src/os/linux/vm/os_linux.cpp

Tue, 12 May 2009 15:55:56 -0700

author
iveresov
date
Tue, 12 May 2009 15:55:56 -0700
changeset 1198
cf71f149d7ae
parent 1196
622212a69394
child 1445
354d3184f6b2
permissions
-rw-r--r--

6840196: NUMA allocator: crash in fastdebug during startup on Linux
Summary: With libnuma >1.2 explicity use 1.1 symbols
Reviewed-by: ysr

     1 /*
     2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // do not include  precompiled  header file
    26 # include "incls/_os_linux.cpp.incl"
    28 // put OS-includes here
    29 # include <sys/types.h>
    30 # include <sys/mman.h>
    31 # include <pthread.h>
    32 # include <signal.h>
    33 # include <errno.h>
    34 # include <dlfcn.h>
    35 # include <stdio.h>
    36 # include <unistd.h>
    37 # include <sys/resource.h>
    38 # include <pthread.h>
    39 # include <sys/stat.h>
    40 # include <sys/time.h>
    41 # include <sys/times.h>
    42 # include <sys/utsname.h>
    43 # include <sys/socket.h>
    44 # include <sys/wait.h>
    45 # include <pwd.h>
    46 # include <poll.h>
    47 # include <semaphore.h>
    48 # include <fcntl.h>
    49 # include <string.h>
    50 # include <syscall.h>
    51 # include <sys/sysinfo.h>
    52 # include <gnu/libc-version.h>
    53 # include <sys/ipc.h>
    54 # include <sys/shm.h>
    55 # include <link.h>
    57 #define MAX_PATH    (2 * K)
    59 // for timer info max values which include all bits
    60 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
    61 #define SEC_IN_NANOSECS  1000000000LL
    63 ////////////////////////////////////////////////////////////////////////////////
    64 // global variables
    65 julong os::Linux::_physical_memory = 0;
    67 address   os::Linux::_initial_thread_stack_bottom = NULL;
    68 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
    70 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
    71 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
    72 Mutex* os::Linux::_createThread_lock = NULL;
    73 pthread_t os::Linux::_main_thread;
    74 int os::Linux::_page_size = -1;
    75 bool os::Linux::_is_floating_stack = false;
    76 bool os::Linux::_is_NPTL = false;
    77 bool os::Linux::_supports_fast_thread_cpu_time = false;
    78 const char * os::Linux::_glibc_version = NULL;
    79 const char * os::Linux::_libpthread_version = NULL;
    81 static jlong initial_time_count=0;
    83 static int clock_tics_per_sec = 100;
    85 // For diagnostics to print a message once. see run_periodic_checks
    86 static sigset_t check_signal_done;
    87 static bool check_signals = true;;
    89 static pid_t _initial_pid = 0;
    91 /* Signal number used to suspend/resume a thread */
    93 /* do not use any signal number less than SIGSEGV, see 4355769 */
    94 static int SR_signum = SIGUSR2;
    95 sigset_t SR_sigset;
    97 /* Used to protect dlsym() calls */
    98 static pthread_mutex_t dl_mutex;
   100 ////////////////////////////////////////////////////////////////////////////////
   101 // utility functions
   103 static int SR_initialize();
   104 static int SR_finalize();
   106 julong os::available_memory() {
   107   return Linux::available_memory();
   108 }
   110 julong os::Linux::available_memory() {
   111   // values in struct sysinfo are "unsigned long"
   112   struct sysinfo si;
   113   sysinfo(&si);
   115   return (julong)si.freeram * si.mem_unit;
   116 }
   118 julong os::physical_memory() {
   119   return Linux::physical_memory();
   120 }
   122 julong os::allocatable_physical_memory(julong size) {
   123 #ifdef _LP64
   124   return size;
   125 #else
   126   julong result = MIN2(size, (julong)3800*M);
   127    if (!is_allocatable(result)) {
   128      // See comments under solaris for alignment considerations
   129      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
   130      result =  MIN2(size, reasonable_size);
   131    }
   132    return result;
   133 #endif // _LP64
   134 }
   136 ////////////////////////////////////////////////////////////////////////////////
   137 // environment support
   139 bool os::getenv(const char* name, char* buf, int len) {
   140   const char* val = ::getenv(name);
   141   if (val != NULL && strlen(val) < (size_t)len) {
   142     strcpy(buf, val);
   143     return true;
   144   }
   145   if (len > 0) buf[0] = 0;  // return a null string
   146   return false;
   147 }
   150 // Return true if user is running as root.
