c->as_jobject());
  2717 #endif // _LP64
  2718     } else {
  2719       ShouldNotReachHere();
  2722   } else {
  2723     ShouldNotReachHere();
  2727 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2728   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2729     if (left->is_single_xmm()) {
  2730       assert(right->is_single_xmm(), "must match");
  2731       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2732     } else if (left->is_double_xmm()) {
  2733       assert(right->is_double_xmm(), "must match");
  2734       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2736     } else {
  2737       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2738       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2740       assert(left->fpu() == 0, "left must be on TOS");
  2741       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2742                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2744   } else {
  2745     assert(code == lir_cmp_l2i, "check");
  2746 #ifdef _LP64
  2747     Label done;
  2748     Register dest = dst->as_register();
  2749     __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2750     __ movl(dest, -1);
  2751     __ jccb(Assembler::less, done);
  2752     __ set_byte_if_not_zero(dest);
  2753     __ movzbl(dest, dest);
  2754     __ bind(done);
  2755 #else
  2756     __ lcmp2int(left->as_register_hi(),
  2757                 left->as_register_lo(),
  2758                 right->as_register_hi(),
  2759                 right->as_register_lo());
  2760     move_regs(left->as_register_hi(), dst->as_register());
  2761 #endif // _LP64
  2766 void LIR_Assembler::align_call(LIR_Code code) {
  2767   if (os::is_MP()) {
  2768     // make sure that the displacement word of the call ends up word aligned
  2769     int offset = __ offset();
  2770     switch (code) {
  2771       case lir_static_call:
  2772       case lir_optvirtual_call:
  2773       case lir_dynamic_call:
  2774         offset += NativeCall::displacement_offset;
  2775         break;
  2776       case lir_icvirtual_call:
  2777         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2778       break;
  2779       case lir_virtual_call:  // currently, sparc-specific for niagara
  2780       default: ShouldNotReachHere();
  2782     while (offset++ % BytesPerWord != 0) {
  2783       __ nop();
  2789 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
  2790   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2791          "must be aligned");
  2792   __ call(AddressLiteral(op->addr(), rtype));
  2793   add_call_info(code_offset(), op->info(), op->is_method_handle_invoke());
  2797 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
  2798   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  2799   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
  2800   assert(!os::is_MP() ||
  2801          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2802          "must be aligned");
  2803   __ call(AddressLiteral(op->addr(), rh));
  2804   add_call_info(code_offset(), op->info(), op->is_method_handle_invoke());
  2808 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2809 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
  2810   ShouldNotReachHere();
  2814 void LIR_Assembler::preserve_SP(LIR_OpJavaCall* op) {
  2815   __ movptr(FrameMap::method_handle_invoke_SP_save_opr()->as_register(), rsp);
  2819 void LIR_Assembler::restore_SP(LIR_OpJavaCall* op) {
  2820   __ movptr(rsp, FrameMap::method_handle_invoke_SP_save_opr()->as_register());
  2824 void LIR_Assembler::emit_static_call_stub() {
  2825   address call_pc = __ pc();
  2826   address stub = __ start_a_stub(call_stub_size);
  2827   if (stub == NULL) {
  2828     bailout("static call stub overflow");
  2829     return;
  2832   int start = __ offset();
  2833   if (os::is_MP()) {
  2834     // make sure that the displacement word of the call ends up word aligned
  2835     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2836     while (offset++ % BytesPerWord != 0) {
  2837       __ nop();
  2840   __ relocate(static_stub_Relocation::spec(call_pc));
  2841   __ movoop(rbx, (jobject)NULL);
  2842   // must be set to -1 at code generation time
  2843   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2844   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2845   __ jump(RuntimeAddress(__ pc()));
  2847   assert(__ offset() - start <= call_stub_size, "stub too big");
  2848   __ end_a_stub();
  2852 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2853   assert(exceptionOop->as_register() == rax, "must match");
  2854   assert(exceptionPC->as_register() == rdx, "must match");
  2856   // exception object is not added to oop map by LinearScan
  2857   // (LinearScan assumes that no oops are in fixed registers)
  2858   info->add_register_oop(exceptionOop);
  2859   Runtime1::StubID unwind_id;
  2861   // get current pc information
  2862   // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2863   int pc_for_athrow_offset = __ offset();
  2864   InternalAddress pc_for_athrow(__ pc());
  2865   __ lea(exceptionPC->as_register(), pc_for_athrow);
  2866   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2868   __ verify_not_null_oop(rax);
  2869   // search an exception handler (rax: exception oop, rdx: throwing pc)
  2870   if (compilation()->has_fpu_code()) {
  2871     unwind_id = Runtime1::handle_exception_id;
