src/share/vm/runtime/thread.cpp

Wed, 15 Feb 2012 12:32:03 -0800

author
iveresov
date
Wed, 15 Feb 2012 12:32:03 -0800
changeset 3572
cfdfbeac0a5b
parent 3500
0382d2b469b2
child 3559
f1cb6f9cfe21
permissions
-rw-r--r--

7145345: Code cache sweeper must cooperate with safepoints
Summary: Safepoint in the sweeper loop in necessary
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "interpreter/oopMapCache.hpp"
    35 #include "jvmtifiles/jvmtiEnv.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/oopFactory.hpp"
    38 #include "memory/universe.inline.hpp"
    39 #include "oops/instanceKlass.hpp"
    40 #include "oops/objArrayOop.hpp"
    41 #include "oops/oop.inline.hpp"
    42 #include "oops/symbol.hpp"
    43 #include "prims/jvm_misc.hpp"
    44 #include "prims/jvmtiExport.hpp"
    45 #include "prims/jvmtiThreadState.hpp"
    46 #include "prims/privilegedStack.hpp"
    47 #include "runtime/aprofiler.hpp"
    48 #include "runtime/arguments.hpp"
    49 #include "runtime/biasedLocking.hpp"
    50 #include "runtime/deoptimization.hpp"
    51 #include "runtime/fprofiler.hpp"
    52 #include "runtime/frame.inline.hpp"
    53 #include "runtime/init.hpp"
    54 #include "runtime/interfaceSupport.hpp"
    55 #include "runtime/java.hpp"
    56 #include "runtime/javaCalls.hpp"
    57 #include "runtime/jniPeriodicChecker.hpp"
    58 #include "runtime/memprofiler.hpp"
    59 #include "runtime/mutexLocker.hpp"
    60 #include "runtime/objectMonitor.hpp"
    61 #include "runtime/osThread.hpp"
    62 #include "runtime/safepoint.hpp"
    63 #include "runtime/sharedRuntime.hpp"
    64 #include "runtime/statSampler.hpp"
    65 #include "runtime/stubRoutines.hpp"
    66 #include "runtime/task.hpp"
    67 #include "runtime/threadCritical.hpp"
    68 #include "runtime/threadLocalStorage.hpp"
    69 #include "runtime/vframe.hpp"
    70 #include "runtime/vframeArray.hpp"
    71 #include "runtime/vframe_hp.hpp"
    72 #include "runtime/vmThread.hpp"
    73 #include "runtime/vm_operations.hpp"
    74 #include "services/attachListener.hpp"
    75 #include "services/management.hpp"
    76 #include "services/threadService.hpp"
    77 #include "trace/traceEventTypes.hpp"
    78 #include "utilities/defaultStream.hpp"
    79 #include "utilities/dtrace.hpp"
    80 #include "utilities/events.hpp"
    81 #include "utilities/preserveException.hpp"
    82 #ifdef TARGET_OS_FAMILY_linux
    83 # include "os_linux.inline.hpp"
    84 # include "thread_linux.inline.hpp"
    85 #endif
    86 #ifdef TARGET_OS_FAMILY_solaris
    87 # include "os_solaris.inline.hpp"
    88 # include "thread_solaris.inline.hpp"
    89 #endif
    90 #ifdef TARGET_OS_FAMILY_windows
    91 # include "os_windows.inline.hpp"
    92 # include "thread_windows.inline.hpp"
    93 #endif
    94 #ifdef TARGET_OS_FAMILY_bsd
    95 # include "os_bsd.inline.hpp"
    96 # include "thread_bsd.inline.hpp"
    97 #endif
    98 #ifndef SERIALGC
    99 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
   100 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
   101 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
   102 #endif
   103 #ifdef COMPILER1
   104 #include "c1/c1_Compiler.hpp"
   105 #endif
   106 #ifdef COMPILER2
   107 #include "opto/c2compiler.hpp"
   108 #include "opto/idealGraphPrinter.hpp"
   109 #endif
   111 #ifdef DTRACE_ENABLED
   113 // Only bother with this argument setup if dtrace is available
   115 #ifndef USDT2
   116 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   117 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   118 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   119   intptr_t, intptr_t, bool);
   120 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   121   intptr_t, intptr_t, bool);
   123 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   124   {                                                                        \
   125     ResourceMark rm(this);                                                 \
   126     int len = 0;                                                           \
   127     const char* name = (javathread)->get_thread_name();                    \
   128     len = strlen(name);                                                    \
   129     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   130       name, len,                                                           \
   131       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   132       (javathread)->osthread()->thread_id(),                               \
   133       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   134   }
   136 #else /* USDT2 */
   138 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
   139 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
   141 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   142   {                                                                        \
   143     ResourceMark rm(this);                                                 \
   144     int len = 0;                                                           \
   145     const char* name = (javathread)->get_thread_name();                    \
   146     len = strlen(name);                                                    \
   147     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
   148       (char *) name, len,                                                           \
   149       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   150       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
   151       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   152   }
   154 #endif /* USDT2 */
   156 #else //  ndef DTRACE_ENABLED
   158 #define DTRACE_THREAD_PROBE(probe, javathread)
   160 #endif // ndef DTRACE_ENABLED
   162 // Class hierarchy
   163 // - Thread
   164 //   - VMThread
   165 //   - WatcherThread
   166 //   - ConcurrentMarkSweepThread
   167 //   - JavaThread
   168 //     - CompilerThread
   170 // ======= Thread ========
   172 // Support for forcing alignment of thread objects for biased locking
   173 void* Thread::operator new(size_t size) {
   174   if (UseBiasedLocking) {
   175     const int alignment = markOopDesc::biased_lock_alignment;
   176     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   177     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
   178     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   179     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   180            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   181            "JavaThread alignment code overflowed allocated storage");
   182     if (TraceBiasedLocking) {
   183       if (aligned_addr != real_malloc_addr)
   184         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   185                       real_malloc_addr, aligned_addr);
   186     }
   187     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   188     return aligned_addr;
   189   } else {
   190     return CHeapObj::operator new(size);
   191   }
   192 }
   194 void Thread::operator delete(void* p) {
   195   if (UseBiasedLocking) {
   196     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   197     CHeapObj::operator delete(real_malloc_addr);
   198   } else {
   199     CHeapObj::operator delete(p);
   200   }
   201 }
   204 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   205 // JavaThread
   208 Thread::Thread() {
   209   // stack and get_thread
   210   set_stack_base(NULL);
   211   set_stack_size(0);
   212   set_self_raw_id(0);
   213   set_lgrp_id(-1);
   215   // allocated data structures
   216   set_osthread(NULL);
   217   set_resource_area(new ResourceArea());
   218   set_handle_area(new HandleArea(NULL));
   219   set_active_handles(NULL);
   220   set_free_handle_block(NULL);
   221   set_last_handle_mark(NULL);
   223   // This initial value ==> never claimed.
   224   _oops_do_parity = 0;
   226   // the handle mark links itself to last_handle_mark
   227   new HandleMark(this);
   229   // plain initialization
   230   debug_only(_owned_locks = NULL;)
   231   debug_only(_allow_allocation_count = 0;)
   232   NOT_PRODUCT(_allow_safepoint_count = 0;)
   233   NOT_PRODUCT(_skip_gcalot = false;)
   234   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   235   _jvmti_env_iteration_count = 0;
   236   set_allocated_bytes(0);
   237   set_trace_buffer(NULL);
   238   _vm_operation_started_count = 0;
   239   _vm_operation_completed_count = 0;
   240   _current_pending_monitor = NULL;
   241   _current_pending_monitor_is_from_java = true;
   242   _current_waiting_monitor = NULL;
   243   _num_nested_signal = 0;
   244   omFreeList = NULL ;
   245   omFreeCount = 0 ;
   246   omFreeProvision = 32 ;
   247   omInUseList = NULL ;
   248   omInUseCount = 0 ;
   250   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   251   _suspend_flags = 0;
   253   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   254   _hashStateX = os::random() ;
   255   _hashStateY = 842502087 ;
   256   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   257   _hashStateW = 273326509 ;
   259   _OnTrap   = 0 ;
   260   _schedctl = NULL ;
   261   _Stalled  = 0 ;
   262   _TypeTag  = 0x2BAD ;
   264   // Many of the following fields are effectively final - immutable
   265   // Note that nascent threads can't use the Native Monitor-Mutex
   266   // construct until the _MutexEvent is initialized ...
   267   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   268   // we might instead use a stack of ParkEvents that we could provision on-demand.
   269   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   270   // and ::Release()
   271   _ParkEvent   = ParkEvent::Allocate (this) ;
   272   _SleepEvent  = ParkEvent::Allocate (this) ;
   273   _MutexEvent  = ParkEvent::Allocate (this) ;
   274   _MuxEvent    = ParkEvent::Allocate (this) ;
   276 #ifdef CHECK_UNHANDLED_OOPS
   277   if (CheckUnhandledOops) {
   278     _unhandled_oops = new UnhandledOops(this);
   279   }
   280 #endif // CHECK_UNHANDLED_OOPS
   281 #ifdef ASSERT
   282   if (UseBiasedLocking) {
   283     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   284     assert(this == _real_malloc_address ||
   285            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   286            "bug in forced alignment of thread objects");
   287   }
   288 #endif /* ASSERT */
   289 }
   291 void Thread::initialize_thread_local_storage() {
   292   // Note: Make sure this method only calls
   293   // non-blocking operations. Otherwise, it might not work
   294   // with the thread-startup/safepoint interaction.
   296   // During Java thread startup, safepoint code should allow this
   297   // method to complete because it may need to allocate memory to
   298   // store information for the new thread.
   300   // initialize structure dependent on thread local storage
   301   ThreadLocalStorage::set_thread(this);
   303   // set up any platform-specific state.
   304   os::initialize_thread();
   306 }
   308 void Thread::record_stack_base_and_size() {
   309   set_stack_base(os::current_stack_base());
   310   set_stack_size(os::current_stack_size());
   311 }
   314 Thread::~Thread() {
   315   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   316   ObjectSynchronizer::omFlush (this) ;
   318   // deallocate data structures
   319   delete resource_area();
   320   // since the handle marks are using the handle area, we have to deallocated the root
   321   // handle mark before deallocating the thread's handle area,
   322   assert(last_handle_mark() != NULL, "check we have an element");
   323   delete last_handle_mark();
   324   assert(last_handle_mark() == NULL, "check we have reached the end");
   326   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   327   // We NULL out the fields for good hygiene.
   328   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   329   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   330   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   331   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   333   delete handle_area();
   335   // osthread() can be NULL, if creation of thread failed.
   336   if (osthread() != NULL) os::free_thread(osthread());
   338   delete _SR_lock;
   340   // clear thread local storage if the Thread is deleting itself
   341   if (this == Thread::current()) {
   342     ThreadLocalStorage::set_thread(NULL);
   343   } else {
   344     // In the case where we're not the current thread, invalidate all the
   345     // caches in case some code tries to get the current thread or the
   346     // thread that was destroyed, and gets stale information.
   347     ThreadLocalStorage::invalidate_all();
   348   }
   349   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   350 }
   352 // NOTE: dummy function for assertion purpose.
   353 void Thread::run() {
   354   ShouldNotReachHere();
   355 }
   357 #ifdef ASSERT
   358 // Private method to check for dangling thread pointer
   359 void check_for_dangling_thread_pointer(Thread *thread) {
   360  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   361          "possibility of dangling Thread pointer");
   362 }
   363 #endif
   366 #ifndef PRODUCT
   367 // Tracing method for basic thread operations
   368 void Thread::trace(const char* msg, const Thread* const thread) {
   369   if (!TraceThreadEvents) return;
   370   ResourceMark rm;
   371   ThreadCritical tc;
   372   const char *name = "non-Java thread";
   373   int prio = -1;
   374   if (thread->is_Java_thread()
   375       && !thread->is_Compiler_thread()) {
   376     // The Threads_lock must be held to get information about
   377     // this thread but may not be in some situations when
   378     // tracing  thread events.
   379     bool release_Threads_lock = false;
   380     if (!Threads_lock->owned_by_self()) {
   381       Threads_lock->lock();
   382       release_Threads_lock = true;
   383     }
   384     JavaThread* jt = (JavaThread *)thread;
   385     name = (char *)jt->get_thread_name();
   386     oop thread_oop = jt->threadObj();
   387     if (thread_oop != NULL) {
   388       prio = java_lang_Thread::priority(thread_oop);
   389     }
   390     if (release_Threads_lock) {
   391       Threads_lock->unlock();
   392     }
   393   }
   394   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   395 }
   396 #endif
   399 ThreadPriority Thread::get_priority(const Thread* const thread) {
   400   trace("get priority", thread);
   401   ThreadPriority priority;
   402   // Can return an error!
   403   (void)os::get_priority(thread, priority);
   404   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   405   return priority;
   406 }
   408 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   409   trace("set priority", thread);
   410   debug_only(check_for_dangling_thread_pointer(thread);)
   411   // Can return an error!
   412   (void)os::set_priority(thread, priority);
   413 }
   416 void Thread::start(Thread* thread) {
   417   trace("start", thread);
   418   // Start is different from resume in that its safety is guaranteed by context or
   419   // being called from a Java method synchronized on the Thread object.
   420   if (!DisableStartThread) {
   421     if (thread->is_Java_thread()) {
   422       // Initialize the thread state to RUNNABLE before starting this thread.
   423       // Can not set it after the thread started because we do not know the
   424       // exact thread state at that time. It could be in MONITOR_WAIT or
   425       // in SLEEPING or some other state.
   426       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   427                                           java_lang_Thread::RUNNABLE);
   428     }
   429     os::start_thread(thread);
   430   }
   431 }
   433 // Enqueue a VM_Operation to do the job for us - sometime later
   434 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   435   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   436   VMThread::execute(vm_stop);
   437 }
   440 //
   441 // Check if an external suspend request has completed (or has been
   442 // cancelled). Returns true if the thread is externally suspended and
   443 // false otherwise.
   444 //
   445 // The bits parameter returns information about the code path through
   446 // the routine. Useful for debugging:
   447 //
   448 // set in is_ext_suspend_completed():
   449 // 0x00000001 - routine was entered
   450 // 0x00000010 - routine return false at end
   451 // 0x00000100 - thread exited (return false)
   452 // 0x00000200 - suspend request cancelled (return false)
   453 // 0x00000400 - thread suspended (return true)
   454 // 0x00001000 - thread is in a suspend equivalent state (return true)
   455 // 0x00002000 - thread is native and walkable (return true)
   456 // 0x00004000 - thread is native_trans and walkable (needed retry)
   457 //
   458 // set in wait_for_ext_suspend_completion():
   459 // 0x00010000 - routine was entered
   460 // 0x00020000 - suspend request cancelled before loop (return false)
   461 // 0x00040000 - thread suspended before loop (return true)
   462 // 0x00080000 - suspend request cancelled in loop (return false)
   463 // 0x00100000 - thread suspended in loop (return true)
   464 // 0x00200000 - suspend not completed during retry loop (return false)
   465 //
   467 // Helper class for tracing suspend wait debug bits.
   468 //
   469 // 0x00000100 indicates that the target thread exited before it could
   470 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   471 // 0x00080000 each indicate a cancelled suspend request so they don't
   472 // count as wait failures either.
   473 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   475 class TraceSuspendDebugBits : public StackObj {
   476  private:
   477   JavaThread * jt;
   478   bool         is_wait;
   479   bool         called_by_wait;  // meaningful when !is_wait
   480   uint32_t *   bits;
   482  public:
   483   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   484                         uint32_t *_bits) {
   485     jt             = _jt;
   486     is_wait        = _is_wait;
   487     called_by_wait = _called_by_wait;
   488     bits           = _bits;
   489   }
   491   ~TraceSuspendDebugBits() {
   492     if (!is_wait) {
   493 #if 1
   494       // By default, don't trace bits for is_ext_suspend_completed() calls.
   495       // That trace is very chatty.
   496       return;
   497 #else
   498       if (!called_by_wait) {
   499         // If tracing for is_ext_suspend_completed() is enabled, then only
   500         // trace calls to it from wait_for_ext_suspend_completion()
   501         return;
   502       }
   503 #endif
   504     }
   506     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   507       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   508         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   509         ResourceMark rm;
   511         tty->print_cr(
   512             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   513             jt->get_thread_name(), *bits);
   515         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   516       }
   517     }
   518   }
   519 };
   520 #undef DEBUG_FALSE_BITS
   523 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   524   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   526   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   527   bool do_trans_retry;           // flag to force the retry
   529   *bits |= 0x00000001;
   531   do {
   532     do_trans_retry = false;
   534     if (is_exiting()) {
   535       // Thread is in the process of exiting. This is always checked
   536       // first to reduce the risk of dereferencing a freed JavaThread.
   537       *bits |= 0x00000100;
   538       return false;
   539     }
   541     if (!is_external_suspend()) {
   542       // Suspend request is cancelled. This is always checked before
   543       // is_ext_suspended() to reduce the risk of a rogue resume
   544       // confusing the thread that made the suspend request.
