src/share/vm/runtime/safepoint.cpp

Wed, 15 Feb 2012 12:32:03 -0800

author
iveresov
date
Wed, 15 Feb 2012 12:32:03 -0800
changeset 3572
cfdfbeac0a5b
parent 3500
0382d2b469b2
child 3632
541c4a5e7b88
permissions
-rw-r--r--

7145345: Code cache sweeper must cooperate with safepoints
Summary: Safepoint in the sweeper loop in necessary
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/codeCache.hpp"
    28 #include "code/icBuffer.hpp"
    29 #include "code/nmethod.hpp"
    30 #include "code/pcDesc.hpp"
    31 #include "code/scopeDesc.hpp"
    32 #include "gc_interface/collectedHeap.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "memory/universe.inline.hpp"
    36 #include "oops/oop.inline.hpp"
    37 #include "oops/symbol.hpp"
    38 #include "runtime/compilationPolicy.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/interfaceSupport.hpp"
    42 #include "runtime/mutexLocker.hpp"
    43 #include "runtime/osThread.hpp"
    44 #include "runtime/safepoint.hpp"
    45 #include "runtime/signature.hpp"
    46 #include "runtime/stubCodeGenerator.hpp"
    47 #include "runtime/stubRoutines.hpp"
    48 #include "runtime/sweeper.hpp"
    49 #include "runtime/synchronizer.hpp"
    50 #include "services/runtimeService.hpp"
    51 #include "utilities/events.hpp"
    52 #ifdef TARGET_ARCH_x86
    53 # include "nativeInst_x86.hpp"
    54 # include "vmreg_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_sparc
    57 # include "nativeInst_sparc.hpp"
    58 # include "vmreg_sparc.inline.hpp"
    59 #endif
    60 #ifdef TARGET_ARCH_zero
    61 # include "nativeInst_zero.hpp"
    62 # include "vmreg_zero.inline.hpp"
    63 #endif
    64 #ifdef TARGET_ARCH_arm
    65 # include "nativeInst_arm.hpp"
    66 # include "vmreg_arm.inline.hpp"
    67 #endif
    68 #ifdef TARGET_ARCH_ppc
    69 # include "nativeInst_ppc.hpp"
    70 # include "vmreg_ppc.inline.hpp"
    71 #endif
    72 #ifdef TARGET_OS_FAMILY_linux
    73 # include "thread_linux.inline.hpp"
    74 #endif
    75 #ifdef TARGET_OS_FAMILY_solaris
    76 # include "thread_solaris.inline.hpp"
    77 #endif
    78 #ifdef TARGET_OS_FAMILY_windows
    79 # include "thread_windows.inline.hpp"
    80 #endif
    81 #ifdef TARGET_OS_FAMILY_bsd
    82 # include "thread_bsd.inline.hpp"
    83 #endif
    84 #ifndef SERIALGC
    85 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    86 #include "gc_implementation/shared/concurrentGCThread.hpp"
    87 #endif
    88 #ifdef COMPILER1
    89 #include "c1/c1_globals.hpp"
    90 #endif
    92 // --------------------------------------------------------------------------------------------------
    93 // Implementation of Safepoint begin/end
    95 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
    96 volatile int  SafepointSynchronize::_waiting_to_block = 0;
    97 volatile int SafepointSynchronize::_safepoint_counter = 0;
    98 int SafepointSynchronize::_current_jni_active_count = 0;
    99 long  SafepointSynchronize::_end_of_last_safepoint = 0;
   100 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
   101 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
   102 static bool timeout_error_printed = false;
   104 // Roll all threads forward to a safepoint and suspend them all
   105 void SafepointSynchronize::begin() {
   107   Thread* myThread = Thread::current();
   108   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
   110   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   111     _safepoint_begin_time = os::javaTimeNanos();
   112     _ts_of_current_safepoint = tty->time_stamp().seconds();
   113   }
   115 #ifndef SERIALGC
   116   if (UseConcMarkSweepGC) {
   117     // In the future we should investigate whether CMS can use the
   118     // more-general mechanism below.  DLD (01/05).
   119     ConcurrentMarkSweepThread::synchronize(false);
   120   } else if (UseG1GC) {
   121     ConcurrentGCThread::safepoint_synchronize();
   122   }
   123 #endif // SERIALGC
   125   // By getting the Threads_lock, we assure that no threads are about to start or
   126   // exit. It is released again in SafepointSynchronize::end().
   127   Threads_lock->lock();
   129   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
   131   int nof_threads = Threads::number_of_threads();
   133   if (TraceSafepoint) {
   134     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
   135   }
   137   RuntimeService::record_safepoint_begin();
   139   MutexLocker mu(Safepoint_lock);
   141   // Reset the count of active JNI critical threads
   142   _current_jni_active_count = 0;
   144   // Set number of threads to wait for, before we initiate the callbacks
   145   _waiting_to_block = nof_threads;
   146   TryingToBlock     = 0 ;
   147   int still_running = nof_threads;
   149   // Save the starting time, so that it can be compared to see if this has taken
   150   // too long to complete.
   151   jlong safepoint_limit_time;
   152   timeout_error_printed = false;
   154   // PrintSafepointStatisticsTimeout can be specified separately. When
   155   // specified, PrintSafepointStatistics will be set to true in
   156   // deferred_initialize_stat method. The initialization has to be done
   157   // early enough to avoid any races. See bug 6880029 for details.
   158   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   159     deferred_initialize_stat();
   160   }
   162   // Begin the process of bringing the system to a safepoint.
