src/share/vm/opto/loopTransform.cpp

Wed, 18 Sep 2013 14:34:56 -0700

author
goetz
date
Wed, 18 Sep 2013 14:34:56 -0700
changeset 6468
cfd05ec74089
parent 5513
bcc4f6f54d83
child 6472
2b8e28fdf503
permissions
-rw-r--r--

8024342: PPC64 (part 111): Support for C calling conventions that require 64-bit ints.
Summary: Some platforms, as ppc and s390x/zArch require that 32-bit ints are passed as 64-bit values to C functions. This change adds support to adapt the signature and to issue proper casts to c2-compiled stubs. The functions are used in generate_native_wrapper(). Adapt signature used by the compiler as in PhaseIdealLoop::intrinsify_fill().
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/connode.hpp"
    31 #include "opto/divnode.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/mulnode.hpp"
    34 #include "opto/rootnode.hpp"
    35 #include "opto/runtime.hpp"
    36 #include "opto/subnode.hpp"
    38 //------------------------------is_loop_exit-----------------------------------
    39 // Given an IfNode, return the loop-exiting projection or NULL if both
    40 // arms remain in the loop.
    41 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
    42   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
    43   PhaseIdealLoop *phase = _phase;
    44   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
    45   // we need loop unswitching instead of peeling.
    46   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
    47     return iff->raw_out(0);
    48   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
    49     return iff->raw_out(1);
    50   return NULL;
    51 }
    54 //=============================================================================
    57 //------------------------------record_for_igvn----------------------------
    58 // Put loop body on igvn work list
    59 void IdealLoopTree::record_for_igvn() {
    60   for( uint i = 0; i < _body.size(); i++ ) {
    61     Node *n = _body.at(i);
    62     _phase->_igvn._worklist.push(n);
    63   }
    64 }
    66 //------------------------------compute_exact_trip_count-----------------------
    67 // Compute loop exact trip count if possible. Do not recalculate trip count for
    68 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
    69 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
    70   if (!_head->as_Loop()->is_valid_counted_loop()) {
    71     return;
    72   }
    73   CountedLoopNode* cl = _head->as_CountedLoop();
    74   // Trip count may become nonexact for iteration split loops since
    75   // RCE modifies limits. Note, _trip_count value is not reset since
    76   // it is used to limit unrolling of main loop.
    77   cl->set_nonexact_trip_count();
    79   // Loop's test should be part of loop.
    80   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
    81     return; // Infinite loop
    83 #ifdef ASSERT
    84   BoolTest::mask bt = cl->loopexit()->test_trip();
    85   assert(bt == BoolTest::lt || bt == BoolTest::gt ||
    86          bt == BoolTest::ne, "canonical test is expected");
    87 #endif
    89   Node* init_n = cl->init_trip();
    90   Node* limit_n = cl->limit();
    91   if (init_n  != NULL &&  init_n->is_Con() &&
    92       limit_n != NULL && limit_n->is_Con()) {
    93     // Use longs to avoid integer overflow.
    94     int stride_con  = cl->stride_con();
    95     jlong init_con   = cl->init_trip()->get_int();
    96     jlong limit_con  = cl->limit()->get_int();
    97     int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
    98     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
    99     if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
   100       // Set exact trip count.
   101       cl->set_exact_trip_count((uint)trip_count);
   102     }
   103   }
   104 }
   106 //------------------------------compute_profile_trip_cnt----------------------------
   107 // Compute loop trip count from profile data as
   108 //    (backedge_count + loop_exit_count) / loop_exit_count
   109 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
   110   if (!_head->is_CountedLoop()) {
   111     return;
   112   }
   113   CountedLoopNode* head = _head->as_CountedLoop();
   114   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
   115     return; // Already computed
   116   }
   117   float trip_cnt = (float)max_jint; // default is big
   119   Node* back = head->in(LoopNode::LoopBackControl);
   120   while (back != head) {
   121     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
   122         back->in(0) &&
   123         back->in(0)->is_If() &&
   124         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
   125         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
   126       break;
   127     }
   128     back = phase->idom(back);
   129   }
   130   if (back != head) {
   131     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
   132            back->in(0), "if-projection exists");
   133     IfNode* back_if = back->in(0)->as_If();
   134     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
   136     // Now compute a loop exit count
   137     float loop_exit_cnt = 0.0f;
   138     for( uint i = 0; i < _body.size(); i++ ) {
   139       Node *n = _body[i];
   140       if( n->is_If() ) {
   141         IfNode *iff = n->as_If();
   142         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
   143           Node *exit = is_loop_exit(iff);
   144           if( exit ) {
   145             float exit_prob = iff->_prob;
   146             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
   147             if (exit_prob > PROB_MIN) {
   148               float exit_cnt = iff->_fcnt * exit_prob;
   149               loop_exit_cnt += exit_cnt;
   150             }
   151           }
   152         }
   153       }
   154     }
   155     if (loop_exit_cnt > 0.0f) {
   156       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
   157     } else {
   158       // No exit count so use
   159       trip_cnt = loop_back_cnt;
   160     }
   161   }
   162 #ifndef PRODUCT
   163   if (TraceProfileTripCount) {
   164     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
   165   }
   166 #endif
   167   head->set_profile_trip_cnt(trip_cnt);
   168 }
   170 //---------------------is_invariant_addition-----------------------------
   171 // Return nonzero index of invariant operand for an Add or Sub
   172 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
   173 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
   174   int op = n->Opcode();
   175   if (op == Op_AddI || op == Op_SubI) {
   176     bool in1_invar = this->is_invariant(n->in(1));
   177     bool in2_invar = this->is_invariant(n->in(2));
   178     if (in1_invar && !in2_invar) return 1;
   179     if (!in1_invar && in2_invar) return 2;
   180   }
   181   return 0;
   182 }
   184 //---------------------reassociate_add_sub-----------------------------
   185 // Reassociate invariant add and subtract expressions:
   186 //
   187 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
   188 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
   189 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
   190 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
   191 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
   192 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
   193 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
   194 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
   195 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
   196 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
   197 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
   198 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
   199 //
   200 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
   201   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
   202   if (is_invariant(n1)) return NULL;
   203   int inv1_idx = is_invariant_addition(n1, phase);
   204   if (!inv1_idx) return NULL;
   205   // Don't mess with add of constant (igvn moves them to expression tree root.)
   206   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
   207   Node* inv1 = n1->in(inv1_idx);
   208   Node* n2 = n1->in(3 - inv1_idx);
   209   int inv2_idx = is_invariant_addition(n2, phase);
   210   if (!inv2_idx) return NULL;
   211   Node* x    = n2->in(3 - inv2_idx);
   212   Node* inv2 = n2->in(inv2_idx);
   214   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
   215   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
   216   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
   217   if (n1->is_Sub() && inv1_idx == 1) {
   218     neg_x    = !neg_x;
   219     neg_inv2 = !neg_inv2;
   220   }
   221   Node* inv1_c = phase->get_ctrl(inv1);
   222   Node* inv2_c = phase->get_ctrl(inv2);
   223   Node* n_inv1;
   224   if (neg_inv1) {
   225     Node *zero = phase->_igvn.intcon(0);
   226     phase->set_ctrl(zero, phase->C->root());
   227     n_inv1 = new (phase->C) SubINode(zero, inv1);
   228     phase->register_new_node(n_inv1, inv1_c);
   229   } else {
   230     n_inv1 = inv1;
   231   }
   232   Node* inv;
   233   if (neg_inv2) {
   234     inv = new (phase->C) SubINode(n_inv1, inv2);
   235   } else {
   236     inv = new (phase->C) AddINode(n_inv1, inv2);
   237   }
   238   phase->register_new_node(inv, phase->get_early_ctrl(inv));
   240   Node* addx;
   241   if (neg_x) {
   242     addx = new (phase->C) SubINode(inv, x);
   243   } else {
   244     addx = new (phase->C) AddINode(x, inv);
   245   }
   246   phase->register_new_node(addx, phase->get_ctrl(x));
   247   phase->_igvn.replace_node(n1, addx);
   248   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
   249   _body.yank(n1);
   250   return addx;
   251 }
   253 //---------------------reassociate_invariants-----------------------------
   254 // Reassociate invariant expressions:
   255 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
   256   for (int i = _body.size() - 1; i >= 0; i--) {
   257     Node *n = _body.at(i);
   258     for (int j = 0; j < 5; j++) {
   259       Node* nn = reassociate_add_sub(n, phase);
   260       if (nn == NULL) break;
   261       n = nn; // again
   262     };
   263   }
   264 }
   266 //------------------------------policy_peeling---------------------------------
   267 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
   268 // make some loop-invariant test (usually a null-check) happen before the loop.
   269 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
   270   Node *test = ((IdealLoopTree*)this)->tail();
   271   int  body_size = ((IdealLoopTree*)this)->_body.size();
   272   int  live_node_count = phase->C->live_nodes();
   273   // Peeling does loop cloning which can result in O(N^2) node construction
   274   if( body_size > 255 /* Prevent overflow for large body_size */
   275       || (body_size * body_size + live_node_count > MaxNodeLimit) ) {
   276     return false;           // too large to safely clone
   277   }
   278   while( test != _head ) {      // Scan till run off top of loop
   279     if( test->is_If() ) {       // Test?
   280       Node *ctrl = phase->get_ctrl(test->in(1));
   281       if (ctrl->is_top())
   282         return false;           // Found dead test on live IF?  No peeling!
   283       // Standard IF only has one input value to check for loop invariance
   284       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
   285       // Condition is not a member of this loop?
   286       if( !is_member(phase->get_loop(ctrl)) &&
   287           is_loop_exit(test) )
   288         return true;            // Found reason to peel!
   289     }
   290     // Walk up dominators to loop _head looking for test which is
   291     // executed on every path thru loop.
   292     test = phase->idom(test);
   293   }
   294   return false;
   295 }
   297 //------------------------------peeled_dom_test_elim---------------------------
   298 // If we got the effect of peeling, either by actually peeling or by making
   299 // a pre-loop which must execute at least once, we can remove all
   300 // loop-invariant dominated tests in the main body.
   301 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
   302   bool progress = true;
   303   while( progress ) {
   304     progress = false;           // Reset for next iteration
   305     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
   306     Node *test = prev->in(0);
   307     while( test != loop->_head ) { // Scan till run off top of loop
   309       int p_op = prev->Opcode();
   310       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
   311           test->is_If() &&      // Test?
   312           !test->in(1)->is_Con() && // And not already obvious?
   313           // Condition is not a member of this loop?
   314           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
   315         // Walk loop body looking for instances of this test
   316         for( uint i = 0; i < loop->_body.size(); i++ ) {
   317           Node *n = loop->_body.at(i);
   318           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
   319             // IfNode was dominated by version in peeled loop body
   320             progress = true;
   321             dominated_by( old_new[prev->_idx], n );
   322           }
   323         }
   324       }
   325       prev = test;
   326       test = idom(test);
   327     } // End of scan tests in loop
   329   } // End of while( progress )
   330 }
   332 //------------------------------do_peeling-------------------------------------
   333 // Peel the first iteration of the given loop.
   334 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   335 //         The pre-loop illegally has 2 control users (old & new loops).
   336 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   337 //         Do this by making the old-loop fall-in edges act as if they came
   338 //         around the loopback from the prior iteration (follow the old-loop
   339 //         backedges) and then map to the new peeled iteration.  This leaves
   340 //         the pre-loop with only 1 user (the new peeled iteration), but the
   341 //         peeled-loop backedge has 2 users.
   342 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   343 //         extra backedge user.