   152 bool os::have_special_privileges() {
   153   static bool init = false;
   154   static bool privileges = false;
   155   if (!init) {
   156     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   157     init = true;
   158   }
   159   return privileges;
   160 }
   163 #ifndef SYS_gettid
   164 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   165 #ifdef __ia64__
   166 #define SYS_gettid 1105
   167 #elif __i386__
   168 #define SYS_gettid 224
   169 #elif __amd64__
   170 #define SYS_gettid 186
   171 #elif __sparc__
   172 #define SYS_gettid 143
   173 #else
   174 #error define gettid for the arch
   175 #endif
   176 #endif
   178 // Cpu architecture string
   179 #if   defined(IA64)
   180 static char cpu_arch[] = "ia64";
   181 #elif defined(IA32)
   182 static char cpu_arch[] = "i386";
   183 #elif defined(AMD64)
   184 static char cpu_arch[] = "amd64";
   185 #elif defined(SPARC)
   186 #  ifdef _LP64
   187 static char cpu_arch[] = "sparcv9";
   188 #  else
   189 static char cpu_arch[] = "sparc";
   190 #  endif
   191 #else
   192 #error Add appropriate cpu_arch setting
   193 #endif
   196 // pid_t gettid()
   197 //
   198 // Returns the kernel thread id of the currently running thread. Kernel
   199 // thread id is used to access /proc.
   200 //
   201 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   202 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   203 //
   204 pid_t os::Linux::gettid() {
   205   int rslt = syscall(SYS_gettid);
   206   if (rslt == -1) {
   207      // old kernel, no NPTL support
   208      return getpid();
   209   } else {
   210      return (pid_t)rslt;
   211   }
   212 }
   214 // Most versions of linux have a bug where the number of processors are
   215 // determined by looking at the /proc file system.  In a chroot environment,
   216 // the system call returns 1.  This causes the VM to act as if it is
   217 // a single processor and elide locking (see is_MP() call).
   218 static bool unsafe_chroot_detected = false;
   219 static const char *unstable_chroot_error = "/proc file system not found.\n"
   220                      "Java may be unstable running multithreaded in a chroot "
   221                      "environment on Linux when /proc filesystem is not mounted.";
   223 void os::Linux::initialize_system_info() {
   224   _processor_count = sysconf(_SC_NPROCESSORS_CONF);
   225   if (_processor_count == 1) {
   226     pid_t pid = os::Linux::gettid();
   227     char fname[32];
   228     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   229     FILE *fp = fopen(fname, "r");
   230     if (fp == NULL) {
   231       unsafe_chroot_detected = true;
   232     } else {
   233       fclose(fp);
   234     }
   235   }
   236   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   237   assert(_processor_count > 0, "linux error");
   238 }
   240 void os::init_system_properties_values() {
   241 //  char arch[12];
   242 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   244   // The next steps are taken in the product version:
   245   //
   246   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
   247   // This library should be located at:
   248   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
   249   //
   250   // If "/jre/lib/" appears at the right place in the path, then we
   251   // assume libjvm[_g].so is installed in a JDK and we use this path.
   252   //
   253   // Otherwise exit with message: "Could not create the Java virtual machine."