   163   // Java threads can be in several different states and are
   164   // stopped by different mechanisms:
   165   //
   166   //  1. Running interpreted
   167   //     The interpeter dispatch table is changed to force it to
   168   //     check for a safepoint condition between bytecodes.
   169   //  2. Running in native code
   170   //     When returning from the native code, a Java thread must check
   171   //     the safepoint _state to see if we must block.  If the
   172   //     VM thread sees a Java thread in native, it does
   173   //     not wait for this thread to block.  The order of the memory
   174   //     writes and reads of both the safepoint state and the Java
   175   //     threads state is critical.  In order to guarantee that the
   176   //     memory writes are serialized with respect to each other,
   177   //     the VM thread issues a memory barrier instruction
   178   //     (on MP systems).  In order to avoid the overhead of issuing
   179   //     a memory barrier for each Java thread making native calls, each Java
   180   //     thread performs a write to a single memory page after changing
   181   //     the thread state.  The VM thread performs a sequence of
   182   //     mprotect OS calls which forces all previous writes from all
   183   //     Java threads to be serialized.  This is done in the
   184   //     os::serialize_thread_states() call.  This has proven to be
   185   //     much more efficient than executing a membar instruction
   186   //     on every call to native code.
   187   //  3. Running compiled Code
   188   //     Compiled code reads a global (Safepoint Polling) page that
   189   //     is set to fault if we are trying to get to a safepoint.
   190   //  4. Blocked
   191   //     A thread which is blocked will not be allowed to return from the
   192   //     block condition until the safepoint operation is complete.
   193   //  5. In VM or Transitioning between states
   194   //     If a Java thread is currently running in the VM or transitioning
   195   //     between states, the safepointing code will wait for the thread to
   196   //     block itself when it attempts transitions to a new state.
   197   //
   198   _state            = _synchronizing;
   199   OrderAccess::fence();
   201   // Flush all thread states to memory
   202   if (!UseMembar) {
   203     os::serialize_thread_states();
   204   }
   206   // Make interpreter safepoint aware
   207   Interpreter::notice_safepoints();
   209   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
   210     // Make polling safepoint aware
   211     guarantee (PageArmed == 0, "invariant") ;
   212     PageArmed = 1 ;
   213     os::make_polling_page_unreadable();
   214   }
   216   // Consider using active_processor_count() ... but that call is expensive.
   217   int ncpus = os::processor_count() ;
   219 #ifdef ASSERT
   220   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   221     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
   222   }
   223 #endif // ASSERT
   225   if (SafepointTimeout)
   226     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
   228   // Iterate through all threads until it have been determined how to stop them all at a safepoint
   229   unsigned int iterations = 0;
   230   int steps = 0 ;
   231   while(still_running > 0) {
   232     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   233       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
   234       ThreadSafepointState *cur_state = cur->safepoint_state();
   235       if (cur_state->is_running()) {
   236         cur_state->examine_state_of_thread();
   237         if (!cur_state->is_running()) {
   238            still_running--;
   239            // consider adjusting steps downward:
   240            //   steps = 0
   241            //   steps -= NNN
   242            //   steps >>= 1
   243            //   steps = MIN(steps, 2000-100)
   244            //   if (iterations != 0) steps -= NNN
   245         }
   246         if (TraceSafepoint && Verbose) cur_state->print();
   247       }
   248     }
   250     if (PrintSafepointStatistics && iterations == 0) {
   251       begin_statistics(nof_threads, still_running);
   252     }
   254     if (still_running > 0) {
   255       // Check for if it takes to long
   256       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
   257         print_safepoint_timeout(_spinning_timeout);
   258       }
   260       // Spin to avoid context switching.
   261       // There's a tension between allowing the mutators to run (and rendezvous)
   262       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
   263       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
   264       // spinning by the VM thread on a saturated system can increase rendezvous latency.
   265       // Blocking or yielding incur their own penalties in the form of context switching
   266       // and the resultant loss of $ residency.
   267       //
   268       // Further complicating matters is that yield() does not work as naively expected
   269       // on many platforms -- yield() does not guarantee that any other ready threads
   270       // will run.   As such we revert yield_all() after some number of iterations.
   271       // Yield_all() is implemented as a short unconditional sleep on some platforms.
   272       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
   273       // can actually increase the time it takes the VM thread to detect that a system-wide
   274       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
   275       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
   276       // In that case the mutators will be stalled waiting for the safepoint to complete and the
   277       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
   278       // will eventually wake up and detect that all mutators are safe, at which point
   279       // we'll again make progress.
   280       //
   281       // Beware too that that the VMThread typically runs at elevated priority.
   282       // Its default priority is higher than the default mutator priority.
   283       // Obviously, this complicates spinning.
   284       //
   285       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
   286       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
   287       //
   288       // See the comments in synchronizer.cpp for additional remarks on spinning.
   289       //
   290       // In the future we might:
   291       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
   292       //    This is tricky as the path used by a thread exiting the JVM (say on
   293       //    on JNI call-out) simply stores into its state field.  The burden
   294       //    is placed on the VM thread, which must poll (spin).
   295       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
   296       //    we might aggressively scan the stacks of threads that are already safe.
   297       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
   298       //    If all the mutators are ONPROC there's no reason to sleep or yield.
   299       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
   300       // 5. Check system saturation.  If the system is not fully saturated then
   301       //    simply spin and avoid sleep/yield.
   302       // 6. As still-running mutators rendezvous they could unpark the sleeping
   303       //    VMthread.  This works well for still-running mutators that become
   304       //    safe.  The VMthread must still poll for mutators that call-out.
   305       // 7. Drive the policy on time-since-begin instead of iterations.
