src/share/vm/memory/allocation.hpp

Mon, 08 Jul 2013 10:58:48 -0700

author
iklam
date
Mon, 08 Jul 2013 10:58:48 -0700
changeset 5368
cf9d71d3e474
parent 5321
2b9380b0bf0b
child 5577
faf2631b9334
child 6461
bdd155477289
permissions
-rw-r--r--

8016903: Thread::_handle_area initial size too big
Summary: Changed initial size to Chunk::tiny_size (216 bytes)
Reviewed-by: coleenp, dholmes, sspitsyn

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
    26 #define SHARE_VM_MEMORY_ALLOCATION_HPP
    28 #include "runtime/globals.hpp"
    29 #include "utilities/globalDefinitions.hpp"
    30 #include "utilities/macros.hpp"
    31 #ifdef COMPILER1
    32 #include "c1/c1_globals.hpp"
    33 #endif
    34 #ifdef COMPILER2
    35 #include "opto/c2_globals.hpp"
    36 #endif
    38 #include <new>
    40 #define ARENA_ALIGN_M1 (((size_t)(ARENA_AMALLOC_ALIGNMENT)) - 1)
    41 #define ARENA_ALIGN_MASK (~((size_t)ARENA_ALIGN_M1))
    42 #define ARENA_ALIGN(x) ((((size_t)(x)) + ARENA_ALIGN_M1) & ARENA_ALIGN_MASK)
    45 // noinline attribute
    46 #ifdef _WINDOWS
    47   #define _NOINLINE_  __declspec(noinline)
    48 #else
    49   #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
    50     #define _NOINLINE_
    51   #else
    52     #define _NOINLINE_ __attribute__ ((noinline))
    53   #endif
    54 #endif
    56 class AllocFailStrategy {
    57 public:
    58   enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
    59 };
    60 typedef AllocFailStrategy::AllocFailEnum AllocFailType;
    62 // All classes in the virtual machine must be subclassed
    63 // by one of the following allocation classes:
    64 //
    65 // For objects allocated in the resource area (see resourceArea.hpp).
    66 // - ResourceObj
    67 //
    68 // For objects allocated in the C-heap (managed by: free & malloc).
    69 // - CHeapObj
    70 //
    71 // For objects allocated on the stack.
    72 // - StackObj
    73 //
    74 // For embedded objects.
    75 // - ValueObj
    76 //
    77 // For classes used as name spaces.
    78 // - AllStatic
    79 //
    80 // For classes in Metaspace (class data)
    81 // - MetaspaceObj
    82 //
    83 // The printable subclasses are used for debugging and define virtual
    84 // member functions for printing. Classes that avoid allocating the
    85 // vtbl entries in the objects should therefore not be the printable
    86 // subclasses.
    87 //
    88 // The following macros and function should be used to allocate memory
    89 // directly in the resource area or in the C-heap, The _OBJ variants
    90 // of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
    91 // objects which are not inherited from CHeapObj, note constructor and
    92 // destructor are not called. The preferable way to allocate objects
    93 // is using the new operator.
    94 //
    95 // WARNING: The array variant must only be used for a homogenous array
    96 // where all objects are of the exact type specified. If subtypes are
    97 // stored in the array then must pay attention to calling destructors
    98 // at needed.
    99 //
   100 //   NEW_RESOURCE_ARRAY(type, size)
   101 //   NEW_RESOURCE_OBJ(type)
   102 //   NEW_C_HEAP_ARRAY(type, size)
   103 //   NEW_C_HEAP_OBJ(type, memflags)
   104 //   FREE_C_HEAP_ARRAY(type, old, memflags)
   105 //   FREE_C_HEAP_OBJ(objname, type, memflags)
   106 //   char* AllocateHeap(size_t size, const char* name);
   107 //   void  FreeHeap(void* p);
   108 //
   109 // C-heap allocation can be traced using +PrintHeapAllocation.
   110 // malloc and free should therefore never called directly.
   112 // Base class for objects allocated in the C-heap.
   114 // In non product mode we introduce a super class for all allocation classes
   115 // that supports printing.