   344 //
   345 //                   orig
   346 //
   347 //                  stmt1
   348 //                    |
   349 //                    v
   350 //              loop predicate
   351 //                    |
   352 //                    v
   353 //                   loop<----+
   354 //                     |      |
   355 //                   stmt2    |
   356 //                     |      |
   357 //                     v      |
   358 //                    if      ^
   359 //                   / \      |
   360 //                  /   \     |
   361 //                 v     v    |
   362 //               false true   |
   363 //               /       \    |
   364 //              /         ----+
   365 //             |
   366 //             v
   367 //           exit
   368 //
   369 //
   370 //            after clone loop
   371 //
   372 //                   stmt1
   373 //                     |
   374 //                     v
   375 //               loop predicate
   376 //                 /       \
   377 //        clone   /         \   orig
   378 //               /           \
   379 //              /             \
   380 //             v               v
   381 //   +---->loop clone          loop<----+
   382 //   |      |                    |      |
   383 //   |    stmt2 clone          stmt2    |
   384 //   |      |                    |      |
   385 //   |      v                    v      |
   386 //   ^      if clone            If      ^
   387 //   |      / \                / \      |
   388 //   |     /   \              /   \     |
   389 //   |    v     v            v     v    |
   390 //   |    true  false      false true   |
   391 //   |    /         \      /       \    |
   392 //   +----           \    /         ----+
   393 //                    \  /
   394 //                    1v v2
   395 //                  region
   396 //                     |
   397 //                     v
   398 //                   exit
   399 //
   400 //
   401 //         after peel and predicate move
   402 //
   403 //                   stmt1
   404 //                    /
   405 //                   /
   406 //        clone     /            orig
   407 //                 /
   408 //                /              +----------+
   409 //               /               |          |
   410 //              /          loop predicate   |
   411 //             /                 |          |
   412 //            v                  v          |
   413 //   TOP-->loop clone          loop<----+   |
   414 //          |                    |      |   |
   415 //        stmt2 clone          stmt2    |   |
   416 //          |                    |      |   ^
   417 //          v                    v      |   |
   418 //          if clone            If      ^   |
   419 //          / \                / \      |   |
   420 //         /   \              /   \     |   |
   421 //        v     v            v     v    |   |
   422 //      true   false      false  true   |   |
   423 //        |         \      /       \    |   |
   424 //        |          \    /         ----+   ^
   425 //        |           \  /                  |
   426 //        |           1v v2                 |
   427 //        v         region                  |
   428 //        |            |                    |
   429 //        |            v                    |
   430 //        |          exit                   |
   431 //        |                                 |
   432 //        +--------------->-----------------+
   433 //
   434 //
   435 //              final graph
   436 //
   437 //                  stmt1
   438 //                    |
   439 //                    v
   440 //                  stmt2 clone
   441 //                    |
   442 //                    v
   443 //                   if clone
   444 //                  / |
   445 //                 /  |
   446 //                v   v
   447 //            false  true
   448 //             |      |
   449 //             |      v
   450 //             | loop predicate
   451 //             |      |
   452 //             |      v
   453 //             |     loop<----+
   454 //             |      |       |
   455 //             |    stmt2     |
   456 //             |      |       |
   457 //             |      v       |
   458 //             v      if      ^
   459 //             |     /  \     |
   460 //             |    /    \    |
   461 //             |   v     v    |
   462 //             | false  true  |
   463 //             |  |        \  |
   464 //             v  v         --+
   465 //            region
   466 //              |
   467 //              v
   468 //             exit
   469 //
   470 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
   472   C->set_major_progress();
   473   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
   474   // 'pre' loop from the main and the 'pre' can no longer have it's
   475   // iterations adjusted.  Therefore, we need to declare this loop as
   476   // no longer a 'main' loop; it will need new pre and post loops before
   477   // we can do further RCE.
   478 #ifndef PRODUCT
   479   if (TraceLoopOpts) {
   480     tty->print("Peel         ");
   481     loop->dump_head();
   482   }
   483 #endif
   484   Node* head = loop->_head;
   485   bool counted_loop = head->is_CountedLoop();
   486   if (counted_loop) {
   487     CountedLoopNode *cl = head->as_CountedLoop();
   488     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
   489     cl->set_trip_count(cl->trip_count() - 1);
   490     if (cl->is_main_loop()) {
   491       cl->set_normal_loop();
   492 #ifndef PRODUCT
   493       if (PrintOpto && VerifyLoopOptimizations) {
   494         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
   495         loop->dump_head();
   496       }
   497 #endif
   498     }
   499   }
   500   Node* entry = head->in(LoopNode::EntryControl);
   502   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   503   //         The pre-loop illegally has 2 control users (old & new loops).
   504   clone_loop( loop, old_new, dom_depth(head) );
   506   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   507   //         Do this by making the old-loop fall-in edges act as if they came
   508   //         around the loopback from the prior iteration (follow the old-loop
   509   //         backedges) and then map to the new peeled iteration.  This leaves
   510   //         the pre-loop with only 1 user (the new peeled iteration), but the
   511   //         peeled-loop backedge has 2 users.
   512   Node* new_entry = old_new[head->in(LoopNode::LoopBackControl)->_idx];
   513   _igvn.hash_delete(head);
   514   head->set_req(LoopNode::EntryControl, new_entry);
   515   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
   516     Node* old = head->fast_out(j);
   517     if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
   518       Node* new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
   519       if (!new_exit_value )     // Backedge value is ALSO loop invariant?
   520         // Then loop body backedge value remains the same.
   521         new_exit_value = old->in(LoopNode::LoopBackControl);
   522       _igvn.hash_delete(old);
   523       old->set_req(LoopNode::EntryControl, new_exit_value);
   524     }
   525   }
   528   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   529   //         extra backedge user.
   530   Node* new_head = old_new[head->_idx];
   531   _igvn.hash_delete(new_head);
   532   new_head->set_req(LoopNode::LoopBackControl, C->top());
   533   for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
   534     Node* use = new_head->fast_out(j2);
   535     if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
   536       _igvn.hash_delete(use);
   537       use->set_req(LoopNode::LoopBackControl, C->top());
   538     }
   539   }
   542   // Step 4: Correct dom-depth info.  Set to loop-head depth.
   543   int dd = dom_depth(head);
   544   set_idom(head, head->in(1), dd);
   545   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
   546     Node *old = loop->_body.at(j3);
   547     Node *nnn = old_new[old->_idx];
   548     if (!has_ctrl(nnn))
   549       set_idom(nnn, idom(nnn), dd-1);
   550   }
   552   // Now force out all loop-invariant dominating tests.  The optimizer
   553   // finds some, but we _know_ they are all useless.
   554   peeled_dom_test_elim(loop,old_new);
   556   loop->record_for_igvn();
   557 }
   559 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
   561 //------------------------------policy_maximally_unroll------------------------
   562 // Calculate exact loop trip count and return true if loop can be maximally
   563 // unrolled.
   564 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
   565   CountedLoopNode *cl = _head->as_CountedLoop();
   566   assert(cl->is_normal_loop(), "");
   567   if (!cl->is_valid_counted_loop())
   568     return false; // Malformed counted loop
   570   if (!cl->has_exact_trip_count()) {
   571     // Trip count is not exact.
   572     return false;
   573   }
   575   uint trip_count = cl->trip_count();
   576   // Note, max_juint is used to indicate unknown trip count.
   577   assert(trip_count > 1, "one iteration loop should be optimized out already");
   578   assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
   580   // Real policy: if we maximally unroll, does it get too big?
   581   // Allow the unrolled mess to get larger than standard loop
   582   // size.  After all, it will no longer be a loop.
   583   uint body_size    = _body.size();
   584   uint unroll_limit = (uint)LoopUnrollLimit * 4;
   585   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
   586   if (trip_count > unroll_limit || body_size > unroll_limit) {
   587     return false;
   588   }
   590   // Fully unroll a loop with few iterations regardless next
   591   // conditions since following loop optimizations will split
   592   // such loop anyway (pre-main-post).
   593   if (trip_count <= 3)
   594     return true;
   596   // Take into account that after unroll conjoined heads and tails will fold,
   597   // otherwise policy_unroll() may allow more unrolling than max unrolling.
   598   uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
   599   uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
   600   if (body_size != tst_body_size) // Check for int overflow
   601     return false;
   602   if (new_body_size > unroll_limit ||
   603       // Unrolling can result in a large amount of node construction
   604       new_body_size >= MaxNodeLimit - (uint) phase->C->live_nodes()) {
   605     return false;
   606   }
   608   // Do not unroll a loop with String intrinsics code.
   609   // String intrinsics are large and have loops.
   610   for (uint k = 0; k < _body.size(); k++) {
   611     Node* n = _body.at(k);
   612     switch (n->Opcode()) {
   613       case Op_StrComp:
   614       case Op_StrEquals:
   615       case Op_StrIndexOf:
   616       case Op_EncodeISOArray:
   617       case Op_AryEq: {
   618         return false;
   619       }
   620     } // switch
   621   }
   623   return true; // Do maximally unroll
   624 }
   627 //------------------------------policy_unroll----------------------------------
   628 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   629 // the loop is a CountedLoop and the body is small enough.
   630 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
   632   CountedLoopNode *cl = _head->as_CountedLoop();
   633   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
   635   if (!cl->is_valid_counted_loop())
   636     return false; // Malformed counted loop
   638   // Protect against over-unrolling.
   639   // After split at least one iteration will be executed in pre-loop.
   640   if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
   642   int future_unroll_ct = cl->unrolled_count() * 2;
   643   if (future_unroll_ct > LoopMaxUnroll) return false;
   645   // Check for initial stride being a small enough constant
   646   if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
   648   // Don't unroll if the next round of unrolling would push us
   649   // over the expected trip count of the loop.  One is subtracted
   650   // from the expected trip count because the pre-loop normally
   651   // executes 1 iteration.
   652   if (UnrollLimitForProfileCheck > 0 &&
   653       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
   654       future_unroll_ct        > UnrollLimitForProfileCheck &&
   655       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
   656     return false;
   657   }
   659   // When unroll count is greater than LoopUnrollMin, don't unroll if:
   660   //   the residual iterations are more than 10% of the trip count
   661   //   and rounds of "unroll,optimize" are not making significant progress
   662   //   Progress defined as current size less than 20% larger than previous size.
   663   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
   664       future_unroll_ct > LoopUnrollMin &&
   665       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
   666       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
   667     return false;
   668   }
   670   Node *init_n = cl->init_trip();
   671   Node *limit_n = cl->limit();
   672   int stride_con = cl->stride_con();
   673   // Non-constant bounds.
   674   // Protect against over-unrolling when init or/and limit are not constant
   675   // (so that trip_count's init value is maxint) but iv range is known.
   676   if (init_n   == NULL || !init_n->is_Con()  ||
   677       limit_n  == NULL || !limit_n->is_Con()) {
   678     Node* phi = cl->phi();
   679     if (phi != NULL) {
   680       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
   681       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
   682       int next_stride = stride_con * 2; // stride after this unroll
   683       if (next_stride > 0) {
   684         if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
   685             iv_type->_lo + next_stride >  iv_type->_hi) {
   686           return false;  // over-unrolling
   687         }
   688       } else if (next_stride < 0) {
   689         if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
   690             iv_type->_hi + next_stride <  iv_type->_lo) {
   691           return false;  // over-unrolling
   692         }
   693       }
   694     }
   695   }
   697   // After unroll limit will be adjusted: new_limit = limit-stride.
   698   // Bailout if adjustment overflow.
   699   const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
   700   if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
   701       stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
   702     return false;  // overflow
   704   // Adjust body_size to determine if we unroll or not
   705   uint body_size = _body.size();
   706   // Key test to unroll loop in CRC32 java code
   707   int xors_in_loop = 0;
   708   // Also count ModL, DivL and MulL which expand mightly
   709   for (uint k = 0; k < _body.size(); k++) {
   710     Node* n = _body.at(k);
   711     switch (n->Opcode()) {
   712       case Op_XorI: xors_in_loop++; break; // CRC32 java code
   713       case Op_ModL: body_size += 30; break;
   714       case Op_DivL: body_size += 30; break;
   715       case Op_MulL: body_size += 10; break;
   716       case Op_StrComp:
   717       case Op_StrEquals:
   718       case Op_StrIndexOf:
   719       case Op_EncodeISOArray:
   720       case Op_AryEq: {
   721         // Do not unroll a loop with String intrinsics code.
   722         // String intrinsics are large and have loops.
   723         return false;
   724       }
   725     } // switch
   726   }
   728   // Check for being too big
   729   if (body_size > (uint)LoopUnrollLimit) {
   730     if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
   731     // Normal case: loop too big
   732     return false;
   733   }
   735   // Unroll once!  (Each trip will soon do double iterations)
   736   return true;
   737 }
   739 //------------------------------policy_align-----------------------------------
   740 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
   741 // expression that does the alignment.  Note that only one array base can be
   742 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
   743 // if we vectorize short memory ops into longer memory ops, we may want to
   744 // increase alignment.
   745 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
   746   return false;
   747 }
   749 //------------------------------policy_range_check-----------------------------
   750 // Return TRUE or FALSE if the loop should be range-check-eliminated.
   751 // Actually we do iteration-splitting, a more powerful form of RCE.
   752 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
   753   if (!RangeCheckElimination) return false;
   755   CountedLoopNode *cl = _head->as_CountedLoop();
   756   // If we unrolled with no intention of doing RCE and we later
   757   // changed our minds, we got no pre-loop.  Either we need to
   758   // make a new pre-loop, or we gotta disallow RCE.
   759   if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
   760   Node *trip_counter = cl->phi();
   762   // Check loop body for tests of trip-counter plus loop-invariant vs
   763   // loop-invariant.