   306       // 8. Consider making the spin duration a function of the # of CPUs:
   307       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
   308       //    Alternately, instead of counting iterations of the outer loop
   309       //    we could count the # of threads visited in the inner loop, above.
   310       // 9. On windows consider using the return value from SwitchThreadTo()
   311       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
   313       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
   314          guarantee (PageArmed == 0, "invariant") ;
   315          PageArmed = 1 ;
   316          os::make_polling_page_unreadable();
   317       }
   319       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
   320       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
   321       ++steps ;
   322       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
   323         SpinPause() ;     // MP-Polite spin
   324       } else
   325       if (steps < DeferThrSuspendLoopCount) {
   326         os::NakedYield() ;
   327       } else {
   328         os::yield_all(steps) ;
   329         // Alternately, the VM thread could transiently depress its scheduling priority or
   330         // transiently increase the priority of the tardy mutator(s).
   331       }
   333       iterations ++ ;
   334     }
   335     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
   336   }
   337   assert(still_running == 0, "sanity check");
   339   if (PrintSafepointStatistics) {
   340     update_statistics_on_spin_end();
   341   }
   343   // wait until all threads are stopped
   344   while (_waiting_to_block > 0) {
   345     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
   346     if (!SafepointTimeout || timeout_error_printed) {
   347       Safepoint_lock->wait(true);  // true, means with no safepoint checks
   348     } else {
   349       // Compute remaining time
   350       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
   352       // If there is no remaining time, then there is an error
   353       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
   354         print_safepoint_timeout(_blocking_timeout);
   355       }
   356     }
   357   }
   358   assert(_waiting_to_block == 0, "sanity check");
   360 #ifndef PRODUCT
   361   if (SafepointTimeout) {
   362     jlong current_time = os::javaTimeNanos();
   363     if (safepoint_limit_time < current_time) {
   364       tty->print_cr("# SafepointSynchronize: Finished after "
   365                     INT64_FORMAT_W(6) " ms",
   366                     ((current_time - safepoint_limit_time) / MICROUNITS +
   367                      SafepointTimeoutDelay));
   368     }
   369   }
   370 #endif
   372   assert((_safepoint_counter & 0x1) == 0, "must be even");
   373   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   374   _safepoint_counter ++;
   376   // Record state
   377   _state = _synchronized;
   379   OrderAccess::fence();
   381   // Update the count of active JNI critical regions
   382   GC_locker::set_jni_lock_count(_current_jni_active_count);
   384   if (TraceSafepoint) {
   385     VM_Operation *op = VMThread::vm_operation();
   386     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
   387   }
   389   RuntimeService::record_safepoint_synchronized();
   390   if (PrintSafepointStatistics) {
   391     update_statistics_on_sync_end(os::javaTimeNanos());
   392   }
   394   // Call stuff that needs to be run when a safepoint is just about to be completed
   395   do_cleanup_tasks();
   397   if (PrintSafepointStatistics) {
   398     // Record how much time spend on the above cleanup tasks
   399     update_statistics_on_cleanup_end(os::javaTimeNanos());
   400   }
   401 }
   403 // Wake up all threads, so they are ready to resume execution after the safepoint
   404 // operation has been carried out
   405 void SafepointSynchronize::end() {
   407   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   408   assert((_safepoint_counter & 0x1) == 1, "must be odd");
   409   _safepoint_counter ++;
   410   // memory fence isn't required here since an odd _safepoint_counter
   411   // value can do no harm and a fence is issued below anyway.
   413   DEBUG_ONLY(Thread* myThread = Thread::current();)
   414   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
   416   if (PrintSafepointStatistics) {
   417     end_statistics(os::javaTimeNanos());
   418   }
   420 #ifdef ASSERT
   421   // A pending_exception cannot be installed during a safepoint.  The threads
   422   // may install an async exception after they come back from a safepoint into
   423   // pending_exception after they unblock.  But that should happen later.
   424   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
   425     assert (!(cur->has_pending_exception() &&
   426               cur->safepoint_state()->is_at_poll_safepoint()),
   427             "safepoint installed a pending exception");
   428   }
   429 #endif // ASSERT
   431   if (PageArmed) {
   432     // Make polling safepoint aware
   433     os::make_polling_page_readable();
   434     PageArmed = 0 ;
   435   }
   437   // Remove safepoint check from interpreter
   438   Interpreter::ignore_safepoints();
   440   {
   441     MutexLocker mu(Safepoint_lock);
   443     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
   445     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
   446     // when they get restarted.
   447     _state = _not_synchronized;
   448     OrderAccess::fence();
   450     if (TraceSafepoint) {
   451        tty->print_cr("Leaving safepoint region");
   452     }
   454     // Start suspended threads
   455     for(JavaThread *current = Threads::first(); current; current = current->next()) {
   456       // A problem occurring on Solaris is when attempting to restart threads
   457       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
   458       // to the next one (since it has been running the longest).  We then have
   459       // to wait for a cpu to become available before we can continue restarting
   460       // threads.
   461       // FIXME: This causes the performance of the VM to degrade when active and with
   462       // large numbers of threads.  Apparently this is due to the synchronous nature
   463       // of suspending threads.
   464       //
   465       // TODO-FIXME: the comments above are vestigial and no longer apply.
   466       // Furthermore, using solaris' schedctl in this particular context confers no benefit
   467       if (VMThreadHintNoPreempt) {
   468         os::hint_no_preempt();
   469       }
   470       ThreadSafepointState* cur_state = current->safepoint_state();
   471       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
   472       cur_state->restart();
   473       assert(cur_state->is_running(), "safepoint state has not been reset");
   474     }
   476     RuntimeService::record_safepoint_end();
   478     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
   479     // blocked in signal_thread_blocked
   480     Threads_lock->unlock();
   482   }
   483 #ifndef SERIALGC
   484   // If there are any concurrent GC threads resume them.