   545       *bits |= 0x00000200;
   546       return false;
   547     }
   549     if (is_ext_suspended()) {
   550       // thread is suspended
   551       *bits |= 0x00000400;
   552       return true;
   553     }
   555     // Now that we no longer do hard suspends of threads running
   556     // native code, the target thread can be changing thread state
   557     // while we are in this routine:
   558     //
   559     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   560     //
   561     // We save a copy of the thread state as observed at this moment
   562     // and make our decision about suspend completeness based on the
   563     // copy. This closes the race where the thread state is seen as
   564     // _thread_in_native_trans in the if-thread_blocked check, but is
   565     // seen as _thread_blocked in if-thread_in_native_trans check.
   566     JavaThreadState save_state = thread_state();
   568     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   569       // If the thread's state is _thread_blocked and this blocking
   570       // condition is known to be equivalent to a suspend, then we can
   571       // consider the thread to be externally suspended. This means that
   572       // the code that sets _thread_blocked has been modified to do
   573       // self-suspension if the blocking condition releases. We also
   574       // used to check for CONDVAR_WAIT here, but that is now covered by
   575       // the _thread_blocked with self-suspension check.
   576       //
   577       // Return true since we wouldn't be here unless there was still an
   578       // external suspend request.
   579       *bits |= 0x00001000;
   580       return true;
   581     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   582       // Threads running native code will self-suspend on native==>VM/Java
   583       // transitions. If its stack is walkable (should always be the case
   584       // unless this function is called before the actual java_suspend()
   585       // call), then the wait is done.
   586       *bits |= 0x00002000;
   587       return true;
   588     } else if (!called_by_wait && !did_trans_retry &&
   589                save_state == _thread_in_native_trans &&
   590                frame_anchor()->walkable()) {
   591       // The thread is transitioning from thread_in_native to another
   592       // thread state. check_safepoint_and_suspend_for_native_trans()
   593       // will force the thread to self-suspend. If it hasn't gotten
   594       // there yet we may have caught the thread in-between the native
   595       // code check above and the self-suspend. Lucky us. If we were
   596       // called by wait_for_ext_suspend_completion(), then it
   597       // will be doing the retries so we don't have to.
   598       //
   599       // Since we use the saved thread state in the if-statement above,
   600       // there is a chance that the thread has already transitioned to
   601       // _thread_blocked by the time we get here. In that case, we will
   602       // make a single unnecessary pass through the logic below. This
   603       // doesn't hurt anything since we still do the trans retry.
   605       *bits |= 0x00004000;
   607       // Once the thread leaves thread_in_native_trans for another
   608       // thread state, we break out of this retry loop. We shouldn't
   609       // need this flag to prevent us from getting back here, but
   610       // sometimes paranoia is good.
   611       did_trans_retry = true;
   613       // We wait for the thread to transition to a more usable state.
   614       for (int i = 1; i <= SuspendRetryCount; i++) {
   615         // We used to do an "os::yield_all(i)" call here with the intention
   616         // that yielding would increase on each retry. However, the parameter
   617         // is ignored on Linux which means the yield didn't scale up. Waiting
   618         // on the SR_lock below provides a much more predictable scale up for
   619         // the delay. It also provides a simple/direct point to check for any
   620         // safepoint requests from the VMThread
   622         // temporarily drops SR_lock while doing wait with safepoint check
   623         // (if we're a JavaThread - the WatcherThread can also call this)
   624         // and increase delay with each retry
   625         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   627         // check the actual thread state instead of what we saved above
   628         if (thread_state() != _thread_in_native_trans) {
   629           // the thread has transitioned to another thread state so
   630           // try all the checks (except this one) one more time.
   631           do_trans_retry = true;
   632           break;
   633         }
   634       } // end retry loop
   637     }
   638   } while (do_trans_retry);
   640   *bits |= 0x00000010;
   641   return false;
   642 }
   644 //
   645 // Wait for an external suspend request to complete (or be cancelled).
   646 // Returns true if the thread is externally suspended and false otherwise.
   647 //
   648 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   649        uint32_t *bits) {
   650   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   651                              false /* !called_by_wait */, bits);
   653   // local flag copies to minimize SR_lock hold time
   654   bool is_suspended;
   655   bool pending;
   656   uint32_t reset_bits;
   658   // set a marker so is_ext_suspend_completed() knows we are the caller
   659   *bits |= 0x00010000;
   661   // We use reset_bits to reinitialize the bits value at the top of
   662   // each retry loop. This allows the caller to make use of any
   663   // unused bits for their own marking purposes.
   664   reset_bits = *bits;
   666   {
   667     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   668     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   669                                             delay, bits);
   670     pending = is_external_suspend();
   671   }
   672   // must release SR_lock to allow suspension to complete
   674   if (!pending) {
   675     // A cancelled suspend request is the only false return from
   676     // is_ext_suspend_completed() that keeps us from entering the
   677     // retry loop.
   678     *bits |= 0x00020000;
   679     return false;
   680   }
   682   if (is_suspended) {
   683     *bits |= 0x00040000;
   684     return true;
   685   }
   687   for (int i = 1; i <= retries; i++) {
   688     *bits = reset_bits;  // reinit to only track last retry
   690     // We used to do an "os::yield_all(i)" call here with the intention
   691     // that yielding would increase on each retry. However, the parameter
   692     // is ignored on Linux which means the yield didn't scale up. Waiting
   693     // on the SR_lock below provides a much more predictable scale up for
   694     // the delay. It also provides a simple/direct point to check for any
   695     // safepoint requests from the VMThread
   697     {
   698       MutexLocker ml(SR_lock());
   699       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   700       // can also call this)  and increase delay with each retry
   701       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   703       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   704                                               delay, bits);
   706       // It is possible for the external suspend request to be cancelled
   707       // (by a resume) before the actual suspend operation is completed.
   708       // Refresh our local copy to see if we still need to wait.
   709       pending = is_external_suspend();
   710     }
   712     if (!pending) {
   713       // A cancelled suspend request is the only false return from
   714       // is_ext_suspend_completed() that keeps us from staying in the
   715       // retry loop.
   716       *bits |= 0x00080000;
   717       return false;
   718     }
   720     if (is_suspended) {
   721       *bits |= 0x00100000;
   722       return true;
   723     }
   724   } // end retry loop
   726   // thread did not suspend after all our retries
   727   *bits |= 0x00200000;
   728   return false;
   729 }
   731 #ifndef PRODUCT
   732 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   734   // This should not need to be atomic as the only way for simultaneous
   735   // updates is via interrupts. Even then this should be rare or non-existant
   736   // and we don't care that much anyway.
   738   int index = _jmp_ring_index;
   739   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   740   _jmp_ring[index]._target = (intptr_t) target;
   741   _jmp_ring[index]._instruction = (intptr_t) instr;
   742   _jmp_ring[index]._file = file;
   743   _jmp_ring[index]._line = line;
   744 }
   745 #endif /* PRODUCT */
   747 // Called by flat profiler
   748 // Callers have already called wait_for_ext_suspend_completion
   749 // The assertion for that is currently too complex to put here:
   750 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   751   bool gotframe = false;
   752   // self suspension saves needed state.
   753   if (has_last_Java_frame() && _anchor.walkable()) {
   754      *_fr = pd_last_frame();
   755      gotframe = true;
   756   }
   757   return gotframe;
   758 }
   760 void Thread::interrupt(Thread* thread) {
   761   trace("interrupt", thread);
   762   debug_only(check_for_dangling_thread_pointer(thread);)
   763   os::interrupt(thread);
   764 }
   766 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   767   trace("is_interrupted", thread);
   768   debug_only(check_for_dangling_thread_pointer(thread);)
   769   // Note:  If clear_interrupted==false, this simply fetches and
   770   // returns the value of the field osthread()->interrupted().
   771   return os::is_interrupted(thread, clear_interrupted);
   772 }
   775 // GC Support
   776 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   777   jint thread_parity = _oops_do_parity;
   778   if (thread_parity != strong_roots_parity) {
   779     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   780     if (res == thread_parity) {
   781       return true;
   782     } else {
   783       guarantee(res == strong_roots_parity, "Or else what?");
   784       assert(SharedHeap::heap()->workers()->active_workers() > 0,
   785          "Should only fail when parallel.");
   786       return false;
   787     }
   788   }
   789   assert(SharedHeap::heap()->workers()->active_workers() > 0,
   790          "Should only fail when parallel.");
   791   return false;
   792 }
   794 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   795   active_handles()->oops_do(f);
   796   // Do oop for ThreadShadow
   797   f->do_oop((oop*)&_pending_exception);
   798   handle_area()->oops_do(f);
   799 }
   801 void Thread::nmethods_do(CodeBlobClosure* cf) {
   802   // no nmethods in a generic thread...
   803 }
   805 void Thread::print_on(outputStream* st) const {
   806   // get_priority assumes osthread initialized
   807   if (osthread() != NULL) {
   808     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
   809     osthread()->print_on(st);
   810   }
   811   debug_only(if (WizardMode) print_owned_locks_on(st);)
   812 }
   814 // Thread::print_on_error() is called by fatal error handler. Don't use
   815 // any lock or allocate memory.
   816 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   817   if      (is_VM_thread())                  st->print("VMThread");
   818   else if (is_Compiler_thread())            st->print("CompilerThread");
   819   else if (is_Java_thread())                st->print("JavaThread");
   820   else if (is_GC_task_thread())             st->print("GCTaskThread");
   821   else if (is_Watcher_thread())             st->print("WatcherThread");
   822   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   823   else st->print("Thread");
   825   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   826             _stack_base - _stack_size, _stack_base);
   828   if (osthread()) {
   829     st->print(" [id=%d]", osthread()->thread_id());
   830   }
   831 }
   833 #ifdef ASSERT
   834 void Thread::print_owned_locks_on(outputStream* st) const {
   835   Monitor *cur = _owned_locks;
   836   if (cur == NULL) {
   837     st->print(" (no locks) ");
   838   } else {
   839     st->print_cr(" Locks owned:");
   840     while(cur) {
   841       cur->print_on(st);
   842       cur = cur->next();
   843     }
   844   }
   845 }
   847 static int ref_use_count  = 0;
   849 bool Thread::owns_locks_but_compiled_lock() const {
   850   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   851     if (cur != Compile_lock) return true;
   852   }
   853   return false;
   854 }
   857 #endif
   859 #ifndef PRODUCT
   861 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   862 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   863 // no threads which allow_vm_block's are held
   864 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   865     // Check if current thread is allowed to block at a safepoint
   866     if (!(_allow_safepoint_count == 0))
   867       fatal("Possible safepoint reached by thread that does not allow it");
   868     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   869       fatal("LEAF method calling lock?");
   870     }
   872 #ifdef ASSERT
   873     if (potential_vm_operation && is_Java_thread()
   874         && !Universe::is_bootstrapping()) {
   875       // Make sure we do not hold any locks that the VM thread also uses.
   876       // This could potentially lead to deadlocks
   877       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   878         // Threads_lock is special, since the safepoint synchronization will not start before this is
   879         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   880         // since it is used to transfer control between JavaThreads and the VMThread
   881         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   882         if ( (cur->allow_vm_block() &&
   883               cur != Threads_lock &&
   884               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   885               cur != VMOperationRequest_lock &&
   886               cur != VMOperationQueue_lock) ||
   887               cur->rank() == Mutex::special) {
   888           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   889         }
   890       }
   891     }
   893     if (GCALotAtAllSafepoints) {
   894       // We could enter a safepoint here and thus have a gc
   895       InterfaceSupport::check_gc_alot();
   896     }
   897 #endif
   898 }
   899 #endif
   901 bool Thread::is_in_stack(address adr) const {
   902   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   903   address end = os::current_stack_pointer();
   904   if (stack_base() >= adr && adr >= end) return true;
   906   return false;
   907 }
   910 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   911 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   912 // used for compilation in the future. If that change is made, the need for these methods
   913 // should be revisited, and they should be removed if possible.
   915 bool Thread::is_lock_owned(address adr) const {
   916   return on_local_stack(adr);
   917 }
   919 bool Thread::set_as_starting_thread() {
   920  // NOTE: this must be called inside the main thread.
   921   return os::create_main_thread((JavaThread*)this);
   922 }
   924 static void initialize_class(Symbol* class_name, TRAPS) {
   925   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   926   instanceKlass::cast(klass)->initialize(CHECK);
   927 }
   930 // Creates the initial ThreadGroup
   931 static Handle create_initial_thread_group(TRAPS) {
   932   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
   933   instanceKlassHandle klass (THREAD, k);
   935   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   936   {
   937     JavaValue result(T_VOID);
   938     JavaCalls::call_special(&result,
   939                             system_instance,
   940                             klass,
   941                             vmSymbols::object_initializer_name(),
   942                             vmSymbols::void_method_signature(),
   943                             CHECK_NH);
   944   }
   945   Universe::set_system_thread_group(system_instance());
   947   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   948   {
   949     JavaValue result(T_VOID);
   950     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   951     JavaCalls::call_special(&result,
   952                             main_instance,
   953                             klass,
   954                             vmSymbols::object_initializer_name(),
   955                             vmSymbols::threadgroup_string_void_signature(),
   956                             system_instance,
   957                             string,
   958                             CHECK_NH);
   959   }
   960   return main_instance;
   961 }
   963 // Creates the initial Thread
   964 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
   965   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
   966   instanceKlassHandle klass (THREAD, k);
   967   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
   969   java_lang_Thread::set_thread(thread_oop(), thread);
   970   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   971   thread->set_threadObj(thread_oop());
   973   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
   975   JavaValue result(T_VOID);
   976   JavaCalls::call_special(&result, thread_oop,
   977                                    klass,
   978                                    vmSymbols::object_initializer_name(),
   979                                    vmSymbols::threadgroup_string_void_signature(),
   980                                    thread_group,
   981                                    string,
   982                                    CHECK_NULL);
   983   return thread_oop();
   984 }
   986 static void call_initializeSystemClass(TRAPS) {
   987   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
   988   instanceKlassHandle klass (THREAD, k);
   990   JavaValue result(T_VOID);
   991   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
   992                                          vmSymbols::void_method_signature(), CHECK);
   993 }
   995 // General purpose hook into Java code, run once when the VM is initialized.
   996 // The Java library method itself may be changed independently from the VM.
   997 static void call_postVMInitHook(TRAPS) {
   998   klassOop k = SystemDictionary::PostVMInitHook_klass();
   999   instanceKlassHandle klass (THREAD, k);
  1000   if (klass.not_null()) {
  1001     JavaValue result(T_VOID);
  1002     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
  1003                                            vmSymbols::void_method_signature(),
  1004                                            CHECK);
  1008 static void reset_vm_info_property(TRAPS) {
  1009   // the vm info string
  1010   ResourceMark rm(THREAD);
  1011   const char *vm_info = VM_Version::vm_info_string();
  1013   // java.lang.System class
  1014   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1015   instanceKlassHandle klass (THREAD, k);
  1017   // setProperty arguments
  1018   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  1019   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
  1021   // return value
  1022   JavaValue r(T_OBJECT);
  1024   // public static String setProperty(String key, String value);
  1025   JavaCalls::call_static(&r,
  1026                          klass,
  1027                          vmSymbols::setProperty_name(),
  1028                          vmSymbols::string_string_string_signature(),
  1029                          key_str,
  1030                          value_str,
  1031                          CHECK);
  1035 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1036   assert(thread_group.not_null(), "thread group should be specified");
  1037   assert(threadObj() == NULL, "should only create Java thread object once");
  1039   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  1040   instanceKlassHandle klass (THREAD, k);
  1041   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1043   java_lang_Thread::set_thread(thread_oop(), this);
  1044   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1045   set_threadObj(thread_oop());
  1047   JavaValue result(T_VOID);
  1048   if (thread_name != NULL) {
  1049     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1050     // Thread gets assigned specified name and null target
  1051     JavaCalls::call_special(&result,
  1052                             thread_oop,
  1053                             klass,
  1054                             vmSymbols::object_initializer_name(),
  1055                             vmSymbols::threadgroup_string_void_signature(),
  1056                             thread_group, // Argument 1
  1057                             name,         // Argument 2
  1058                             THREAD);
  1059   } else {
  1060     // Thread gets assigned name "Thread-nnn" and null target
  1061     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1062     JavaCalls::call_special(&result,
  1063                             thread_oop,
  1064                             klass,
  1065                             vmSymbols::object_initializer_name(),
  1066                             vmSymbols::threadgroup_runnable_void_signature(),
  1067                             thread_group, // Argument 1
  1068                             Handle(),     // Argument 2
  1069                             THREAD);
  1073   if (daemon) {
  1074       java_lang_Thread::set_daemon(thread_oop());
  1077   if (HAS_PENDING_EXCEPTION) {
  1078     return;
  1081   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1082   Handle threadObj(this, this->threadObj());
  1084   JavaCalls::call_special(&result,
  1085                          thread_group,
  1086                          group,
  1087                          vmSymbols::add_method_name(),
  1088                          vmSymbols::thread_void_signature(),
  1089                          threadObj,          // Arg 1
  1090                          THREAD);
  1095 // NamedThread --  non-JavaThread subclasses with multiple
  1096 // uniquely named instances should derive from this.