   116 // We avoid the superclass in product mode since some C++ compilers add
   117 // a word overhead for empty super classes.
   119 #ifdef PRODUCT
   120 #define ALLOCATION_SUPER_CLASS_SPEC
   121 #else
   122 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
   123 class AllocatedObj {
   124  public:
   125   // Printing support
   126   void print() const;
   127   void print_value() const;
   129   virtual void print_on(outputStream* st) const;
   130   virtual void print_value_on(outputStream* st) const;
   131 };
   132 #endif
   135 /*
   136  * MemoryType bitmap layout:
   137  * | 16 15 14 13 12 11 10 09 | 08 07 06 05 | 04 03 02 01 |
   138  * |      memory type        |   object    | reserved    |
   139  * |                         |     type    |             |
   140  */
   141 enum MemoryType {
   142   // Memory type by sub systems. It occupies lower byte.
   143   mtNone              = 0x0000,  // undefined
   144   mtClass             = 0x0100,  // memory class for Java classes
   145   mtThread            = 0x0200,  // memory for thread objects
   146   mtThreadStack       = 0x0300,
   147   mtCode              = 0x0400,  // memory for generated code
   148   mtGC                = 0x0500,  // memory for GC
   149   mtCompiler          = 0x0600,  // memory for compiler
   150   mtInternal          = 0x0700,  // memory used by VM, but does not belong to
   151                                  // any of above categories, and not used for
   152                                  // native memory tracking
   153   mtOther             = 0x0800,  // memory not used by VM
   154   mtSymbol            = 0x0900,  // symbol
   155   mtNMT               = 0x0A00,  // memory used by native memory tracking
   156   mtChunk             = 0x0B00,  // chunk that holds content of arenas
   157   mtJavaHeap          = 0x0C00,  // Java heap
   158   mtClassShared       = 0x0D00,  // class data sharing
   159   mtTest              = 0x0E00,  // Test type for verifying NMT
   160   mtTracing           = 0x0F00,  // memory used for Tracing
   161   mt_number_of_types  = 0x000F,  // number of memory types (mtDontTrack
   162                                  // is not included as validate type)
   163   mtDontTrack         = 0x0F00,  // memory we do not or cannot track
   164   mt_masks            = 0x7F00,
   166   // object type mask
   167   otArena             = 0x0010, // an arena object
   168   otNMTRecorder       = 0x0020, // memory recorder object
   169   ot_masks            = 0x00F0
   170 };
   172 #define IS_MEMORY_TYPE(flags, type) ((flags & mt_masks) == type)
   173 #define HAS_VALID_MEMORY_TYPE(flags)((flags & mt_masks) != mtNone)
   174 #define FLAGS_TO_MEMORY_TYPE(flags) (flags & mt_masks)
   176 #define IS_ARENA_OBJ(flags)         ((flags & ot_masks) == otArena)
   177 #define IS_NMT_RECORDER(flags)      ((flags & ot_masks) == otNMTRecorder)
   178 #define NMT_CAN_TRACK(flags)        (!IS_NMT_RECORDER(flags) && !(IS_MEMORY_TYPE(flags, mtDontTrack)))
   180 typedef unsigned short MEMFLAGS;
   182 #if INCLUDE_NMT
   184 extern bool NMT_track_callsite;
   186 #else
   188 const bool NMT_track_callsite = false;
   190 #endif // INCLUDE_NMT
   192 // debug build does not inline
   193 #if defined(_NMT_NOINLINE_)
   194   #define CURRENT_PC       (NMT_track_callsite ? os::get_caller_pc(1) : 0)
   195   #define CALLER_PC        (NMT_track_callsite ? os::get_caller_pc(2) : 0)
   196   #define CALLER_CALLER_PC (NMT_track_callsite ? os::get_caller_pc(3) : 0)
   197 #else
   198   #define CURRENT_PC      (NMT_track_callsite? os::get_caller_pc(0) : 0)
   199   #define CALLER_PC       (NMT_track_callsite ? os::get_caller_pc(1) : 0)
   200   #define CALLER_CALLER_PC (NMT_track_callsite ? os::get_caller_pc(2) : 0)
   201 #endif
   205 template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
   206  public:
   207   _NOINLINE_ void* operator new(size_t size, address caller_pc = 0);
   208   _NOINLINE_ void* operator new (size_t size, const std::nothrow_t&  nothrow_constant,
   209                                address caller_pc = 0);
   210   _NOINLINE_ void* operator new [](size_t size, address caller_pc = 0);
   211   _NOINLINE_ void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
   212                                address caller_pc = 0);
   213   void  operator delete(void* p);
   214   void  operator delete [] (void* p);
   215 };
   217 // Base class for objects allocated on the stack only.