   485   if (UseConcMarkSweepGC) {
   486     ConcurrentMarkSweepThread::desynchronize(false);
   487   } else if (UseG1GC) {
   488     ConcurrentGCThread::safepoint_desynchronize();
   489   }
   490 #endif // SERIALGC
   491   // record this time so VMThread can keep track how much time has elasped
   492   // since last safepoint.
   493   _end_of_last_safepoint = os::javaTimeMillis();
   494 }
   496 bool SafepointSynchronize::is_cleanup_needed() {
   497   // Need a safepoint if some inline cache buffers is non-empty
   498   if (!InlineCacheBuffer::is_empty()) return true;
   499   return false;
   500 }
   504 // Various cleaning tasks that should be done periodically at safepoints
   505 void SafepointSynchronize::do_cleanup_tasks() {
   506   {
   507     TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
   508     ObjectSynchronizer::deflate_idle_monitors();
   509   }
   511   {
   512     TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
   513     InlineCacheBuffer::update_inline_caches();
   514   }
   515   {
   516     TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
   517     CompilationPolicy::policy()->do_safepoint_work();
   518   }
   520   TraceTime t4("sweeping nmethods", TraceSafepointCleanupTime);
   521   NMethodSweeper::scan_stacks();
   523   // rotate log files?
   524   if (UseGCLogFileRotation) {
   525     gclog_or_tty->rotate_log();
   526   }
   527 }
   530 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
   531   switch(state) {
   532   case _thread_in_native:
   533     // native threads are safe if they have no java stack or have walkable stack
   534     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
   536    // blocked threads should have already have walkable stack
   537   case _thread_blocked:
   538     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
   539     return true;
   541   default:
   542     return false;
   543   }
   544 }
   547 // See if the thread is running inside a lazy critical native and
   548 // update the thread critical count if so.  Also set a suspend flag to
   549 // cause the native wrapper to return into the JVM to do the unlock
   550 // once the native finishes.
   551 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
   552   if (state == _thread_in_native &&
   553       thread->has_last_Java_frame() &&
   554       thread->frame_anchor()->walkable()) {
   555     // This thread might be in a critical native nmethod so look at
   556     // the top of the stack and increment the critical count if it
   557     // is.
   558     frame wrapper_frame = thread->last_frame();
   559     CodeBlob* stub_cb = wrapper_frame.cb();
   560     if (stub_cb != NULL &&
   561         stub_cb->is_nmethod() &&
   562         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
   563       // A thread could potentially be in a critical native across
   564       // more than one safepoint, so only update the critical state on
   565       // the first one.  When it returns it will perform the unlock.
   566       if (!thread->do_critical_native_unlock()) {
   567 #ifdef ASSERT
   568         if (!thread->in_critical()) {
   569           GC_locker::increment_debug_jni_lock_count();
   570         }
   571 #endif
   572         thread->enter_critical();
   573         // Make sure the native wrapper calls back on return to
   574         // perform the needed critical unlock.
   575         thread->set_critical_native_unlock();
   576       }
   577     }
   578   }
   579 }
   583 // -------------------------------------------------------------------------------------------------------
   584 // Implementation of Safepoint callback point
   586 void SafepointSynchronize::block(JavaThread *thread) {
   587   assert(thread != NULL, "thread must be set");
   588   assert(thread->is_Java_thread(), "not a Java thread");
   590   // Threads shouldn't block if they are in the middle of printing, but...
   591   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
   593   // Only bail from the block() call if the thread is gone from the
   594   // thread list; starting to exit should still block.
   595   if (thread->is_terminated()) {
   596      // block current thread if we come here from native code when VM is gone
   597      thread->block_if_vm_exited();
   599      // otherwise do nothing
   600      return;
   601   }
   603   JavaThreadState state = thread->thread_state();
   604   thread->frame_anchor()->make_walkable(thread);
   606   // Check that we have a valid thread_state at this point
   607   switch(state) {
   608     case _thread_in_vm_trans:
   609     case _thread_in_Java:        // From compiled code
   611       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
   612       // we pretend we are still in the VM.
   613       thread->set_thread_state(_thread_in_vm);
   615       if (is_synchronizing()) {
   616          Atomic::inc (&TryingToBlock) ;
   617       }
   619       // We will always be holding the Safepoint_lock when we are examine the state
   620       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
   621       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
   622       Safepoint_lock->lock_without_safepoint_check();
   623       if (is_synchronizing()) {
   624         // Decrement the number of threads to wait for and signal vm thread
   625         assert(_waiting_to_block > 0, "sanity check");
   626         _waiting_to_block--;
   627         thread->safepoint_state()->set_has_called_back(true);
   629         if (thread->in_critical()) {
   630           // Notice that this thread is in a critical section
   631           increment_jni_active_count();
   632         }
   634         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
   635         if (_waiting_to_block == 0) {
   636           Safepoint_lock->notify_all();
   637         }
   638       }
   640       // We transition the thread to state _thread_blocked here, but
   641       // we can't do our usual check for external suspension and then
   642       // self-suspend after the lock_without_safepoint_check() call
   643       // below because we are often called during transitions while
   644       // we hold different locks. That would leave us suspended while
   645       // holding a resource which results in deadlocks.
   646       thread->set_thread_state(_thread_blocked);
   647       Safepoint_lock->unlock();
   649       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
   650       // the entire safepoint, the threads will all line up here during the safepoint.