   764   for (uint i = 0; i < _body.size(); i++) {
   765     Node *iff = _body[i];
   766     if (iff->Opcode() == Op_If) { // Test?
   768       // Comparing trip+off vs limit
   769       Node *bol = iff->in(1);
   770       if (bol->req() != 2) continue; // dead constant test
   771       if (!bol->is_Bool()) {
   772         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
   773         continue;
   774       }
   775       if (bol->as_Bool()->_test._test == BoolTest::ne)
   776         continue; // not RC
   778       Node *cmp = bol->in(1);
   780       Node *rc_exp = cmp->in(1);
   781       Node *limit = cmp->in(2);
   783       Node *limit_c = phase->get_ctrl(limit);
   784       if( limit_c == phase->C->top() )
   785         return false;           // Found dead test on live IF?  No RCE!
   786       if( is_member(phase->get_loop(limit_c) ) ) {
   787         // Compare might have operands swapped; commute them
   788         rc_exp = cmp->in(2);
   789         limit  = cmp->in(1);
   790         limit_c = phase->get_ctrl(limit);
   791         if( is_member(phase->get_loop(limit_c) ) )
   792           continue;             // Both inputs are loop varying; cannot RCE
   793       }
   795       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
   796         continue;
   797       }
   798       // Yeah!  Found a test like 'trip+off vs limit'
   799       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
   800       // we need loop unswitching instead of iteration splitting.
   801       if( is_loop_exit(iff) )
   802         return true;            // Found reason to split iterations
   803     } // End of is IF
   804   }
   806   return false;
   807 }
   809 //------------------------------policy_peel_only-------------------------------
   810 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
   811 // for unrolling loops with NO array accesses.
   812 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
   814   for( uint i = 0; i < _body.size(); i++ )
   815     if( _body[i]->is_Mem() )
   816       return false;
   818   // No memory accesses at all!
   819   return true;
   820 }
   822 //------------------------------clone_up_backedge_goo--------------------------
   823 // If Node n lives in the back_ctrl block and cannot float, we clone a private
   824 // version of n in preheader_ctrl block and return that, otherwise return n.
   825 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ) {
   826   if( get_ctrl(n) != back_ctrl ) return n;
   828   // Only visit once
   829   if (visited.test_set(n->_idx)) {
   830     Node *x = clones.find(n->_idx);
   831     if (x != NULL)
   832       return x;
   833     return n;
   834   }
   836   Node *x = NULL;               // If required, a clone of 'n'
   837   // Check for 'n' being pinned in the backedge.
   838   if( n->in(0) && n->in(0) == back_ctrl ) {
   839     assert(clones.find(n->_idx) == NULL, "dead loop");
   840     x = n->clone();             // Clone a copy of 'n' to preheader
   841     clones.push(x, n->_idx);
   842     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
   843   }
   845   // Recursive fixup any other input edges into x.
   846   // If there are no changes we can just return 'n', otherwise
   847   // we need to clone a private copy and change it.
   848   for( uint i = 1; i < n->req(); i++ ) {
   849     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i), visited, clones );
   850     if( g != n->in(i) ) {
   851       if( !x ) {
   852         assert(clones.find(n->_idx) == NULL, "dead loop");
   853         x = n->clone();
   854         clones.push(x, n->_idx);
   855       }
   856       x->set_req(i, g);
   857     }
   858   }
   859   if( x ) {                     // x can legally float to pre-header location
   860     register_new_node( x, preheader_ctrl );
   861     return x;
   862   } else {                      // raise n to cover LCA of uses
   863     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
   864   }
   865   return n;
   866 }
   868 //------------------------------insert_pre_post_loops--------------------------
   869 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
   870 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
   871 // alignment.  Useful to unroll loops that do no array accesses.
   872 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
   874 #ifndef PRODUCT
   875   if (TraceLoopOpts) {
   876     if (peel_only)
   877       tty->print("PeelMainPost ");
   878     else
   879       tty->print("PreMainPost  ");
   880     loop->dump_head();
   881   }
   882 #endif
   883   C->set_major_progress();
   885   // Find common pieces of the loop being guarded with pre & post loops
   886   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
   887   assert( main_head->is_normal_loop(), "" );
   888   CountedLoopEndNode *main_end = main_head->loopexit();
   889   guarantee(main_end != NULL, "no loop exit node");
   890   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
   891   uint dd_main_head = dom_depth(main_head);
   892   uint max = main_head->outcnt();
   894   Node *pre_header= main_head->in(LoopNode::EntryControl);
   895   Node *init      = main_head->init_trip();
   896   Node *incr      = main_end ->incr();
   897   Node *limit     = main_end ->limit();
   898   Node *stride    = main_end ->stride();
   899   Node *cmp       = main_end ->cmp_node();
   900   BoolTest::mask b_test = main_end->test_trip();
   902   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
   903   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
   904   if( bol->outcnt() != 1 ) {
   905     bol = bol->clone();
   906     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
   907     _igvn.hash_delete(main_end);
   908     main_end->set_req(CountedLoopEndNode::TestValue, bol);
   909   }
   910   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
   911   if( cmp->outcnt() != 1 ) {
   912     cmp = cmp->clone();
   913     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
   914     _igvn.hash_delete(bol);
   915     bol->set_req(1, cmp);
   916   }
   918   //------------------------------
   919   // Step A: Create Post-Loop.
   920   Node* main_exit = main_end->proj_out(false);
   921   assert( main_exit->Opcode() == Op_IfFalse, "" );
   922   int dd_main_exit = dom_depth(main_exit);
   924   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
   925   // loop pre-header illegally has 2 control users (old & new loops).
   926   clone_loop( loop, old_new, dd_main_exit );
   927   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
   928   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
   929   post_head->set_post_loop(main_head);
   931   // Reduce the post-loop trip count.
   932   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
   933   post_end->_prob = PROB_FAIR;
   935   // Build the main-loop normal exit.
   936   IfFalseNode *new_main_exit = new (C) IfFalseNode(main_end);
   937   _igvn.register_new_node_with_optimizer( new_main_exit );
   938   set_idom(new_main_exit, main_end, dd_main_exit );
   939   set_loop(new_main_exit, loop->_parent);
   941   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
   942   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
   943   // (the main-loop trip-counter exit value) because we will be changing
   944   // the exit value (via unrolling) so we cannot constant-fold away the zero
   945   // trip guard until all unrolling is done.
   946   Node *zer_opaq = new (C) Opaque1Node(C, incr);
   947   Node *zer_cmp  = new (C) CmpINode( zer_opaq, limit );
   948   Node *zer_bol  = new (C) BoolNode( zer_cmp, b_test );
   949   register_new_node( zer_opaq, new_main_exit );
   950   register_new_node( zer_cmp , new_main_exit );
   951   register_new_node( zer_bol , new_main_exit );
   953   // Build the IfNode
   954   IfNode *zer_iff = new (C) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
   955   _igvn.register_new_node_with_optimizer( zer_iff );
   956   set_idom(zer_iff, new_main_exit, dd_main_exit);
   957   set_loop(zer_iff, loop->_parent);
   959   // Plug in the false-path, taken if we need to skip post-loop
   960   _igvn.replace_input_of(main_exit, 0, zer_iff);
   961   set_idom(main_exit, zer_iff, dd_main_exit);
   962   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
   963   // Make the true-path, must enter the post loop
   964   Node *zer_taken = new (C) IfTrueNode( zer_iff );
   965   _igvn.register_new_node_with_optimizer( zer_taken );
   966   set_idom(zer_taken, zer_iff, dd_main_exit);
   967   set_loop(zer_taken, loop->_parent);
   968   // Plug in the true path
   969   _igvn.hash_delete( post_head );
   970   post_head->set_req(LoopNode::EntryControl, zer_taken);
   971   set_idom(post_head, zer_taken, dd_main_exit);
   973   Arena *a = Thread::current()->resource_area();
   974   VectorSet visited(a);
   975   Node_Stack clones(a, main_head->back_control()->outcnt());
   976   // Step A3: Make the fall-in values to the post-loop come from the
   977   // fall-out values of the main-loop.
   978   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
   979     Node* main_phi = main_head->fast_out(i);
   980     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
   981       Node *post_phi = old_new[main_phi->_idx];
   982       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
   983                                               post_head->init_control(),
   984                                               main_phi->in(LoopNode::LoopBackControl),
   985                                               visited, clones);
   986       _igvn.hash_delete(post_phi);
   987       post_phi->set_req( LoopNode::EntryControl, fallmain );
   988     }
   989   }
   991   // Update local caches for next stanza
   992   main_exit = new_main_exit;
   995   //------------------------------
   996   // Step B: Create Pre-Loop.
   998   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
   999   // loop pre-header illegally has 2 control users (old & new loops).
  1000   clone_loop( loop, old_new, dd_main_head );
  1001   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
  1002   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
  1003   pre_head->set_pre_loop(main_head);
  1004   Node *pre_incr = old_new[incr->_idx];
  1006   // Reduce the pre-loop trip count.
  1007   pre_end->_prob = PROB_FAIR;
  1009   // Find the pre-loop normal exit.
  1010   Node* pre_exit = pre_end->proj_out(false);
  1011   assert( pre_exit->Opcode() == Op_IfFalse, "" );
  1012   IfFalseNode *new_pre_exit = new (C) IfFalseNode(pre_end);
  1013   _igvn.register_new_node_with_optimizer( new_pre_exit );
  1014   set_idom(new_pre_exit, pre_end, dd_main_head);
  1015   set_loop(new_pre_exit, loop->_parent);
  1017   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
  1018   // pre-loop, the main-loop may not execute at all.  Later in life this
  1019   // zero-trip guard will become the minimum-trip guard when we unroll
  1020   // the main-loop.
  1021   Node *min_opaq = new (C) Opaque1Node(C, limit);
  1022   Node *min_cmp  = new (C) CmpINode( pre_incr, min_opaq );
  1023   Node *min_bol  = new (C) BoolNode( min_cmp, b_test );
  1024   register_new_node( min_opaq, new_pre_exit );
  1025   register_new_node( min_cmp , new_pre_exit );
  1026   register_new_node( min_bol , new_pre_exit );
  1028   // Build the IfNode (assume the main-loop is executed always).
  1029   IfNode *min_iff = new (C) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
  1030   _igvn.register_new_node_with_optimizer( min_iff );
  1031   set_idom(min_iff, new_pre_exit, dd_main_head);
  1032   set_loop(min_iff, loop->_parent);
  1034   // Plug in the false-path, taken if we need to skip main-loop
  1035   _igvn.hash_delete( pre_exit );
  1036   pre_exit->set_req(0, min_iff);
  1037   set_idom(pre_exit, min_iff, dd_main_head);
  1038   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
  1039   // Make the true-path, must enter the main loop
  1040   Node *min_taken = new (C) IfTrueNode( min_iff );
  1041   _igvn.register_new_node_with_optimizer( min_taken );
  1042   set_idom(min_taken, min_iff, dd_main_head);
  1043   set_loop(min_taken, loop->_parent);
  1044   // Plug in the true path
  1045   _igvn.hash_delete( main_head );
  1046   main_head->set_req(LoopNode::EntryControl, min_taken);
  1047   set_idom(main_head, min_taken, dd_main_head);
  1049   visited.Clear();
  1050   clones.clear();
  1051   // Step B3: Make the fall-in values to the main-loop come from the
  1052   // fall-out values of the pre-loop.
  1053   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
  1054     Node* main_phi = main_head->fast_out(i2);
  1055     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
  1056       Node *pre_phi = old_new[main_phi->_idx];
  1057       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
  1058                                              main_head->init_control(),
  1059                                              pre_phi->in(LoopNode::LoopBackControl),
  1060                                              visited, clones);
  1061       _igvn.hash_delete(main_phi);
  1062       main_phi->set_req( LoopNode::EntryControl, fallpre );
  1066   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
  1067   // RCE and alignment may change this later.
  1068   Node *cmp_end = pre_end->cmp_node();
  1069   assert( cmp_end->in(2) == limit, "" );
  1070   Node *pre_limit = new (C) AddINode( init, stride );
  1072   // Save the original loop limit in this Opaque1 node for
  1073   // use by range check elimination.
  1074   Node *pre_opaq  = new (C) Opaque1Node(C, pre_limit, limit);
  1076   register_new_node( pre_limit, pre_head->in(0) );
  1077   register_new_node( pre_opaq , pre_head->in(0) );
  1079   // Since no other users of pre-loop compare, I can hack limit directly
  1080   assert( cmp_end->outcnt() == 1, "no other users" );
  1081   _igvn.hash_delete(cmp_end);
  1082   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
  1084   // Special case for not-equal loop bounds:
  1085   // Change pre loop test, main loop test, and the
  1086   // main loop guard test to use lt or gt depending on stride
  1087   // direction:
  1088   // positive stride use <
  1089   // negative stride use >
  1090   //
  1091   // not-equal test is kept for post loop to handle case
  1092   // when init > limit when stride > 0 (and reverse).