   254   //
   255   // The following extra steps are taken in the debugging version:
   256   //
   257   // If "/jre/lib/" does NOT appear at the right place in the path
   258   // instead of exit check for $JAVA_HOME environment variable.
   259   //
   260   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   261   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
   262   // it looks like libjvm[_g].so is installed there
   263   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
   264   //
   265   // Otherwise exit.
   266   //
   267   // Important note: if the location of libjvm.so changes this
   268   // code needs to be changed accordingly.
   270   // The next few definitions allow the code to be verbatim:
   271 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
   272 #define getenv(n) ::getenv(n)
   274 /*
   275  * See ld(1):
   276  *      The linker uses the following search paths to locate required
   277  *      shared libraries:
   278  *        1: ...
   279  *        ...
   280  *        7: The default directories, normally /lib and /usr/lib.
   281  */
   282 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   283 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   284 #else
   285 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   286 #endif
   288 #define EXTENSIONS_DIR  "/lib/ext"
   289 #define ENDORSED_DIR    "/lib/endorsed"
   290 #define REG_DIR         "/usr/java/packages"
   292   {
   293     /* sysclasspath, java_home, dll_dir */
   294     {
   295         char *home_path;
   296         char *dll_path;
   297         char *pslash;
   298         char buf[MAXPATHLEN];
   299         os::jvm_path(buf, sizeof(buf));
   301         // Found the full path to libjvm.so.
   302         // Now cut the path to <java_home>/jre if we can.
   303         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   304         pslash = strrchr(buf, '/');
   305         if (pslash != NULL)
   306             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   307         dll_path = malloc(strlen(buf) + 1);
   308         if (dll_path == NULL)
   309             return;
   310         strcpy(dll_path, buf);
   311         Arguments::set_dll_dir(dll_path);
   313         if (pslash != NULL) {
   314             pslash = strrchr(buf, '/');
   315             if (pslash != NULL) {
   316                 *pslash = '\0';       /* get rid of /<arch> */
   317                 pslash = strrchr(buf, '/');
   318                 if (pslash != NULL)
   319                     *pslash = '\0';   /* get rid of /lib */
   320             }
   321         }
   323         home_path = malloc(strlen(buf) + 1);
   324         if (home_path == NULL)
   325             return;
   326         strcpy(home_path, buf);
   327         Arguments::set_java_home(home_path);
   329         if (!set_boot_path('/', ':'))
   330             return;
   331     }
   333     /*
   334      * Where to look for native libraries
   335      *
   336      * Note: Due to a legacy implementation, most of the library path
   337      * is set in the launcher.  This was to accomodate linking restrictions
   338      * on legacy Linux implementations (which are no longer supported).
   339      * Eventually, all the library path setting will be done here.
   340      *
   341      * However, to prevent the proliferation of improperly built native
   342      * libraries, the new path component /usr/java/packages is added here.
   343      * Eventually, all the library path setting will be done here.
   344      */
   345     {
   346         char *ld_library_path;
   348         /*
   349          * Construct the invariant part of ld_library_path. Note that the
   350          * space for the colon and the trailing null are provided by the
   351          * nulls included by the sizeof operator (so actually we allocate
   352          * a byte more than necessary).
   353          */
   354         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   355             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   356         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   358         /*
   359          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   360          * should always exist (until the legacy problem cited above is
   361          * addressed).
   362          */
   363         char *v = getenv("LD_LIBRARY_PATH");
   364         if (v != NULL) {
   365             char *t = ld_library_path;
   366             /* That's +1 for the colon and +1 for the trailing '\0' */
   367             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   368             sprintf(ld_library_path, "%s:%s", v, t);
   369         }
   370         Arguments::set_library_path(ld_library_path);
   371     }
   373     /*
   374      * Extensions directories.
   375      *
   376      * Note that the space for the colon and the trailing null are provided
   377      * by the nulls included by the sizeof operator (so actually one byte more
   378      * than necessary is allocated).