  1097 NamedThread::NamedThread() : Thread() {
  1098   _name = NULL;
  1099   _processed_thread = NULL;
  1102 NamedThread::~NamedThread() {
  1103   if (_name != NULL) {
  1104     FREE_C_HEAP_ARRAY(char, _name);
  1105     _name = NULL;
  1109 void NamedThread::set_name(const char* format, ...) {
  1110   guarantee(_name == NULL, "Only get to set name once.");
  1111   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
  1112   guarantee(_name != NULL, "alloc failure");
  1113   va_list ap;
  1114   va_start(ap, format);
  1115   jio_vsnprintf(_name, max_name_len, format, ap);
  1116   va_end(ap);
  1119 // ======= WatcherThread ========
  1121 // The watcher thread exists to simulate timer interrupts.  It should
  1122 // be replaced by an abstraction over whatever native support for
  1123 // timer interrupts exists on the platform.
  1125 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1126 volatile bool  WatcherThread::_should_terminate = false;
  1128 WatcherThread::WatcherThread() : Thread() {
  1129   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1130   if (os::create_thread(this, os::watcher_thread)) {
  1131     _watcher_thread = this;
  1133     // Set the watcher thread to the highest OS priority which should not be
  1134     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1135     // is created. The only normal thread using this priority is the reference
  1136     // handler thread, which runs for very short intervals only.
  1137     // If the VMThread's priority is not lower than the WatcherThread profiling
  1138     // will be inaccurate.
  1139     os::set_priority(this, MaxPriority);
  1140     if (!DisableStartThread) {
  1141       os::start_thread(this);
  1146 void WatcherThread::run() {
  1147   assert(this == watcher_thread(), "just checking");
  1149   this->record_stack_base_and_size();
  1150   this->initialize_thread_local_storage();
  1151   this->set_active_handles(JNIHandleBlock::allocate_block());
  1152   while(!_should_terminate) {
  1153     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1154     assert(watcher_thread() == this,  "thread consistency check");
  1156     // Calculate how long it'll be until the next PeriodicTask work
  1157     // should be done, and sleep that amount of time.
  1158     size_t time_to_wait = PeriodicTask::time_to_wait();
  1160     // we expect this to timeout - we only ever get unparked when
  1161     // we should terminate
  1163       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1165       jlong prev_time = os::javaTimeNanos();
  1166       for (;;) {
  1167         int res= _SleepEvent->park(time_to_wait);
  1168         if (res == OS_TIMEOUT || _should_terminate)
  1169           break;
  1170         // spurious wakeup of some kind
  1171         jlong now = os::javaTimeNanos();
  1172         time_to_wait -= (now - prev_time) / 1000000;
  1173         if (time_to_wait <= 0)
  1174           break;
  1175         prev_time = now;
  1179     if (is_error_reported()) {
  1180       // A fatal error has happened, the error handler(VMError::report_and_die)
  1181       // should abort JVM after creating an error log file. However in some
  1182       // rare cases, the error handler itself might deadlock. Here we try to
  1183       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1184       //
  1185       // This code is in WatcherThread because WatcherThread wakes up
  1186       // periodically so the fatal error handler doesn't need to do anything;
  1187       // also because the WatcherThread is less likely to crash than other
  1188       // threads.
  1190       for (;;) {
  1191         if (!ShowMessageBoxOnError
  1192          && (OnError == NULL || OnError[0] == '\0')
  1193          && Arguments::abort_hook() == NULL) {
  1194              os::sleep(this, 2 * 60 * 1000, false);
  1195              fdStream err(defaultStream::output_fd());
  1196              err.print_raw_cr("# [ timer expired, abort... ]");
  1197              // skip atexit/vm_exit/vm_abort hooks
  1198              os::die();
  1201         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1202         // ShowMessageBoxOnError when it is ready to abort.
  1203         os::sleep(this, 5 * 1000, false);
  1207     PeriodicTask::real_time_tick(time_to_wait);
  1209     // If we have no more tasks left due to dynamic disenrollment,
  1210     // shut down the thread since we don't currently support dynamic enrollment
  1211     if (PeriodicTask::num_tasks() == 0) {
  1212       _should_terminate = true;
  1216   // Signal that it is terminated
  1218     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1219     _watcher_thread = NULL;
  1220     Terminator_lock->notify();
  1223   // Thread destructor usually does this..
  1224   ThreadLocalStorage::set_thread(NULL);
  1227 void WatcherThread::start() {
  1228   if (watcher_thread() == NULL) {
  1229     _should_terminate = false;
  1230     // Create the single instance of WatcherThread
  1231     new WatcherThread();
  1235 void WatcherThread::stop() {
  1236   // it is ok to take late safepoints here, if needed
  1237   MutexLocker mu(Terminator_lock);
  1238   _should_terminate = true;
  1239   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1241   Thread* watcher = watcher_thread();
  1242   if (watcher != NULL)
  1243     watcher->_SleepEvent->unpark();
  1245   while(watcher_thread() != NULL) {
  1246     // This wait should make safepoint checks, wait without a timeout,
  1247     // and wait as a suspend-equivalent condition.
  1248     //
  1249     // Note: If the FlatProfiler is running, then this thread is waiting
  1250     // for the WatcherThread to terminate and the WatcherThread, via the
  1251     // FlatProfiler task, is waiting for the external suspend request on
  1252     // this thread to complete. wait_for_ext_suspend_completion() will
  1253     // eventually timeout, but that takes time. Making this wait a
  1254     // suspend-equivalent condition solves that timeout problem.
  1255     //
  1256     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1257                           Mutex::_as_suspend_equivalent_flag);
  1261 void WatcherThread::print_on(outputStream* st) const {
  1262   st->print("\"%s\" ", name());
  1263   Thread::print_on(st);
  1264   st->cr();
  1267 // ======= JavaThread ========
  1269 // A JavaThread is a normal Java thread
  1271 void JavaThread::initialize() {
  1272   // Initialize fields
  1274   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1275   set_claimed_par_id(-1);
  1277   set_saved_exception_pc(NULL);
  1278   set_threadObj(NULL);
  1279   _anchor.clear();
  1280   set_entry_point(NULL);
  1281   set_jni_functions(jni_functions());
  1282   set_callee_target(NULL);
  1283   set_vm_result(NULL);
  1284   set_vm_result_2(NULL);
  1285   set_vframe_array_head(NULL);
  1286   set_vframe_array_last(NULL);
  1287   set_deferred_locals(NULL);
  1288   set_deopt_mark(NULL);
  1289   set_deopt_nmethod(NULL);
  1290   clear_must_deopt_id();
  1291   set_monitor_chunks(NULL);
  1292   set_next(NULL);
  1293   set_thread_state(_thread_new);
  1294   _terminated = _not_terminated;
  1295   _privileged_stack_top = NULL;
  1296   _array_for_gc = NULL;
  1297   _suspend_equivalent = false;
  1298   _in_deopt_handler = 0;
  1299   _doing_unsafe_access = false;
  1300   _stack_guard_state = stack_guard_unused;
  1301   _exception_oop = NULL;
  1302   _exception_pc  = 0;
  1303   _exception_handler_pc = 0;
  1304   _is_method_handle_return = 0;
  1305   _jvmti_thread_state= NULL;
  1306   _should_post_on_exceptions_flag = JNI_FALSE;
  1307   _jvmti_get_loaded_classes_closure = NULL;
  1308   _interp_only_mode    = 0;
  1309   _special_runtime_exit_condition = _no_async_condition;
  1310   _pending_async_exception = NULL;
  1311   _is_compiling = false;
  1312   _thread_stat = NULL;
  1313   _thread_stat = new ThreadStatistics();
  1314   _blocked_on_compilation = false;
  1315   _jni_active_critical = 0;
  1316   _do_not_unlock_if_synchronized = false;
  1317   _cached_monitor_info = NULL;
  1318   _parker = Parker::Allocate(this) ;
  1320 #ifndef PRODUCT
  1321   _jmp_ring_index = 0;
  1322   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1323     record_jump(NULL, NULL, NULL, 0);
  1325 #endif /* PRODUCT */
  1327   set_thread_profiler(NULL);
  1328   if (FlatProfiler::is_active()) {
  1329     // This is where we would decide to either give each thread it's own profiler
  1330     // or use one global one from FlatProfiler,
  1331     // or up to some count of the number of profiled threads, etc.
  1332     ThreadProfiler* pp = new ThreadProfiler();
  1333     pp->engage();
  1334     set_thread_profiler(pp);
  1337   // Setup safepoint state info for this thread
  1338   ThreadSafepointState::create(this);
  1340   debug_only(_java_call_counter = 0);
  1342   // JVMTI PopFrame support
  1343   _popframe_condition = popframe_inactive;
  1344   _popframe_preserved_args = NULL;
  1345   _popframe_preserved_args_size = 0;
  1347   pd_initialize();
  1350 #ifndef SERIALGC
  1351 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1352 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1353 #endif // !SERIALGC
  1355 JavaThread::JavaThread(bool is_attaching_via_jni) :
  1356   Thread()
  1357 #ifndef SERIALGC
  1358   , _satb_mark_queue(&_satb_mark_queue_set),
  1359   _dirty_card_queue(&_dirty_card_queue_set)
  1360 #endif // !SERIALGC
  1362   initialize();
  1363   if (is_attaching_via_jni) {
  1364     _jni_attach_state = _attaching_via_jni;
  1365   } else {
  1366     _jni_attach_state = _not_attaching_via_jni;
  1368   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1371 bool JavaThread::reguard_stack(address cur_sp) {
  1372   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1373     return true; // Stack already guarded or guard pages not needed.
  1376   if (register_stack_overflow()) {
  1377     // For those architectures which have separate register and
  1378     // memory stacks, we must check the register stack to see if
  1379     // it has overflowed.
  1380     return false;
  1383   // Java code never executes within the yellow zone: the latter is only
  1384   // there to provoke an exception during stack banging.  If java code
  1385   // is executing there, either StackShadowPages should be larger, or
  1386   // some exception code in c1, c2 or the interpreter isn't unwinding
  1387   // when it should.
  1388   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1390   enable_stack_yellow_zone();
  1391   return true;
  1394 bool JavaThread::reguard_stack(void) {
  1395   return reguard_stack(os::current_stack_pointer());
  1399 void JavaThread::block_if_vm_exited() {
  1400   if (_terminated == _vm_exited) {
  1401     // _vm_exited is set at safepoint, and Threads_lock is never released
  1402     // we will block here forever
  1403     Threads_lock->lock_without_safepoint_check();
  1404     ShouldNotReachHere();
  1409 // Remove this ifdef when C1 is ported to the compiler interface.
  1410 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1412 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1413   Thread()
  1414 #ifndef SERIALGC
  1415   , _satb_mark_queue(&_satb_mark_queue_set),
  1416   _dirty_card_queue(&_dirty_card_queue_set)
  1417 #endif // !SERIALGC
  1419   if (TraceThreadEvents) {
  1420     tty->print_cr("creating thread %p", this);
  1422   initialize();
  1423   _jni_attach_state = _not_attaching_via_jni;
  1424   set_entry_point(entry_point);
  1425   // Create the native thread itself.
  1426   // %note runtime_23
  1427   os::ThreadType thr_type = os::java_thread;
  1428   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1429                                                      os::java_thread;
  1430   os::create_thread(this, thr_type, stack_sz);
  1432   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1433   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1434   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1435   // the exception consists of creating the exception object & initializing it, initialization
  1436   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1437   //
  1438   // The thread is still suspended when we reach here. Thread must be explicit started
  1439   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1440   // by calling Threads:add. The reason why this is not done here, is because the thread
  1441   // object must be fully initialized (take a look at JVM_Start)
  1444 JavaThread::~JavaThread() {
  1445   if (TraceThreadEvents) {
  1446       tty->print_cr("terminate thread %p", this);
  1449   // JSR166 -- return the parker to the free list
  1450   Parker::Release(_parker);
  1451   _parker = NULL ;
  1453   // Free any remaining  previous UnrollBlock
  1454   vframeArray* old_array = vframe_array_last();
  1456   if (old_array != NULL) {
  1457     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1458     old_array->set_unroll_block(NULL);
  1459     delete old_info;
  1460     delete old_array;
  1463   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1464   if (deferred != NULL) {
  1465     // This can only happen if thread is destroyed before deoptimization occurs.
  1466     assert(deferred->length() != 0, "empty array!");
  1467     do {
  1468       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1469       deferred->remove_at(0);
  1470       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1471       delete dlv;
  1472     } while (deferred->length() != 0);
  1473     delete deferred;
  1476   // All Java related clean up happens in exit
  1477   ThreadSafepointState::destroy(this);
  1478   if (_thread_profiler != NULL) delete _thread_profiler;
  1479   if (_thread_stat != NULL) delete _thread_stat;
  1483 // The first routine called by a new Java thread
  1484 void JavaThread::run() {
  1485   // initialize thread-local alloc buffer related fields
  1486   this->initialize_tlab();
  1488   // used to test validitity of stack trace backs
  1489   this->record_base_of_stack_pointer();
  1491   // Record real stack base and size.
  1492   this->record_stack_base_and_size();
  1494   // Initialize thread local storage; set before calling MutexLocker
  1495   this->initialize_thread_local_storage();
  1497   this->create_stack_guard_pages();
  1499   this->cache_global_variables();
  1501   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1502   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1503   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1505   assert(JavaThread::current() == this, "sanity check");
  1506   assert(!Thread::current()->owns_locks(), "sanity check");
  1508   DTRACE_THREAD_PROBE(start, this);
  1510   // This operation might block. We call that after all safepoint checks for a new thread has
  1511   // been completed.
  1512   this->set_active_handles(JNIHandleBlock::allocate_block());
  1514   if (JvmtiExport::should_post_thread_life()) {
  1515     JvmtiExport::post_thread_start(this);
  1518   EVENT_BEGIN(TraceEventThreadStart, event);
  1519   EVENT_COMMIT(event,
  1520      EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
  1522   // We call another function to do the rest so we are sure that the stack addresses used
  1523   // from there will be lower than the stack base just computed
  1524   thread_main_inner();
  1526   // Note, thread is no longer valid at this point!
  1530 void JavaThread::thread_main_inner() {
  1531   assert(JavaThread::current() == this, "sanity check");
  1532   assert(this->threadObj() != NULL, "just checking");
  1534   // Execute thread entry point unless this thread has a pending exception
  1535   // or has been stopped before starting.
  1536   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1537   if (!this->has_pending_exception() &&
  1538       !java_lang_Thread::is_stillborn(this->threadObj())) {
  1540       ResourceMark rm(this);
  1541       this->set_native_thread_name(this->get_thread_name());
  1543     HandleMark hm(this);
  1544     this->entry_point()(this, this);
  1547   DTRACE_THREAD_PROBE(stop, this);
  1549   this->exit(false);
  1550   delete this;
  1554 static void ensure_join(JavaThread* thread) {
  1555   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1556   Handle threadObj(thread, thread->threadObj());
  1557   assert(threadObj.not_null(), "java thread object must exist");
  1558   ObjectLocker lock(threadObj, thread);
  1559   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1560   thread->clear_pending_exception();
  1561   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1562   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1563   // Clear the native thread instance - this makes isAlive return false and allows the join()
  1564   // to complete once we've done the notify_all below
  1565   java_lang_Thread::set_thread(threadObj(), NULL);
  1566   lock.notify_all(thread);
  1567   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1568   thread->clear_pending_exception();
  1572 // For any new cleanup additions, please check to see if they need to be applied to
  1573 // cleanup_failed_attach_current_thread as well.
  1574 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1575   assert(this == JavaThread::current(),  "thread consistency check");
  1576   if (!InitializeJavaLangSystem) return;
  1578   HandleMark hm(this);
  1579   Handle uncaught_exception(this, this->pending_exception());
  1580   this->clear_pending_exception();
  1581   Handle threadObj(this, this->threadObj());
  1582   assert(threadObj.not_null(), "Java thread object should be created");
  1584   if (get_thread_profiler() != NULL) {
  1585     get_thread_profiler()->disengage();
  1586     ResourceMark rm;
  1587     get_thread_profiler()->print(get_thread_name());
  1591   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1593     EXCEPTION_MARK;
  1595     CLEAR_PENDING_EXCEPTION;
  1597   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1598   // has to be fixed by a runtime query method
  1599   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1600     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1601     // java.lang.Thread.dispatchUncaughtException
  1602     if (uncaught_exception.not_null()) {
  1603       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1605         EXCEPTION_MARK;
  1606         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1607         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1608         // so call ThreadGroup.uncaughtException()
  1609         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1610         CallInfo callinfo;
  1611         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1612         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1613                                            vmSymbols::dispatchUncaughtException_name(),
  1614                                            vmSymbols::throwable_void_signature(),
  1615                                            KlassHandle(), false, false, THREAD);
  1616         CLEAR_PENDING_EXCEPTION;
  1617         methodHandle method = callinfo.selected_method();
  1618         if (method.not_null()) {
  1619           JavaValue result(T_VOID);
  1620           JavaCalls::call_virtual(&result,
  1621                                   threadObj, thread_klass,
  1622                                   vmSymbols::dispatchUncaughtException_name(),
  1623                                   vmSymbols::throwable_void_signature(),
  1624                                   uncaught_exception,
  1625                                   THREAD);
  1626         } else {
  1627           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1628           JavaValue result(T_VOID);
  1629           JavaCalls::call_virtual(&result,
  1630                                   group, thread_group,
  1631                                   vmSymbols::uncaughtException_name(),
  1632                                   vmSymbols::thread_throwable_void_signature(),
  1633                                   threadObj,           // Arg 1
  1634                                   uncaught_exception,  // Arg 2
  1635                                   THREAD);
  1637         if (HAS_PENDING_EXCEPTION) {
  1638           ResourceMark rm(this);
  1639           jio_fprintf(defaultStream::error_stream(),
  1640                 "\nException: %s thrown from the UncaughtExceptionHandler"
  1641                 " in thread \"%s\"\n",
  1642                 Klass::cast(pending_exception()->klass())->external_name(),
  1643                 get_thread_name());
  1644           CLEAR_PENDING_EXCEPTION;
  1649     // Called before the java thread exit since we want to read info
  1650     // from java_lang_Thread object
  1651     EVENT_BEGIN(TraceEventThreadEnd, event);
  1652     EVENT_COMMIT(event,
  1653         EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
  1655     // Call after last event on thread
  1656     EVENT_THREAD_EXIT(this);
  1658     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1659     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1660     // is deprecated anyhow.