  1094   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
  1096     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
  1097     // Modify pre loop end condition
  1098     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
  1099     BoolNode* new_bol0 = new (C) BoolNode(pre_bol->in(1), new_test);
  1100     register_new_node( new_bol0, pre_head->in(0) );
  1101     _igvn.hash_delete(pre_end);
  1102     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
  1103     // Modify main loop guard condition
  1104     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
  1105     BoolNode* new_bol1 = new (C) BoolNode(min_bol->in(1), new_test);
  1106     register_new_node( new_bol1, new_pre_exit );
  1107     _igvn.hash_delete(min_iff);
  1108     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
  1109     // Modify main loop end condition
  1110     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
  1111     BoolNode* new_bol2 = new (C) BoolNode(main_bol->in(1), new_test);
  1112     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
  1113     _igvn.hash_delete(main_end);
  1114     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
  1117   // Flag main loop
  1118   main_head->set_main_loop();
  1119   if( peel_only ) main_head->set_main_no_pre_loop();
  1121   // Subtract a trip count for the pre-loop.
  1122   main_head->set_trip_count(main_head->trip_count() - 1);
  1124   // It's difficult to be precise about the trip-counts
  1125   // for the pre/post loops.  They are usually very short,
  1126   // so guess that 4 trips is a reasonable value.
  1127   post_head->set_profile_trip_cnt(4.0);
  1128   pre_head->set_profile_trip_cnt(4.0);
  1130   // Now force out all loop-invariant dominating tests.  The optimizer
  1131   // finds some, but we _know_ they are all useless.
  1132   peeled_dom_test_elim(loop,old_new);
  1135 //------------------------------is_invariant-----------------------------
  1136 // Return true if n is invariant
  1137 bool IdealLoopTree::is_invariant(Node* n) const {
  1138   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
  1139   if (n_c->is_top()) return false;
  1140   return !is_member(_phase->get_loop(n_c));
  1144 //------------------------------do_unroll--------------------------------------
  1145 // Unroll the loop body one step - make each trip do 2 iterations.
  1146 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
  1147   assert(LoopUnrollLimit, "");
  1148   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
  1149   CountedLoopEndNode *loop_end = loop_head->loopexit();
  1150   assert(loop_end, "");
  1151 #ifndef PRODUCT
  1152   if (PrintOpto && VerifyLoopOptimizations) {
  1153     tty->print("Unrolling ");
  1154     loop->dump_head();
  1155   } else if (TraceLoopOpts) {
  1156     if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
  1157       tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
  1158     } else {
  1159       tty->print("Unroll %d     ", loop_head->unrolled_count()*2);
  1161     loop->dump_head();
  1163 #endif
  1165   // Remember loop node count before unrolling to detect
  1166   // if rounds of unroll,optimize are making progress
  1167   loop_head->set_node_count_before_unroll(loop->_body.size());
  1169   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
  1170   Node *limit = loop_head->limit();
  1171   Node *init  = loop_head->init_trip();
  1172   Node *stride = loop_head->stride();
  1174   Node *opaq = NULL;
  1175   if (adjust_min_trip) {       // If not maximally unrolling, need adjustment
  1176     // Search for zero-trip guard.
  1177     assert( loop_head->is_main_loop(), "" );
  1178     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  1179     Node *iff = ctrl->in(0);
  1180     assert( iff->Opcode() == Op_If, "" );
  1181     Node *bol = iff->in(1);
  1182     assert( bol->Opcode() == Op_Bool, "" );
  1183     Node *cmp = bol->in(1);
  1184     assert( cmp->Opcode() == Op_CmpI, "" );
  1185     opaq = cmp->in(2);
  1186     // Occasionally it's possible for a zero-trip guard Opaque1 node to be
  1187     // optimized away and then another round of loop opts attempted.
  1188     // We can not optimize this particular loop in that case.
  1189     if (opaq->Opcode() != Op_Opaque1)
  1190       return; // Cannot find zero-trip guard!  Bail out!
  1191     // Zero-trip test uses an 'opaque' node which is not shared.
  1192     assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
  1195   C->set_major_progress();
  1197   Node* new_limit = NULL;
  1198   if (UnrollLimitCheck) {
  1199     int stride_con = stride->get_int();
  1200     int stride_p = (stride_con > 0) ? stride_con : -stride_con;
  1201     uint old_trip_count = loop_head->trip_count();
  1202     // Verify that unroll policy result is still valid.
  1203     assert(old_trip_count > 1 &&
  1204            (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
  1206     // Adjust loop limit to keep valid iterations number after unroll.
  1207     // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
  1208     // which may overflow.
  1209     if (!adjust_min_trip) {
  1210       assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
  1211              "odd trip count for maximally unroll");
  1212       // Don't need to adjust limit for maximally unroll since trip count is even.
  1213     } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
  1214       // Loop's limit is constant. Loop's init could be constant when pre-loop
  1215       // become peeled iteration.
  1216       jlong init_con = init->get_int();
  1217       // We can keep old loop limit if iterations count stays the same:
  1218       //   old_trip_count == new_trip_count * 2
  1219       // Note: since old_trip_count >= 2 then new_trip_count >= 1
  1220       // so we also don't need to adjust zero trip test.
  1221       jlong limit_con  = limit->get_int();
  1222       // (stride_con*2) not overflow since stride_con <= 8.
  1223       int new_stride_con = stride_con * 2;
  1224       int stride_m    = new_stride_con - (stride_con > 0 ? 1 : -1);
  1225       jlong trip_count = (limit_con - init_con + stride_m)/new_stride_con;
  1226       // New trip count should satisfy next conditions.
  1227       assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
  1228       uint new_trip_count = (uint)trip_count;
  1229       adjust_min_trip = (old_trip_count != new_trip_count*2);
  1232     if (adjust_min_trip) {
  1233       // Step 2: Adjust the trip limit if it is called for.
  1234       // The adjustment amount is -stride. Need to make sure if the
  1235       // adjustment underflows or overflows, then the main loop is skipped.
  1236       Node* cmp = loop_end->cmp_node();
  1237       assert(cmp->in(2) == limit, "sanity");
  1238       assert(opaq != NULL && opaq->in(1) == limit, "sanity");
  1240       // Verify that policy_unroll result is still valid.
  1241       const TypeInt* limit_type = _igvn.type(limit)->is_int();
  1242       assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
  1243              stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
  1245       if (limit->is_Con()) {
  1246         // The check in policy_unroll and the assert above guarantee
  1247         // no underflow if limit is constant.
  1248         new_limit = _igvn.intcon(limit->get_int() - stride_con);
  1249         set_ctrl(new_limit, C->root());
  1250       } else {
  1251         // Limit is not constant.
  1252         if (loop_head->unrolled_count() == 1) { // only for first unroll
  1253           // Separate limit by Opaque node in case it is an incremented
  1254           // variable from previous loop to avoid using pre-incremented
  1255           // value which could increase register pressure.
  1256           // Otherwise reorg_offsets() optimization will create a separate
  1257           // Opaque node for each use of trip-counter and as result
  1258           // zero trip guard limit will be different from loop limit.
  1259           assert(has_ctrl(opaq), "should have it");
  1260           Node* opaq_ctrl = get_ctrl(opaq);
  1261           limit = new (C) Opaque2Node( C, limit );
  1262           register_new_node( limit, opaq_ctrl );
  1264         if (stride_con > 0 && ((limit_type->_lo - stride_con) < limit_type->_lo) ||
  1265                    stride_con < 0 && ((limit_type->_hi - stride_con) > limit_type->_hi)) {
  1266           // No underflow.
  1267           new_limit = new (C) SubINode(limit, stride);
  1268         } else {
  1269           // (limit - stride) may underflow.
  1270           // Clamp the adjustment value with MININT or MAXINT:
  1271           //
  1272           //   new_limit = limit-stride
  1273           //   if (stride > 0)
  1274           //     new_limit = (limit < new_limit) ? MININT : new_limit;
  1275           //   else
  1276           //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
  1277           //
  1278           BoolTest::mask bt = loop_end->test_trip();
  1279           assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
  1280           Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
  1281           set_ctrl(adj_max, C->root());
  1282           Node* old_limit = NULL;
  1283           Node* adj_limit = NULL;
  1284           Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
  1285           if (loop_head->unrolled_count() > 1 &&
  1286               limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
  1287               limit->in(CMoveNode::IfTrue) == adj_max &&
  1288               bol->as_Bool()->_test._test == bt &&
  1289               bol->in(1)->Opcode() == Op_CmpI &&
  1290               bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
  1291             // Loop was unrolled before.
  1292             // Optimize the limit to avoid nested CMove:
  1293             // use original limit as old limit.
  1294             old_limit = bol->in(1)->in(1);
  1295             // Adjust previous adjusted limit.
  1296             adj_limit = limit->in(CMoveNode::IfFalse);
  1297             adj_limit = new (C) SubINode(adj_limit, stride);
  1298           } else {
  1299             old_limit = limit;
  1300             adj_limit = new (C) SubINode(limit, stride);
  1302           assert(old_limit != NULL && adj_limit != NULL, "");
  1303           register_new_node( adj_limit, ctrl ); // adjust amount
  1304           Node* adj_cmp = new (C) CmpINode(old_limit, adj_limit);
  1305           register_new_node( adj_cmp, ctrl );
  1306           Node* adj_bool = new (C) BoolNode(adj_cmp, bt);
  1307           register_new_node( adj_bool, ctrl );
  1308           new_limit = new (C) CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
  1310         register_new_node(new_limit, ctrl);
  1312       assert(new_limit != NULL, "");
  1313       // Replace in loop test.
  1314       assert(loop_end->in(1)->in(1) == cmp, "sanity");
  1315       if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
  1316         // Don't need to create new test since only one user.
  1317         _igvn.hash_delete(cmp);
  1318         cmp->set_req(2, new_limit);
  1319       } else {
  1320         // Create new test since it is shared.
  1321         Node* ctrl2 = loop_end->in(0);
  1322         Node* cmp2  = cmp->clone();
  1323         cmp2->set_req(2, new_limit);
  1324         register_new_node(cmp2, ctrl2);
  1325         Node* bol2 = loop_end->in(1)->clone();
  1326         bol2->set_req(1, cmp2);
  1327         register_new_node(bol2, ctrl2);
  1328         _igvn.hash_delete(loop_end);
  1329         loop_end->set_req(1, bol2);
  1331       // Step 3: Find the min-trip test guaranteed before a 'main' loop.
  1332       // Make it a 1-trip test (means at least 2 trips).
  1334       // Guard test uses an 'opaque' node which is not shared.  Hence I
  1335       // can edit it's inputs directly.  Hammer in the new limit for the
  1336       // minimum-trip guard.
  1337       assert(opaq->outcnt() == 1, "");
  1338       _igvn.hash_delete(opaq);
  1339       opaq->set_req(1, new_limit);
  1342     // Adjust max trip count. The trip count is intentionally rounded
  1343     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
  1344     // the main, unrolled, part of the loop will never execute as it is protected
  1345     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
  1346     // and later determined that part of the unrolled loop was dead.
  1347     loop_head->set_trip_count(old_trip_count / 2);
  1349     // Double the count of original iterations in the unrolled loop body.
  1350     loop_head->double_unrolled_count();
  1352   } else { // LoopLimitCheck
  1354     // Adjust max trip count. The trip count is intentionally rounded
  1355     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
  1356     // the main, unrolled, part of the loop will never execute as it is protected
  1357     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
  1358     // and later determined that part of the unrolled loop was dead.
  1359     loop_head->set_trip_count(loop_head->trip_count() / 2);
  1361     // Double the count of original iterations in the unrolled loop body.
  1362     loop_head->double_unrolled_count();
  1364     // -----------
  1365     // Step 2: Cut back the trip counter for an unroll amount of 2.
  1366     // Loop will normally trip (limit - init)/stride_con.  Since it's a
  1367     // CountedLoop this is exact (stride divides limit-init exactly).