   379      */
   380     {
   381         char *buf = malloc(strlen(Arguments::get_java_home()) +
   382             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   383         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   384             Arguments::get_java_home());
   385         Arguments::set_ext_dirs(buf);
   386     }
   388     /* Endorsed standards default directory. */
   389     {
   390         char * buf;
   391         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   392         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   393         Arguments::set_endorsed_dirs(buf);
   394     }
   395   }
   397 #undef malloc
   398 #undef getenv
   399 #undef EXTENSIONS_DIR
   400 #undef ENDORSED_DIR
   402   // Done
   403   return;
   404 }
   406 ////////////////////////////////////////////////////////////////////////////////
   407 // breakpoint support
   409 void os::breakpoint() {
   410   BREAKPOINT;
   411 }
   413 extern "C" void breakpoint() {
   414   // use debugger to set breakpoint here
   415 }
   417 ////////////////////////////////////////////////////////////////////////////////
   418 // signal support
   420 debug_only(static bool signal_sets_initialized = false);
   421 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   423 bool os::Linux::is_sig_ignored(int sig) {
   424       struct sigaction oact;
   425       sigaction(sig, (struct sigaction*)NULL, &oact);
   426       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   427                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   428       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   429            return true;
   430       else
   431            return false;
   432 }
   434 void os::Linux::signal_sets_init() {
   435   // Should also have an assertion stating we are still single-threaded.
   436   assert(!signal_sets_initialized, "Already initialized");
   437   // Fill in signals that are necessarily unblocked for all threads in
   438   // the VM. Currently, we unblock the following signals:
   439   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   440   //                         by -Xrs (=ReduceSignalUsage));
   441   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   442   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   443   // the dispositions or masks wrt these signals.
   444   // Programs embedding the VM that want to use the above signals for their
   445   // own purposes must, at this time, use the "-Xrs" option to prevent
   446   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   447   // (See bug 4345157, and other related bugs).
   448   // In reality, though, unblocking these signals is really a nop, since
   449   // these signals are not blocked by default.
   450   sigemptyset(&unblocked_sigs);
   451   sigemptyset(&allowdebug_blocked_sigs);
   452   sigaddset(&unblocked_sigs, SIGILL);
   453   sigaddset(&unblocked_sigs, SIGSEGV);
   454   sigaddset(&unblocked_sigs, SIGBUS);
   455   sigaddset(&unblocked_sigs, SIGFPE);
   456   sigaddset(&unblocked_sigs, SR_signum);
   458   if (!ReduceSignalUsage) {
   459    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   460       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   461       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   462    }
   463    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   464       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   465       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   466    }
   467    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   468       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   469       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   470    }
   471   }
   472   // Fill in signals that are blocked by all but the VM thread.
   473   sigemptyset(&vm_sigs);
   474   if (!ReduceSignalUsage)
   475     sigaddset(&vm_sigs, BREAK_SIGNAL);
   476   debug_only(signal_sets_initialized = true);
   478 }
   480 // These are signals that are unblocked while a thread is running Java.
   481 // (For some reason, they get blocked by default.)
   482 sigset_t* os::Linux::unblocked_signals() {
   483   assert(signal_sets_initialized, "Not initialized");
   484   return &unblocked_sigs;
   485 }
   487 // These are the signals that are blocked while a (non-VM) thread is
   488 // running Java. Only the VM thread handles these signals.
   489 sigset_t* os::Linux::vm_signals() {
   490   assert(signal_sets_initialized, "Not initialized");
   491   return &vm_sigs;
   492 }
   494 // These are signals that are blocked during cond_wait to allow debugger in
   495 sigset_t* os::Linux::allowdebug_blocked_signals() {
   496   assert(signal_sets_initialized, "Not initialized");
   497   return &allowdebug_blocked_sigs;
   498 }
   500 void os::Linux::hotspot_sigmask(Thread* thread) {
   502   //Save caller's signal mask before setting VM signal mask
   503   sigset_t caller_sigmask;
   504   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   506   OSThread* osthread = thread->osthread();
   507   osthread->set_caller_sigmask(caller_sigmask);
   509   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   511   if (!ReduceSignalUsage) {
   512     if (thread->is_VM_thread()) {
   513       // Only the VM thread handles BREAK_SIGNAL ...