  1661     { int count = 3;
  1662       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1663         EXCEPTION_MARK;
  1664         JavaValue result(T_VOID);
  1665         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1666         JavaCalls::call_virtual(&result,
  1667                               threadObj, thread_klass,
  1668                               vmSymbols::exit_method_name(),
  1669                               vmSymbols::void_method_signature(),
  1670                               THREAD);
  1671         CLEAR_PENDING_EXCEPTION;
  1675     // notify JVMTI
  1676     if (JvmtiExport::should_post_thread_life()) {
  1677       JvmtiExport::post_thread_end(this);
  1680     // We have notified the agents that we are exiting, before we go on,
  1681     // we must check for a pending external suspend request and honor it
  1682     // in order to not surprise the thread that made the suspend request.
  1683     while (true) {
  1685         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1686         if (!is_external_suspend()) {
  1687           set_terminated(_thread_exiting);
  1688           ThreadService::current_thread_exiting(this);
  1689           break;
  1691         // Implied else:
  1692         // Things get a little tricky here. We have a pending external
  1693         // suspend request, but we are holding the SR_lock so we
  1694         // can't just self-suspend. So we temporarily drop the lock
  1695         // and then self-suspend.
  1698       ThreadBlockInVM tbivm(this);
  1699       java_suspend_self();
  1701       // We're done with this suspend request, but we have to loop around
  1702       // and check again. Eventually we will get SR_lock without a pending
  1703       // external suspend request and will be able to mark ourselves as
  1704       // exiting.
  1706     // no more external suspends are allowed at this point
  1707   } else {
  1708     // before_exit() has already posted JVMTI THREAD_END events
  1711   // Notify waiters on thread object. This has to be done after exit() is called
  1712   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1713   // group should have the destroyed bit set before waiters are notified).
  1714   ensure_join(this);
  1715   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1717   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1718   // held by this thread must be released.  A detach operation must only
  1719   // get here if there are no Java frames on the stack.  Therefore, any
  1720   // owned monitors at this point MUST be JNI-acquired monitors which are
  1721   // pre-inflated and in the monitor cache.
  1722   //
  1723   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1724   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1725     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1726     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1727     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1730   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1731   // is in a consistent state, in case GC happens
  1732   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1734   if (active_handles() != NULL) {
  1735     JNIHandleBlock* block = active_handles();
  1736     set_active_handles(NULL);
  1737     JNIHandleBlock::release_block(block);
  1740   if (free_handle_block() != NULL) {
  1741     JNIHandleBlock* block = free_handle_block();
  1742     set_free_handle_block(NULL);
  1743     JNIHandleBlock::release_block(block);
  1746   // These have to be removed while this is still a valid thread.
  1747   remove_stack_guard_pages();
  1749   if (UseTLAB) {
  1750     tlab().make_parsable(true);  // retire TLAB
  1753   if (JvmtiEnv::environments_might_exist()) {
  1754     JvmtiExport::cleanup_thread(this);
  1757 #ifndef SERIALGC
  1758   // We must flush G1-related buffers before removing a thread from
  1759   // the list of active threads.
  1760   if (UseG1GC) {
  1761     flush_barrier_queues();
  1763 #endif
  1765   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1766   Threads::remove(this);
  1769 #ifndef SERIALGC
  1770 // Flush G1-related queues.
  1771 void JavaThread::flush_barrier_queues() {
  1772   satb_mark_queue().flush();
  1773   dirty_card_queue().flush();
  1776 void JavaThread::initialize_queues() {
  1777   assert(!SafepointSynchronize::is_at_safepoint(),
  1778          "we should not be at a safepoint");
  1780   ObjPtrQueue& satb_queue = satb_mark_queue();
  1781   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1782   // The SATB queue should have been constructed with its active
  1783   // field set to false.
  1784   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1785   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1786   // If we are creating the thread during a marking cycle, we should
  1787   // set the active field of the SATB queue to true.
  1788   if (satb_queue_set.is_active()) {
  1789     satb_queue.set_active(true);
  1792   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1793   // The dirty card queue should have been constructed with its
  1794   // active field set to true.
  1795   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1797 #endif // !SERIALGC
  1799 void JavaThread::cleanup_failed_attach_current_thread() {
  1800   if (get_thread_profiler() != NULL) {
  1801     get_thread_profiler()->disengage();
  1802     ResourceMark rm;
  1803     get_thread_profiler()->print(get_thread_name());
  1806   if (active_handles() != NULL) {
  1807     JNIHandleBlock* block = active_handles();
  1808     set_active_handles(NULL);
  1809     JNIHandleBlock::release_block(block);
  1812   if (free_handle_block() != NULL) {
  1813     JNIHandleBlock* block = free_handle_block();
  1814     set_free_handle_block(NULL);
  1815     JNIHandleBlock::release_block(block);
  1818   // These have to be removed while this is still a valid thread.
  1819   remove_stack_guard_pages();
  1821   if (UseTLAB) {
  1822     tlab().make_parsable(true);  // retire TLAB, if any
  1825 #ifndef SERIALGC
  1826   if (UseG1GC) {
  1827     flush_barrier_queues();
  1829 #endif
  1831   Threads::remove(this);
  1832   delete this;
  1838 JavaThread* JavaThread::active() {
  1839   Thread* thread = ThreadLocalStorage::thread();
  1840   assert(thread != NULL, "just checking");
  1841   if (thread->is_Java_thread()) {
  1842     return (JavaThread*) thread;
  1843   } else {
  1844     assert(thread->is_VM_thread(), "this must be a vm thread");
  1845     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1846     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1847     assert(ret->is_Java_thread(), "must be a Java thread");
  1848     return ret;
  1852 bool JavaThread::is_lock_owned(address adr) const {
  1853   if (Thread::is_lock_owned(adr)) return true;
  1855   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  1856     if (chunk->contains(adr)) return true;
  1859   return false;
  1863 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  1864   chunk->set_next(monitor_chunks());
  1865   set_monitor_chunks(chunk);
  1868 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  1869   guarantee(monitor_chunks() != NULL, "must be non empty");
  1870   if (monitor_chunks() == chunk) {
  1871     set_monitor_chunks(chunk->next());
  1872   } else {
  1873     MonitorChunk* prev = monitor_chunks();
  1874     while (prev->next() != chunk) prev = prev->next();
  1875     prev->set_next(chunk->next());
  1879 // JVM support.
  1881 // Note: this function shouldn't block if it's called in
  1882 // _thread_in_native_trans state (such as from
  1883 // check_special_condition_for_native_trans()).
  1884 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  1886   if (has_last_Java_frame() && has_async_condition()) {
  1887     // If we are at a polling page safepoint (not a poll return)
  1888     // then we must defer async exception because live registers
  1889     // will be clobbered by the exception path. Poll return is
  1890     // ok because the call we a returning from already collides
  1891     // with exception handling registers and so there is no issue.
  1892     // (The exception handling path kills call result registers but
  1893     //  this is ok since the exception kills the result anyway).
  1895     if (is_at_poll_safepoint()) {
  1896       // if the code we are returning to has deoptimized we must defer
  1897       // the exception otherwise live registers get clobbered on the
  1898       // exception path before deoptimization is able to retrieve them.
  1899       //
  1900       RegisterMap map(this, false);
  1901       frame caller_fr = last_frame().sender(&map);
  1902       assert(caller_fr.is_compiled_frame(), "what?");
  1903       if (caller_fr.is_deoptimized_frame()) {
  1904         if (TraceExceptions) {
  1905           ResourceMark rm;
  1906           tty->print_cr("deferred async exception at compiled safepoint");
  1908         return;
  1913   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  1914   if (condition == _no_async_condition) {
  1915     // Conditions have changed since has_special_runtime_exit_condition()
  1916     // was called:
  1917     // - if we were here only because of an external suspend request,
  1918     //   then that was taken care of above (or cancelled) so we are done
  1919     // - if we were here because of another async request, then it has
  1920     //   been cleared between the has_special_runtime_exit_condition()
  1921     //   and now so again we are done
  1922     return;
  1925   // Check for pending async. exception
  1926   if (_pending_async_exception != NULL) {
  1927     // Only overwrite an already pending exception, if it is not a threadDeath.
  1928     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  1930       // We cannot call Exceptions::_throw(...) here because we cannot block
  1931       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  1933       if (TraceExceptions) {
  1934         ResourceMark rm;
  1935         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  1936         if (has_last_Java_frame() ) {
  1937           frame f = last_frame();
  1938           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  1940         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1942       _pending_async_exception = NULL;
  1943       clear_has_async_exception();
  1947   if (check_unsafe_error &&
  1948       condition == _async_unsafe_access_error && !has_pending_exception()) {
  1949     condition = _no_async_condition;  // done
  1950     switch (thread_state()) {
  1951     case _thread_in_vm:
  1953         JavaThread* THREAD = this;
  1954         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1956     case _thread_in_native:
  1958         ThreadInVMfromNative tiv(this);
  1959         JavaThread* THREAD = this;
  1960         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1962     case _thread_in_Java:
  1964         ThreadInVMfromJava tiv(this);
  1965         JavaThread* THREAD = this;
  1966         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  1968     default:
  1969       ShouldNotReachHere();
  1973   assert(condition == _no_async_condition || has_pending_exception() ||
  1974          (!check_unsafe_error && condition == _async_unsafe_access_error),
  1975          "must have handled the async condition, if no exception");
  1978 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  1979   //
  1980   // Check for pending external suspend. Internal suspend requests do
  1981   // not use handle_special_runtime_exit_condition().
  1982   // If JNIEnv proxies are allowed, don't self-suspend if the target
  1983   // thread is not the current thread. In older versions of jdbx, jdbx
  1984   // threads could call into the VM with another thread's JNIEnv so we
  1985   // can be here operating on behalf of a suspended thread (4432884).
  1986   bool do_self_suspend = is_external_suspend_with_lock();
  1987   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  1988     //
  1989     // Because thread is external suspended the safepoint code will count
  1990     // thread as at a safepoint. This can be odd because we can be here
  1991     // as _thread_in_Java which would normally transition to _thread_blocked
  1992     // at a safepoint. We would like to mark the thread as _thread_blocked
  1993     // before calling java_suspend_self like all other callers of it but
  1994     // we must then observe proper safepoint protocol. (We can't leave
  1995     // _thread_blocked with a safepoint in progress). However we can be
  1996     // here as _thread_in_native_trans so we can't use a normal transition
  1997     // constructor/destructor pair because they assert on that type of
  1998     // transition. We could do something like:
  1999     //
  2000     // JavaThreadState state = thread_state();
  2001     // set_thread_state(_thread_in_vm);
  2002     // {
  2003     //   ThreadBlockInVM tbivm(this);
  2004     //   java_suspend_self()
  2005     // }
  2006     // set_thread_state(_thread_in_vm_trans);
  2007     // if (safepoint) block;
  2008     // set_thread_state(state);
  2009     //
  2010     // but that is pretty messy. Instead we just go with the way the
  2011     // code has worked before and note that this is the only path to
  2012     // java_suspend_self that doesn't put the thread in _thread_blocked
  2013     // mode.
  2015     frame_anchor()->make_walkable(this);
  2016     java_suspend_self();
  2018     // We might be here for reasons in addition to the self-suspend request
  2019     // so check for other async requests.
  2022   if (check_asyncs) {
  2023     check_and_handle_async_exceptions();
  2027 void JavaThread::send_thread_stop(oop java_throwable)  {
  2028   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  2029   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  2030   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  2032   // Do not throw asynchronous exceptions against the compiler thread
  2033   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  2034   if (is_Compiler_thread()) return;
  2037     // Actually throw the Throwable against the target Thread - however
  2038     // only if there is no thread death exception installed already.
  2039     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  2040       // If the topmost frame is a runtime stub, then we are calling into
  2041       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  2042       // must deoptimize the caller before continuing, as the compiled  exception handler table
  2043       // may not be valid
  2044       if (has_last_Java_frame()) {
  2045         frame f = last_frame();
  2046         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2047           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2048           RegisterMap reg_map(this, UseBiasedLocking);
  2049           frame compiled_frame = f.sender(&reg_map);
  2050           if (compiled_frame.can_be_deoptimized()) {
  2051             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2056       // Set async. pending exception in thread.
  2057       set_pending_async_exception(java_throwable);
  2059       if (TraceExceptions) {
  2060        ResourceMark rm;
  2061        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  2063       // for AbortVMOnException flag
  2064       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2069   // Interrupt thread so it will wake up from a potential wait()
  2070   Thread::interrupt(this);
  2073 // External suspension mechanism.
  2074 //
  2075 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2076 // to any VM_locks and it is at a transition
  2077 // Self-suspension will happen on the transition out of the vm.
  2078 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2079 //
  2080 // Guarantees on return:
  2081 //   + Target thread will not execute any new bytecode (that's why we need to
  2082 //     force a safepoint)
  2083 //   + Target thread will not enter any new monitors
  2084 //
  2085 void JavaThread::java_suspend() {
  2086   { MutexLocker mu(Threads_lock);
  2087     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2088        return;
  2092   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2093     if (!is_external_suspend()) {
  2094       // a racing resume has cancelled us; bail out now
  2095       return;
  2098     // suspend is done
  2099     uint32_t debug_bits = 0;
  2100     // Warning: is_ext_suspend_completed() may temporarily drop the
  2101     // SR_lock to allow the thread to reach a stable thread state if
  2102     // it is currently in a transient thread state.
  2103     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2104                                  SuspendRetryDelay, &debug_bits) ) {
  2105       return;
  2109   VM_ForceSafepoint vm_suspend;
  2110   VMThread::execute(&vm_suspend);
  2113 // Part II of external suspension.
  2114 // A JavaThread self suspends when it detects a pending external suspend
  2115 // request. This is usually on transitions. It is also done in places
  2116 // where continuing to the next transition would surprise the caller,
  2117 // e.g., monitor entry.
  2118 //
  2119 // Returns the number of times that the thread self-suspended.
  2120 //
  2121 // Note: DO NOT call java_suspend_self() when you just want to block current
  2122 //       thread. java_suspend_self() is the second stage of cooperative
  2123 //       suspension for external suspend requests and should only be used
  2124 //       to complete an external suspend request.
  2125 //
  2126 int JavaThread::java_suspend_self() {
  2127   int ret = 0;
  2129   // we are in the process of exiting so don't suspend
  2130   if (is_exiting()) {
  2131      clear_external_suspend();
  2132      return ret;
  2135   assert(_anchor.walkable() ||
  2136     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2137     "must have walkable stack");
  2139   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2141   assert(!this->is_ext_suspended(),
  2142     "a thread trying to self-suspend should not already be suspended");
  2144   if (this->is_suspend_equivalent()) {
  2145     // If we are self-suspending as a result of the lifting of a
  2146     // suspend equivalent condition, then the suspend_equivalent
  2147     // flag is not cleared until we set the ext_suspended flag so
  2148     // that wait_for_ext_suspend_completion() returns consistent
  2149     // results.
  2150     this->clear_suspend_equivalent();
  2153   // A racing resume may have cancelled us before we grabbed SR_lock
  2154   // above. Or another external suspend request could be waiting for us
  2155   // by the time we return from SR_lock()->wait(). The thread
  2156   // that requested the suspension may already be trying to walk our
  2157   // stack and if we return now, we can change the stack out from under
  2158   // it. This would be a "bad thing (TM)" and cause the stack walker
  2159   // to crash. We stay self-suspended until there are no more pending
  2160   // external suspend requests.
  2161   while (is_external_suspend()) {
  2162     ret++;
  2163     this->set_ext_suspended();
  2165     // _ext_suspended flag is cleared by java_resume()
  2166     while (is_ext_suspended()) {
  2167       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2171   return ret;
  2174 #ifdef ASSERT
  2175 // verify the JavaThread has not yet been published in the Threads::list, and
  2176 // hence doesn't need protection from concurrent access at this stage
  2177 void JavaThread::verify_not_published() {
  2178   if (!Threads_lock->owned_by_self()) {
  2179    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2180    assert( !Threads::includes(this),
  2181            "java thread shouldn't have been published yet!");
  2183   else {
  2184    assert( !Threads::includes(this),
  2185            "java thread shouldn't have been published yet!");
  2188 #endif
  2190 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2191 // progress or when _suspend_flags is non-zero.