  1368     // We are going to double the loop body, so we want to knock off any
  1369     // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
  1370     Node *span = new (C) SubINode( limit, init );
  1371     register_new_node( span, ctrl );
  1372     Node *trip = new (C) DivINode( 0, span, stride );
  1373     register_new_node( trip, ctrl );
  1374     Node *mtwo = _igvn.intcon(-2);
  1375     set_ctrl(mtwo, C->root());
  1376     Node *rond = new (C) AndINode( trip, mtwo );
  1377     register_new_node( rond, ctrl );
  1378     Node *spn2 = new (C) MulINode( rond, stride );
  1379     register_new_node( spn2, ctrl );
  1380     new_limit = new (C) AddINode( spn2, init );
  1381     register_new_node( new_limit, ctrl );
  1383     // Hammer in the new limit
  1384     Node *ctrl2 = loop_end->in(0);
  1385     Node *cmp2 = new (C) CmpINode( loop_head->incr(), new_limit );
  1386     register_new_node( cmp2, ctrl2 );
  1387     Node *bol2 = new (C) BoolNode( cmp2, loop_end->test_trip() );
  1388     register_new_node( bol2, ctrl2 );
  1389     _igvn.hash_delete(loop_end);
  1390     loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
  1392     // Step 3: Find the min-trip test guaranteed before a 'main' loop.
  1393     // Make it a 1-trip test (means at least 2 trips).
  1394     if( adjust_min_trip ) {
  1395       assert( new_limit != NULL, "" );
  1396       // Guard test uses an 'opaque' node which is not shared.  Hence I
  1397       // can edit it's inputs directly.  Hammer in the new limit for the
  1398       // minimum-trip guard.
  1399       assert( opaq->outcnt() == 1, "" );
  1400       _igvn.hash_delete(opaq);
  1401       opaq->set_req(1, new_limit);
  1403   } // LoopLimitCheck
  1405   // ---------
  1406   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
  1407   // represents the odd iterations; since the loop trips an even number of
  1408   // times its backedge is never taken.  Kill the backedge.
  1409   uint dd = dom_depth(loop_head);
  1410   clone_loop( loop, old_new, dd );
  1412   // Make backedges of the clone equal to backedges of the original.
  1413   // Make the fall-in from the original come from the fall-out of the clone.
  1414   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
  1415     Node* phi = loop_head->fast_out(j);
  1416     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
  1417       Node *newphi = old_new[phi->_idx];
  1418       _igvn.hash_delete( phi );
  1419       _igvn.hash_delete( newphi );
  1421       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
  1422       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
  1423       phi   ->set_req(LoopNode::LoopBackControl, C->top());
  1426   Node *clone_head = old_new[loop_head->_idx];
  1427   _igvn.hash_delete( clone_head );
  1428   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
  1429   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
  1430   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
  1431   loop->_head = clone_head;     // New loop header
  1433   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
  1434   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
  1436   // Kill the clone's backedge
  1437   Node *newcle = old_new[loop_end->_idx];
  1438   _igvn.hash_delete( newcle );
  1439   Node *one = _igvn.intcon(1);
  1440   set_ctrl(one, C->root());
  1441   newcle->set_req(1, one);
  1442   // Force clone into same loop body
  1443   uint max = loop->_body.size();
  1444   for( uint k = 0; k < max; k++ ) {
  1445     Node *old = loop->_body.at(k);
  1446     Node *nnn = old_new[old->_idx];
  1447     loop->_body.push(nnn);
  1448     if (!has_ctrl(old))
  1449       set_loop(nnn, loop);
  1452   loop->record_for_igvn();
  1455 //------------------------------do_maximally_unroll----------------------------
  1457 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
  1458   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1459   assert(cl->has_exact_trip_count(), "trip count is not exact");
  1460   assert(cl->trip_count() > 0, "");
  1461 #ifndef PRODUCT
  1462   if (TraceLoopOpts) {
  1463     tty->print("MaxUnroll  %d ", cl->trip_count());
  1464     loop->dump_head();
  1466 #endif
  1468   // If loop is tripping an odd number of times, peel odd iteration
  1469   if ((cl->trip_count() & 1) == 1) {
  1470     do_peeling(loop, old_new);
  1473   // Now its tripping an even number of times remaining.  Double loop body.
  1474   // Do not adjust pre-guards; they are not needed and do not exist.
  1475   if (cl->trip_count() > 0) {
  1476     assert((cl->trip_count() & 1) == 0, "missed peeling");
  1477     do_unroll(loop, old_new, false);
  1481 //------------------------------dominates_backedge---------------------------------
  1482 // Returns true if ctrl is executed on every complete iteration
  1483 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
  1484   assert(ctrl->is_CFG(), "must be control");
  1485   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
  1486   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
  1489 //------------------------------adjust_limit-----------------------------------
  1490 // Helper function for add_constraint().
  1491 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
  1492   // Compute "I :: (limit-offset)/scale"
  1493   Node *con = new (C) SubINode(rc_limit, offset);
  1494   register_new_node(con, pre_ctrl);
  1495   Node *X = new (C) DivINode(0, con, scale);
  1496   register_new_node(X, pre_ctrl);
  1498   // Adjust loop limit
  1499   loop_limit = (stride_con > 0)
  1500                ? (Node*)(new (C) MinINode(loop_limit, X))
  1501                : (Node*)(new (C) MaxINode(loop_limit, X));
  1502   register_new_node(loop_limit, pre_ctrl);
  1503   return loop_limit;
  1506 //------------------------------add_constraint---------------------------------
  1507 // Constrain the main loop iterations so the conditions:
  1508 //    low_limit <= scale_con * I + offset  <  upper_limit
  1509 // always holds true.  That is, either increase the number of iterations in
  1510 // the pre-loop or the post-loop until the condition holds true in the main
  1511 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
  1512 // stride and scale are constants (offset and limit often are).
  1513 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
  1514   // For positive stride, the pre-loop limit always uses a MAX function
  1515   // and the main loop a MIN function.  For negative stride these are
  1516   // reversed.
  1518   // Also for positive stride*scale the affine function is increasing, so the
  1519   // pre-loop must check for underflow and the post-loop for overflow.
  1520   // Negative stride*scale reverses this; pre-loop checks for overflow and
  1521   // post-loop for underflow.
  1523   Node *scale = _igvn.intcon(scale_con);
  1524   set_ctrl(scale, C->root());
  1526   if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
  1527     // The overflow limit: scale*I+offset < upper_limit
  1528     // For main-loop compute
  1529     //   ( if (scale > 0) /* and stride > 0 */
  1530     //       I < (upper_limit-offset)/scale
  1531     //     else /* scale < 0 and stride < 0 */
  1532     //       I > (upper_limit-offset)/scale
  1533     //   )
  1534     //
  1535     // (upper_limit-offset) may overflow or underflow.
  1536     // But it is fine since main loop will either have
  1537     // less iterations or will be skipped in such case.
  1538     *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);
  1540     // The underflow limit: low_limit <= scale*I+offset.
  1541     // For pre-loop compute
  1542     //   NOT(scale*I+offset >= low_limit)
  1543     //   scale*I+offset < low_limit
  1544     //   ( if (scale > 0) /* and stride > 0 */
  1545     //       I < (low_limit-offset)/scale
  1546     //     else /* scale < 0 and stride < 0 */
  1547     //       I > (low_limit-offset)/scale
  1548     //   )
  1550     if (low_limit->get_int() == -max_jint) {
  1551       if (!RangeLimitCheck) return;
  1552       // We need this guard when scale*pre_limit+offset >= limit
  1553       // due to underflow. So we need execute pre-loop until
  1554       // scale*I+offset >= min_int. But (min_int-offset) will
  1555       // underflow when offset > 0 and X will be > original_limit
  1556       // when stride > 0. To avoid it we replace positive offset with 0.
  1557       //
  1558       // Also (min_int+1 == -max_int) is used instead of min_int here
  1559       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
  1560       Node* shift = _igvn.intcon(31);
  1561       set_ctrl(shift, C->root());
  1562       Node* sign = new (C) RShiftINode(offset, shift);
  1563       register_new_node(sign, pre_ctrl);
  1564       offset = new (C) AndINode(offset, sign);
  1565       register_new_node(offset, pre_ctrl);
  1566     } else {
  1567       assert(low_limit->get_int() == 0, "wrong low limit for range check");
  1568       // The only problem we have here when offset == min_int
  1569       // since (0-min_int) == min_int. It may be fine for stride > 0
  1570       // but for stride < 0 X will be < original_limit. To avoid it
  1571       // max(pre_limit, original_limit) is used in do_range_check().
  1573     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
  1574     *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
  1576   } else { // stride_con*scale_con < 0
  1577     // For negative stride*scale pre-loop checks for overflow and
  1578     // post-loop for underflow.
  1579     //
  1580     // The overflow limit: scale*I+offset < upper_limit
  1581     // For pre-loop compute
  1582     //   NOT(scale*I+offset < upper_limit)
  1583     //   scale*I+offset >= upper_limit
  1584     //   scale*I+offset+1 > upper_limit
  1585     //   ( if (scale < 0) /* and stride > 0 */
  1586     //       I < (upper_limit-(offset+1))/scale
  1587     //     else /* scale > 0 and stride < 0 */
  1588     //       I > (upper_limit-(offset+1))/scale
  1589     //   )
  1590     //
  1591     // (upper_limit-offset-1) may underflow or overflow.
  1592     // To avoid it min(pre_limit, original_limit) is used
  1593     // in do_range_check() for stride > 0 and max() for < 0.
  1594     Node *one  = _igvn.intcon(1);
  1595     set_ctrl(one, C->root());
  1597     Node *plus_one = new (C) AddINode(offset, one);
  1598     register_new_node( plus_one, pre_ctrl );
  1599     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
  1600     *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
  1602     if (low_limit->get_int() == -max_jint) {
  1603       if (!RangeLimitCheck) return;
  1604       // We need this guard when scale*main_limit+offset >= limit
  1605       // due to underflow. So we need execute main-loop while
  1606       // scale*I+offset+1 > min_int. But (min_int-offset-1) will
  1607       // underflow when (offset+1) > 0 and X will be < main_limit
  1608       // when scale < 0 (and stride > 0). To avoid it we replace
  1609       // positive (offset+1) with 0.
  1610       //
  1611       // Also (min_int+1 == -max_int) is used instead of min_int here
  1612       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
  1613       Node* shift = _igvn.intcon(31);
  1614       set_ctrl(shift, C->root());
  1615       Node* sign = new (C) RShiftINode(plus_one, shift);
  1616       register_new_node(sign, pre_ctrl);
  1617       plus_one = new (C) AndINode(plus_one, sign);
  1618       register_new_node(plus_one, pre_ctrl);
  1619     } else {
  1620       assert(low_limit->get_int() == 0, "wrong low limit for range check");
  1621       // The only problem we have here when offset == max_int
  1622       // since (max_int+1) == min_int and (0-min_int) == min_int.
  1623       // But it is fine since main loop will either have
  1624       // less iterations or will be skipped in such case.
  1626     // The underflow limit: low_limit <= scale*I+offset.