   651       Threads_lock->lock_without_safepoint_check();
   652       // restore original state. This is important if the thread comes from compiled code, so it
   653       // will continue to execute with the _thread_in_Java state.
   654       thread->set_thread_state(state);
   655       Threads_lock->unlock();
   656       break;
   658     case _thread_in_native_trans:
   659     case _thread_blocked_trans:
   660     case _thread_new_trans:
   661       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
   662         thread->print_thread_state();
   663         fatal("Deadlock in safepoint code.  "
   664               "Should have called back to the VM before blocking.");
   665       }
   667       // We transition the thread to state _thread_blocked here, but
   668       // we can't do our usual check for external suspension and then
   669       // self-suspend after the lock_without_safepoint_check() call
   670       // below because we are often called during transitions while
   671       // we hold different locks. That would leave us suspended while
   672       // holding a resource which results in deadlocks.
   673       thread->set_thread_state(_thread_blocked);
   675       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
   676       // the safepoint code might still be waiting for it to block. We need to change the state here,
   677       // so it can see that it is at a safepoint.
   679       // Block until the safepoint operation is completed.
   680       Threads_lock->lock_without_safepoint_check();
   682       // Restore state
   683       thread->set_thread_state(state);
   685       Threads_lock->unlock();
   686       break;
   688     default:
   689      fatal(err_msg("Illegal threadstate encountered: %d", state));
   690   }
   692   // Check for pending. async. exceptions or suspends - except if the
   693   // thread was blocked inside the VM. has_special_runtime_exit_condition()
   694   // is called last since it grabs a lock and we only want to do that when
   695   // we must.
   696   //
   697   // Note: we never deliver an async exception at a polling point as the
   698   // compiler may not have an exception handler for it. The polling
   699   // code will notice the async and deoptimize and the exception will
   700   // be delivered. (Polling at a return point is ok though). Sure is
   701   // a lot of bother for a deprecated feature...
   702   //
   703   // We don't deliver an async exception if the thread state is
   704   // _thread_in_native_trans so JNI functions won't be called with
   705   // a surprising pending exception. If the thread state is going back to java,
   706   // async exception is checked in check_special_condition_for_native_trans().
   708   if (state != _thread_blocked_trans &&
   709       state != _thread_in_vm_trans &&
   710       thread->has_special_runtime_exit_condition()) {
   711     thread->handle_special_runtime_exit_condition(
   712       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
   713   }
   714 }
   716 // ------------------------------------------------------------------------------------------------------
   717 // Exception handlers
   719 #ifndef PRODUCT
   720 #ifdef _LP64
   721 #define PTR_PAD ""
   722 #else
   723 #define PTR_PAD "        "
   724 #endif
   726 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
   727   bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
   728   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
   729                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   730                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   731 }
   733 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
   734   bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
   735   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
   736                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   737                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   738 }
   740 #ifdef SPARC
   741 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
   742 #ifdef _LP64
   743   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
   744   const int incr = 1;           // Increment to skip a long, in units of intptr_t
   745 #else
   746   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
   747   const int incr = 2;           // Increment to skip a long, in units of intptr_t
   748 #endif
   749   tty->print_cr("---SP---|");
   750   for( int i=0; i<16; i++ ) {
   751     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   752   tty->print_cr("--------|");
   753   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
   754     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   755   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
   756   tty->print_cr("--------|");
   757   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   758   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   759   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   760   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   761   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
   762   old_sp += incr; new_sp += incr; was_oops += incr;
   763   // Skip the floats
   764   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
   765   tty->print_cr("---FP---|");
   766   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
   767   for( int i2=0; i2<16; i2++ ) {
   768     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   769   tty->print_cr("");
   770 }
   771 #endif  // SPARC
   772 #endif  // PRODUCT
   775 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
   776   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
   777   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
   778   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
   780   // Uncomment this to get some serious before/after printing of the
   781   // Sparc safepoint-blob frame structure.
   782   /*
   783   intptr_t* sp = thread->last_Java_sp();
   784   intptr_t stack_copy[150];
   785   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
   786   bool was_oops[150];
   787   for( int i=0; i<150; i++ )
   788     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
   789   */
   791   if (ShowSafepointMsgs) {
   792     tty->print("handle_polling_page_exception: ");
   793   }
   795   if (PrintSafepointStatistics) {
   796     inc_page_trap_count();
   797   }
   799   ThreadSafepointState* state = thread->safepoint_state();
   801   state->handle_polling_page_exception();
   802   // print_me(sp,stack_copy,was_oops);
   803 }
   806 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
   807   if (!timeout_error_printed) {
   808     timeout_error_printed = true;
   809     // Print out the thread infor which didn't reach the safepoint for debugging
   810     // purposes (useful when there are lots of threads in the debugger).
   811     tty->print_cr("");
   812     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
   813     if (reason ==  _spinning_timeout) {
   814       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
   815     } else if (reason == _blocking_timeout) {
   816       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
   817     }
   819     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
   820     ThreadSafepointState *cur_state;
   821     ResourceMark rm;
   822     for(JavaThread *cur_thread = Threads::first(); cur_thread;
   823         cur_thread = cur_thread->next()) {
   824       cur_state = cur_thread->safepoint_state();
   826       if (cur_thread->thread_state() != _thread_blocked &&
   827           ((reason == _spinning_timeout && cur_state->is_running()) ||
   828            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
   829         tty->print("# ");
   830         cur_thread->print();
   831         tty->print_cr("");
   832       }
   833     }
   834     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
   835   }
   837   // To debug the long safepoint, specify both DieOnSafepointTimeout &
   838   // ShowMessageBoxOnError.