  2872   } else {
  2873     unwind_id = Runtime1::handle_exception_nofpu_id;
  2875   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2877   // enough room for two byte trap
  2878   __ nop();
  2882 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2883   assert(exceptionOop->as_register() == rax, "must match");
  2885   __ jmp(_unwind_handler_entry);
  2889 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2891   // optimized version for linear scan:
  2892   // * count must be already in ECX (guaranteed by LinearScan)
  2893   // * left and dest must be equal
  2894   // * tmp must be unused
  2895   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  2896   assert(left == dest, "left and dest must be equal");
  2897   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  2899   if (left->is_single_cpu()) {
  2900     Register value = left->as_register();
  2901     assert(value != SHIFT_count, "left cannot be ECX");
  2903     switch (code) {
  2904       case lir_shl:  __ shll(value); break;
  2905       case lir_shr:  __ sarl(value); break;
  2906       case lir_ushr: __ shrl(value); break;
  2907       default: ShouldNotReachHere();
  2909   } else if (left->is_double_cpu()) {
  2910     Register lo = left->as_register_lo();
  2911     Register hi = left->as_register_hi();
  2912     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  2913 #ifdef _LP64
  2914     switch (code) {
  2915       case lir_shl:  __ shlptr(lo);        break;
  2916       case lir_shr:  __ sarptr(lo);        break;
  2917       case lir_ushr: __ shrptr(lo);        break;
  2918       default: ShouldNotReachHere();
  2920 #else
  2922     switch (code) {
  2923       case lir_shl:  __ lshl(hi, lo);        break;
  2924       case lir_shr:  __ lshr(hi, lo, true);  break;
  2925       case lir_ushr: __ lshr(hi, lo, false); break;
  2926       default: ShouldNotReachHere();
  2928 #endif // LP64
  2929   } else {
  2930     ShouldNotReachHere();
  2935 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2936   if (dest->is_single_cpu()) {
  2937     // first move left into dest so that left is not destroyed by the shift
  2938     Register value = dest->as_register();
  2939     count = count & 0x1F; // Java spec
  2941     move_regs(left->as_register(), value);
  2942     switch (code) {
  2943       case lir_shl:  __ shll(value, count); break;
  2944       case lir_shr:  __ sarl(value, count); break;
  2945       case lir_ushr: __ shrl(value, count); break;
  2946       default: ShouldNotReachHere();
  2948   } else if (dest->is_double_cpu()) {
  2949 #ifndef _LP64
  2950     Unimplemented();
  2951 #else
  2952     // first move left into dest so that left is not destroyed by the shift
  2953     Register value = dest->as_register_lo();
  2954     count = count & 0x1F; // Java spec
  2956     move_regs(left->as_register_lo(), value);
  2957     switch (code) {
  2958       case lir_shl:  __ shlptr(value, count); break;
  2959       case lir_shr:  __ sarptr(value, count); break;
  2960       case lir_ushr: __ shrptr(value, count); break;
  2961       default: ShouldNotReachHere();
  2963 #endif // _LP64
  2964   } else {
  2965     ShouldNotReachHere();
  2970 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  2971   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2972   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2973   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2974   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  2978 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  2979   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2980   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2981   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2982   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  2986 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  2987   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2988   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2989   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2990   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  2994 // This code replaces a call to arraycopy; no exception may
  2995 // be thrown in this code, they must be thrown in the System.arraycopy
  2996 // activation frame; we could save some checks if this would not be the case
  2997 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2998   ciArrayKlass* default_type = op->expected_type();
  2999   Register src = op->src()->as_register();
  3000   Register dst = op->dst()->as_register();
  3001   Register src_pos = op->src_pos()->as_register();
  3002   Register dst_pos = op->dst_pos()->as_register();
  3003   Register length  = op->length()->as_register();
  3004   Register tmp = op->tmp()->as_register();
  3006   CodeStub* stub = op->stub();
  3007   int flags = op->flags();
  3008   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  3009   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  3011   // if we don't know anything or it's an object array, just go through the generic arraycopy
  3012   if (default_type == NULL) {
  3013     Label done;
  3014     // save outgoing arguments on stack in case call to System.arraycopy is needed
  3015     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  3016     // for interpreter calling conventions. Now we have to do it in new style conventions.