  1627     // For main-loop compute
  1628     //   scale*I+offset+1 > low_limit
  1629     //   ( if (scale < 0) /* and stride > 0 */
  1630     //       I < (low_limit-(offset+1))/scale
  1631     //     else /* scale > 0 and stride < 0 */
  1632     //       I > (low_limit-(offset+1))/scale
  1633     //   )
  1635     *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
  1640 //------------------------------is_scaled_iv---------------------------------
  1641 // Return true if exp is a constant times an induction var
  1642 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
  1643   if (exp == iv) {
  1644     if (p_scale != NULL) {
  1645       *p_scale = 1;
  1647     return true;
  1649   int opc = exp->Opcode();
  1650   if (opc == Op_MulI) {
  1651     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1652       if (p_scale != NULL) {
  1653         *p_scale = exp->in(2)->get_int();
  1655       return true;
  1657     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
  1658       if (p_scale != NULL) {
  1659         *p_scale = exp->in(1)->get_int();
  1661       return true;
  1663   } else if (opc == Op_LShiftI) {
  1664     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1665       if (p_scale != NULL) {
  1666         *p_scale = 1 << exp->in(2)->get_int();
  1668       return true;
  1671   return false;
  1674 //-----------------------------is_scaled_iv_plus_offset------------------------------
  1675 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
  1676 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
  1677   if (is_scaled_iv(exp, iv, p_scale)) {
  1678     if (p_offset != NULL) {
  1679       Node *zero = _igvn.intcon(0);
  1680       set_ctrl(zero, C->root());
  1681       *p_offset = zero;
  1683     return true;
  1685   int opc = exp->Opcode();
  1686   if (opc == Op_AddI) {
  1687     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1688       if (p_offset != NULL) {
  1689         *p_offset = exp->in(2);
  1691       return true;
  1693     if (exp->in(2)->is_Con()) {
  1694       Node* offset2 = NULL;
  1695       if (depth < 2 &&
  1696           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
  1697                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
  1698         if (p_offset != NULL) {
  1699           Node *ctrl_off2 = get_ctrl(offset2);
  1700           Node* offset = new (C) AddINode(offset2, exp->in(2));
  1701           register_new_node(offset, ctrl_off2);
  1702           *p_offset = offset;
  1704         return true;
  1707   } else if (opc == Op_SubI) {
  1708     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1709       if (p_offset != NULL) {
  1710         Node *zero = _igvn.intcon(0);
  1711         set_ctrl(zero, C->root());
  1712         Node *ctrl_off = get_ctrl(exp->in(2));
  1713         Node* offset = new (C) SubINode(zero, exp->in(2));
  1714         register_new_node(offset, ctrl_off);
  1715         *p_offset = offset;
  1717       return true;
  1719     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
  1720       if (p_offset != NULL) {
  1721         *p_scale *= -1;
  1722         *p_offset = exp->in(1);
  1724       return true;
  1727   return false;
  1730 //------------------------------do_range_check---------------------------------
  1731 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
  1732 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
  1733 #ifndef PRODUCT
  1734   if (PrintOpto && VerifyLoopOptimizations) {
  1735     tty->print("Range Check Elimination ");
  1736     loop->dump_head();
  1737   } else if (TraceLoopOpts) {
  1738     tty->print("RangeCheck   ");
  1739     loop->dump_head();
  1741 #endif
  1742   assert(RangeCheckElimination, "");
  1743   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1744   assert(cl->is_main_loop(), "");
  1746   // protect against stride not being a constant
  1747   if (!cl->stride_is_con())
  1748     return;
  1750   // Find the trip counter; we are iteration splitting based on it
  1751   Node *trip_counter = cl->phi();
  1752   // Find the main loop limit; we will trim it's iterations
  1753   // to not ever trip end tests
  1754   Node *main_limit = cl->limit();
  1756   // Need to find the main-loop zero-trip guard
  1757   Node *ctrl  = cl->in(LoopNode::EntryControl);
  1758   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
  1759   Node *iffm = ctrl->in(0);
  1760   assert(iffm->Opcode() == Op_If, "");
  1761   Node *bolzm = iffm->in(1);
  1762   assert(bolzm->Opcode() == Op_Bool, "");
  1763   Node *cmpzm = bolzm->in(1);
  1764   assert(cmpzm->is_Cmp(), "");
  1765   Node *opqzm = cmpzm->in(2);
  1766   // Can not optimize a loop if zero-trip Opaque1 node is optimized
  1767   // away and then another round of loop opts attempted.
  1768   if (opqzm->Opcode() != Op_Opaque1)
  1769     return;
  1770   assert(opqzm->in(1) == main_limit, "do not understand situation");
  1772   // Find the pre-loop limit; we will expand it's iterations to
  1773   // not ever trip low tests.
  1774   Node *p_f = iffm->in(0);
  1775   assert(p_f->Opcode() == Op_IfFalse, "");
  1776   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1777   assert(pre_end->loopnode()->is_pre_loop(), "");
  1778   Node *pre_opaq1 = pre_end->limit();
  1779   // Occasionally it's possible for a pre-loop Opaque1 node to be
  1780   // optimized away and then another round of loop opts attempted.
  1781   // We can not optimize this particular loop in that case.
  1782   if (pre_opaq1->Opcode() != Op_Opaque1)
  1783     return;
  1784   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1785   Node *pre_limit = pre_opaq->in(1);
  1787   // Where do we put new limit calculations
  1788   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1790   // Ensure the original loop limit is available from the
  1791   // pre-loop Opaque1 node.
  1792   Node *orig_limit = pre_opaq->original_loop_limit();
  1793   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
  1794     return;
  1796   // Must know if its a count-up or count-down loop
  1798   int stride_con = cl->stride_con();
  1799   Node *zero = _igvn.intcon(0);
  1800   Node *one  = _igvn.intcon(1);
  1801   // Use symmetrical int range [-max_jint,max_jint]
  1802   Node *mini = _igvn.intcon(-max_jint);
  1803   set_ctrl(zero, C->root());
  1804   set_ctrl(one,  C->root());
  1805   set_ctrl(mini, C->root());
  1807   // Range checks that do not dominate the loop backedge (ie.
  1808   // conditionally executed) can lengthen the pre loop limit beyond
  1809   // the original loop limit. To prevent this, the pre limit is
  1810   // (for stride > 0) MINed with the original loop limit (MAXed
  1811   // stride < 0) when some range_check (rc) is conditionally
  1812   // executed.
  1813   bool conditional_rc = false;
  1815   // Check loop body for tests of trip-counter plus loop-invariant vs
  1816   // loop-invariant.
  1817   for( uint i = 0; i < loop->_body.size(); i++ ) {
  1818     Node *iff = loop->_body[i];
  1819     if( iff->Opcode() == Op_If ) { // Test?
  1821       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  1822       // we need loop unswitching instead of iteration splitting.
  1823       Node *exit = loop->is_loop_exit(iff);
  1824       if( !exit ) continue;
  1825       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
  1827       // Get boolean condition to test
  1828       Node *i1 = iff->in(1);
  1829       if( !i1->is_Bool() ) continue;
  1830       BoolNode *bol = i1->as_Bool();
  1831       BoolTest b_test = bol->_test;
  1832       // Flip sense of test if exit condition is flipped
  1833       if( flip )
  1834         b_test = b_test.negate();
  1836       // Get compare
  1837       Node *cmp = bol->in(1);
  1839       // Look for trip_counter + offset vs limit
  1840       Node *rc_exp = cmp->in(1);
  1841       Node *limit  = cmp->in(2);
  1842       jint scale_con= 1;        // Assume trip counter not scaled
  1844       Node *limit_c = get_ctrl(limit);
  1845       if( loop->is_member(get_loop(limit_c) ) ) {
  1846         // Compare might have operands swapped; commute them
  1847         b_test = b_test.commute();
  1848         rc_exp = cmp->in(2);
  1849         limit  = cmp->in(1);
  1850         limit_c = get_ctrl(limit);
  1851         if( loop->is_member(get_loop(limit_c) ) )
  1852           continue;             // Both inputs are loop varying; cannot RCE
  1854       // Here we know 'limit' is loop invariant
  1856       // 'limit' maybe pinned below the zero trip test (probably from a
  1857       // previous round of rce), in which case, it can't be used in the
  1858       // zero trip test expression which must occur before the zero test's if.
  1859       if( limit_c == ctrl ) {
  1860         continue;  // Don't rce this check but continue looking for other candidates.
  1863       // Check for scaled induction variable plus an offset
  1864       Node *offset = NULL;
  1866       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
  1867         continue;
  1870       Node *offset_c = get_ctrl(offset);
  1871       if( loop->is_member( get_loop(offset_c) ) )
  1872         continue;               // Offset is not really loop invariant
  1873       // Here we know 'offset' is loop invariant.
  1875       // As above for the 'limit', the 'offset' maybe pinned below the
  1876       // zero trip test.
  1877       if( offset_c == ctrl ) {
  1878         continue; // Don't rce this check but continue looking for other candidates.
  1880 #ifdef ASSERT
  1881       if (TraceRangeLimitCheck) {
  1882         tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
  1883         bol->dump(2);
  1885 #endif
  1886       // At this point we have the expression as:
  1887       //   scale_con * trip_counter + offset :: limit
  1888       // where scale_con, offset and limit are loop invariant.  Trip_counter
  1889       // monotonically increases by stride_con, a constant.  Both (or either)
  1890       // stride_con and scale_con can be negative which will flip about the
  1891       // sense of the test.
  1893       // Adjust pre and main loop limits to guard the correct iteration set
  1894       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
  1895         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
  1896           // The underflow and overflow limits: 0 <= scale*I+offset < limit
  1897           add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
  1898           if (!conditional_rc) {
  1899             // (0-offset)/scale could be outside of loop iterations range.
  1900             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
  1902         } else {
  1903 #ifndef PRODUCT
  1904           if( PrintOpto )
  1905             tty->print_cr("missed RCE opportunity");
  1906 #endif
  1907           continue;             // In release mode, ignore it
  1909       } else {                  // Otherwise work on normal compares
  1910         switch( b_test._test ) {
  1911         case BoolTest::gt:
  1912           // Fall into GE case
  1913         case BoolTest::ge:
  1914           // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
  1915           scale_con = -scale_con;
  1916           offset = new (C) SubINode( zero, offset );
  1917           register_new_node( offset, pre_ctrl );
  1918           limit  = new (C) SubINode( zero, limit  );
  1919           register_new_node( limit, pre_ctrl );
  1920           // Fall into LE case
  1921         case BoolTest::le:
  1922           if (b_test._test != BoolTest::gt) {
  1923             // Convert X <= Y to X < Y+1
  1924             limit = new (C) AddINode( limit, one );
  1925             register_new_node( limit, pre_ctrl );
  1927           // Fall into LT case
  1928         case BoolTest::lt:
  1929           // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
  1930           // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
  1931           // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
  1932           add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
  1933           if (!conditional_rc) {
  1934             // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
  1935             // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
  1936             // still be outside of loop range.
  1937             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
  1939           break;
  1940         default:
  1941 #ifndef PRODUCT
  1942           if( PrintOpto )
  1943             tty->print_cr("missed RCE opportunity");
  1944 #endif
  1945           continue;             // Unhandled case
  1949       // Kill the eliminated test
  1950       C->set_major_progress();
  1951       Node *kill_con = _igvn.intcon( 1-flip );
  1952       set_ctrl(kill_con, C->root());
  1953       _igvn.replace_input_of(iff, 1, kill_con);
  1954       // Find surviving projection
  1955       assert(iff->is_If(), "");
  1956       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
  1957       // Find loads off the surviving projection; remove their control edge
  1958       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
  1959         Node* cd = dp->fast_out(i); // Control-dependent node
  1960         if( cd->is_Load() ) {   // Loads can now float around in the loop
  1961           // Allow the load to float around in the loop, or before it
  1962           // but NOT before the pre-loop.
  1963           _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL
  1964           --i;
  1965           --imax;
  1969     } // End of is IF
  1973   // Update loop limits
  1974   if (conditional_rc) {
  1975     pre_limit = (stride_con > 0) ? (Node*)new (C) MinINode(pre_limit, orig_limit)
  1976                                  : (Node*)new (C) MaxINode(pre_limit, orig_limit);
  1977     register_new_node(pre_limit, pre_ctrl);
  1979   _igvn.hash_delete(pre_opaq);
  1980   pre_opaq->set_req(1, pre_limit);
  1982   // Note:: we are making the main loop limit no longer precise;
  1983   // need to round up based on stride.
  1984   cl->set_nonexact_trip_count();
  1985   if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
  1986     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
  1987     // Hopefully, compiler will optimize for powers of 2.
  1988     Node *ctrl = get_ctrl(main_limit);
  1989     Node *stride = cl->stride();
  1990     Node *init = cl->init_trip();
  1991     Node *span = new (C) SubINode(main_limit,init);
  1992     register_new_node(span,ctrl);
  1993     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
  1994     Node *add = new (C) AddINode(span,rndup);
  1995     register_new_node(add,ctrl);
  1996     Node *div = new (C) DivINode(0,add,stride);
  1997     register_new_node(div,ctrl);
  1998     Node *mul = new (C) MulINode(div,stride);
  1999     register_new_node(mul,ctrl);
  2000     Node *newlim = new (C) AddINode(mul,init);
  2001     register_new_node(newlim,ctrl);
  2002     main_limit = newlim;
  2005   Node *main_cle = cl->loopexit();
  2006   Node *main_bol = main_cle->in(1);
  2007   // Hacking loop bounds; need private copies of exit test
  2008   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
  2009     _igvn.hash_delete(main_cle);
  2010     main_bol = main_bol->clone();// Clone a private BoolNode
  2011     register_new_node( main_bol, main_cle->in(0) );
  2012     main_cle->set_req(1,main_bol);
  2014   Node *main_cmp = main_bol->in(1);
  2015   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
  2016     _igvn.hash_delete(main_bol);
  2017     main_cmp = main_cmp->clone();// Clone a private CmpNode
  2018     register_new_node( main_cmp, main_cle->in(0) );
  2019     main_bol->set_req(1,main_cmp);
  2021   // Hack the now-private loop bounds
  2022   _igvn.replace_input_of(main_cmp, 2, main_limit);
  2023   // The OpaqueNode is unshared by design
  2024   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
  2025   _igvn.replace_input_of(opqzm, 1, main_limit);
  2028 //------------------------------DCE_loop_body----------------------------------
  2029 // Remove simplistic dead code from loop body
  2030 void IdealLoopTree::DCE_loop_body() {
  2031   for( uint i = 0; i < _body.size(); i++ )
  2032     if( _body.at(i)->outcnt() == 0 )
  2033       _body.map( i--, _body.pop() );
  2037 //------------------------------adjust_loop_exit_prob--------------------------
  2038 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
  2039 // Replace with a 1-in-10 exit guess.