   218 // Calling new or delete will result in fatal error.
   220 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
   221  private:
   222   void* operator new(size_t size);
   223   void  operator delete(void* p);
   224   void* operator new [](size_t size);
   225   void  operator delete [](void* p);
   226 };
   228 // Base class for objects used as value objects.
   229 // Calling new or delete will result in fatal error.
   230 //
   231 // Portability note: Certain compilers (e.g. gcc) will
   232 // always make classes bigger if it has a superclass, even
   233 // if the superclass does not have any virtual methods or
   234 // instance fields. The HotSpot implementation relies on this
   235 // not to happen. So never make a ValueObj class a direct subclass
   236 // of this object, but use the VALUE_OBJ_CLASS_SPEC class instead, e.g.,
   237 // like this:
   238 //
   239 //   class A VALUE_OBJ_CLASS_SPEC {
   240 //     ...
   241 //   }
   242 //
   243 // With gcc and possible other compilers the VALUE_OBJ_CLASS_SPEC can
   244 // be defined as a an empty string "".
   245 //
   246 class _ValueObj {
   247  private:
   248   void* operator new(size_t size);
   249   void  operator delete(void* p);
   250   void* operator new [](size_t size);
   251   void  operator delete [](void* p);
   252 };
   255 // Base class for objects stored in Metaspace.
   256 // Calling delete will result in fatal error.
   257 //
   258 // Do not inherit from something with a vptr because this class does
   259 // not introduce one.  This class is used to allocate both shared read-only
   260 // and shared read-write classes.
   261 //
   263 class ClassLoaderData;
   265 class MetaspaceObj {
   266  public:
   267   bool is_metaspace_object() const;  // more specific test but slower
   268   bool is_shared() const;
   269   void print_address_on(outputStream* st) const;  // nonvirtual address printing
   271 #define METASPACE_OBJ_TYPES_DO(f) \
   272   f(Unknown) \
   273   f(Class) \
   274   f(Symbol) \
   275   f(TypeArrayU1) \
   276   f(TypeArrayU2) \
   277   f(TypeArrayU4) \
   278   f(TypeArrayU8) \
   279   f(TypeArrayOther) \
   280   f(Method) \
   281   f(ConstMethod) \
   282   f(MethodData) \
   283   f(ConstantPool) \
   284   f(ConstantPoolCache) \
   285   f(Annotation) \
   286   f(MethodCounters)
   288 #define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
   289 #define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
   291   enum Type {
   292     // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
   293     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
   294     _number_of_types
   295   };
   297   static const char * type_name(Type type) {
   298     switch(type) {
   299     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
   300     default:
   301       ShouldNotReachHere();
   302       return NULL;
   303     }
   304   }
   306   static MetaspaceObj::Type array_type(size_t elem_size) {
   307     switch (elem_size) {
   308     case 1: return TypeArrayU1Type;
   309     case 2: return TypeArrayU2Type;
   310     case 4: return TypeArrayU4Type;
   311     case 8: return TypeArrayU8Type;
   312     default:
   313       return TypeArrayOtherType;
   314     }
   315   }
   317   void* operator new(size_t size, ClassLoaderData* loader_data,
   318                      size_t word_size, bool read_only,
   319                      Type type, Thread* thread);
   320                      // can't use TRAPS from this header file.
   321   void operator delete(void* p) { ShouldNotCallThis(); }
   322 };
   324 // Base class for classes that constitute name spaces.