  3017     // For the moment until C1 gets the new register allocator I just force all the
  3018     // args to the right place (except the register args) and then on the back side
  3019     // reload the register args properly if we go slow path. Yuck
  3021     // These are proper for the calling convention
  3023     store_parameter(length, 2);
  3024     store_parameter(dst_pos, 1);
  3025     store_parameter(dst, 0);
  3027     // these are just temporary placements until we need to reload
  3028     store_parameter(src_pos, 3);
  3029     store_parameter(src, 4);
  3030     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  3032     address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  3034     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  3035 #ifdef _LP64
  3036     // The arguments are in java calling convention so we can trivially shift them to C
  3037     // convention
  3038     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3039     __ mov(c_rarg0, j_rarg0);
  3040     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3041     __ mov(c_rarg1, j_rarg1);
  3042     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  3043     __ mov(c_rarg2, j_rarg2);
  3044     assert_different_registers(c_rarg3, j_rarg4);
  3045     __ mov(c_rarg3, j_rarg3);
  3046 #ifdef _WIN64
  3047     // Allocate abi space for args but be sure to keep stack aligned
  3048     __ subptr(rsp, 6*wordSize);
  3049     store_parameter(j_rarg4, 4);
  3050     __ call(RuntimeAddress(entry));
  3051     __ addptr(rsp, 6*wordSize);
  3052 #else
  3053     __ mov(c_rarg4, j_rarg4);
  3054     __ call(RuntimeAddress(entry));
  3055 #endif // _WIN64
  3056 #else
  3057     __ push(length);
  3058     __ push(dst_pos);
  3059     __ push(dst);
  3060     __ push(src_pos);
  3061     __ push(src);
  3062     __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
  3064 #endif // _LP64
  3066     __ cmpl(rax, 0);
  3067     __ jcc(Assembler::equal, *stub->continuation());
  3069     // Reload values from the stack so they are where the stub
  3070     // expects them.
