src/share/vm/opto/regmask.cpp

Wed, 18 Sep 2013 14:34:56 -0700

author
goetz
date
Wed, 18 Sep 2013 14:34:56 -0700
changeset 6468
cfd05ec74089
parent 6441
d2907f74462e
child 6680
78bbf4d43a14
permissions
-rw-r--r--

8024342: PPC64 (part 111): Support for C calling conventions that require 64-bit ints.
Summary: Some platforms, as ppc and s390x/zArch require that 32-bit ints are passed as 64-bit values to C functions. This change adds support to adapt the signature and to issue proper casts to c2-compiled stubs. The functions are used in generate_native_wrapper(). Adapt signature used by the compiler as in PhaseIdealLoop::intrinsify_fill().
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "opto/compile.hpp"
    27 #include "opto/regmask.hpp"
    28 #ifdef TARGET_ARCH_MODEL_x86_32
    29 # include "adfiles/ad_x86_32.hpp"
    30 #endif
    31 #ifdef TARGET_ARCH_MODEL_x86_64
    32 # include "adfiles/ad_x86_64.hpp"
    33 #endif
    34 #ifdef TARGET_ARCH_MODEL_sparc
    35 # include "adfiles/ad_sparc.hpp"
    36 #endif
    37 #ifdef TARGET_ARCH_MODEL_zero
    38 # include "adfiles/ad_zero.hpp"
    39 #endif
    40 #ifdef TARGET_ARCH_MODEL_arm
    41 # include "adfiles/ad_arm.hpp"
    42 #endif
    43 #ifdef TARGET_ARCH_MODEL_ppc_32
    44 # include "adfiles/ad_ppc_32.hpp"
    45 #endif
    46 #ifdef TARGET_ARCH_MODEL_ppc_64
    47 # include "adfiles/ad_ppc_64.hpp"
    48 #endif
    50 #define RM_SIZE _RM_SIZE /* a constant private to the class RegMask */
    52 //-------------Non-zero bit search methods used by RegMask---------------------
    53 // Find lowest 1, or return 32 if empty
    54 int find_lowest_bit( uint32 mask ) {
    55   int n = 0;
    56   if( (mask & 0xffff) == 0 ) {
    57     mask >>= 16;
    58     n += 16;
    59   }
    60   if( (mask & 0xff) == 0 ) {
    61     mask >>= 8;
    62     n += 8;
    63   }
    64   if( (mask & 0xf) == 0 ) {
    65     mask >>= 4;
    66     n += 4;
    67   }
    68   if( (mask & 0x3) == 0 ) {
    69     mask >>= 2;
    70     n += 2;
    71   }
    72   if( (mask & 0x1) == 0 ) {
    73     mask >>= 1;
    74      n += 1;
    75   }
    76   if( mask == 0 ) {
    77     n = 32;
    78   }
    79   return n;
    80 }
    82 // Find highest 1, or return 32 if empty
    83 int find_hihghest_bit( uint32 mask ) {
    84   int n = 0;
    85   if( mask > 0xffff ) {
    86     mask >>= 16;
    87     n += 16;
    88   }
    89   if( mask > 0xff ) {
    90     mask >>= 8;
    91     n += 8;
    92   }
    93   if( mask > 0xf ) {
    94     mask >>= 4;
    95     n += 4;
    96   }
    97   if( mask > 0x3 ) {
    98     mask >>= 2;
    99     n += 2;
   100   }
   101   if( mask > 0x1 ) {
   102     mask >>= 1;
   103     n += 1;
   104   }
   105   if( mask == 0 ) {
   106     n = 32;
   107   }
   108   return n;
   109 }
   111 //------------------------------dump-------------------------------------------
   113 #ifndef PRODUCT
   114 void OptoReg::dump(int r, outputStream *st) {
   115   switch (r) {
   116   case Special: st->print("r---"); break;
   117   case Bad:     st->print("rBAD"); break;
   118   default:
   119     if (r < _last_Mach_Reg) st->print(Matcher::regName[r]);
   120     else st->print("rS%d",r);
   121     break;
   122   }
   123 }
   124 #endif
   127 //=============================================================================
   128 const RegMask RegMask::Empty(
   129 # define BODY(I) 0,
   130   FORALL_BODY
   131 # undef BODY
   132   0
   133 );
   135 //=============================================================================
   136 bool RegMask::is_vector(uint ireg) {
   137   return (ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY);
   138 }
   140 int RegMask::num_registers(uint ireg) {
   141     switch(ireg) {
   142       case Op_VecY:
   143         return 8;
   144       case Op_VecX:
   145         return 4;
   146       case Op_VecD:
   147       case Op_RegD:
   148       case Op_RegL:
   149 #ifdef _LP64
   150       case Op_RegP:
   151 #endif
   152         return 2;
   153     }
   154     // Op_VecS and the rest ideal registers.