   326 class AllStatic {
   327  public:
   328   AllStatic()  { ShouldNotCallThis(); }
   329   ~AllStatic() { ShouldNotCallThis(); }
   330 };
   333 //------------------------------Chunk------------------------------------------
   334 // Linked list of raw memory chunks
   335 class Chunk: CHeapObj<mtChunk> {
   336   friend class VMStructs;
   338  protected:
   339   Chunk*       _next;     // Next Chunk in list
   340   const size_t _len;      // Size of this Chunk
   341  public:
   342   void* operator new(size_t size, AllocFailType alloc_failmode, size_t length);
   343   void  operator delete(void* p);
   344   Chunk(size_t length);
   346   enum {
   347     // default sizes; make them slightly smaller than 2**k to guard against
   348     // buddy-system style malloc implementations
   349 #ifdef _LP64
   350     slack      = 40,            // [RGV] Not sure if this is right, but make it
   351                                 //       a multiple of 8.
   352 #else
   353     slack      = 20,            // suspected sizeof(Chunk) + internal malloc headers
   354 #endif
   356     tiny_size  =  256  - slack, // Size of first chunk (tiny)
   357     init_size  =  1*K  - slack, // Size of first chunk (normal aka small)
   358     medium_size= 10*K  - slack, // Size of medium-sized chunk
   359     size       = 32*K  - slack, // Default size of an Arena chunk (following the first)
   360     non_pool_size = init_size + 32 // An initial size which is not one of above
   361   };
   363   void chop();                  // Chop this chunk
   364   void next_chop();             // Chop next chunk
   365   static size_t aligned_overhead_size(void) { return ARENA_ALIGN(sizeof(Chunk)); }
   366   static size_t aligned_overhead_size(size_t byte_size) { return ARENA_ALIGN(byte_size); }
   368   size_t length() const         { return _len;  }
   369   Chunk* next() const           { return _next;  }
   370   void set_next(Chunk* n)       { _next = n;  }
   371   // Boundaries of data area (possibly unused)
   372   char* bottom() const          { return ((char*) this) + aligned_overhead_size();  }
   373   char* top()    const          { return bottom() + _len; }
   374   bool contains(char* p) const  { return bottom() <= p && p <= top(); }
   376   // Start the chunk_pool cleaner task
   377   static void start_chunk_pool_cleaner_task();
   379   static void clean_chunk_pool();
   380 };
   382 //------------------------------Arena------------------------------------------
   383 // Fast allocation of memory
   384 class Arena : public CHeapObj<mtNone|otArena> {
   385 protected:
   386   friend class ResourceMark;
   387   friend class HandleMark;
   388   friend class NoHandleMark;
   389   friend class VMStructs;
   391   Chunk *_first;                // First chunk
   392   Chunk *_chunk;                // current chunk
   393   char *_hwm, *_max;            // High water mark and max in current chunk
   394   // Get a new Chunk of at least size x
   395   void* grow(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
   396   size_t _size_in_bytes;        // Size of arena (used for native memory tracking)
   398   NOT_PRODUCT(static julong _bytes_allocated;) // total #bytes allocated since start
   399   friend class AllocStats;
   400   debug_only(void* malloc(size_t size);)
   401   debug_only(void* internal_malloc_4(size_t x);)
   402   NOT_PRODUCT(void inc_bytes_allocated(size_t x);)
   404   void signal_out_of_memory(size_t request, const char* whence) const;
   406   bool check_for_overflow(size_t request, const char* whence,
   407       AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) const {
   408     if (UINTPTR_MAX - request < (uintptr_t)_hwm) {
   409       if (alloc_failmode == AllocFailStrategy::RETURN_NULL) {
   410         return false;
   411       }
   412       signal_out_of_memory(request, whence);
   413     }
   414     return true;
   415  }
   417  public:
   418   Arena();
   419   Arena(size_t init_size);
   420   ~Arena();
   421   void  destruct_contents();
   422   char* hwm() const             { return _hwm; }
   424   // new operators
   425   void* operator new (size_t size);
   426   void* operator new (size_t size, const std::nothrow_t& nothrow_constant);
   428   // dynamic memory type tagging
   429   void* operator new(size_t size, MEMFLAGS flags);
   430   void* operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags);
   431   void  operator delete(void* p);
   433   // Fast allocate in the arena.  Common case is: pointer test + increment.