  2192 // Current thread needs to self-suspend if there is a suspend request and/or
  2193 // block if a safepoint is in progress.
  2194 // Async exception ISN'T checked.
  2195 // Note only the ThreadInVMfromNative transition can call this function
  2196 // directly and when thread state is _thread_in_native_trans
  2197 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2198   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2200   JavaThread *curJT = JavaThread::current();
  2201   bool do_self_suspend = thread->is_external_suspend();
  2203   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2205   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2206   // thread is not the current thread. In older versions of jdbx, jdbx
  2207   // threads could call into the VM with another thread's JNIEnv so we
  2208   // can be here operating on behalf of a suspended thread (4432884).
  2209   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2210     JavaThreadState state = thread->thread_state();
  2212     // We mark this thread_blocked state as a suspend-equivalent so
  2213     // that a caller to is_ext_suspend_completed() won't be confused.
  2214     // The suspend-equivalent state is cleared by java_suspend_self().
  2215     thread->set_suspend_equivalent();
  2217     // If the safepoint code sees the _thread_in_native_trans state, it will
  2218     // wait until the thread changes to other thread state. There is no
  2219     // guarantee on how soon we can obtain the SR_lock and complete the
  2220     // self-suspend request. It would be a bad idea to let safepoint wait for
  2221     // too long. Temporarily change the state to _thread_blocked to
  2222     // let the VM thread know that this thread is ready for GC. The problem
  2223     // of changing thread state is that safepoint could happen just after
  2224     // java_suspend_self() returns after being resumed, and VM thread will
  2225     // see the _thread_blocked state. We must check for safepoint
  2226     // after restoring the state and make sure we won't leave while a safepoint
  2227     // is in progress.
  2228     thread->set_thread_state(_thread_blocked);
  2229     thread->java_suspend_self();
  2230     thread->set_thread_state(state);
  2231     // Make sure new state is seen by VM thread
  2232     if (os::is_MP()) {
  2233       if (UseMembar) {
  2234         // Force a fence between the write above and read below
  2235         OrderAccess::fence();
  2236       } else {
  2237         // Must use this rather than serialization page in particular on Windows
  2238         InterfaceSupport::serialize_memory(thread);
  2243   if (SafepointSynchronize::do_call_back()) {
  2244     // If we are safepointing, then block the caller which may not be
  2245     // the same as the target thread (see above).
  2246     SafepointSynchronize::block(curJT);
  2249   if (thread->is_deopt_suspend()) {
  2250     thread->clear_deopt_suspend();
  2251     RegisterMap map(thread, false);
  2252     frame f = thread->last_frame();
  2253     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2254       f = f.sender(&map);
  2256     if (f.id() == thread->must_deopt_id()) {
  2257       thread->clear_must_deopt_id();
  2258       f.deoptimize(thread);
  2259     } else {
  2260       fatal("missed deoptimization!");
  2265 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2266 // progress or when _suspend_flags is non-zero.
  2267 // Current thread needs to self-suspend if there is a suspend request and/or
  2268 // block if a safepoint is in progress.
  2269 // Also check for pending async exception (not including unsafe access error).
  2270 // Note only the native==>VM/Java barriers can call this function and when
  2271 // thread state is _thread_in_native_trans.
  2272 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2273   check_safepoint_and_suspend_for_native_trans(thread);
  2275   if (thread->has_async_exception()) {
  2276     // We are in _thread_in_native_trans state, don't handle unsafe
  2277     // access error since that may block.
  2278     thread->check_and_handle_async_exceptions(false);
  2282 // This is a variant of the normal
  2283 // check_special_condition_for_native_trans with slightly different
  2284 // semantics for use by critical native wrappers.  It does all the
  2285 // normal checks but also performs the transition back into
  2286 // thread_in_Java state.  This is required so that critical natives
  2287 // can potentially block and perform a GC if they are the last thread
  2288 // exiting the GC_locker.
  2289 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
  2290   check_special_condition_for_native_trans(thread);
  2292   // Finish the transition
  2293   thread->set_thread_state(_thread_in_Java);
  2295   if (thread->do_critical_native_unlock()) {
  2296     ThreadInVMfromJavaNoAsyncException tiv(thread);
  2297     GC_locker::unlock_critical(thread);
  2298     thread->clear_critical_native_unlock();
  2302 // We need to guarantee the Threads_lock here, since resumes are not
  2303 // allowed during safepoint synchronization
  2304 // Can only resume from an external suspension
  2305 void JavaThread::java_resume() {
  2306   assert_locked_or_safepoint(Threads_lock);
  2308   // Sanity check: thread is gone, has started exiting or the thread
  2309   // was not externally suspended.
  2310   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2311     return;
  2314   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2316   clear_external_suspend();
  2318   if (is_ext_suspended()) {
  2319     clear_ext_suspended();
  2320     SR_lock()->notify_all();
  2324 void JavaThread::create_stack_guard_pages() {
  2325   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2326   address low_addr = stack_base() - stack_size();
  2327   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2329   int allocate = os::allocate_stack_guard_pages();
  2330   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2332   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2333     warning("Attempt to allocate stack guard pages failed.");
  2334     return;
  2337   if (os::guard_memory((char *) low_addr, len)) {
  2338     _stack_guard_state = stack_guard_enabled;
  2339   } else {
  2340     warning("Attempt to protect stack guard pages failed.");
  2341     if (os::uncommit_memory((char *) low_addr, len)) {
  2342       warning("Attempt to deallocate stack guard pages failed.");
  2347 void JavaThread::remove_stack_guard_pages() {
  2348   if (_stack_guard_state == stack_guard_unused) return;
  2349   address low_addr = stack_base() - stack_size();
  2350   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2352   if (os::allocate_stack_guard_pages()) {
  2353     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2354       _stack_guard_state = stack_guard_unused;
  2355     } else {
  2356       warning("Attempt to deallocate stack guard pages failed.");
  2358   } else {
  2359     if (_stack_guard_state == stack_guard_unused) return;
  2360     if (os::unguard_memory((char *) low_addr, len)) {
  2361       _stack_guard_state = stack_guard_unused;
  2362     } else {
  2363         warning("Attempt to unprotect stack guard pages failed.");
  2368 void JavaThread::enable_stack_yellow_zone() {
  2369   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2370   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2372   // The base notation is from the stacks point of view, growing downward.
  2373   // We need to adjust it to work correctly with guard_memory()
  2374   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2376   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2377   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2379   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2380     _stack_guard_state = stack_guard_enabled;
  2381   } else {
  2382     warning("Attempt to guard stack yellow zone failed.");
  2384   enable_register_stack_guard();
  2387 void JavaThread::disable_stack_yellow_zone() {
  2388   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2389   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2391   // Simply return if called for a thread that does not use guard pages.
  2392   if (_stack_guard_state == stack_guard_unused) return;
  2394   // The base notation is from the stacks point of view, growing downward.
  2395   // We need to adjust it to work correctly with guard_memory()
  2396   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2398   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2399     _stack_guard_state = stack_guard_yellow_disabled;
  2400   } else {
  2401     warning("Attempt to unguard stack yellow zone failed.");
  2403   disable_register_stack_guard();
  2406 void JavaThread::enable_stack_red_zone() {
  2407   // The base notation is from the stacks point of view, growing downward.
  2408   // We need to adjust it to work correctly with guard_memory()
  2409   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2410   address base = stack_red_zone_base() - stack_red_zone_size();
  2412   guarantee(base < stack_base(),"Error calculating stack red zone");
  2413   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2415   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2416     warning("Attempt to guard stack red zone failed.");
  2420 void JavaThread::disable_stack_red_zone() {
  2421   // The base notation is from the stacks point of view, growing downward.
  2422   // We need to adjust it to work correctly with guard_memory()
  2423   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2424   address base = stack_red_zone_base() - stack_red_zone_size();
  2425   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2426     warning("Attempt to unguard stack red zone failed.");
  2430 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2431   // ignore is there is no stack
  2432   if (!has_last_Java_frame()) return;
  2433   // traverse the stack frames. Starts from top frame.
  2434   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2435     frame* fr = fst.current();
  2436     f(fr, fst.register_map());
  2441 #ifndef PRODUCT
  2442 // Deoptimization
  2443 // Function for testing deoptimization
  2444 void JavaThread::deoptimize() {
  2445   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2446   StackFrameStream fst(this, UseBiasedLocking);
  2447   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2448   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2449   // Iterate over all frames in the thread and deoptimize
  2450   for(; !fst.is_done(); fst.next()) {
  2451     if(fst.current()->can_be_deoptimized()) {
  2453       if (only_at) {
  2454         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2455         // consists of comma or carriage return separated numbers so
  2456         // search for the current bci in that string.
  2457         address pc = fst.current()->pc();
  2458         nmethod* nm =  (nmethod*) fst.current()->cb();
  2459         ScopeDesc* sd = nm->scope_desc_at( pc);
  2460         char buffer[8];
  2461         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2462         size_t len = strlen(buffer);
  2463         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2464         while (found != NULL) {
  2465           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2466               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2467             // Check that the bci found is bracketed by terminators.
  2468             break;
  2470           found = strstr(found + 1, buffer);
  2472         if (!found) {
  2473           continue;
  2477       if (DebugDeoptimization && !deopt) {
  2478         deopt = true; // One-time only print before deopt
  2479         tty->print_cr("[BEFORE Deoptimization]");
  2480         trace_frames();
  2481         trace_stack();
  2483       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2487   if (DebugDeoptimization && deopt) {
  2488     tty->print_cr("[AFTER Deoptimization]");
  2489     trace_frames();
  2494 // Make zombies
  2495 void JavaThread::make_zombies() {
  2496   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2497     if (fst.current()->can_be_deoptimized()) {
  2498       // it is a Java nmethod
  2499       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2500       nm->make_not_entrant();
  2504 #endif // PRODUCT
  2507 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2508   if (!has_last_Java_frame()) return;
  2509   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2510   StackFrameStream fst(this, UseBiasedLocking);
  2511   for(; !fst.is_done(); fst.next()) {
  2512     if (fst.current()->should_be_deoptimized()) {
  2513       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2519 // GC support
  2520 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2522 void JavaThread::gc_epilogue() {
  2523   frames_do(frame_gc_epilogue);
  2527 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2529 void JavaThread::gc_prologue() {
  2530   frames_do(frame_gc_prologue);
  2533 // If the caller is a NamedThread, then remember, in the current scope,
  2534 // the given JavaThread in its _processed_thread field.
  2535 class RememberProcessedThread: public StackObj {
  2536   NamedThread* _cur_thr;
  2537 public:
  2538   RememberProcessedThread(JavaThread* jthr) {
  2539     Thread* thread = Thread::current();
  2540     if (thread->is_Named_thread()) {
  2541       _cur_thr = (NamedThread *)thread;
  2542       _cur_thr->set_processed_thread(jthr);
  2543     } else {
  2544       _cur_thr = NULL;
  2548   ~RememberProcessedThread() {
  2549     if (_cur_thr) {
  2550       _cur_thr->set_processed_thread(NULL);
  2553 };
  2555 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2556   // Verify that the deferred card marks have been flushed.
  2557   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2559   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2560   // since there may be more than one thread using each ThreadProfiler.
  2562   // Traverse the GCHandles
  2563   Thread::oops_do(f, cf);
  2565   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2566           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2568   if (has_last_Java_frame()) {
  2569     // Record JavaThread to GC thread
  2570     RememberProcessedThread rpt(this);
  2572     // Traverse the privileged stack
  2573     if (_privileged_stack_top != NULL) {
  2574       _privileged_stack_top->oops_do(f);
  2577     // traverse the registered growable array
  2578     if (_array_for_gc != NULL) {
  2579       for (int index = 0; index < _array_for_gc->length(); index++) {
  2580         f->do_oop(_array_for_gc->adr_at(index));
  2584     // Traverse the monitor chunks
  2585     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2586       chunk->oops_do(f);
  2589     // Traverse the execution stack
  2590     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2591       fst.current()->oops_do(f, cf, fst.register_map());
  2595   // callee_target is never live across a gc point so NULL it here should
  2596   // it still contain a methdOop.
  2598   set_callee_target(NULL);
  2600   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2601   // If we have deferred set_locals there might be oops waiting to be
  2602   // written
  2603   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2604   if (list != NULL) {
  2605     for (int i = 0; i < list->length(); i++) {
  2606       list->at(i)->oops_do(f);
  2610   // Traverse instance variables at the end since the GC may be moving things
  2611   // around using this function
  2612   f->do_oop((oop*) &_threadObj);
  2613   f->do_oop((oop*) &_vm_result);
  2614   f->do_oop((oop*) &_vm_result_2);
  2615   f->do_oop((oop*) &_exception_oop);
  2616   f->do_oop((oop*) &_pending_async_exception);
  2618   if (jvmti_thread_state() != NULL) {
  2619     jvmti_thread_state()->oops_do(f);
  2623 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2624   Thread::nmethods_do(cf);  // (super method is a no-op)
  2626   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2627           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2629   if (has_last_Java_frame()) {
  2630     // Traverse the execution stack
  2631     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2632       fst.current()->nmethods_do(cf);
  2637 // Printing
  2638 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2639   switch (_thread_state) {
  2640   case _thread_uninitialized:     return "_thread_uninitialized";
  2641   case _thread_new:               return "_thread_new";
  2642   case _thread_new_trans:         return "_thread_new_trans";
  2643   case _thread_in_native:         return "_thread_in_native";
  2644   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2645   case _thread_in_vm:             return "_thread_in_vm";
  2646   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2647   case _thread_in_Java:           return "_thread_in_Java";
  2648   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2649   case _thread_blocked:           return "_thread_blocked";
  2650   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2651   default:                        return "unknown thread state";
  2655 #ifndef PRODUCT
  2656 void JavaThread::print_thread_state_on(outputStream *st) const {
  2657   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2658 };
  2659 void JavaThread::print_thread_state() const {
  2660   print_thread_state_on(tty);
  2661 };
  2662 #endif // PRODUCT
  2664 // Called by Threads::print() for VM_PrintThreads operation
  2665 void JavaThread::print_on(outputStream *st) const {
  2666   st->print("\"%s\" ", get_thread_name());
  2667   oop thread_oop = threadObj();
  2668   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2669   Thread::print_on(st);
  2670   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2671   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2672   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2673     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2675 #ifndef PRODUCT
  2676   print_thread_state_on(st);
  2677   _safepoint_state->print_on(st);
  2678 #endif // PRODUCT
  2681 // Called by fatal error handler. The difference between this and
  2682 // JavaThread::print() is that we can't grab lock or allocate memory.
  2683 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2684   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2685   oop thread_obj = threadObj();
  2686   if (thread_obj != NULL) {
  2687      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2689   st->print(" [");
  2690   st->print("%s", _get_thread_state_name(_thread_state));
  2691   if (osthread()) {
  2692     st->print(", id=%d", osthread()->thread_id());
  2694   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2695             _stack_base - _stack_size, _stack_base);
  2696   st->print("]");
  2697   return;
  2700 // Verification
  2702 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2704 void JavaThread::verify() {
  2705   // Verify oops in the thread.
  2706   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2708   // Verify the stack frames.
  2709   frames_do(frame_verify);
  2712 // CR 6300358 (sub-CR 2137150)
  2713 // Most callers of this method assume that it can't return NULL but a
  2714 // thread may not have a name whilst it is in the process of attaching to
  2715 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2716 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2717 // if vm exit occurs during initialization). These cases can all be accounted
  2718 // for such that this method never returns NULL.
  2719 const char* JavaThread::get_thread_name() const {
  2720 #ifdef ASSERT
  2721   // early safepoints can hit while current thread does not yet have TLS
  2722   if (!SafepointSynchronize::is_at_safepoint()) {
  2723     Thread *cur = Thread::current();
  2724     if (!(cur->is_Java_thread() && cur == this)) {
  2725       // Current JavaThreads are allowed to get their own name without
  2726       // the Threads_lock.
  2727       assert_locked_or_safepoint(Threads_lock);
  2730 #endif // ASSERT
  2731     return get_thread_name_string();
  2734 // Returns a non-NULL representation of this thread's name, or a suitable
  2735 // descriptive string if there is no set name
  2736 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2737   const char* name_str;
  2738   oop thread_obj = threadObj();
  2739   if (thread_obj != NULL) {
  2740     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2741     if (name != NULL) {
  2742       if (buf == NULL) {
  2743         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2745       else {
  2746         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2749     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
  2750       name_str = "<no-name - thread is attaching>";
  2752     else {
  2753       name_str = Thread::name();
  2756   else {
  2757     name_str = Thread::name();
  2759   assert(name_str != NULL, "unexpected NULL thread name");
  2760   return name_str;
  2764 const char* JavaThread::get_threadgroup_name() const {
  2765   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2766   oop thread_obj = threadObj();
  2767   if (thread_obj != NULL) {
  2768     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2769     if (thread_group != NULL) {
  2770       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2771       // ThreadGroup.name can be null
  2772       if (name != NULL) {
  2773         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2774         return str;
  2778   return NULL;
  2781 const char* JavaThread::get_parent_name() const {
  2782   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2783   oop thread_obj = threadObj();
  2784   if (thread_obj != NULL) {
  2785     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2786     if (thread_group != NULL) {
  2787       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2788       if (parent != NULL) {
  2789         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2790         // ThreadGroup.name can be null
  2791         if (name != NULL) {
  2792           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2793           return str;
  2798   return NULL;
  2801 ThreadPriority JavaThread::java_priority() const {
  2802   oop thr_oop = threadObj();
  2803   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2804   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2805   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2806   return priority;
  2809 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2811   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2812   // Link Java Thread object <-> C++ Thread
  2814   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2815   // and put it into a new Handle.  The Handle "thread_oop" can then
  2816   // be used to pass the C++ thread object to other methods.