   839   if (DieOnSafepointTimeout) {
   840     char msg[1024];
   841     VM_Operation *op = VMThread::vm_operation();
   842     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
   843             SafepointTimeoutDelay,
   844             op != NULL ? op->name() : "no vm operation");
   845     fatal(msg);
   846   }
   847 }
   850 // -------------------------------------------------------------------------------------------------------
   851 // Implementation of ThreadSafepointState
   853 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
   854   _thread = thread;
   855   _type   = _running;
   856   _has_called_back = false;
   857   _at_poll_safepoint = false;
   858 }
   860 void ThreadSafepointState::create(JavaThread *thread) {
   861   ThreadSafepointState *state = new ThreadSafepointState(thread);
   862   thread->set_safepoint_state(state);
   863 }
   865 void ThreadSafepointState::destroy(JavaThread *thread) {
   866   if (thread->safepoint_state()) {
   867     delete(thread->safepoint_state());
   868     thread->set_safepoint_state(NULL);
   869   }
   870 }
   872 void ThreadSafepointState::examine_state_of_thread() {
   873   assert(is_running(), "better be running or just have hit safepoint poll");
   875   JavaThreadState state = _thread->thread_state();
   877   // Save the state at the start of safepoint processing.
   878   _orig_thread_state = state;
   880   // Check for a thread that is suspended. Note that thread resume tries
   881   // to grab the Threads_lock which we own here, so a thread cannot be
   882   // resumed during safepoint synchronization.
   884   // We check to see if this thread is suspended without locking to
   885   // avoid deadlocking with a third thread that is waiting for this
   886   // thread to be suspended. The third thread can notice the safepoint
   887   // that we're trying to start at the beginning of its SR_lock->wait()
   888   // call. If that happens, then the third thread will block on the
   889   // safepoint while still holding the underlying SR_lock. We won't be
   890   // able to get the SR_lock and we'll deadlock.
   891   //
   892   // We don't need to grab the SR_lock here for two reasons:
   893   // 1) The suspend flags are both volatile and are set with an
   894   //    Atomic::cmpxchg() call so we should see the suspended
   895   //    state right away.
   896   // 2) We're being called from the safepoint polling loop; if
   897   //    we don't see the suspended state on this iteration, then
   898   //    we'll come around again.
   899   //
   900   bool is_suspended = _thread->is_ext_suspended();
   901   if (is_suspended) {
   902     roll_forward(_at_safepoint);
   903     return;
   904   }
   906   // Some JavaThread states have an initial safepoint state of
   907   // running, but are actually at a safepoint. We will happily
   908   // agree and update the safepoint state here.
   909   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
   910     roll_forward(_at_safepoint);
   911     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
   912     if (_thread->in_critical()) {
   913       // Notice that this thread is in a critical section
   914       SafepointSynchronize::increment_jni_active_count();
   915     }
   916     return;
   917   }
   919   if (state == _thread_in_vm) {
   920     roll_forward(_call_back);
   921     return;
   922   }
   924   // All other thread states will continue to run until they
   925   // transition and self-block in state _blocked
   926   // Safepoint polling in compiled code causes the Java threads to do the same.
   927   // Note: new threads may require a malloc so they must be allowed to finish
   929   assert(is_running(), "examine_state_of_thread on non-running thread");
   930   return;
   931 }
   933 // Returns true is thread could not be rolled forward at present position.
   934 void ThreadSafepointState::roll_forward(suspend_type type) {
   935   _type = type;
   937   switch(_type) {
   938     case _at_safepoint:
   939       SafepointSynchronize::signal_thread_at_safepoint();
   940       break;
   942     case _call_back:
   943       set_has_called_back(false);
   944       break;
   946     case _running:
   947     default:
   948       ShouldNotReachHere();
   949   }
   950 }
   952 void ThreadSafepointState::restart() {
   953   switch(type()) {
   954     case _at_safepoint:
   955     case _call_back:
   956       break;
   958     case _running:
   959     default:
   960        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
   961                       _thread, _type);
   962        _thread->print();
   963       ShouldNotReachHere();
   964   }
   965   _type = _running;
   966   set_has_called_back(false);
   967 }
   970 void ThreadSafepointState::print_on(outputStream *st) const {
   971   const char *s;
   973   switch(_type) {
   974     case _running                : s = "_running";              break;
   975     case _at_safepoint           : s = "_at_safepoint";         break;
   976     case _call_back              : s = "_call_back";            break;
   977     default:
   978       ShouldNotReachHere();
   979   }
   981   st->print_cr("Thread: " INTPTR_FORMAT
   982               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
   983                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
   984                _at_poll_safepoint);
   986   _thread->print_thread_state_on(st);
   987 }
   990 // ---------------------------------------------------------------------------------------------------------------------
   992 // Block the thread at the safepoint poll or poll return.
   993 void ThreadSafepointState::handle_polling_page_exception() {
   995   // Check state.  block() will set thread state to thread_in_vm which will
   996   // cause the safepoint state _type to become _call_back.
   997   assert(type() == ThreadSafepointState::_running,
   998          "polling page exception on thread not running state");
  1000   // Step 1: Find the nmethod from the return address
  1001   if (ShowSafepointMsgs && Verbose) {
  1002     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
  1004   address real_return_addr = thread()->saved_exception_pc();
  1006   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
  1007   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
  1008   nmethod* nm = (nmethod*)cb;
  1010   // Find frame of caller
  1011   frame stub_fr = thread()->last_frame();
  1012   CodeBlob* stub_cb = stub_fr.cb();
  1013   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
  1014   RegisterMap map(thread(), true);
  1015   frame caller_fr = stub_fr.sender(&map);
  1017   // Should only be poll_return or poll
  1018   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
  1020   // This is a poll immediately before a return. The exception handling code
  1021   // has already had the effect of causing the return to occur, so the execution
  1022   // will continue immediately after the call. In addition, the oopmap at the
  1023   // return point does not mark the return value as an oop (if it is), so
  1024   // it needs a handle here to be updated.