   434   void* Amalloc(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
   435     assert(is_power_of_2(ARENA_AMALLOC_ALIGNMENT) , "should be a power of 2");
   436     x = ARENA_ALIGN(x);
   437     debug_only(if (UseMallocOnly) return malloc(x);)
   438     if (!check_for_overflow(x, "Arena::Amalloc", alloc_failmode))
   439       return NULL;
   440     NOT_PRODUCT(inc_bytes_allocated(x);)
   441     if (_hwm + x > _max) {
   442       return grow(x, alloc_failmode);
   443     } else {
   444       char *old = _hwm;
   445       _hwm += x;
   446       return old;
   447     }
   448   }
   449   // Further assume size is padded out to words
   450   void *Amalloc_4(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
   451     assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
   452     debug_only(if (UseMallocOnly) return malloc(x);)
   453     if (!check_for_overflow(x, "Arena::Amalloc_4", alloc_failmode))
   454       return NULL;
   455     NOT_PRODUCT(inc_bytes_allocated(x);)
   456     if (_hwm + x > _max) {
   457       return grow(x, alloc_failmode);
   458     } else {
   459       char *old = _hwm;
   460       _hwm += x;
   461       return old;
   462     }
   463   }
   465   // Allocate with 'double' alignment. It is 8 bytes on sparc.
   466   // In other cases Amalloc_D() should be the same as Amalloc_4().
   467   void* Amalloc_D(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
   468     assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
   469     debug_only(if (UseMallocOnly) return malloc(x);)
   470 #if defined(SPARC) && !defined(_LP64)
   471 #define DALIGN_M1 7
   472     size_t delta = (((size_t)_hwm + DALIGN_M1) & ~DALIGN_M1) - (size_t)_hwm;
   473     x += delta;
   474 #endif
   475     if (!check_for_overflow(x, "Arena::Amalloc_D", alloc_failmode))
   476       return NULL;
   477     NOT_PRODUCT(inc_bytes_allocated(x);)
   478     if (_hwm + x > _max) {
   479       return grow(x, alloc_failmode); // grow() returns a result aligned >= 8 bytes.
   480     } else {
   481       char *old = _hwm;
   482       _hwm += x;
   483 #if defined(SPARC) && !defined(_LP64)
   484       old += delta; // align to 8-bytes
   485 #endif
   486       return old;
   487     }
   488   }
   490   // Fast delete in area.  Common case is: NOP (except for storage reclaimed)
   491   void Afree(void *ptr, size_t size) {
   492 #ifdef ASSERT
   493     if (ZapResourceArea) memset(ptr, badResourceValue, size); // zap freed memory
   494     if (UseMallocOnly) return;
   495 #endif
   496     if (((char*)ptr) + size == _hwm) _hwm = (char*)ptr;
   497   }
   499   void *Arealloc( void *old_ptr, size_t old_size, size_t new_size,
   500       AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
   502   // Move contents of this arena into an empty arena
   503   Arena *move_contents(Arena *empty_arena);
   505   // Determine if pointer belongs to this Arena or not.