   155     return 1;
   156 }
   158 //------------------------------find_first_pair--------------------------------
   159 // Find the lowest-numbered register pair in the mask.  Return the
   160 // HIGHEST register number in the pair, or BAD if no pairs.
   161 OptoReg::Name RegMask::find_first_pair() const {
   162   verify_pairs();
   163   for( int i = 0; i < RM_SIZE; i++ ) {
   164     if( _A[i] ) {               // Found some bits
   165       int bit = _A[i] & -_A[i]; // Extract low bit
   166       // Convert to bit number, return hi bit in pair
   167       return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+1);
   168     }
   169   }
   170   return OptoReg::Bad;
   171 }
   173 //------------------------------ClearToPairs-----------------------------------
   174 // Clear out partial bits; leave only bit pairs
   175 void RegMask::clear_to_pairs() {
   176   for( int i = 0; i < RM_SIZE; i++ ) {
   177     int bits = _A[i];
   178     bits &= ((bits & 0x55555555)<<1); // 1 hi-bit set for each pair
   179     bits |= (bits>>1);          // Smear 1 hi-bit into a pair
   180     _A[i] = bits;
   181   }
   182   verify_pairs();
   183 }
   185 //------------------------------SmearToPairs-----------------------------------
   186 // Smear out partial bits; leave only bit pairs
   187 void RegMask::smear_to_pairs() {
   188   for( int i = 0; i < RM_SIZE; i++ ) {
   189     int bits = _A[i];
   190     bits |= ((bits & 0x55555555)<<1); // Smear lo bit hi per pair
   191     bits |= ((bits & 0xAAAAAAAA)>>1); // Smear hi bit lo per pair
   192     _A[i] = bits;
   193   }
   194   verify_pairs();
   195 }
   197 //------------------------------is_aligned_pairs-------------------------------
   198 bool RegMask::is_aligned_pairs() const {
   199   // Assert that the register mask contains only bit pairs.
   200   for( int i = 0; i < RM_SIZE; i++ ) {
   201     int bits = _A[i];
   202     while( bits ) {             // Check bits for pairing
   203       int bit = bits & -bits;   // Extract low bit
   204       // Low bit is not odd means its mis-aligned.
   205       if( (bit & 0x55555555) == 0 ) return false;
   206       bits -= bit;              // Remove bit from mask
   207       // Check for aligned adjacent bit
   208       if( (bits & (bit<<1)) == 0 ) return false;
   209       bits -= (bit<<1);         // Remove other halve of pair
   210     }
   211   }
   212   return true;
   213 }
   215 //------------------------------is_bound1--------------------------------------
   216 // Return TRUE if the mask contains a single bit
   217 int RegMask::is_bound1() const {
   218   if( is_AllStack() ) return false;
   219   int bit = -1;                 // Set to hold the one bit allowed
   220   for( int i = 0; i < RM_SIZE; i++ ) {
   221     if( _A[i] ) {               // Found some bits
   222       if( bit != -1 ) return false; // Already had bits, so fail
   223       bit = _A[i] & -_A[i];     // Extract 1 bit from mask
   224       if( bit != _A[i] ) return false; // Found many bits, so fail
   225     }
   226   }
   227   // True for both the empty mask and for a single bit
   228   return true;
   229 }
   231 //------------------------------is_bound2--------------------------------------
   232 // Return TRUE if the mask contains an adjacent pair of bits and no other bits.
   233 int RegMask::is_bound_pair() const {
   234   if( is_AllStack() ) return false;
   236   int bit = -1;                 // Set to hold the one bit allowed
   237   for( int i = 0; i < RM_SIZE; i++ ) {
   238     if( _A[i] ) {               // Found some bits
   239       if( bit != -1 ) return false; // Already had bits, so fail
   240       bit = _A[i] & -(_A[i]);   // Extract 1 bit from mask
   241       if( (bit << 1) != 0 ) {   // Bit pair stays in same word?