  2818   // Set the Java level thread object (jthread) field of the
  2819   // new thread (a JavaThread *) to C++ thread object using the
  2820   // "thread_oop" handle.
  2822   // Set the thread field (a JavaThread *) of the
  2823   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2825   Handle thread_oop(Thread::current(),
  2826                     JNIHandles::resolve_non_null(jni_thread));
  2827   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
  2828     "must be initialized");
  2829   set_threadObj(thread_oop());
  2830   java_lang_Thread::set_thread(thread_oop(), this);
  2832   if (prio == NoPriority) {
  2833     prio = java_lang_Thread::priority(thread_oop());
  2834     assert(prio != NoPriority, "A valid priority should be present");
  2837   // Push the Java priority down to the native thread; needs Threads_lock
  2838   Thread::set_priority(this, prio);
  2840   // Add the new thread to the Threads list and set it in motion.
  2841   // We must have threads lock in order to call Threads::add.
  2842   // It is crucial that we do not block before the thread is
  2843   // added to the Threads list for if a GC happens, then the java_thread oop
  2844   // will not be visited by GC.
  2845   Threads::add(this);
  2848 oop JavaThread::current_park_blocker() {
  2849   // Support for JSR-166 locks
  2850   oop thread_oop = threadObj();
  2851   if (thread_oop != NULL &&
  2852       JDK_Version::current().supports_thread_park_blocker()) {
  2853     return java_lang_Thread::park_blocker(thread_oop);
  2855   return NULL;
  2859 void JavaThread::print_stack_on(outputStream* st) {
  2860   if (!has_last_Java_frame()) return;
  2861   ResourceMark rm;
  2862   HandleMark   hm;
  2864   RegisterMap reg_map(this);
  2865   vframe* start_vf = last_java_vframe(&reg_map);
  2866   int count = 0;
  2867   for (vframe* f = start_vf; f; f = f->sender() ) {
  2868     if (f->is_java_frame()) {
  2869       javaVFrame* jvf = javaVFrame::cast(f);
  2870       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  2872       // Print out lock information
  2873       if (JavaMonitorsInStackTrace) {
  2874         jvf->print_lock_info_on(st, count);
  2876     } else {
  2877       // Ignore non-Java frames
  2880     // Bail-out case for too deep stacks
  2881     count++;
  2882     if (MaxJavaStackTraceDepth == count) return;
  2887 // JVMTI PopFrame support
  2888 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  2889   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  2890   if (in_bytes(size_in_bytes) != 0) {
  2891     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
  2892     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  2893     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  2897 void* JavaThread::popframe_preserved_args() {
  2898   return _popframe_preserved_args;
  2901 ByteSize JavaThread::popframe_preserved_args_size() {
  2902   return in_ByteSize(_popframe_preserved_args_size);
  2905 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  2906   int sz = in_bytes(popframe_preserved_args_size());
  2907   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  2908   return in_WordSize(sz / wordSize);
  2911 void JavaThread::popframe_free_preserved_args() {
  2912   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  2913   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
  2914   _popframe_preserved_args = NULL;
  2915   _popframe_preserved_args_size = 0;
  2918 #ifndef PRODUCT
  2920 void JavaThread::trace_frames() {
  2921   tty->print_cr("[Describe stack]");
  2922   int frame_no = 1;
  2923   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2924     tty->print("  %d. ", frame_no++);
  2925     fst.current()->print_value_on(tty,this);
  2926     tty->cr();
  2930 class PrintAndVerifyOopClosure: public OopClosure {
  2931  protected:
  2932   template <class T> inline void do_oop_work(T* p) {
  2933     oop obj = oopDesc::load_decode_heap_oop(p);
  2934     if (obj == NULL) return;
  2935     tty->print(INTPTR_FORMAT ": ", p);
  2936     if (obj->is_oop_or_null()) {
  2937       if (obj->is_objArray()) {
  2938         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
  2939       } else {
  2940         obj->print();
  2942     } else {
  2943       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
  2945     tty->cr();
  2947  public:
  2948   virtual void do_oop(oop* p) { do_oop_work(p); }
  2949   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
  2950 };
  2953 static void oops_print(frame* f, const RegisterMap *map) {
  2954   PrintAndVerifyOopClosure print;
  2955   f->print_value();
  2956   f->oops_do(&print, NULL, (RegisterMap*)map);
  2959 // Print our all the locations that contain oops and whether they are
  2960 // valid or not.  This useful when trying to find the oldest frame
  2961 // where an oop has gone bad since the frame walk is from youngest to
  2962 // oldest.
  2963 void JavaThread::trace_oops() {
  2964   tty->print_cr("[Trace oops]");
  2965   frames_do(oops_print);
  2969 #ifdef ASSERT
  2970 // Print or validate the layout of stack frames
  2971 void JavaThread::print_frame_layout(int depth, bool validate_only) {
  2972   ResourceMark rm;
  2973   PRESERVE_EXCEPTION_MARK;
  2974   FrameValues values;
  2975   int frame_no = 0;
  2976   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
  2977     fst.current()->describe(values, ++frame_no);
  2978     if (depth == frame_no) break;
  2980   if (validate_only) {
  2981     values.validate();
  2982   } else {
  2983     tty->print_cr("[Describe stack layout]");
  2984     values.print(this);
  2987 #endif
  2989 void JavaThread::trace_stack_from(vframe* start_vf) {
  2990   ResourceMark rm;
  2991   int vframe_no = 1;
  2992   for (vframe* f = start_vf; f; f = f->sender() ) {
  2993     if (f->is_java_frame()) {
  2994       javaVFrame::cast(f)->print_activation(vframe_no++);
  2995     } else {
  2996       f->print();
  2998     if (vframe_no > StackPrintLimit) {
  2999       tty->print_cr("...<more frames>...");
  3000       return;
  3006 void JavaThread::trace_stack() {
  3007   if (!has_last_Java_frame()) return;
  3008   ResourceMark rm;
  3009   HandleMark   hm;
  3010   RegisterMap reg_map(this);
  3011   trace_stack_from(last_java_vframe(&reg_map));
  3015 #endif // PRODUCT
  3018 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  3019   assert(reg_map != NULL, "a map must be given");
  3020   frame f = last_frame();
  3021   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  3022     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  3024   return NULL;
  3028 klassOop JavaThread::security_get_caller_class(int depth) {
  3029   vframeStream vfst(this);
  3030   vfst.security_get_caller_frame(depth);
  3031   if (!vfst.at_end()) {
  3032     return vfst.method()->method_holder();
  3034   return NULL;
  3037 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  3038   assert(thread->is_Compiler_thread(), "must be compiler thread");
  3039   CompileBroker::compiler_thread_loop();
  3042 // Create a CompilerThread
  3043 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  3044 : JavaThread(&compiler_thread_entry) {
  3045   _env   = NULL;
  3046   _log   = NULL;
  3047   _task  = NULL;
  3048   _queue = queue;
  3049   _counters = counters;
  3050   _buffer_blob = NULL;
  3051   _scanned_nmethod = NULL;
  3053 #ifndef PRODUCT
  3054   _ideal_graph_printer = NULL;
  3055 #endif
  3058 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3059   JavaThread::oops_do(f, cf);
  3060   if (_scanned_nmethod != NULL && cf != NULL) {
  3061     // Safepoints can occur when the sweeper is scanning an nmethod so
  3062     // process it here to make sure it isn't unloaded in the middle of
  3063     // a scan.
  3064     cf->do_code_blob(_scanned_nmethod);
  3068 // ======= Threads ========
  3070 // The Threads class links together all active threads, and provides
  3071 // operations over all threads.  It is protected by its own Mutex
  3072 // lock, which is also used in other contexts to protect thread
  3073 // operations from having the thread being operated on from exiting
  3074 // and going away unexpectedly (e.g., safepoint synchronization)
  3076 JavaThread* Threads::_thread_list = NULL;
  3077 int         Threads::_number_of_threads = 0;
  3078 int         Threads::_number_of_non_daemon_threads = 0;
  3079 int         Threads::_return_code = 0;
  3080 size_t      JavaThread::_stack_size_at_create = 0;
  3082 // All JavaThreads
  3083 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  3085 void os_stream();
  3087 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  3088 void Threads::threads_do(ThreadClosure* tc) {
  3089   assert_locked_or_safepoint(Threads_lock);
  3090   // ALL_JAVA_THREADS iterates through all JavaThreads
  3091   ALL_JAVA_THREADS(p) {
  3092     tc->do_thread(p);
  3094   // Someday we could have a table or list of all non-JavaThreads.
  3095   // For now, just manually iterate through them.
  3096   tc->do_thread(VMThread::vm_thread());
  3097   Universe::heap()->gc_threads_do(tc);
  3098   WatcherThread *wt = WatcherThread::watcher_thread();
  3099   // Strictly speaking, the following NULL check isn't sufficient to make sure
  3100   // the data for WatcherThread is still valid upon being examined. However,
  3101   // considering that WatchThread terminates when the VM is on the way to
  3102   // exit at safepoint, the chance of the above is extremely small. The right
  3103   // way to prevent termination of WatcherThread would be to acquire
  3104   // Terminator_lock, but we can't do that without violating the lock rank
  3105   // checking in some cases.
  3106   if (wt != NULL)
  3107     tc->do_thread(wt);
  3109   // If CompilerThreads ever become non-JavaThreads, add them here
  3112 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  3114   extern void JDK_Version_init();
  3116   // Check version
  3117   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  3119   // Initialize the output stream module
  3120   ostream_init();
  3122   // Process java launcher properties.
  3123   Arguments::process_sun_java_launcher_properties(args);
  3125   // Initialize the os module before using TLS
  3126   os::init();
  3128   // Initialize system properties.
  3129   Arguments::init_system_properties();
  3131   // So that JDK version can be used as a discrimintor when parsing arguments
  3132   JDK_Version_init();
  3134   // Update/Initialize System properties after JDK version number is known
  3135   Arguments::init_version_specific_system_properties();
  3137   // Parse arguments
  3138   jint parse_result = Arguments::parse(args);
  3139   if (parse_result != JNI_OK) return parse_result;
  3141   if (PauseAtStartup) {
  3142     os::pause();
  3145 #ifndef USDT2
  3146   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3147 #else /* USDT2 */
  3148   HOTSPOT_VM_INIT_BEGIN();
  3149 #endif /* USDT2 */
  3151   // Record VM creation timing statistics
  3152   TraceVmCreationTime create_vm_timer;
  3153   create_vm_timer.start();
  3155   // Timing (must come after argument parsing)
  3156   TraceTime timer("Create VM", TraceStartupTime);
  3158   // Initialize the os module after parsing the args
  3159   jint os_init_2_result = os::init_2();
  3160   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3162   // Initialize output stream logging
  3163   ostream_init_log();
  3165   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3166   // Must be before create_vm_init_agents()
  3167   if (Arguments::init_libraries_at_startup()) {
  3168     convert_vm_init_libraries_to_agents();
  3171   // Launch -agentlib/-agentpath and converted -Xrun agents
  3172   if (Arguments::init_agents_at_startup()) {
  3173     create_vm_init_agents();
  3176   // Initialize Threads state
  3177   _thread_list = NULL;
  3178   _number_of_threads = 0;
  3179   _number_of_non_daemon_threads = 0;
  3181   // Initialize TLS
  3182   ThreadLocalStorage::init();
  3184   // Initialize global data structures and create system classes in heap
  3185   vm_init_globals();
  3187   // Attach the main thread to this os thread
  3188   JavaThread* main_thread = new JavaThread();
  3189   main_thread->set_thread_state(_thread_in_vm);
  3190   // must do this before set_active_handles and initialize_thread_local_storage
  3191   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3192   // change the stack size recorded here to one based on the java thread
  3193   // stacksize. This adjusted size is what is used to figure the placement
  3194   // of the guard pages.
  3195   main_thread->record_stack_base_and_size();
  3196   main_thread->initialize_thread_local_storage();
  3198   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3200   if (!main_thread->set_as_starting_thread()) {
  3201     vm_shutdown_during_initialization(
  3202       "Failed necessary internal allocation. Out of swap space");
  3203     delete main_thread;
  3204     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3205     return JNI_ENOMEM;
  3208   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3209   // crash Linux VM, see notes in os_linux.cpp.
  3210   main_thread->create_stack_guard_pages();
  3212   // Initialize Java-Level synchronization subsystem
  3213   ObjectMonitor::Initialize() ;
  3215   // Initialize global modules
  3216   jint status = init_globals();
  3217   if (status != JNI_OK) {
  3218     delete main_thread;
  3219     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3220     return status;
  3223   // Must be run after init_ft which initializes ft_enabled
  3224   if (TRACE_INITIALIZE() != JNI_OK) {
  3225     vm_exit_during_initialization("Failed to initialize tracing backend");
  3228   // Should be done after the heap is fully created
  3229   main_thread->cache_global_variables();
  3231   HandleMark hm;
  3233   { MutexLocker mu(Threads_lock);
  3234     Threads::add(main_thread);
  3237   // Any JVMTI raw monitors entered in onload will transition into
  3238   // real raw monitor. VM is setup enough here for raw monitor enter.
  3239   JvmtiExport::transition_pending_onload_raw_monitors();
  3241   if (VerifyBeforeGC &&
  3242       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  3243     Universe::heap()->prepare_for_verify();
  3244     Universe::verify();   // make sure we're starting with a clean slate
  3247   // Create the VMThread
  3248   { TraceTime timer("Start VMThread", TraceStartupTime);
  3249     VMThread::create();
  3250     Thread* vmthread = VMThread::vm_thread();
  3252     if (!os::create_thread(vmthread, os::vm_thread))
  3253       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3255     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3256     // Monitors can have spurious returns, must always check another state flag
  3258       MutexLocker ml(Notify_lock);
  3259       os::start_thread(vmthread);
  3260       while (vmthread->active_handles() == NULL) {
  3261         Notify_lock->wait();
  3266   assert (Universe::is_fully_initialized(), "not initialized");
  3267   EXCEPTION_MARK;
  3269   // At this point, the Universe is initialized, but we have not executed
  3270   // any byte code.  Now is a good time (the only time) to dump out the
  3271   // internal state of the JVM for sharing.
  3273   if (DumpSharedSpaces) {
  3274     Universe::heap()->preload_and_dump(CHECK_0);
  3275     ShouldNotReachHere();
  3278   // Always call even when there are not JVMTI environments yet, since environments
  3279   // may be attached late and JVMTI must track phases of VM execution
  3280   JvmtiExport::enter_start_phase();
  3282   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3283   JvmtiExport::post_vm_start();
  3286     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3288     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3289       create_vm_init_libraries();
  3292     if (InitializeJavaLangString) {
  3293       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
  3294     } else {
  3295       warning("java.lang.String not initialized");
  3298     if (AggressiveOpts) {
  3300         // Forcibly initialize java/util/HashMap and mutate the private
  3301         // static final "frontCacheEnabled" field before we start creating instances
  3302 #ifdef ASSERT
  3303         klassOop tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3304         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3305 #endif
  3306         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3307         KlassHandle k = KlassHandle(THREAD, k_o);
  3308         guarantee(k.not_null(), "Must find java/util/HashMap");
  3309         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3310         ik->initialize(CHECK_0);
  3311         fieldDescriptor fd;
  3312         // Possible we might not find this field; if so, don't break
  3313         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3314           k()->java_mirror()->bool_field_put(fd.offset(), true);
  3318       if (UseStringCache) {
  3319         // Forcibly initialize java/lang/StringValue and mutate the private
  3320         // static final "stringCacheEnabled" field before we start creating instances
  3321         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3322         // Possible that StringValue isn't present: if so, silently don't break
  3323         if (k_o != NULL) {
  3324           KlassHandle k = KlassHandle(THREAD, k_o);
  3325           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3326           ik->initialize(CHECK_0);
  3327           fieldDescriptor fd;
  3328           // Possible we might not find this field: if so, silently don't break
  3329           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3330             k()->java_mirror()->bool_field_put(fd.offset(), true);
  3336     // Initialize java_lang.System (needed before creating the thread)
  3337     if (InitializeJavaLangSystem) {
  3338       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
  3339       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
  3340       Handle thread_group = create_initial_thread_group(CHECK_0);
  3341       Universe::set_main_thread_group(thread_group());
  3342       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
  3343       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3344       main_thread->set_threadObj(thread_object);
  3345       // Set thread status to running since main thread has
  3346       // been started and running.
  3347       java_lang_Thread::set_thread_status(thread_object,
  3348                                           java_lang_Thread::RUNNABLE);
  3350       // The VM preresolve methods to these classes. Make sure that get initialized
  3351       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
  3352       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
  3353       // The VM creates & returns objects of this class. Make sure it's initialized.