   514       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   515     } else {
   516       // ... all other threads block BREAK_SIGNAL
   517       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   518     }
   519   }
   520 }
   522 //////////////////////////////////////////////////////////////////////////////
   523 // detecting pthread library
   525 void os::Linux::libpthread_init() {
   526   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   527   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   528   // generic name for earlier versions.
   529   // Define macros here so we can build HotSpot on old systems.
   530 # ifndef _CS_GNU_LIBC_VERSION
   531 # define _CS_GNU_LIBC_VERSION 2
   532 # endif
   533 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   534 # define _CS_GNU_LIBPTHREAD_VERSION 3
   535 # endif
   537   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   538   if (n > 0) {
   539      char *str = (char *)malloc(n);
   540      confstr(_CS_GNU_LIBC_VERSION, str, n);
   541      os::Linux::set_glibc_version(str);
   542   } else {
   543      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   544      static char _gnu_libc_version[32];
   545      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   546               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   547      os::Linux::set_glibc_version(_gnu_libc_version);
   548   }
   550   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   551   if (n > 0) {
   552      char *str = (char *)malloc(n);
   553      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   554      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   555      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   556      // is the case. LinuxThreads has a hard limit on max number of threads.
   557      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   558      // On the other hand, NPTL does not have such a limit, sysconf()
   559      // will return -1 and errno is not changed. Check if it is really NPTL.
   560      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   561          strstr(str, "NPTL") &&
   562          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   563        free(str);
   564        os::Linux::set_libpthread_version("linuxthreads");
   565      } else {
   566        os::Linux::set_libpthread_version(str);
   567      }
   568   } else {
   569     // glibc before 2.3.2 only has LinuxThreads.
   570     os::Linux::set_libpthread_version("linuxthreads");
   571   }
   573   if (strstr(libpthread_version(), "NPTL")) {
   574      os::Linux::set_is_NPTL();
   575   } else {
   576      os::Linux::set_is_LinuxThreads();
   577   }
   579   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   580   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   581   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   582      os::Linux::set_is_floating_stack();
   583   }
   584 }
   586 /////////////////////////////////////////////////////////////////////////////
   587 // thread stack
   589 // Force Linux kernel to expand current thread stack. If "bottom" is close
   590 // to the stack guard, caller should block all signals.
   591 //
   592 // MAP_GROWSDOWN:
   593 //   A special mmap() flag that is used to implement thread stacks. It tells
   594 //   kernel that the memory region should extend downwards when needed. This
   595 //   allows early versions of LinuxThreads to only mmap the first few pages
   596 //   when creating a new thread. Linux kernel will automatically expand thread
   597 //   stack as needed (on page faults).
   598 //
   599 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   600 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   601 //   region, it's hard to tell if the fault is due to a legitimate stack
   602 //   access or because of reading/writing non-exist memory (e.g. buffer
   603 //   overrun). As a rule, if the fault happens below current stack pointer,
   604 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   605 //   application (see Linux kernel fault.c).
   606 //
   607 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   608 //   stack overflow detection.
   609 //
   610 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   611 //   not use this flag. However, the stack of initial thread is not created
   612 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   613 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   614 //   and then attach the thread to JVM.
   615 //
   616 // To get around the problem and allow stack banging on Linux, we need to
   617 // manually expand thread stack after receiving the SIGSEGV.