   242         if( (bit | (bit<<1)) != _A[i] )
   243           return false;         // Require adjacent bit pair and no more bits
   244       } else {                  // Else its a split-pair case
   245         if( bit != _A[i] ) return false; // Found many bits, so fail
   246         i++;                    // Skip iteration forward
   247         if( i >= RM_SIZE || _A[i] != 1 )
   248           return false; // Require 1 lo bit in next word
   249       }
   250     }
   251   }
   252   // True for both the empty mask and for a bit pair
   253   return true;
   254 }
   256 static int low_bits[3] = { 0x55555555, 0x11111111, 0x01010101 };
   257 //------------------------------find_first_set---------------------------------
   258 // Find the lowest-numbered register set in the mask.  Return the
   259 // HIGHEST register number in the set, or BAD if no sets.
   260 // Works also for size 1.
   261 OptoReg::Name RegMask::find_first_set(const int size) const {
   262   verify_sets(size);
   263   for (int i = 0; i < RM_SIZE; i++) {
   264     if (_A[i]) {                // Found some bits
   265       int bit = _A[i] & -_A[i]; // Extract low bit
   266       // Convert to bit number, return hi bit in pair
   267       return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+(size-1));
   268     }
   269   }
   270   return OptoReg::Bad;
   271 }
   273 //------------------------------clear_to_sets----------------------------------
   274 // Clear out partial bits; leave only aligned adjacent bit pairs
   275 void RegMask::clear_to_sets(const int size) {
   276   if (size == 1) return;
   277   assert(2 <= size && size <= 8, "update low bits table");
   278   assert(is_power_of_2(size), "sanity");
   279   int low_bits_mask = low_bits[size>>2];
   280   for (int i = 0; i < RM_SIZE; i++) {
   281     int bits = _A[i];
   282     int sets = (bits & low_bits_mask);
   283     for (int j = 1; j < size; j++) {
   284       sets = (bits & (sets<<1)); // filter bits which produce whole sets
   285     }
   286     sets |= (sets>>1);           // Smear 1 hi-bit into a set
   287     if (size > 2) {
   288       sets |= (sets>>2);         // Smear 2 hi-bits into a set
   289       if (size > 4) {
   290         sets |= (sets>>4);       // Smear 4 hi-bits into a set
   291       }
   292     }
   293     _A[i] = sets;
   294   }
   295   verify_sets(size);
   296 }
   298 //------------------------------smear_to_sets----------------------------------
   299 // Smear out partial bits to aligned adjacent bit sets
   300 void RegMask::smear_to_sets(const int size) {
   301   if (size == 1) return;
   302   assert(2 <= size && size <= 8, "update low bits table");
   303   assert(is_power_of_2(size), "sanity");
   304   int low_bits_mask = low_bits[size>>2];
   305   for (int i = 0; i < RM_SIZE; i++) {
   306     int bits = _A[i];
   307     int sets = 0;
   308     for (int j = 0; j < size; j++) {
   309       sets |= (bits & low_bits_mask);  // collect partial bits
   310       bits  = bits>>1;
   311     }
   312     sets |= (sets<<1);           // Smear 1 lo-bit  into a set
   313     if (size > 2) {
   314       sets |= (sets<<2);         // Smear 2 lo-bits into a set
   315       if (size > 4) {
   316         sets |= (sets<<4);       // Smear 4 lo-bits into a set
   317       }
   318     }
   319     _A[i] = sets;
   320   }
   321   verify_sets(size);
   322 }
   324 //------------------------------is_aligned_set--------------------------------
   325 bool RegMask::is_aligned_sets(const int size) const {
   326   if (size == 1) return true;
   327   assert(2 <= size && size <= 8, "update low bits table");
   328   assert(is_power_of_2(size), "sanity");
   329   int low_bits_mask = low_bits[size>>2];
   330   // Assert that the register mask contains only bit sets.
   331   for (int i = 0; i < RM_SIZE; i++) {
   332     int bits = _A[i];
   333     while (bits) {              // Check bits for pairing
   334       int bit = bits & -bits;   // Extract low bit
   335       // Low bit is not odd means its mis-aligned.
   336       if ((bit & low_bits_mask) == 0) return false;
   337       // Do extra work since (bit << size) may overflow.
   338       int hi_bit = bit << (size-1); // high bit
   339       int set = hi_bit + ((hi_bit-1) & ~(bit-1));
   340       // Check for aligned adjacent bits in this set
   341       if ((bits & set) != set) return false;
   342       bits -= set;  // Remove this set
   343     }
   344   }
   345   return true;
   346 }
   348 //------------------------------is_bound_set-----------------------------------
   349 // Return TRUE if the mask contains one adjacent set of bits and no other bits.
   350 // Works also for size 1.