  3071     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3072     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3073     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3074     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3075     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3076     __ jmp(*stub->entry());
  3078     __ bind(*stub->continuation());
  3079     return;
  3082   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3084   int elem_size = type2aelembytes(basic_type);
  3085   int shift_amount;
  3086   Address::ScaleFactor scale;
  3088   switch (elem_size) {
  3089     case 1 :
  3090       shift_amount = 0;
  3091       scale = Address::times_1;
  3092       break;
  3093     case 2 :
  3094       shift_amount = 1;
  3095       scale = Address::times_2;
  3096       break;
  3097     case 4 :
  3098       shift_amount = 2;
  3099       scale = Address::times_4;
  3100       break;
  3101     case 8 :
  3102       shift_amount = 3;
  3103       scale = Address::times_8;
  3104       break;
  3105     default:
  3106       ShouldNotReachHere();
  3109   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3110   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3111   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3112   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3114   // length and pos's are all sign extended at this point on 64bit
  3116   // test for NULL
  3117   if (flags & LIR_OpArrayCopy::src_null_check) {
  3118     __ testptr(src, src);
  3119     __ jcc(Assembler::zero, *stub->entry());
  3121   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3122     __ testptr(dst, dst);
  3123     __ jcc(Assembler::zero, *stub->entry());
  3126   // check if negative
  3127   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3128     __ testl(src_pos, src_pos);
  3129     __ jcc(Assembler::less, *stub->entry());
  3131   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3132     __ testl(dst_pos, dst_pos);
  3133     __ jcc(Assembler::less, *stub->entry());
  3135   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3136     __ testl(length, length);
  3137     __ jcc(Assembler::less, *stub->entry());
  3140   if (flags & LIR_OpArrayCopy::src_range_check) {
  3141     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3142     __ cmpl(tmp, src_length_addr);
  3143     __ jcc(Assembler::above, *stub->entry());
  3145   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3146     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3147     __ cmpl(tmp, dst_length_addr);
  3148     __ jcc(Assembler::above, *stub->entry());
  3151   if (flags & LIR_OpArrayCopy::type_check) {
  3152     __ movptr(tmp, src_klass_addr);
  3153     __ cmpptr(tmp, dst_klass_addr);
  3154     __ jcc(Assembler::notEqual, *stub->entry());
  3157 #ifdef ASSERT
  3158   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3159     // Sanity check the known type with the incoming class.  For the
  3160     // primitive case the types must match exactly with src.klass and
  3161     // dst.klass each exactly matching the default type.  For the
  3162     // object array case, if no type check is needed then either the
  3163     // dst type is exactly the expected type and the src type is a
  3164     // subtype which we can't check or src is the same array as dst
  3165     // but not necessarily exactly of type default_type.
  3166     Label known_ok, halt;
  3167     __ movoop(tmp, default_type->constant_encoding());
  3168     if (basic_type != T_OBJECT) {
  3169       __ cmpptr(tmp, dst_klass_addr);
  3170       __ jcc(Assembler::notEqual, halt);
  3171       __ cmpptr(tmp, src_klass_addr);
  3172       __ jcc(Assembler::equal, known_ok);
  3173     } else {
  3174       __ cmpptr(tmp, dst_klass_addr);
  3175       __ jcc(Assembler::equal, known_ok);
  3176       __ cmpptr(src, dst);
  3177       __ jcc(Assembler::equal, known_ok);
  3179     __ bind(halt);
  3180     __ stop("incorrect type information in arraycopy");
  3181     __ bind(known_ok);
  3183 #endif
  3185   if (shift_amount > 0 && basic_type != T_OBJECT) {
  3186     __ shlptr(length, shift_amount);
  3189 #ifdef _LP64
  3190   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3191   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
  3192   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3193   assert_different_registers(c_rarg1, length);
  3194   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
  3195   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3196   __ mov(c_rarg2, length);
  3198 #else
  3199   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3200   store_parameter(tmp, 0);
  3201   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3202   store_parameter(tmp, 1);
  3203   store_parameter(length, 2);
  3204 #endif // _LP64
  3205   if (basic_type == T_OBJECT) {
  3206     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
  3207   } else {
  3208     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
  3211   __ bind(*stub->continuation());