   618 //
   619 // There are two ways to expand thread stack to address "bottom", we used
   620 // both of them in JVM before 1.5:
   621 //   1. adjust stack pointer first so that it is below "bottom", and then
   622 //      touch "bottom"
   623 //   2. mmap() the page in question
   624 //
   625 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   626 // if current sp is already near the lower end of page 101, and we need to
   627 // call mmap() to map page 100, it is possible that part of the mmap() frame
   628 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   629 // That will destroy the mmap() frame and cause VM to crash.
   630 //
   631 // The following code works by adjusting sp first, then accessing the "bottom"
   632 // page to force a page fault. Linux kernel will then automatically expand the
   633 // stack mapping.
   634 //
   635 // _expand_stack_to() assumes its frame size is less than page size, which
   636 // should always be true if the function is not inlined.
   638 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   639 #define NOINLINE
   640 #else
   641 #define NOINLINE __attribute__ ((noinline))
   642 #endif
   644 static void _expand_stack_to(address bottom) NOINLINE;
   646 static void _expand_stack_to(address bottom) {
   647   address sp;
   648   size_t size;
   649   volatile char *p;
   651   // Adjust bottom to point to the largest address within the same page, it
   652   // gives us a one-page buffer if alloca() allocates slightly more memory.
   653   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   654   bottom += os::Linux::page_size() - 1;
   656   // sp might be slightly above current stack pointer; if that's the case, we
   657   // will alloca() a little more space than necessary, which is OK. Don't use
   658   // os::current_stack_pointer(), as its result can be slightly below current
   659   // stack pointer, causing us to not alloca enough to reach "bottom".
   660   sp = (address)&sp;
   662   if (sp > bottom) {
   663     size = sp - bottom;
   664     p = (volatile char *)alloca(size);
   665     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   666     p[0] = '\0';
   667   }
   668 }
   670 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   671   assert(t!=NULL, "just checking");
   672   assert(t->osthread()->expanding_stack(), "expand should be set");
   673   assert(t->stack_base() != NULL, "stack_base was not initialized");
   675   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   676     sigset_t mask_all, old_sigset;
   677     sigfillset(&mask_all);
   678     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   679     _expand_stack_to(addr);
   680     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   681     return true;
   682   }
   683   return false;
   684 }
   686 //////////////////////////////////////////////////////////////////////////////
   687 // create new thread
   689 static address highest_vm_reserved_address();
   691 // check if it's safe to start a new thread
   692 static bool _thread_safety_check(Thread* thread) {
   693   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   694     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   695     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   696     //   allocated (MAP_FIXED) from high address space. Every thread stack
   697     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   698     //   it to other values if they rebuild LinuxThreads).
   699     //
   700     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   701     // the memory region has already been mmap'ed. That means if we have too
   702     // many threads and/or very large heap, eventually thread stack will
   703     // collide with heap.
   704     //
   705     // Here we try to prevent heap/stack collision by comparing current
   706     // stack bottom with the highest address that has been mmap'ed by JVM
   707     // plus a safety margin for memory maps created by native code.
   708     //
   709     // This feature can be disabled by setting ThreadSafetyMargin to 0
   710     //
   711     if (ThreadSafetyMargin > 0) {
   712       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   714       // not safe if our stack extends below the safety margin
   715       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   716     } else {
   717       return true;
   718     }
   719   } else {
   720     // Floating stack LinuxThreads or NPTL:
   721     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   722     //   there's not enough space left, pthread_create() will fail. If we come
   723     //   here, that means enough space has been reserved for stack.
   724     return true;
   725   }
   726 }
   728 // Thread start routine for all newly created threads
   729 static void *java_start(Thread *thread) {
   730   // Try to randomize the cache line index of hot stack frames.
   731   // This helps when threads of the same stack traces evict each other's
   732   // cache lines. The threads can be either from the same JVM instance, or
   733   // from different JVM instances. The benefit is especially true for
   734   // processors with hyperthreading technology.