   351 int RegMask::is_bound_set(const int size) const {
   352   if( is_AllStack() ) return false;
   353   assert(1 <= size && size <= 8, "update low bits table");
   354   int bit = -1;                 // Set to hold the one bit allowed
   355   for (int i = 0; i < RM_SIZE; i++) {
   356     if (_A[i] ) {               // Found some bits
   357       if (bit != -1)
   358        return false;            // Already had bits, so fail
   359       bit = _A[i] & -_A[i];     // Extract low bit from mask
   360       int hi_bit = bit << (size-1); // high bit
   361       if (hi_bit != 0) {        // Bit set stays in same word?
   362         int set = hi_bit + ((hi_bit-1) & ~(bit-1));
   363         if (set != _A[i])
   364           return false;         // Require adjacent bit set and no more bits
   365       } else {                  // Else its a split-set case
   366         if (((-1) & ~(bit-1)) != _A[i])
   367           return false;         // Found many bits, so fail
   368         i++;                    // Skip iteration forward and check high part
   369         // The lower 24 bits should be 0 since it is split case and size <= 8.
   370         int set = bit>>24;
   371         set = set & -set; // Remove sign extension.
   372         set = (((set << size) - 1) >> 8);
   373         if (i >= RM_SIZE || _A[i] != set)
   374           return false; // Require expected low bits in next word
   375       }
   376     }
   377   }
   378   // True for both the empty mask and for a bit set
   379   return true;
   380 }
   382 //------------------------------is_UP------------------------------------------
   383 // UP means register only, Register plus stack, or stack only is DOWN
   384 bool RegMask::is_UP() const {
   385   // Quick common case check for DOWN (any stack slot is legal)
   386   if( is_AllStack() )
   387     return false;
   388   // Slower check for any stack bits set (also DOWN)
   389   if( overlap(Matcher::STACK_ONLY_mask) )
   390     return false;
   391   // Not DOWN, so must be UP
   392   return true;
   393 }
   395 //------------------------------Size-------------------------------------------
   396 // Compute size of register mask in bits
   397 uint RegMask::Size() const {
   398   extern uint8 bitsInByte[256];
   399   uint sum = 0;
   400   for( int i = 0; i < RM_SIZE; i++ )
   401     sum +=
   402       bitsInByte[(_A[i]>>24) & 0xff] +
   403       bitsInByte[(_A[i]>>16) & 0xff] +
   404       bitsInByte[(_A[i]>> 8) & 0xff] +
   405       bitsInByte[ _A[i]      & 0xff];
   406   return sum;
   407 }
   409 #ifndef PRODUCT
   410 //------------------------------print------------------------------------------
   411 void RegMask::dump(outputStream *st) const {
   412   st->print("[");
   413   RegMask rm = *this;           // Structure copy into local temp
   415   OptoReg::Name start = rm.find_first_elem(); // Get a register
   416   if (OptoReg::is_valid(start)) { // Check for empty mask
   417     rm.Remove(start);           // Yank from mask
   418     OptoReg::dump(start, st);   // Print register
   419     OptoReg::Name last = start;
   421     // Now I have printed an initial register.
   422     // Print adjacent registers as "rX-rZ" instead of "rX,rY,rZ".
   423     // Begin looping over the remaining registers.
   424     while (1) {                 //
   425       OptoReg::Name reg = rm.find_first_elem(); // Get a register
   426       if (!OptoReg::is_valid(reg))
   427         break;                  // Empty mask, end loop
   428       rm.Remove(reg);           // Yank from mask
   430       if (last+1 == reg) {      // See if they are adjacent
   431         // Adjacent registers just collect into long runs, no printing.
   432         last = reg;
   433       } else {                  // Ending some kind of run
   434         if (start == last) {    // 1-register run; no special printing
   435         } else if (start+1 == last) {
   436           st->print(",");       // 2-register run; print as "rX,rY"
   437           OptoReg::dump(last, st);
   438         } else {                // Multi-register run; print as "rX-rZ"
   439           st->print("-");
   440           OptoReg::dump(last, st);
   441         }
   442         st->print(",");         // Seperate start of new run
   443         start = last = reg;     // Start a new register run
   444         OptoReg::dump(start, st); // Print register
   445       } // End of if ending a register run or not
   446     } // End of while regmask not empty
   448     if (start == last) {        // 1-register run; no special printing
   449     } else if (start+1 == last) {
   450       st->print(",");           // 2-register run; print as "rX,rY"
   451       OptoReg::dump(last, st);
   452     } else {                    // Multi-register run; print as "rX-rZ"
   453       st->print("-");
   454       OptoReg::dump(last, st);
   455     }
   456     if (rm.is_AllStack()) st->print("...");
   457   }
   458   st->print("]");
   459 }
   460 #endif

mercurial