   506   bool contains( const void *ptr ) const;
   508   // Total of all chunks in use (not thread-safe)
   509   size_t used() const;
   511   // Total # of bytes used
   512   size_t size_in_bytes() const         {  return _size_in_bytes; };
   513   void set_size_in_bytes(size_t size);
   515   static void free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2)  PRODUCT_RETURN;
   516   static void free_all(char** start, char** end)                                     PRODUCT_RETURN;
   518   // how many arena instances
   519   NOT_PRODUCT(static volatile jint _instance_count;)
   520 private:
   521   // Reset this Arena to empty, access will trigger grow if necessary
   522   void   reset(void) {
   523     _first = _chunk = NULL;
   524     _hwm = _max = NULL;
   525     set_size_in_bytes(0);
   526   }
   527 };
   529 // One of the following macros must be used when allocating
   530 // an array or object from an arena
   531 #define NEW_ARENA_ARRAY(arena, type, size) \
   532   (type*) (arena)->Amalloc((size) * sizeof(type))
   534 #define REALLOC_ARENA_ARRAY(arena, type, old, old_size, new_size)    \
   535   (type*) (arena)->Arealloc((char*)(old), (old_size) * sizeof(type), \
   536                             (new_size) * sizeof(type) )
   538 #define FREE_ARENA_ARRAY(arena, type, old, size) \
   539   (arena)->Afree((char*)(old), (size) * sizeof(type))
   541 #define NEW_ARENA_OBJ(arena, type) \
   542   NEW_ARENA_ARRAY(arena, type, 1)
   545 //%note allocation_1
   546 extern char* resource_allocate_bytes(size_t size,
   547     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
   548 extern char* resource_allocate_bytes(Thread* thread, size_t size,
   549     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
   550 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
   551     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
   552 extern void resource_free_bytes( char *old, size_t size );
   554 //----------------------------------------------------------------------
   555 // Base class for objects allocated in the resource area per default.
   556 // Optionally, objects may be allocated on the C heap with
   557 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
   558 // ResourceObj's can be allocated within other objects, but don't use
   559 // new or delete (allocation_type is unknown).  If new is used to allocate,
   560 // use delete to deallocate.
   561 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
   562  public:
   563   enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
   564   static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
   565 #ifdef ASSERT
   566  private:
   567   // When this object is allocated on stack the new() operator is not
   568   // called but garbage on stack may look like a valid allocation_type.
   569   // Store negated 'this' pointer when new() is called to distinguish cases.
   570   // Use second array's element for verification value to distinguish garbage.
   571   uintptr_t _allocation_t[2];
   572   bool is_type_set() const;
   573  public:
   574   allocation_type get_allocation_type() const;
   575   bool allocated_on_stack()    const { return get_allocation_type() == STACK_OR_EMBEDDED; }
   576   bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
   577   bool allocated_on_C_heap()   const { return get_allocation_type() == C_HEAP; }
   578   bool allocated_on_arena()    const { return get_allocation_type() == ARENA; }
   579   ResourceObj(); // default construtor
   580   ResourceObj(const ResourceObj& r); // default copy construtor
   581   ResourceObj& operator=(const ResourceObj& r); // default copy assignment
   582   ~ResourceObj();
   583 #endif // ASSERT
   585  public:
   586   void* operator new(size_t size, allocation_type type, MEMFLAGS flags);
   587   void* operator new [](size_t size, allocation_type type, MEMFLAGS flags);
   588   void* operator new(size_t size, const std::nothrow_t&  nothrow_constant,
   589       allocation_type type, MEMFLAGS flags);
   590   void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
   591       allocation_type type, MEMFLAGS flags);
   593   void* operator new(size_t size, Arena *arena) {
   594       address res = (address)arena->Amalloc(size);
   595       DEBUG_ONLY(set_allocation_type(res, ARENA);)
   596       return res;
   597   }
   599   void* operator new [](size_t size, Arena *arena) {
   600       address res = (address)arena->Amalloc(size);
   601       DEBUG_ONLY(set_allocation_type(res, ARENA);)
   602       return res;
   603   }
   605   void* operator new(size_t size) {
   606       address res = (address)resource_allocate_bytes(size);
   607       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
   608       return res;
   609   }
   611   void* operator new(size_t size, const std::nothrow_t& nothrow_constant) {
   612       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
   613       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
   614       return res;
   615   }
   617   void* operator new [](size_t size) {
   618       address res = (address)resource_allocate_bytes(size);
   619       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
   620       return res;
   621   }
   623   void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) {
   624       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
   625       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
   626       return res;
   627   }
   629   void  operator delete(void* p);
   630   void  operator delete [](void* p);
   631 };
   633 // One of the following macros must be used when allocating an array
   634 // or object to determine whether it should reside in the C heap on in
   635 // the resource area.