   735   static int counter = 0;
   736   int pid = os::current_process_id();
   737   alloca(((pid ^ counter++) & 7) * 128);
   739   ThreadLocalStorage::set_thread(thread);
   741   OSThread* osthread = thread->osthread();
   742   Monitor* sync = osthread->startThread_lock();
   744   // non floating stack LinuxThreads needs extra check, see above
   745   if (!_thread_safety_check(thread)) {
   746     // notify parent thread
   747     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   748     osthread->set_state(ZOMBIE);
   749     sync->notify_all();
   750     return NULL;
   751   }
   753   // thread_id is kernel thread id (similar to Solaris LWP id)
   754   osthread->set_thread_id(os::Linux::gettid());
   756   if (UseNUMA) {
   757     int lgrp_id = os::numa_get_group_id();
   758     if (lgrp_id != -1) {
   759       thread->set_lgrp_id(lgrp_id);
   760     }
   761   }
   762   // initialize signal mask for this thread
   763   os::Linux::hotspot_sigmask(thread);
   765   // initialize floating point control register
   766   os::Linux::init_thread_fpu_state();
   768   // handshaking with parent thread
   769   {
   770     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   772     // notify parent thread
   773     osthread->set_state(INITIALIZED);
   774     sync->notify_all();
   776     // wait until os::start_thread()
   777     while (osthread->get_state() == INITIALIZED) {
   778       sync->wait(Mutex::_no_safepoint_check_flag);
   779     }
   780   }
   782   // call one more level start routine
   783   thread->run();
   785   return 0;
   786 }
   788 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   789   assert(thread->osthread() == NULL, "caller responsible");
   791   // Allocate the OSThread object
   792   OSThread* osthread = new OSThread(NULL, NULL);
   793   if (osthread == NULL) {
   794     return false;
   795   }
   797   // set the correct thread state
   798   osthread->set_thread_type(thr_type);
   800   // Initial state is ALLOCATED but not INITIALIZED
   801   osthread->set_state(ALLOCATED);
   803   thread->set_osthread(osthread);
   805   // init thread attributes
   806   pthread_attr_t attr;
   807   pthread_attr_init(&attr);
   808   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   810   // stack size
   811   if (os::Linux::supports_variable_stack_size()) {
   812     // calculate stack size if it's not specified by caller
   813     if (stack_size == 0) {
   814       stack_size = os::Linux::default_stack_size(thr_type);
   816       switch (thr_type) {
   817       case os::java_thread:
   818         // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   819         if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
   820         break;
   821       case os::compiler_thread:
   822         if (CompilerThreadStackSize > 0) {
   823           stack_size = (size_t)(CompilerThreadStackSize * K);
   824           break;
   825         } // else fall through:
   826           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   827       case os::vm_thread:
   828       case os::pgc_thread:
   829       case os::cgc_thread:
   830       case os::watcher_thread:
   831         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   832         break;
   833       }
   834     }
   836     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   837     pthread_attr_setstacksize(&attr, stack_size);
   838   } else {
   839     // let pthread_create() pick the default value.