  2040 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
  2041   Node *test = tail();
  2042   while( test != _head ) {
  2043     uint top = test->Opcode();
  2044     if( top == Op_IfTrue || top == Op_IfFalse ) {
  2045       int test_con = ((ProjNode*)test)->_con;
  2046       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
  2047       IfNode *iff = test->in(0)->as_If();
  2048       if( iff->outcnt() == 2 ) {        // Ignore dead tests
  2049         Node *bol = iff->in(1);
  2050         if( bol && bol->req() > 1 && bol->in(1) &&
  2051             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
  2052              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
  2053              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
  2054              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
  2055              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
  2056              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
  2057              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
  2058           return;               // Allocation loops RARELY take backedge
  2059         // Find the OTHER exit path from the IF
  2060         Node* ex = iff->proj_out(1-test_con);
  2061         float p = iff->_prob;
  2062         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
  2063           if( top == Op_IfTrue ) {
  2064             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
  2065               iff->_prob = PROB_STATIC_FREQUENT;
  2067           } else {
  2068             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
  2069               iff->_prob = PROB_STATIC_INFREQUENT;
  2075     test = phase->idom(test);
  2080 //------------------------------policy_do_remove_empty_loop--------------------
  2081 // Micro-benchmark spamming.  Policy is to always remove empty loops.
  2082 // The 'DO' part is to replace the trip counter with the value it will
  2083 // have on the last iteration.  This will break the loop.
  2084 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
  2085   // Minimum size must be empty loop
  2086   if (_body.size() > EMPTY_LOOP_SIZE)
  2087     return false;
  2089   if (!_head->is_CountedLoop())
  2090     return false;     // Dead loop
  2091   CountedLoopNode *cl = _head->as_CountedLoop();
  2092   if (!cl->is_valid_counted_loop())
  2093     return false; // Malformed loop
  2094   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  2095     return false;             // Infinite loop
  2097 #ifdef ASSERT
  2098   // Ensure only one phi which is the iv.
  2099   Node* iv = NULL;
  2100   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
  2101     Node* n = cl->fast_out(i);
  2102     if (n->Opcode() == Op_Phi) {
  2103       assert(iv == NULL, "Too many phis" );
  2104       iv = n;
  2107   assert(iv == cl->phi(), "Wrong phi" );
  2108 #endif
  2110   // main and post loops have explicitly created zero trip guard
  2111   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
  2112   if (needs_guard) {
  2113     // Skip guard if values not overlap.
  2114     const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
  2115     const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
  2116     int  stride_con = cl->stride_con();
  2117     if (stride_con > 0) {
  2118       needs_guard = (init_t->_hi >= limit_t->_lo);
  2119     } else {
  2120       needs_guard = (init_t->_lo <= limit_t->_hi);
  2123   if (needs_guard) {
  2124     // Check for an obvious zero trip guard.
  2125     Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
  2126     if (inctrl->Opcode() == Op_IfTrue) {
  2127       // The test should look like just the backedge of a CountedLoop
  2128       Node* iff = inctrl->in(0);
  2129       if (iff->is_If()) {
  2130         Node* bol = iff->in(1);
  2131         if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
  2132           Node* cmp = bol->in(1);
  2133           if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
  2134             needs_guard = false;
  2141 #ifndef PRODUCT
  2142   if (PrintOpto) {
  2143     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
  2144     this->dump_head();
  2145   } else if (TraceLoopOpts) {
  2146     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
  2147     this->dump_head();
  2149 #endif
  2151   if (needs_guard) {
  2152     // Peel the loop to ensure there's a zero trip guard
  2153     Node_List old_new;
  2154     phase->do_peeling(this, old_new);
  2157   // Replace the phi at loop head with the final value of the last
  2158   // iteration.  Then the CountedLoopEnd will collapse (backedge never
  2159   // taken) and all loop-invariant uses of the exit values will be correct.
  2160   Node *phi = cl->phi();
  2161   Node *exact_limit = phase->exact_limit(this);
  2162   if (exact_limit != cl->limit()) {
  2163     // We also need to replace the original limit to collapse loop exit.
  2164     Node* cmp = cl->loopexit()->cmp_node();
  2165     assert(cl->limit() == cmp->in(2), "sanity");
  2166     phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
  2167     phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist
  2169   // Note: the final value after increment should not overflow since
  2170   // counted loop has limit check predicate.
  2171   Node *final = new (phase->C) SubINode( exact_limit, cl->stride() );
  2172   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
  2173   phase->_igvn.replace_node(phi,final);
  2174   phase->C->set_major_progress();
  2175   return true;
  2178 //------------------------------policy_do_one_iteration_loop-------------------
  2179 // Convert one iteration loop into normal code.
  2180 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
  2181   if (!_head->as_Loop()->is_valid_counted_loop())
  2182     return false; // Only for counted loop
  2184   CountedLoopNode *cl = _head->as_CountedLoop();
  2185   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
  2186     return false;
  2189 #ifndef PRODUCT
  2190   if(TraceLoopOpts) {
  2191     tty->print("OneIteration ");
  2192     this->dump_head();
  2194 #endif
  2196   Node *init_n = cl->init_trip();
  2197 #ifdef ASSERT
  2198   // Loop boundaries should be constant since trip count is exact.
  2199   assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
  2200 #endif
  2201   // Replace the phi at loop head with the value of the init_trip.
  2202   // Then the CountedLoopEnd will collapse (backedge will not be taken)
  2203   // and all loop-invariant uses of the exit values will be correct.
  2204   phase->_igvn.replace_node(cl->phi(), cl->init_trip());
  2205   phase->C->set_major_progress();
  2206   return true;
  2209 //=============================================================================
  2210 //------------------------------iteration_split_impl---------------------------
  2211 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
  2212   // Compute exact loop trip count if possible.
  2213   compute_exact_trip_count(phase);
  2215   // Convert one iteration loop into normal code.
  2216   if (policy_do_one_iteration_loop(phase))
  2217     return true;
  2219   // Check and remove empty loops (spam micro-benchmarks)
  2220   if (policy_do_remove_empty_loop(phase))
  2221     return true;  // Here we removed an empty loop
  2223   bool should_peel = policy_peeling(phase); // Should we peel?
  2225   bool should_unswitch = policy_unswitching(phase);
  2227   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
  2228   // This removes loop-invariant tests (usually null checks).
  2229   if (!_head->is_CountedLoop()) { // Non-counted loop
  2230     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
  2231       // Partial peel succeeded so terminate this round of loop opts
  2232       return false;
  2234     if (should_peel) {            // Should we peel?
  2235 #ifndef PRODUCT
  2236       if (PrintOpto) tty->print_cr("should_peel");
  2237 #endif
  2238       phase->do_peeling(this,old_new);
  2239     } else if (should_unswitch) {
  2240       phase->do_unswitching(this, old_new);
  2242     return true;
  2244   CountedLoopNode *cl = _head->as_CountedLoop();
  2246   if (!cl->is_valid_counted_loop()) return true; // Ignore various kinds of broken loops
  2248   // Do nothing special to pre- and post- loops
  2249   if (cl->is_pre_loop() || cl->is_post_loop()) return true;
  2251   // Compute loop trip count from profile data
  2252   compute_profile_trip_cnt(phase);
  2254   // Before attempting fancy unrolling, RCE or alignment, see if we want
  2255   // to completely unroll this loop or do loop unswitching.
  2256   if (cl->is_normal_loop()) {
  2257     if (should_unswitch) {
  2258       phase->do_unswitching(this, old_new);
  2259       return true;
  2261     bool should_maximally_unroll =  policy_maximally_unroll(phase);
  2262     if (should_maximally_unroll) {
  2263       // Here we did some unrolling and peeling.  Eventually we will
  2264       // completely unroll this loop and it will no longer be a loop.
  2265       phase->do_maximally_unroll(this,old_new);
  2266       return true;
  2270   // Skip next optimizations if running low on nodes. Note that
  2271   // policy_unswitching and policy_maximally_unroll have this check.
  2272   uint nodes_left = MaxNodeLimit - (uint) phase->C->live_nodes();
  2273   if ((2 * _body.size()) > nodes_left) {
  2274     return true;
  2277   // Counted loops may be peeled, may need some iterations run up
  2278   // front for RCE, and may want to align loop refs to a cache
  2279   // line.  Thus we clone a full loop up front whose trip count is
  2280   // at least 1 (if peeling), but may be several more.
  2282   // The main loop will start cache-line aligned with at least 1
  2283   // iteration of the unrolled body (zero-trip test required) and
  2284   // will have some range checks removed.
  2286   // A post-loop will finish any odd iterations (leftover after
  2287   // unrolling), plus any needed for RCE purposes.
  2289   bool should_unroll = policy_unroll(phase);
  2291   bool should_rce = policy_range_check(phase);
  2293   bool should_align = policy_align(phase);
  2295   // If not RCE'ing (iteration splitting) or Aligning, then we do not
  2296   // need a pre-loop.  We may still need to peel an initial iteration but
  2297   // we will not be needing an unknown number of pre-iterations.
  2298   //
  2299   // Basically, if may_rce_align reports FALSE first time through,
  2300   // we will not be able to later do RCE or Aligning on this loop.
  2301   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
  2303   // If we have any of these conditions (RCE, alignment, unrolling) met, then
  2304   // we switch to the pre-/main-/post-loop model.  This model also covers
  2305   // peeling.
  2306   if (should_rce || should_align || should_unroll) {
  2307     if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
  2308       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
  2310     // Adjust the pre- and main-loop limits to let the pre and post loops run
  2311     // with full checks, but the main-loop with no checks.  Remove said
  2312     // checks from the main body.
  2313     if (should_rce)
  2314       phase->do_range_check(this,old_new);
  2316     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
  2317     // twice as many iterations as before) and the main body limit (only do
  2318     // an even number of trips).  If we are peeling, we might enable some RCE
  2319     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
  2320     // peeling.
  2321     if (should_unroll && !should_peel)
  2322       phase->do_unroll(this,old_new, true);
  2324     // Adjust the pre-loop limits to align the main body
  2325     // iterations.
  2326     if (should_align)
  2327       Unimplemented();
  2329   } else {                      // Else we have an unchanged counted loop
  2330     if (should_peel)           // Might want to peel but do nothing else
  2331       phase->do_peeling(this,old_new);
  2333   return true;
  2337 //=============================================================================
  2338 //------------------------------iteration_split--------------------------------
  2339 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
  2340   // Recursively iteration split nested loops
  2341   if (_child && !_child->iteration_split(phase, old_new))
  2342     return false;
  2344   // Clean out prior deadwood
  2345   DCE_loop_body();
  2348   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
  2349   // Replace with a 1-in-10 exit guess.
  2350   if (_parent /*not the root loop*/ &&
  2351       !_irreducible &&
  2352       // Also ignore the occasional dead backedge
  2353       !tail()->is_top()) {
  2354     adjust_loop_exit_prob(phase);
  2357   // Gate unrolling, RCE and peeling efforts.
  2358   if (!_child &&                // If not an inner loop, do not split
  2359       !_irreducible &&
  2360       _allow_optimizations &&
  2361       !tail()->is_top()) {     // Also ignore the occasional dead backedge
  2362     if (!_has_call) {
  2363         if (!iteration_split_impl(phase, old_new)) {
  2364           return false;
  2366     } else if (policy_unswitching(phase)) {
  2367       phase->do_unswitching(this, old_new);
  2371   // Minor offset re-organization to remove loop-fallout uses of
  2372   // trip counter when there was no major reshaping.
  2373   phase->reorg_offsets(this);
  2375   if (_next && !_next->iteration_split(phase, old_new))
  2376     return false;
  2377   return true;
  2381 //=============================================================================
  2382 // Process all the loops in the loop tree and replace any fill
  2383 // patterns with an intrisc version.
  2384 bool PhaseIdealLoop::do_intrinsify_fill() {
  2385   bool changed = false;
  2386   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2387     IdealLoopTree* lpt = iter.current();
  2388     changed |= intrinsify_fill(lpt);
  2390   return changed;
  2394 // Examine an inner loop looking for a a single store of an invariant
  2395 // value in a unit stride loop,
  2396 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
  2397                                      Node*& shift, Node*& con) {
  2398   const char* msg = NULL;
  2399   Node* msg_node = NULL;
  2401   store_value = NULL;
  2402   con = NULL;
  2403   shift = NULL;
  2405   // Process the loop looking for stores.  If there are multiple
  2406   // stores or extra control flow give at this point.