   637 #define NEW_RESOURCE_ARRAY(type, size)\
   638   (type*) resource_allocate_bytes((size) * sizeof(type))
   640 #define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
   641   (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
   643 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
   644   (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
   646 #define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
   647   (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
   649 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
   650   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
   652 #define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
   653   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
   654                                     (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
   656 #define FREE_RESOURCE_ARRAY(type, old, size)\
   657   resource_free_bytes((char*)(old), (size) * sizeof(type))
   659 #define FREE_FAST(old)\
   660     /* nop */
   662 #define NEW_RESOURCE_OBJ(type)\
   663   NEW_RESOURCE_ARRAY(type, 1)
   665 #define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
   666   NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
   668 #define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
   669   (type*) AllocateHeap(size * sizeof(type), memflags, pc, allocfail)
   671 #define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
   672   (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
   674 #define NEW_C_HEAP_ARRAY(type, size, memflags)\
   675   (type*) (AllocateHeap((size) * sizeof(type), memflags))
   677 #define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
   678   NEW_C_HEAP_ARRAY3(type, size, memflags, pc, AllocFailStrategy::RETURN_NULL)
   680 #define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
   681   NEW_C_HEAP_ARRAY3(type, size, memflags, (address)0, AllocFailStrategy::RETURN_NULL)
   683 #define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
   684   (type*) (ReallocateHeap((char*)old, (size) * sizeof(type), memflags))
   686 #define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
   687    (type*) (ReallocateHeap((char*)old, (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
   689 #define FREE_C_HEAP_ARRAY(type, old, memflags) \
   690   FreeHeap((char*)(old), memflags)
   692 // allocate type in heap without calling ctor
   693 #define NEW_C_HEAP_OBJ(type, memflags)\
   694   NEW_C_HEAP_ARRAY(type, 1, memflags)
   696 #define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
   697   NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
   699 // deallocate obj of type in heap without calling dtor
   700 #define FREE_C_HEAP_OBJ(objname, memflags)\
   701   FreeHeap((char*)objname, memflags);
   703 // for statistics
   704 #ifndef PRODUCT
   705 class AllocStats : StackObj {
   706   julong start_mallocs, start_frees;
   707   julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
   708  public:
   709   AllocStats();
   711   julong num_mallocs();    // since creation of receiver
   712   julong alloc_bytes();
   713   julong num_frees();
   714   julong free_bytes();
   715   julong resource_bytes();
   716   void   print();
   717 };
   718 #endif
   721 //------------------------------ReallocMark---------------------------------
   722 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
   723 // ReallocMark, which is declared in the same scope as the reallocated
   724 // pointer.  Any operation that could __potentially__ cause a reallocation
   725 // should check the ReallocMark.
   726 class ReallocMark: public StackObj {
   727 protected:
   728   NOT_PRODUCT(int _nesting;)
   730 public:
   731   ReallocMark()   PRODUCT_RETURN;
   732   void check()    PRODUCT_RETURN;
   733 };
   735 // Helper class to allocate arrays that may become large.
   736 // Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
   737 // and uses mapped memory for larger allocations.
   738 // Most OS mallocs do something similar but Solaris malloc does not revert
   739 // to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
   740 // is set so that we always use malloc except for Solaris where we set the
   741 // limit to get mapped memory.
   742 template <class E, MEMFLAGS F>
   743 class ArrayAllocator VALUE_OBJ_CLASS_SPEC {
   744   char* _addr;
   745   bool _use_malloc;
   746   size_t _size;
   747   bool _free_in_destructor;
   748  public:
   749   ArrayAllocator(bool free_in_destructor = true) :
   750     _addr(NULL), _use_malloc(false), _size(0), _free_in_destructor(free_in_destructor) { }
   752   ~ArrayAllocator() {
   753     if (_free_in_destructor) {
   754       free();
   755     }
   756   }
   758   E* allocate(size_t length);
   759   void free();
   760 };
   762 #endif // SHARE_VM_MEMORY_ALLOCATION_HPP

mercurial