  3354       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
  3355       call_initializeSystemClass(CHECK_0);
  3356     } else {
  3357       warning("java.lang.System not initialized");
  3360     // an instance of OutOfMemory exception has been allocated earlier
  3361     if (InitializeJavaLangExceptionsErrors) {
  3362       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
  3363       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
  3364       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
  3365       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
  3366       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
  3367       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
  3368       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
  3369     } else {
  3370       warning("java.lang.OutOfMemoryError has not been initialized");
  3371       warning("java.lang.NullPointerException has not been initialized");
  3372       warning("java.lang.ClassCastException has not been initialized");
  3373       warning("java.lang.ArrayStoreException has not been initialized");
  3374       warning("java.lang.ArithmeticException has not been initialized");
  3375       warning("java.lang.StackOverflowError has not been initialized");
  3379   // See        : bugid 4211085.
  3380   // Background : the static initializer of java.lang.Compiler tries to read
  3381   //              property"java.compiler" and read & write property "java.vm.info".
  3382   //              When a security manager is installed through the command line
  3383   //              option "-Djava.security.manager", the above properties are not
  3384   //              readable and the static initializer for java.lang.Compiler fails
  3385   //              resulting in a NoClassDefFoundError.  This can happen in any
  3386   //              user code which calls methods in java.lang.Compiler.
  3387   // Hack :       the hack is to pre-load and initialize this class, so that only
  3388   //              system domains are on the stack when the properties are read.
  3389   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3390   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3391   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3392   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3393   //              Once that is done, we should remove this hack.
  3394   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
  3396   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3397   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3398   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3399   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3400   // This should also be taken out as soon as 4211383 gets fixed.
  3401   reset_vm_info_property(CHECK_0);
  3403   quicken_jni_functions();
  3405   // Set flag that basic initialization has completed. Used by exceptions and various
  3406   // debug stuff, that does not work until all basic classes have been initialized.
  3407   set_init_completed();
  3409 #ifndef USDT2
  3410   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3411 #else /* USDT2 */
  3412   HOTSPOT_VM_INIT_END();
  3413 #endif /* USDT2 */
  3415   // record VM initialization completion time
  3416   Management::record_vm_init_completed();
  3418   // Compute system loader. Note that this has to occur after set_init_completed, since
  3419   // valid exceptions may be thrown in the process.
  3420   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3421   // set_init_completed has just been called, causing exceptions not to be shortcut
  3422   // anymore. We call vm_exit_during_initialization directly instead.
  3423   SystemDictionary::compute_java_system_loader(THREAD);
  3424   if (HAS_PENDING_EXCEPTION) {
  3425     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3428 #ifndef SERIALGC
  3429   // Support for ConcurrentMarkSweep. This should be cleaned up
  3430   // and better encapsulated. The ugly nested if test would go away
  3431   // once things are properly refactored. XXX YSR
  3432   if (UseConcMarkSweepGC || UseG1GC) {
  3433     if (UseConcMarkSweepGC) {
  3434       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3435     } else {
  3436       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3438     if (HAS_PENDING_EXCEPTION) {
  3439       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3442 #endif // SERIALGC
  3444   // Always call even when there are not JVMTI environments yet, since environments
  3445   // may be attached late and JVMTI must track phases of VM execution
  3446   JvmtiExport::enter_live_phase();
  3448   // Signal Dispatcher needs to be started before VMInit event is posted
  3449   os::signal_init();
  3451   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3452   if (!DisableAttachMechanism) {
  3453     if (StartAttachListener || AttachListener::init_at_startup()) {
  3454       AttachListener::init();
  3458   // Launch -Xrun agents
  3459   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3460   // back-end can launch with -Xdebug -Xrunjdwp.
  3461   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3462     create_vm_init_libraries();
  3465   if (!TRACE_START()) {
  3466     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3469   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3470   JvmtiExport::post_vm_initialized();
  3472   if (CleanChunkPoolAsync) {
  3473     Chunk::start_chunk_pool_cleaner_task();
  3476   // initialize compiler(s)
  3477   CompileBroker::compilation_init();
  3479   Management::initialize(THREAD);
  3480   if (HAS_PENDING_EXCEPTION) {
  3481     // management agent fails to start possibly due to
  3482     // configuration problem and is responsible for printing
  3483     // stack trace if appropriate. Simply exit VM.
  3484     vm_exit(1);
  3487   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3488   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3489   if (MemProfiling)                   MemProfiler::engage();
  3490   StatSampler::engage();
  3491   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3493   BiasedLocking::init();
  3495   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3496     call_postVMInitHook(THREAD);
  3497     // The Java side of PostVMInitHook.run must deal with all
  3498     // exceptions and provide means of diagnosis.
  3499     if (HAS_PENDING_EXCEPTION) {
  3500       CLEAR_PENDING_EXCEPTION;
  3504   // Start up the WatcherThread if there are any periodic tasks
  3505   // NOTE:  All PeriodicTasks should be registered by now. If they
  3506   //   aren't, late joiners might appear to start slowly (we might
  3507   //   take a while to process their first tick).
  3508   if (PeriodicTask::num_tasks() > 0) {
  3509     WatcherThread::start();
  3512   // Give os specific code one last chance to start
  3513   os::init_3();
  3515   create_vm_timer.end();
  3516   return JNI_OK;
  3519 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3520 extern "C" {
  3521   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3523 // Find a command line agent library and return its entry point for
  3524 //         -agentlib:  -agentpath:   -Xrun
  3525 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3526 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3527   OnLoadEntry_t on_load_entry = NULL;
  3528   void *library = agent->os_lib();  // check if we have looked it up before
  3530   if (library == NULL) {
  3531     char buffer[JVM_MAXPATHLEN];
  3532     char ebuf[1024];
  3533     const char *name = agent->name();
  3534     const char *msg = "Could not find agent library ";
  3536     if (agent->is_absolute_path()) {
  3537       library = os::dll_load(name, ebuf, sizeof ebuf);
  3538       if (library == NULL) {
  3539         const char *sub_msg = " in absolute path, with error: ";
  3540         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3541         char *buf = NEW_C_HEAP_ARRAY(char, len);
  3542         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3543         // If we can't find the agent, exit.
  3544         vm_exit_during_initialization(buf, NULL);
  3545         FREE_C_HEAP_ARRAY(char, buf);
  3547     } else {
  3548       // Try to load the agent from the standard dll directory
  3549       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3550       library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3551 #ifdef KERNEL
  3552       // Download instrument dll
  3553       if (library == NULL && strcmp(name, "instrument") == 0) {
  3554         char *props = Arguments::get_kernel_properties();
  3555         char *home  = Arguments::get_java_home();
  3556         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3557                       " sun.jkernel.DownloadManager -download client_jvm";
  3558         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3559         char *cmd = NEW_C_HEAP_ARRAY(char, length);
  3560         jio_snprintf(cmd, length, fmt, home, props);
  3561         int status = os::fork_and_exec(cmd);
  3562         FreeHeap(props);
  3563         if (status == -1) {
  3564           warning(cmd);
  3565           vm_exit_during_initialization("fork_and_exec failed: %s",
  3566                                          strerror(errno));
  3568         FREE_C_HEAP_ARRAY(char, cmd);
  3569         // when this comes back the instrument.dll should be where it belongs.
  3570         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3572 #endif // KERNEL
  3573       if (library == NULL) { // Try the local directory
  3574         char ns[1] = {0};
  3575         os::dll_build_name(buffer, sizeof(buffer), ns, name);
  3576         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3577         if (library == NULL) {
  3578           const char *sub_msg = " on the library path, with error: ";
  3579           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3580           char *buf = NEW_C_HEAP_ARRAY(char, len);
  3581           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3582           // If we can't find the agent, exit.
  3583           vm_exit_during_initialization(buf, NULL);
  3584           FREE_C_HEAP_ARRAY(char, buf);
  3588     agent->set_os_lib(library);
  3591   // Find the OnLoad function.
  3592   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3593     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
  3594     if (on_load_entry != NULL) break;
  3596   return on_load_entry;
  3599 // Find the JVM_OnLoad entry point
  3600 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3601   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3602   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3605 // Find the Agent_OnLoad entry point
  3606 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3607   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3608   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3611 // For backwards compatibility with -Xrun
  3612 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3613 // treated like -agentpath:
  3614 // Must be called before agent libraries are created
  3615 void Threads::convert_vm_init_libraries_to_agents() {
  3616   AgentLibrary* agent;
  3617   AgentLibrary* next;
  3619   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3620     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3621     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3623     // If there is an JVM_OnLoad function it will get called later,
  3624     // otherwise see if there is an Agent_OnLoad
  3625     if (on_load_entry == NULL) {
  3626       on_load_entry = lookup_agent_on_load(agent);
  3627       if (on_load_entry != NULL) {
  3628         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3629         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3630         Arguments::convert_library_to_agent(agent);
  3631       } else {
  3632         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3638 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3639 // Invokes Agent_OnLoad
  3640 // Called very early -- before JavaThreads exist
  3641 void Threads::create_vm_init_agents() {
  3642   extern struct JavaVM_ main_vm;
  3643   AgentLibrary* agent;
  3645   JvmtiExport::enter_onload_phase();
  3646   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3647     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3649     if (on_load_entry != NULL) {
  3650       // Invoke the Agent_OnLoad function
  3651       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3652       if (err != JNI_OK) {
  3653         vm_exit_during_initialization("agent library failed to init", agent->name());
  3655     } else {
  3656       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3659   JvmtiExport::enter_primordial_phase();
  3662 extern "C" {
  3663   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3666 void Threads::shutdown_vm_agents() {
  3667   // Send any Agent_OnUnload notifications
  3668   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3669   extern struct JavaVM_ main_vm;
  3670   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3672     // Find the Agent_OnUnload function.
  3673     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3674       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3675                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3677       // Invoke the Agent_OnUnload function
  3678       if (unload_entry != NULL) {
  3679         JavaThread* thread = JavaThread::current();
  3680         ThreadToNativeFromVM ttn(thread);
  3681         HandleMark hm(thread);
  3682         (*unload_entry)(&main_vm);
  3683         break;
  3689 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3690 // Invokes JVM_OnLoad
  3691 void Threads::create_vm_init_libraries() {
  3692   extern struct JavaVM_ main_vm;
  3693   AgentLibrary* agent;
  3695   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3696     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3698     if (on_load_entry != NULL) {
  3699       // Invoke the JVM_OnLoad function
  3700       JavaThread* thread = JavaThread::current();
  3701       ThreadToNativeFromVM ttn(thread);
  3702       HandleMark hm(thread);
  3703       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3704       if (err != JNI_OK) {
  3705         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3707     } else {
  3708       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3713 // Last thread running calls java.lang.Shutdown.shutdown()
  3714 void JavaThread::invoke_shutdown_hooks() {
  3715   HandleMark hm(this);
  3717   // We could get here with a pending exception, if so clear it now.
  3718   if (this->has_pending_exception()) {
  3719     this->clear_pending_exception();
  3722   EXCEPTION_MARK;
  3723   klassOop k =
  3724     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
  3725                                       THREAD);
  3726   if (k != NULL) {
  3727     // SystemDictionary::resolve_or_null will return null if there was
  3728     // an exception.  If we cannot load the Shutdown class, just don't
  3729     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3730     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3731     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3732     // was called, the Shutdown class would have already been loaded
  3733     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3734     instanceKlassHandle shutdown_klass (THREAD, k);
  3735     JavaValue result(T_VOID);
  3736     JavaCalls::call_static(&result,
  3737                            shutdown_klass,
  3738                            vmSymbols::shutdown_method_name(),
  3739                            vmSymbols::void_method_signature(),
  3740                            THREAD);
  3742   CLEAR_PENDING_EXCEPTION;
  3745 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3746 // the program falls off the end of main(). Another VM exit path is through
  3747 // vm_exit() when the program calls System.exit() to return a value or when
  3748 // there is a serious error in VM. The two shutdown paths are not exactly
  3749 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3750 // and VM_Exit op at VM level.
  3751 //
  3752 // Shutdown sequence:
  3753 //   + Wait until we are the last non-daemon thread to execute
  3754 //     <-- every thing is still working at this moment -->
  3755 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3756 //        shutdown hooks, run finalizers if finalization-on-exit
  3757 //   + Call before_exit(), prepare for VM exit
  3758 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3759 //        currently the only user of this mechanism is File.deleteOnExit())
  3760 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3761 //        post thread end and vm death events to JVMTI,
  3762 //        stop signal thread
  3763 //   + Call JavaThread::exit(), it will:
  3764 //      > release JNI handle blocks, remove stack guard pages
  3765 //      > remove this thread from Threads list
  3766 //     <-- no more Java code from this thread after this point -->
  3767 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3768 //     the compiler threads at safepoint
  3769 //     <-- do not use anything that could get blocked by Safepoint -->
  3770 //   + Disable tracing at JNI/JVM barriers
  3771 //   + Set _vm_exited flag for threads that are still running native code
  3772 //   + Delete this thread
  3773 //   + Call exit_globals()
  3774 //      > deletes tty
  3775 //      > deletes PerfMemory resources
  3776 //   + Return to caller
  3778 bool Threads::destroy_vm() {
  3779   JavaThread* thread = JavaThread::current();
  3781   // Wait until we are the last non-daemon thread to execute
  3782   { MutexLocker nu(Threads_lock);
  3783     while (Threads::number_of_non_daemon_threads() > 1 )
  3784       // This wait should make safepoint checks, wait without a timeout,
  3785       // and wait as a suspend-equivalent condition.
  3786       //
  3787       // Note: If the FlatProfiler is running and this thread is waiting
  3788       // for another non-daemon thread to finish, then the FlatProfiler
  3789       // is waiting for the external suspend request on this thread to
  3790       // complete. wait_for_ext_suspend_completion() will eventually
  3791       // timeout, but that takes time. Making this wait a suspend-
  3792       // equivalent condition solves that timeout problem.
  3793       //
  3794       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3795                          Mutex::_as_suspend_equivalent_flag);
  3798   // Hang forever on exit if we are reporting an error.
  3799   if (ShowMessageBoxOnError && is_error_reported()) {
  3800     os::infinite_sleep();
  3802   os::wait_for_keypress_at_exit();
  3804   if (JDK_Version::is_jdk12x_version()) {
  3805     // We are the last thread running, so check if finalizers should be run.
  3806     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3807     HandleMark rm(thread);
  3808     Universe::run_finalizers_on_exit();
  3809   } else {
  3810     // run Java level shutdown hooks
  3811     thread->invoke_shutdown_hooks();
  3814   before_exit(thread);
  3816   thread->exit(true);
  3818   // Stop VM thread.
  3820     // 4945125 The vm thread comes to a safepoint during exit.
  3821     // GC vm_operations can get caught at the safepoint, and the
  3822     // heap is unparseable if they are caught. Grab the Heap_lock
  3823     // to prevent this. The GC vm_operations will not be able to
  3824     // queue until after the vm thread is dead.
  3825     // After this point, we'll never emerge out of the safepoint before
  3826     // the VM exits, so concurrent GC threads do not need to be explicitly
  3827     // stopped; they remain inactive until the process exits.
  3828     // Note: some concurrent G1 threads may be running during a safepoint,
  3829     // but these will not be accessing the heap, just some G1-specific side
  3830     // data structures that are not accessed by any other threads but them
  3831     // after this point in a terminal safepoint.
  3833     MutexLocker ml(Heap_lock);
  3835     VMThread::wait_for_vm_thread_exit();
  3836     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  3837     VMThread::destroy();
  3840   // clean up ideal graph printers
  3841 #if defined(COMPILER2) && !defined(PRODUCT)
  3842   IdealGraphPrinter::clean_up();
  3843 #endif
  3845   // Now, all Java threads are gone except daemon threads. Daemon threads
  3846   // running Java code or in VM are stopped by the Safepoint. However,
  3847   // daemon threads executing native code are still running.  But they
  3848   // will be stopped at native=>Java/VM barriers. Note that we can't
  3849   // simply kill or suspend them, as it is inherently deadlock-prone.
  3851 #ifndef PRODUCT
  3852   // disable function tracing at JNI/JVM barriers
  3853   TraceJNICalls = false;
  3854   TraceJVMCalls = false;
  3855   TraceRuntimeCalls = false;
  3856 #endif
  3858   VM_Exit::set_vm_exited();
  3860   notify_vm_shutdown();
  3862   delete thread;
  3864   // exit_globals() will delete tty
  3865   exit_globals();
  3867   return true;
  3871 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  3872   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  3873   return is_supported_jni_version(version);
  3877 jboolean Threads::is_supported_jni_version(jint version) {
  3878   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  3879   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  3880   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  3881   return JNI_FALSE;
  3885 void Threads::add(JavaThread* p, bool force_daemon) {
  3886   // The threads lock must be owned at this point
  3887   assert_locked_or_safepoint(Threads_lock);
  3889   // See the comment for this method in thread.hpp for its purpose and
  3890   // why it is called here.
  3891   p->initialize_queues();
  3892   p->set_next(_thread_list);
  3893   _thread_list = p;
  3894   _number_of_threads++;
  3895   oop threadObj = p->threadObj();
  3896   bool daemon = true;
  3897   // Bootstrapping problem: threadObj can be null for initial
  3898   // JavaThread (or for threads attached via JNI)
  3899   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  3900     _number_of_non_daemon_threads++;
  3901     daemon = false;
  3904   ThreadService::add_thread(p, daemon);
  3906   // Possible GC point.