  1025   if( nm->is_at_poll_return(real_return_addr) ) {
  1026     // See if return type is an oop.
  1027     bool return_oop = nm->method()->is_returning_oop();
  1028     Handle return_value;
  1029     if (return_oop) {
  1030       // The oop result has been saved on the stack together with all
  1031       // the other registers. In order to preserve it over GCs we need
  1032       // to keep it in a handle.
  1033       oop result = caller_fr.saved_oop_result(&map);
  1034       assert(result == NULL || result->is_oop(), "must be oop");
  1035       return_value = Handle(thread(), result);
  1036       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
  1039     // Block the thread
  1040     SafepointSynchronize::block(thread());
  1042     // restore oop result, if any
  1043     if (return_oop) {
  1044       caller_fr.set_saved_oop_result(&map, return_value());
  1048   // This is a safepoint poll. Verify the return address and block.
  1049   else {
  1050     set_at_poll_safepoint(true);
  1052     // verify the blob built the "return address" correctly
  1053     assert(real_return_addr == caller_fr.pc(), "must match");
  1055     // Block the thread
  1056     SafepointSynchronize::block(thread());
  1057     set_at_poll_safepoint(false);
  1059     // If we have a pending async exception deoptimize the frame
  1060     // as otherwise we may never deliver it.
  1061     if (thread()->has_async_condition()) {
  1062       ThreadInVMfromJavaNoAsyncException __tiv(thread());
  1063       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
  1066     // If an exception has been installed we must check for a pending deoptimization
  1067     // Deoptimize frame if exception has been thrown.
  1069     if (thread()->has_pending_exception() ) {
  1070       RegisterMap map(thread(), true);
  1071       frame caller_fr = stub_fr.sender(&map);
  1072       if (caller_fr.is_deoptimized_frame()) {
  1073         // The exception patch will destroy registers that are still
  1074         // live and will be needed during deoptimization. Defer the
  1075         // Async exception should have defered the exception until the
  1076         // next safepoint which will be detected when we get into
  1077         // the interpreter so if we have an exception now things
  1078         // are messed up.
  1080         fatal("Exception installed and deoptimization is pending");
  1087 //
  1088 //                     Statistics & Instrumentations
  1089 //
  1090 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
  1091 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
  1092 int    SafepointSynchronize::_cur_stat_index = 0;
  1093 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
  1094 julong SafepointSynchronize::_coalesced_vmop_count = 0;
  1095 jlong  SafepointSynchronize::_max_sync_time = 0;
  1096 jlong  SafepointSynchronize::_max_vmop_time = 0;
  1097 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
  1099 static jlong  cleanup_end_time = 0;
  1100 static bool   need_to_track_page_armed_status = false;
  1101 static bool   init_done = false;
  1103 // Helper method to print the header.
  1104 static void print_header() {
  1105   tty->print("         vmop                    "
  1106              "[threads: total initially_running wait_to_block]    ");
  1107   tty->print("[time: spin block sync cleanup vmop] ");
  1109   // no page armed status printed out if it is always armed.
  1110   if (need_to_track_page_armed_status) {
  1111     tty->print("page_armed ");
  1114   tty->print_cr("page_trap_count");
  1117 void SafepointSynchronize::deferred_initialize_stat() {
  1118   if (init_done) return;
  1120   if (PrintSafepointStatisticsCount <= 0) {
  1121     fatal("Wrong PrintSafepointStatisticsCount");
  1124   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
  1125   // be printed right away, in which case, _safepoint_stats will regress to
  1126   // a single element array. Otherwise, it is a circular ring buffer with default
  1127   // size of PrintSafepointStatisticsCount.
  1128   int stats_array_size;
  1129   if (PrintSafepointStatisticsTimeout > 0) {
  1130     stats_array_size = 1;
  1131     PrintSafepointStatistics = true;
  1132   } else {
  1133     stats_array_size = PrintSafepointStatisticsCount;
  1135   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
  1136                                                  * sizeof(SafepointStats));
  1137   guarantee(_safepoint_stats != NULL,
  1138             "not enough memory for safepoint instrumentation data");
  1140   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
  1141     need_to_track_page_armed_status = true;
  1143   init_done = true;
  1146 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
  1147   assert(init_done, "safepoint statistics array hasn't been initialized");
  1148   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1150   spstat->_time_stamp = _ts_of_current_safepoint;
  1152   VM_Operation *op = VMThread::vm_operation();
  1153   spstat->_vmop_type = (op != NULL ? op->type() : -1);
  1154   if (op != NULL) {
  1155     _safepoint_reasons[spstat->_vmop_type]++;
  1158   spstat->_nof_total_threads = nof_threads;
  1159   spstat->_nof_initial_running_threads = nof_running;
  1160   spstat->_nof_threads_hit_page_trap = 0;
  1162   // Records the start time of spinning. The real time spent on spinning
  1163   // will be adjusted when spin is done. Same trick is applied for time
  1164   // spent on waiting for threads to block.