  3215 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3216   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3217   Register hdr = op->hdr_opr()->as_register();
  3218   Register lock = op->lock_opr()->as_register();
  3219   if (!UseFastLocking) {
  3220     __ jmp(*op->stub()->entry());
  3221   } else if (op->code() == lir_lock) {
  3222     Register scratch = noreg;
  3223     if (UseBiasedLocking) {
  3224       scratch = op->scratch_opr()->as_register();
  3226     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3227     // add debug info for NullPointerException only if one is possible
  3228     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3229     if (op->info() != NULL) {
  3230       add_debug_info_for_null_check(null_check_offset, op->info());
  3232     // done
  3233   } else if (op->code() == lir_unlock) {
  3234     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3235     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3236   } else {
  3237     Unimplemented();
  3239   __ bind(*op->stub()->continuation());
  3243 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3244   ciMethod* method = op->profiled_method();
  3245   int bci          = op->profiled_bci();
  3247   // Update counter for all call types
  3248   ciMethodData* md = method->method_data();
  3249   if (md == NULL) {
  3250     bailout("out of memory building methodDataOop");
  3251     return;
  3253   ciProfileData* data = md->bci_to_data(bci);
  3254   assert(data->is_CounterData(), "need CounterData for calls");
  3255   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3256   Register mdo  = op->mdo()->as_register();
  3257   __ movoop(mdo, md->constant_encoding());
  3258   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3259   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3260   // Perform additional virtual call profiling for invokevirtual and
  3261   // invokeinterface bytecodes
  3262   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3263       Tier1ProfileVirtualCalls) {
  3264     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3265     Register recv = op->recv()->as_register();
  3266     assert_different_registers(mdo, recv);
  3267     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3268     ciKlass* known_klass = op->known_holder();
  3269     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3270       // We know the type that will be seen at this call site; we can
  3271       // statically update the methodDataOop rather than needing to do
  3272       // dynamic tests on the receiver type
  3274       // NOTE: we should probably put a lock around this search to
  3275       // avoid collisions by concurrent compilations
  3276       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3277       uint i;
  3278       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3279         ciKlass* receiver = vc_data->receiver(i);
  3280         if (known_klass->equals(receiver)) {
  3281           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3282           __ addl(data_addr, DataLayout::counter_increment);
  3283           return;
  3287       // Receiver type not found in profile data; select an empty slot
  3289       // Note that this is less efficient than it should be because it
  3290       // always does a write to the receiver part of the
  3291       // VirtualCallData rather than just the first time
  3292       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3293         ciKlass* receiver = vc_data->receiver(i);
  3294         if (receiver == NULL) {
  3295           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3296           __ movoop(recv_addr, known_klass->constant_encoding());
  3297           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3298           __ addl(data_addr, DataLayout::counter_increment);
  3299           return;
  3302     } else {
  3303       __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
  3304       Label update_done;
  3305       uint i;
  3306       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3307         Label next_test;
  3308         // See if the receiver is receiver[n].
  3309         __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
  3310         __ jcc(Assembler::notEqual, next_test);
  3311         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3312         __ addl(data_addr, DataLayout::counter_increment);
  3313         __ jmp(update_done);
  3314         __ bind(next_test);
  3317       // Didn't find receiver; find next empty slot and fill it in
  3318       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3319         Label next_test;
  3320         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3321         __ cmpptr(recv_addr, (int32_t)NULL_WORD);
  3322         __ jcc(Assembler::notEqual, next_test);
  3323         __ movptr(recv_addr, recv);
  3324         __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
  3325         __ jmp(update_done);
  3326         __ bind(next_test);
  3328       // Receiver did not match any saved receiver and there is no empty row for it.
  3329       // Increment total counter to indicate polymorphic case.