  3907   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
  3910 void Threads::remove(JavaThread* p) {
  3911   // Extra scope needed for Thread_lock, so we can check
  3912   // that we do not remove thread without safepoint code notice
  3913   { MutexLocker ml(Threads_lock);
  3915     assert(includes(p), "p must be present");
  3917     JavaThread* current = _thread_list;
  3918     JavaThread* prev    = NULL;
  3920     while (current != p) {
  3921       prev    = current;
  3922       current = current->next();
  3925     if (prev) {
  3926       prev->set_next(current->next());
  3927     } else {
  3928       _thread_list = p->next();
  3930     _number_of_threads--;
  3931     oop threadObj = p->threadObj();
  3932     bool daemon = true;
  3933     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  3934       _number_of_non_daemon_threads--;
  3935       daemon = false;
  3937       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  3938       // on destroy_vm will wake up.
  3939       if (number_of_non_daemon_threads() == 1)
  3940         Threads_lock->notify_all();
  3942     ThreadService::remove_thread(p, daemon);
  3944     // Make sure that safepoint code disregard this thread. This is needed since
  3945     // the thread might mess around with locks after this point. This can cause it
  3946     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  3947     // of this thread since it is removed from the queue.
  3948     p->set_terminated_value();
  3949   } // unlock Threads_lock
  3951   // Since Events::log uses a lock, we grab it outside the Threads_lock
  3952   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
  3955 // Threads_lock must be held when this is called (or must be called during a safepoint)
  3956 bool Threads::includes(JavaThread* p) {
  3957   assert(Threads_lock->is_locked(), "sanity check");
  3958   ALL_JAVA_THREADS(q) {
  3959     if (q == p ) {
  3960       return true;
  3963   return false;
  3966 // Operations on the Threads list for GC.  These are not explicitly locked,
  3967 // but the garbage collector must provide a safe context for them to run.
  3968 // In particular, these things should never be called when the Threads_lock
  3969 // is held by some other thread. (Note: the Safepoint abstraction also
  3970 // uses the Threads_lock to gurantee this property. It also makes sure that
  3971 // all threads gets blocked when exiting or starting).
  3973 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3974   ALL_JAVA_THREADS(p) {
  3975     p->oops_do(f, cf);
  3977   VMThread::vm_thread()->oops_do(f, cf);
  3980 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3981   // Introduce a mechanism allowing parallel threads to claim threads as
  3982   // root groups.  Overhead should be small enough to use all the time,
  3983   // even in sequential code.
  3984   SharedHeap* sh = SharedHeap::heap();
  3985   // Cannot yet substitute active_workers for n_par_threads
  3986   // because of G1CollectedHeap::verify() use of
  3987   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
  3988   // turn off parallelism in process_strong_roots while active_workers
  3989   // is being used for parallelism elsewhere.
  3990   bool is_par = sh->n_par_threads() > 0;
  3991   assert(!is_par ||
  3992          (SharedHeap::heap()->n_par_threads() ==
  3993           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
  3994   int cp = SharedHeap::heap()->strong_roots_parity();
  3995   ALL_JAVA_THREADS(p) {
  3996     if (p->claim_oops_do(is_par, cp)) {
  3997       p->oops_do(f, cf);
  4000   VMThread* vmt = VMThread::vm_thread();
  4001   if (vmt->claim_oops_do(is_par, cp)) {
  4002     vmt->oops_do(f, cf);
  4006 #ifndef SERIALGC
  4007 // Used by ParallelScavenge
  4008 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  4009   ALL_JAVA_THREADS(p) {
  4010     q->enqueue(new ThreadRootsTask(p));
  4012   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  4015 // Used by Parallel Old
  4016 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  4017   ALL_JAVA_THREADS(p) {
  4018     q->enqueue(new ThreadRootsMarkingTask(p));
  4020   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  4022 #endif // SERIALGC
  4024 void Threads::nmethods_do(CodeBlobClosure* cf) {
  4025   ALL_JAVA_THREADS(p) {
  4026     p->nmethods_do(cf);
  4028   VMThread::vm_thread()->nmethods_do(cf);
  4031 void Threads::gc_epilogue() {
  4032   ALL_JAVA_THREADS(p) {
  4033     p->gc_epilogue();
  4037 void Threads::gc_prologue() {
  4038   ALL_JAVA_THREADS(p) {
  4039     p->gc_prologue();
  4043 void Threads::deoptimized_wrt_marked_nmethods() {
  4044   ALL_JAVA_THREADS(p) {
  4045     p->deoptimized_wrt_marked_nmethods();
  4050 // Get count Java threads that are waiting to enter the specified monitor.
  4051 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  4052   address monitor, bool doLock) {
  4053   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  4054     "must grab Threads_lock or be at safepoint");
  4055   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  4057   int i = 0;
  4059     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4060     ALL_JAVA_THREADS(p) {
  4061       if (p->is_Compiler_thread()) continue;
  4063       address pending = (address)p->current_pending_monitor();
  4064       if (pending == monitor) {             // found a match
  4065         if (i < count) result->append(p);   // save the first count matches
  4066         i++;
  4070   return result;
  4074 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  4075   assert(doLock ||
  4076          Threads_lock->owned_by_self() ||
  4077          SafepointSynchronize::is_at_safepoint(),
  4078          "must grab Threads_lock or be at safepoint");
  4080   // NULL owner means not locked so we can skip the search
  4081   if (owner == NULL) return NULL;
  4084     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4085     ALL_JAVA_THREADS(p) {
  4086       // first, see if owner is the address of a Java thread
  4087       if (owner == (address)p) return p;
  4090   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  4091   if (UseHeavyMonitors) return NULL;
  4093   //
  4094   // If we didn't find a matching Java thread and we didn't force use of
  4095   // heavyweight monitors, then the owner is the stack address of the
  4096   // Lock Word in the owning Java thread's stack.
  4097   //
  4098   JavaThread* the_owner = NULL;
  4100     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4101     ALL_JAVA_THREADS(q) {
  4102       if (q->is_lock_owned(owner)) {
  4103         the_owner = q;
  4104         break;
  4108   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  4109   return the_owner;
  4112 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  4113 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  4114   char buf[32];
  4115   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  4117   st->print_cr("Full thread dump %s (%s %s):",
  4118                 Abstract_VM_Version::vm_name(),
  4119                 Abstract_VM_Version::vm_release(),
  4120                 Abstract_VM_Version::vm_info_string()
  4121                );
  4122   st->cr();
  4124 #ifndef SERIALGC
  4125   // Dump concurrent locks
  4126   ConcurrentLocksDump concurrent_locks;
  4127   if (print_concurrent_locks) {
  4128     concurrent_locks.dump_at_safepoint();
  4130 #endif // SERIALGC
  4132   ALL_JAVA_THREADS(p) {
  4133     ResourceMark rm;
  4134     p->print_on(st);
  4135     if (print_stacks) {
  4136       if (internal_format) {
  4137         p->trace_stack();
  4138       } else {
  4139         p->print_stack_on(st);
  4142     st->cr();
  4143 #ifndef SERIALGC
  4144     if (print_concurrent_locks) {
  4145       concurrent_locks.print_locks_on(p, st);
  4147 #endif // SERIALGC
  4150   VMThread::vm_thread()->print_on(st);
  4151   st->cr();
  4152   Universe::heap()->print_gc_threads_on(st);
  4153   WatcherThread* wt = WatcherThread::watcher_thread();
  4154   if (wt != NULL) wt->print_on(st);
  4155   st->cr();
  4156   CompileBroker::print_compiler_threads_on(st);
  4157   st->flush();
  4160 // Threads::print_on_error() is called by fatal error handler. It's possible
  4161 // that VM is not at safepoint and/or current thread is inside signal handler.
  4162 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  4163 // memory (even in resource area), it might deadlock the error handler.
  4164 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  4165   bool found_current = false;
  4166   st->print_cr("Java Threads: ( => current thread )");
  4167   ALL_JAVA_THREADS(thread) {
  4168     bool is_current = (current == thread);
  4169     found_current = found_current || is_current;
  4171     st->print("%s", is_current ? "=>" : "  ");
  4173     st->print(PTR_FORMAT, thread);
  4174     st->print(" ");
  4175     thread->print_on_error(st, buf, buflen);
  4176     st->cr();
  4178   st->cr();
  4180   st->print_cr("Other Threads:");
  4181   if (VMThread::vm_thread()) {
  4182     bool is_current = (current == VMThread::vm_thread());
  4183     found_current = found_current || is_current;
  4184     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4186     st->print(PTR_FORMAT, VMThread::vm_thread());
  4187     st->print(" ");
  4188     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4189     st->cr();
  4191   WatcherThread* wt = WatcherThread::watcher_thread();
  4192   if (wt != NULL) {
  4193     bool is_current = (current == wt);
  4194     found_current = found_current || is_current;
  4195     st->print("%s", is_current ? "=>" : "  ");
  4197     st->print(PTR_FORMAT, wt);
  4198     st->print(" ");
  4199     wt->print_on_error(st, buf, buflen);
  4200     st->cr();
  4202   if (!found_current) {
  4203     st->cr();
  4204     st->print("=>" PTR_FORMAT " (exited) ", current);
  4205     current->print_on_error(st, buf, buflen);
  4206     st->cr();
  4210 // Internal SpinLock and Mutex
  4211 // Based on ParkEvent
  4213 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4214 //
  4215 // We employ SpinLocks _only for low-contention, fixed-length
  4216 // short-duration critical sections where we're concerned
  4217 // about native mutex_t or HotSpot Mutex:: latency.
  4218 // The mux construct provides a spin-then-block mutual exclusion
  4219 // mechanism.
  4220 //
  4221 // Testing has shown that contention on the ListLock guarding gFreeList
  4222 // is common.  If we implement ListLock as a simple SpinLock it's common
  4223 // for the JVM to devolve to yielding with little progress.  This is true
  4224 // despite the fact that the critical sections protected by ListLock are
  4225 // extremely short.
  4226 //
  4227 // TODO-FIXME: ListLock should be of type SpinLock.
  4228 // We should make this a 1st-class type, integrated into the lock
  4229 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4230 // should have sufficient padding to avoid false-sharing and excessive
  4231 // cache-coherency traffic.
  4234 typedef volatile int SpinLockT ;
  4236 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4237   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4238      return ;   // normal fast-path return
  4241   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4242   TEVENT (SpinAcquire - ctx) ;
  4243   int ctr = 0 ;
  4244   int Yields = 0 ;
  4245   for (;;) {
  4246      while (*adr != 0) {
  4247         ++ctr ;
  4248         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4249            if (Yields > 5) {
  4250              // Consider using a simple NakedSleep() instead.
  4251              // Then SpinAcquire could be called by non-JVM threads
  4252              Thread::current()->_ParkEvent->park(1) ;
  4253            } else {
  4254              os::NakedYield() ;
  4255              ++Yields ;
  4257         } else {
  4258            SpinPause() ;
  4261      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4265 void Thread::SpinRelease (volatile int * adr) {
  4266   assert (*adr != 0, "invariant") ;
  4267   OrderAccess::fence() ;      // guarantee at least release consistency.
  4268   // Roach-motel semantics.
  4269   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4270   // but prior LDs and STs within the critical section can't be allowed
  4271   // to reorder or float past the ST that releases the lock.
  4272   *adr = 0 ;
  4275 // muxAcquire and muxRelease:
  4276 //
  4277 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4278 //    The LSB of the word is set IFF the lock is held.
  4279 //    The remainder of the word points to the head of a singly-linked list
  4280 //    of threads blocked on the lock.
  4281 //
  4282 // *  The current implementation of muxAcquire-muxRelease uses its own
  4283 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4284 //    minimizing the peak number of extant ParkEvent instances then
  4285 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4286 //    as certain invariants were satisfied.  Specifically, care would need
  4287 //    to be taken with regards to consuming unpark() "permits".
  4288 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4289 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4290 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4291 //    consume an unpark() permit intended for monitorenter, for instance.
  4292 //    One way around this would be to widen the restricted-range semaphore
  4293 //    implemented in park().  Another alternative would be to provide
  4294 //    multiple instances of the PlatformEvent() for each thread.  One
  4295 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4296 //
  4297 // *  Usage:
  4298 //    -- Only as leaf locks
  4299 //    -- for short-term locking only as muxAcquire does not perform
  4300 //       thread state transitions.
  4301 //
  4302 // Alternatives:
  4303 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4304 //    but with parking or spin-then-park instead of pure spinning.
  4305 // *  Use Taura-Oyama-Yonenzawa locks.
  4306 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4307 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4308 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4309 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4310 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4311 //    boundaries by using placement-new.
  4312 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4313 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4314 //    The validity of the backlinks must be ratified before we trust the value.
  4315 //    If the backlinks are invalid the exiting thread must back-track through the
  4316 //    the forward links, which are always trustworthy.
  4317 // *  Add a successor indication.  The LockWord is currently encoded as
  4318 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4319 //    to provide the usual futile-wakeup optimization.
  4320 //    See RTStt for details.
  4321 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4322 //
  4325 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4326 enum MuxBits { LOCKBIT = 1 } ;
  4328 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4329   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4330   if (w == 0) return ;
  4331   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4332      return ;
  4335   TEVENT (muxAcquire - Contention) ;
  4336   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4337   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4338   for (;;) {
  4339      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4341      // Optional spin phase: spin-then-park strategy
  4342      while (--its >= 0) {
  4343        w = *Lock ;
  4344        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4345           return ;
  4349      Self->reset() ;
  4350      Self->OnList = intptr_t(Lock) ;
  4351      // The following fence() isn't _strictly necessary as the subsequent
  4352      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4353      OrderAccess::fence();
  4354      for (;;) {
  4355         w = *Lock ;
  4356         if ((w & LOCKBIT) == 0) {
  4357             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4358                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4359                 return ;
  4361             continue ;      // Interference -- *Lock changed -- Just retry
  4363         assert (w & LOCKBIT, "invariant") ;
  4364         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4365         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4368      while (Self->OnList != 0) {
  4369         Self->park() ;
  4374 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4375   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4376   if (w == 0) return ;
  4377   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4378     return ;
  4381   TEVENT (muxAcquire - Contention) ;
  4382   ParkEvent * ReleaseAfter = NULL ;
  4383   if (ev == NULL) {
  4384     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4386   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4387   for (;;) {
  4388     guarantee (ev->OnList == 0, "invariant") ;
  4389     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4391     // Optional spin phase: spin-then-park strategy
  4392     while (--its >= 0) {
  4393       w = *Lock ;
  4394       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4395         if (ReleaseAfter != NULL) {
  4396           ParkEvent::Release (ReleaseAfter) ;
  4398         return ;
  4402     ev->reset() ;
  4403     ev->OnList = intptr_t(Lock) ;
  4404     // The following fence() isn't _strictly necessary as the subsequent
  4405     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4406     OrderAccess::fence();
  4407     for (;;) {
  4408       w = *Lock ;
  4409       if ((w & LOCKBIT) == 0) {
  4410         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4411           ev->OnList = 0 ;
  4412           // We call ::Release while holding the outer lock, thus
  4413           // artificially lengthening the critical section.
  4414           // Consider deferring the ::Release() until the subsequent unlock(),
  4415           // after we've dropped the outer lock.
  4416           if (ReleaseAfter != NULL) {
  4417             ParkEvent::Release (ReleaseAfter) ;
  4419           return ;
  4421         continue ;      // Interference -- *Lock changed -- Just retry
  4423       assert (w & LOCKBIT, "invariant") ;
  4424       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4425       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4428     while (ev->OnList != 0) {
  4429       ev->park() ;
  4434 // Release() must extract a successor from the list and then wake that thread.
  4435 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4436 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4437 // Release() would :
  4438 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4439 // (B) Extract a successor from the private list "in-hand"
  4440 // (C) attempt to CAS() the residual back into *Lock over null.
  4441 //     If there were any newly arrived threads and the CAS() would fail.
  4442 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4443 //     with the RATs and repeat as needed.  Alternately, Release() might
  4444 //     detach and extract a successor, but then pass the residual list to the wakee.
  4445 //     The wakee would be responsible for reattaching and remerging before it
  4446 //     competed for the lock.
  4447 //
  4448 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4449 // multiple concurrent pushers, but only one popper or detacher.
  4450 // This implementation pops from the head of the list.  This is unfair,
  4451 // but tends to provide excellent throughput as hot threads remain hot.
  4452 // (We wake recently run threads first).
  4454 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4455   for (;;) {
  4456     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4457     assert (w & LOCKBIT, "invariant") ;
  4458     if (w == LOCKBIT) return ;
  4459     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4460     assert (List != NULL, "invariant") ;
  4461     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4462     ParkEvent * nxt = List->ListNext ;
  4464     // The following CAS() releases the lock and pops the head element.
  4465     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4466       continue ;
  4468     List->OnList = 0 ;
  4469     OrderAccess::fence() ;
  4470     List->unpark () ;
  4471     return ;
  4476 void Threads::verify() {
  4477   ALL_JAVA_THREADS(p) {
  4478     p->verify();
  4480   VMThread* thread = VMThread::vm_thread();
  4481   if (thread != NULL) thread->verify();

mercurial