  1165   if (nof_running != 0) {
  1166     spstat->_time_to_spin = os::javaTimeNanos();
  1167   }  else {
  1168     spstat->_time_to_spin = 0;
  1172 void SafepointSynchronize::update_statistics_on_spin_end() {
  1173   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1175   jlong cur_time = os::javaTimeNanos();
  1177   spstat->_nof_threads_wait_to_block = _waiting_to_block;
  1178   if (spstat->_nof_initial_running_threads != 0) {
  1179     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
  1182   if (need_to_track_page_armed_status) {
  1183     spstat->_page_armed = (PageArmed == 1);
  1186   // Records the start time of waiting for to block. Updated when block is done.
  1187   if (_waiting_to_block != 0) {
  1188     spstat->_time_to_wait_to_block = cur_time;
  1189   } else {
  1190     spstat->_time_to_wait_to_block = 0;
  1194 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
  1195   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1197   if (spstat->_nof_threads_wait_to_block != 0) {
  1198     spstat->_time_to_wait_to_block = end_time -
  1199       spstat->_time_to_wait_to_block;
  1202   // Records the end time of sync which will be used to calculate the total
  1203   // vm operation time. Again, the real time spending in syncing will be deducted
  1204   // from the start of the sync time later when end_statistics is called.
  1205   spstat->_time_to_sync = end_time - _safepoint_begin_time;
  1206   if (spstat->_time_to_sync > _max_sync_time) {
  1207     _max_sync_time = spstat->_time_to_sync;
  1210   spstat->_time_to_do_cleanups = end_time;
  1213 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
  1214   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1216   // Record how long spent in cleanup tasks.
  1217   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
  1219   cleanup_end_time = end_time;
  1222 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
  1223   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1225   // Update the vm operation time.
  1226   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
  1227   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
  1228     _max_vmop_time = spstat->_time_to_exec_vmop;
  1230   // Only the sync time longer than the specified
  1231   // PrintSafepointStatisticsTimeout will be printed out right away.
  1232   // By default, it is -1 meaning all samples will be put into the list.
  1233   if ( PrintSafepointStatisticsTimeout > 0) {
  1234     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1235       print_statistics();
  1237   } else {
  1238     // The safepoint statistics will be printed out when the _safepoin_stats
  1239     // array fills up.
  1240     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
  1241       print_statistics();
  1242       _cur_stat_index = 0;
  1243     } else {
  1244       _cur_stat_index++;
  1249 void SafepointSynchronize::print_statistics() {
  1250   SafepointStats* sstats = _safepoint_stats;
  1252   for (int index = 0; index <= _cur_stat_index; index++) {
  1253     if (index % 30 == 0) {
  1254       print_header();
  1256     sstats = &_safepoint_stats[index];
  1257     tty->print("%.3f: ", sstats->_time_stamp);
  1258     tty->print("%-26s       ["
  1259                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
  1260                "    ]    ",
  1261                sstats->_vmop_type == -1 ? "no vm operation" :
  1262                VM_Operation::name(sstats->_vmop_type),
  1263                sstats->_nof_total_threads,
  1264                sstats->_nof_initial_running_threads,
  1265                sstats->_nof_threads_wait_to_block);
  1266     // "/ MICROUNITS " is to convert the unit from nanos to millis.
  1267     tty->print("  ["
  1268                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1269                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1270                INT64_FORMAT_W(6)"    ]  ",
  1271                sstats->_time_to_spin / MICROUNITS,
  1272                sstats->_time_to_wait_to_block / MICROUNITS,
  1273                sstats->_time_to_sync / MICROUNITS,
  1274                sstats->_time_to_do_cleanups / MICROUNITS,
  1275                sstats->_time_to_exec_vmop / MICROUNITS);
  1277     if (need_to_track_page_armed_status) {
  1278       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
  1280     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
  1284 // This method will be called when VM exits. It will first call
  1285 // print_statistics to print out the rest of the sampling.  Then
  1286 // it tries to summarize the sampling.
  1287 void SafepointSynchronize::print_stat_on_exit() {
  1288   if (_safepoint_stats == NULL) return;
  1290   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1292   // During VM exit, end_statistics may not get called and in that
  1293   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
  1294   // don't print it out.
  1295   // Approximate the vm op time.
  1296   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
  1297     os::javaTimeNanos() - cleanup_end_time;
  1299   if ( PrintSafepointStatisticsTimeout < 0 ||
  1300        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1301     print_statistics();
  1303   tty->print_cr("");
  1305   // Print out polling page sampling status.
  1306   if (!need_to_track_page_armed_status) {
  1307     if (UseCompilerSafepoints) {
  1308       tty->print_cr("Polling page always armed");
  1310   } else {
  1311     tty->print_cr("Defer polling page loop count = %d\n",
  1312                  DeferPollingPageLoopCount);
  1315   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
  1316     if (_safepoint_reasons[index] != 0) {
  1317       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
  1318                     _safepoint_reasons[index]);
  1322   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
  1323                 _coalesced_vmop_count);
  1324   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
  1325                 _max_sync_time / MICROUNITS);
  1326   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
  1327                 INT64_FORMAT_W(5)" ms",
  1328                 _max_vmop_time / MICROUNITS);
  1331 // ------------------------------------------------------------------------------------------------
  1332 // Non-product code
  1334 #ifndef PRODUCT
  1336 void SafepointSynchronize::print_state() {
  1337   if (_state == _not_synchronized) {
  1338     tty->print_cr("not synchronized");
  1339   } else if (_state == _synchronizing || _state == _synchronized) {
  1340     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
  1341                   "synchronized");
  1343     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
  1344        cur->safepoint_state()->print();
  1349 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
  1350   if (ShowSafepointMsgs) {
  1351     va_list ap;
  1352     va_start(ap, format);
  1353     tty->vprint_cr(format, ap);
  1354     va_end(ap);
  1358 #endif // !PRODUCT

mercurial