  3330       __ addl(counter_addr, DataLayout::counter_increment);
  3332       __ bind(update_done);
  3334   } else {
  3335     // Static call
  3336     __ addl(counter_addr, DataLayout::counter_increment);
  3341 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3342   Unimplemented();
  3346 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3347   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3351 void LIR_Assembler::align_backward_branch_target() {
  3352   __ align(BytesPerWord);
  3356 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3357   if (left->is_single_cpu()) {
  3358     __ negl(left->as_register());
  3359     move_regs(left->as_register(), dest->as_register());
  3361   } else if (left->is_double_cpu()) {
  3362     Register lo = left->as_register_lo();
  3363 #ifdef _LP64
  3364     Register dst = dest->as_register_lo();
  3365     __ movptr(dst, lo);
  3366     __ negptr(dst);
  3367 #else
  3368     Register hi = left->as_register_hi();
  3369     __ lneg(hi, lo);
  3370     if (dest->as_register_lo() == hi) {
  3371       assert(dest->as_register_hi() != lo, "destroying register");
  3372       move_regs(hi, dest->as_register_hi());
  3373       move_regs(lo, dest->as_register_lo());
  3374     } else {
  3375       move_regs(lo, dest->as_register_lo());
  3376       move_regs(hi, dest->as_register_hi());
  3378 #endif // _LP64
  3380   } else if (dest->is_single_xmm()) {
  3381     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3382       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3384     __ xorps(dest->as_xmm_float_reg(),
  3385              ExternalAddress((address)float_signflip_pool));
  3387   } else if (dest->is_double_xmm()) {
  3388     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3389       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3391     __ xorpd(dest->as_xmm_double_reg(),
  3392              ExternalAddress((address)double_signflip_pool));
  3394   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3395     assert(left->fpu() == 0, "arg must be on TOS");
  3396     assert(dest->fpu() == 0, "dest must be TOS");
  3397     __ fchs();
  3399   } else {
  3400     ShouldNotReachHere();
  3405 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3406   assert(addr->is_address() && dest->is_register(), "check");
  3407   Register reg;
  3408   reg = dest->as_pointer_register();
  3409   __ lea(reg, as_Address(addr->as_address_ptr()));
  3414 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3415   assert(!tmp->is_valid(), "don't need temporary");
  3416   __ call(RuntimeAddress(dest));
  3417   if (info != NULL) {
  3418     add_call_info_here(info);
  3423 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3424   assert(type == T_LONG, "only for volatile long fields");
  3426   if (info != NULL) {
  3427     add_debug_info_for_null_check_here(info);
  3430   if (src->is_double_xmm()) {
  3431     if (dest->is_double_cpu()) {
  3432 #ifdef _LP64
  3433       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3434 #else
  3435       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3436       __ psrlq(src->as_xmm_double_reg(), 32);
  3437       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3438 #endif // _LP64
  3439     } else if (dest->is_double_stack()) {
  3440       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3441     } else if (dest->is_address()) {
  3442       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3443     } else {
  3444       ShouldNotReachHere();
  3447   } else if (dest->is_double_xmm()) {
  3448     if (src->is_double_stack()) {
  3449       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3450     } else if (src->is_address()) {
  3451       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3452     } else {
  3453       ShouldNotReachHere();
  3456   } else if (src->is_double_fpu()) {
  3457     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3458     if (dest->is_double_stack()) {
  3459       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3460     } else if (dest->is_address()) {
  3461       __ fistp_d(as_Address(dest->as_address_ptr()));
  3462     } else {
  3463       ShouldNotReachHere();
  3466   } else if (dest->is_double_fpu()) {
  3467     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3468     if (src->is_double_stack()) {
  3469       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3470     } else if (src->is_address()) {
  3471       __ fild_d(as_Address(src->as_address_ptr()));
  3472     } else {
  3473       ShouldNotReachHere();
  3475   } else {
  3476     ShouldNotReachHere();
  3481 void LIR_Assembler::membar() {
  3482   // QQQ sparc TSO uses this,
  3483   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3486 void LIR_Assembler::membar_acquire() {
  3487   // No x86 machines currently require load fences
  3488   // __ load_fence();
  3491 void LIR_Assembler::membar_release() {
  3492   // No x86 machines currently require store fences
  3493   // __ store_fence();
  3496 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3497   assert(result_reg->is_register(), "check");
  3498 #ifdef _LP64
  3499   // __ get_thread(result_reg->as_register_lo());
  3500   __ mov(result_reg->as_register(), r15_thread);
  3501 #else
  3502   __ get_thread(result_reg->as_register());
  3503 #endif // _LP64
  3507 void LIR_Assembler::peephole(LIR_List*) {
  3508   // do nothing for now
  3512 #undef __

mercurial