  2407   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2408   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2409     Node* n = lpt->_body.at(i);
  2410     if (n->outcnt() == 0) continue; // Ignore dead
  2411     if (n->is_Store()) {
  2412       if (store != NULL) {
  2413         msg = "multiple stores";
  2414         break;
  2416       int opc = n->Opcode();
  2417       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreNKlass || opc == Op_StoreCM) {
  2418         msg = "oop fills not handled";
  2419         break;
  2421       Node* value = n->in(MemNode::ValueIn);
  2422       if (!lpt->is_invariant(value)) {
  2423         msg  = "variant store value";
  2424       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
  2425         msg = "not array address";
  2427       store = n;
  2428       store_value = value;
  2429     } else if (n->is_If() && n != head->loopexit()) {
  2430       msg = "extra control flow";
  2431       msg_node = n;
  2435   if (store == NULL) {
  2436     // No store in loop
  2437     return false;
  2440   if (msg == NULL && head->stride_con() != 1) {
  2441     // could handle negative strides too
  2442     if (head->stride_con() < 0) {
  2443       msg = "negative stride";
  2444     } else {
  2445       msg = "non-unit stride";
  2449   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
  2450     msg = "can't handle store address";
  2451     msg_node = store->in(MemNode::Address);
  2454   if (msg == NULL &&
  2455       (!store->in(MemNode::Memory)->is_Phi() ||
  2456        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
  2457     msg = "store memory isn't proper phi";
  2458     msg_node = store->in(MemNode::Memory);
  2461   // Make sure there is an appropriate fill routine
  2462   BasicType t = store->as_Mem()->memory_type();
  2463   const char* fill_name;
  2464   if (msg == NULL &&
  2465       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
  2466     msg = "unsupported store";
  2467     msg_node = store;
  2470   if (msg != NULL) {
  2471 #ifndef PRODUCT
  2472     if (TraceOptimizeFill) {
  2473       tty->print_cr("not fill intrinsic candidate: %s", msg);
  2474       if (msg_node != NULL) msg_node->dump();
  2476 #endif
  2477     return false;
  2480   // Make sure the address expression can be handled.  It should be
  2481   // head->phi * elsize + con.  head->phi might have a ConvI2L.
  2482   Node* elements[4];
  2483   Node* conv = NULL;
  2484   bool found_index = false;
  2485   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  2486   for (int e = 0; e < count; e++) {
  2487     Node* n = elements[e];
  2488     if (n->is_Con() && con == NULL) {
  2489       con = n;
  2490     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
  2491       Node* value = n->in(1);
  2492 #ifdef _LP64
  2493       if (value->Opcode() == Op_ConvI2L) {
  2494         conv = value;
  2495         value = value->in(1);
  2497 #endif
  2498       if (value != head->phi()) {
  2499         msg = "unhandled shift in address";
  2500       } else {
  2501         if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
  2502           msg = "scale doesn't match";
  2503         } else {
  2504           found_index = true;
  2505           shift = n;
  2508     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
  2509       if (n->in(1) == head->phi()) {
  2510         found_index = true;
  2511         conv = n;
  2512       } else {
  2513         msg = "unhandled input to ConvI2L";
  2515     } else if (n == head->phi()) {
  2516       // no shift, check below for allowed cases
  2517       found_index = true;
  2518     } else {
  2519       msg = "unhandled node in address";
  2520       msg_node = n;
  2524   if (count == -1) {
  2525     msg = "malformed address expression";
  2526     msg_node = store;
  2529   if (!found_index) {
  2530     msg = "missing use of index";
  2533   // byte sized items won't have a shift
  2534   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
  2535     msg = "can't find shift";
  2536     msg_node = store;
  2539   if (msg != NULL) {
  2540 #ifndef PRODUCT
  2541     if (TraceOptimizeFill) {
  2542       tty->print_cr("not fill intrinsic: %s", msg);
  2543       if (msg_node != NULL) msg_node->dump();
  2545 #endif
  2546     return false;
  2549   // No make sure all the other nodes in the loop can be handled
  2550   VectorSet ok(Thread::current()->resource_area());
  2552   // store related values are ok
  2553   ok.set(store->_idx);
  2554   ok.set(store->in(MemNode::Memory)->_idx);
  2556   CountedLoopEndNode* loop_exit = head->loopexit();
  2557   guarantee(loop_exit != NULL, "no loop exit node");
  2559   // Loop structure is ok
  2560   ok.set(head->_idx);
  2561   ok.set(loop_exit->_idx);
  2562   ok.set(head->phi()->_idx);
  2563   ok.set(head->incr()->_idx);
  2564   ok.set(loop_exit->cmp_node()->_idx);
  2565   ok.set(loop_exit->in(1)->_idx);
  2567   // Address elements are ok
  2568   if (con)   ok.set(con->_idx);
  2569   if (shift) ok.set(shift->_idx);
  2570   if (conv)  ok.set(conv->_idx);
  2572   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2573     Node* n = lpt->_body.at(i);
  2574     if (n->outcnt() == 0) continue; // Ignore dead
  2575     if (ok.test(n->_idx)) continue;
  2576     // Backedge projection is ok
  2577     if (n->is_IfTrue() && n->in(0) == loop_exit) continue;
  2578     if (!n->is_AddP()) {
  2579       msg = "unhandled node";
  2580       msg_node = n;
  2581       break;
  2585   // Make sure no unexpected values are used outside the loop
  2586   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2587     Node* n = lpt->_body.at(i);
  2588     // These values can be replaced with other nodes if they are used
  2589     // outside the loop.
  2590     if (n == store || n == loop_exit || n == head->incr() || n == store->in(MemNode::Memory)) continue;
  2591     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
  2592       Node* use = iter.get();
  2593       if (!lpt->_body.contains(use)) {
  2594         msg = "node is used outside loop";
  2595         // lpt->_body.dump();
  2596         msg_node = n;
  2597         break;
  2602 #ifdef ASSERT
  2603   if (TraceOptimizeFill) {
  2604     if (msg != NULL) {
  2605       tty->print_cr("no fill intrinsic: %s", msg);
  2606       if (msg_node != NULL) msg_node->dump();
  2607     } else {
  2608       tty->print_cr("fill intrinsic for:");
  2610     store->dump();
  2611     if (Verbose) {
  2612       lpt->_body.dump();
  2615 #endif
  2617   return msg == NULL;
  2622 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
  2623   // Only for counted inner loops
  2624   if (!lpt->is_counted() || !lpt->is_inner()) {
  2625     return false;
  2628   // Must have constant stride
  2629   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2630   if (!head->is_valid_counted_loop() || !head->is_normal_loop()) {
  2631     return false;
  2634   // Check that the body only contains a store of a loop invariant
  2635   // value that is indexed by the loop phi.
  2636   Node* store = NULL;
  2637   Node* store_value = NULL;
  2638   Node* shift = NULL;
  2639   Node* offset = NULL;
  2640   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
  2641     return false;
  2644 #ifndef PRODUCT
  2645   if (TraceLoopOpts) {
  2646     tty->print("ArrayFill    ");
  2647     lpt->dump_head();
  2649 #endif
  2651   // Now replace the whole loop body by a call to a fill routine that
  2652   // covers the same region as the loop.
  2653   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
  2655   // Build an expression for the beginning of the copy region
  2656   Node* index = head->init_trip();
  2657 #ifdef _LP64
  2658   index = new (C) ConvI2LNode(index);
  2659   _igvn.register_new_node_with_optimizer(index);
  2660 #endif
  2661   if (shift != NULL) {
  2662     // byte arrays don't require a shift but others do.
  2663     index = new (C) LShiftXNode(index, shift->in(2));
  2664     _igvn.register_new_node_with_optimizer(index);
  2666   index = new (C) AddPNode(base, base, index);
  2667   _igvn.register_new_node_with_optimizer(index);
  2668   Node* from = new (C) AddPNode(base, index, offset);
  2669   _igvn.register_new_node_with_optimizer(from);
  2670   // Compute the number of elements to copy
  2671   Node* len = new (C) SubINode(head->limit(), head->init_trip());
  2672   _igvn.register_new_node_with_optimizer(len);
  2674   BasicType t = store->as_Mem()->memory_type();
  2675   bool aligned = false;
  2676   if (offset != NULL && head->init_trip()->is_Con()) {
  2677     int element_size = type2aelembytes(t);
  2678     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
  2681   // Build a call to the fill routine
  2682   const char* fill_name;
  2683   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
  2684   assert(fill != NULL, "what?");
  2686   // Convert float/double to int/long for fill routines
  2687   if (t == T_FLOAT) {
  2688     store_value = new (C) MoveF2INode(store_value);
  2689     _igvn.register_new_node_with_optimizer(store_value);
  2690   } else if (t == T_DOUBLE) {
  2691     store_value = new (C) MoveD2LNode(store_value);
  2692     _igvn.register_new_node_with_optimizer(store_value);
  2695   if (CCallingConventionRequiresIntsAsLongs &&
  2696       // See StubRoutines::select_fill_function for types. FLOAT has been converted to INT.
  2697       (t == T_FLOAT || t == T_INT ||  is_subword_type(t))) {
  2698     store_value = new (C) ConvI2LNode(store_value);
  2699     _igvn.register_new_node_with_optimizer(store_value);
  2702   Node* mem_phi = store->in(MemNode::Memory);
  2703   Node* result_ctrl;
  2704   Node* result_mem;
  2705   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
  2706   CallLeafNode *call = new (C) CallLeafNoFPNode(call_type, fill,
  2707                                                 fill_name, TypeAryPtr::get_array_body_type(t));
  2708   uint cnt = 0;
  2709   call->init_req(TypeFunc::Parms + cnt++, from);
  2710   call->init_req(TypeFunc::Parms + cnt++, store_value);
  2711   if (CCallingConventionRequiresIntsAsLongs) {
  2712     call->init_req(TypeFunc::Parms + cnt++, C->top());
  2714 #ifdef _LP64
  2715   len = new (C) ConvI2LNode(len);
  2716   _igvn.register_new_node_with_optimizer(len);
  2717 #endif
  2718   call->init_req(TypeFunc::Parms + cnt++, len);
  2719 #ifdef _LP64
  2720   call->init_req(TypeFunc::Parms + cnt++, C->top());
  2721 #endif
  2722   call->init_req(TypeFunc::Control,   head->init_control());
  2723   call->init_req(TypeFunc::I_O,       C->top());       // Does no I/O.
  2724   call->init_req(TypeFunc::Memory,    mem_phi->in(LoopNode::EntryControl));
  2725   call->init_req(TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr));
  2726   call->init_req(TypeFunc::FramePtr,  C->start()->proj_out(TypeFunc::FramePtr));
  2727   _igvn.register_new_node_with_optimizer(call);
  2728   result_ctrl = new (C) ProjNode(call,TypeFunc::Control);
  2729   _igvn.register_new_node_with_optimizer(result_ctrl);
  2730   result_mem = new (C) ProjNode(call,TypeFunc::Memory);
  2731   _igvn.register_new_node_with_optimizer(result_mem);
  2733 /* Disable following optimization until proper fix (add missing checks).
  2735   // If this fill is tightly coupled to an allocation and overwrites
  2736   // the whole body, allow it to take over the zeroing.
  2737   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
  2738   if (alloc != NULL && alloc->is_AllocateArray()) {
  2739     Node* length = alloc->as_AllocateArray()->Ideal_length();
  2740     if (head->limit() == length &&
  2741         head->init_trip() == _igvn.intcon(0)) {
  2742       if (TraceOptimizeFill) {
  2743         tty->print_cr("Eliminated zeroing in allocation");
  2745       alloc->maybe_set_complete(&_igvn);
  2746     } else {
  2747 #ifdef ASSERT
  2748       if (TraceOptimizeFill) {
  2749         tty->print_cr("filling array but bounds don't match");
  2750         alloc->dump();
  2751         head->init_trip()->dump();
  2752         head->limit()->dump();
  2753         length->dump();
  2755 #endif
  2758 */
  2760   // Redirect the old control and memory edges that are outside the loop.
  2761   Node* exit = head->loopexit()->proj_out(0);
  2762   // Sometimes the memory phi of the head is used as the outgoing
  2763   // state of the loop.  It's safe in this case to replace it with the
  2764   // result_mem.
  2765   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
  2766   _igvn.replace_node(exit, result_ctrl);
  2767   _igvn.replace_node(store, result_mem);
  2768   // Any uses the increment outside of the loop become the loop limit.
  2769   _igvn.replace_node(head->incr(), head->limit());
  2771   // Disconnect the head from the loop.
  2772   for (uint i = 0; i < lpt->_body.size(); i++) {
  2773     Node* n = lpt->_body.at(i);
  2774     _igvn.replace_node(n, C->top());
  2777   return true;

mercurial