   840   }
   842   // glibc guard page
   843   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   845   ThreadState state;
   847   {
   848     // Serialize thread creation if we are running with fixed stack LinuxThreads
   849     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   850     if (lock) {
   851       os::Linux::createThread_lock()->lock_without_safepoint_check();
   852     }
   854     pthread_t tid;
   855     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   857     pthread_attr_destroy(&attr);
   859     if (ret != 0) {
   860       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   861         perror("pthread_create()");
   862       }
   863       // Need to clean up stuff we've allocated so far
   864       thread->set_osthread(NULL);
   865       delete osthread;
   866       if (lock) os::Linux::createThread_lock()->unlock();
   867       return false;
   868     }
   870     // Store pthread info into the OSThread
   871     osthread->set_pthread_id(tid);
   873     // Wait until child thread is either initialized or aborted
   874     {
   875       Monitor* sync_with_child = osthread->startThread_lock();
   876       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   877       while ((state = osthread->get_state()) == ALLOCATED) {
   878         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   879       }
   880     }
   882     if (lock) {
   883       os::Linux::createThread_lock()->unlock();
   884     }
   885   }
   887   // Aborted due to thread limit being reached
   888   if (state == ZOMBIE) {
   889       thread->set_osthread(NULL);
   890       delete osthread;
   891       return false;
   892   }
   894   // The thread is returned suspended (in state INITIALIZED),
   895   // and is started higher up in the call chain
   896   assert(state == INITIALIZED, "race condition");
   897   return true;
   898 }
   900 /////////////////////////////////////////////////////////////////////////////
   901 // attach existing thread
   903 // bootstrap the main thread
   904 bool os::create_main_thread(JavaThread* thread) {
   905   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   906   return create_attached_thread(thread);
   907 }
   909 bool os::create_attached_thread(JavaThread* thread) {
   910 #ifdef ASSERT
   911     thread->verify_not_published();
   912 #endif
   914   // Allocate the OSThread object
   915   OSThread* osthread = new OSThread(NULL, NULL);
   917   if (osthread == NULL) {
   918     return false;
   919   }
   921   // Store pthread info into the OSThread
   922   osthread->set_thread_id(os::Linux::gettid());
   923   osthread->set_pthread_id(::pthread_self());
   925   // initialize floating point control register
   926   os::Linux::init_thread_fpu_state();
   928   // Initial thread state is RUNNABLE
   929   osthread->set_state(RUNNABLE);
   931   thread->set_osthread(osthread);
   933   if (UseNUMA) {
   934     int lgrp_id = os::numa_get_group_id();
   935     if (lgrp_id != -1) {
   936       thread->set_lgrp_id(lgrp_id);
   937     }
   938   }
   940   if (os::Linux::is_initial_thread()) {
   941     // If current thread is initial thread, its stack is mapped on demand,
   942     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
   943     // the entire stack region to avoid SEGV in stack banging.
   944     // It is also useful to get around the heap-stack-gap problem on SuSE
   945     // kernel (see 4821821 for details). We first expand stack to the top
   946     // of yellow zone, then enable stack yellow zone (order is significant,
   947     // enabling yellow zone first will crash JVM on SuSE Linux), so there
   948     // is no gap between the last two virtual memory regions.
   950     JavaThread *jt = (JavaThread *)thread;
   951     address addr = jt->stack_yellow_zone_base();
   952     assert(addr != NULL, "initialization problem?");
   953     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
   955     osthread->set_expanding_stack();
   956     os::Linux::manually_expand_stack(jt, addr);
   957     osthread->clear_expanding_stack();
   958   }
   960   // initialize signal mask for this thread
   961   // and save the caller's signal mask
   962   os::Linux::hotspot_sigmask(thread);
   964   return true;
   965 }
   967 void os::pd_start_thread(Thread* thread) {
   968   OSThread * osthread = thread->osthread();
   969   assert(osthread->get_state() != INITIALIZED, "just checking");
   970   Monitor* sync_with_child = osthread->startThread_lock();
   971   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   972   sync_with_child->notify();
   973 }
   975 // Free Linux resources related to the OSThread
   976 void os::free_thread(OSThread* osthread) {
   977   assert(osthread != NULL, "osthread not set");
   979   if (Thread::current()->osthread() == osthread) {
   980     // Restore caller's signal mask
   981     sigset_t sigmask = osthread->caller_sigmask();
   982     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
   983    }
   985   delete osthread;
   986 }
   988 //////////////////////////////////////////////////////////////////////////////
   989 // thread local storage
   991 int os::allocate_thread_local_storage() {
   992   pthread_key_t key;
   993   int rslt = pthread_key_create(&key, NULL);
   994   assert(rslt == 0, "cannot allocate thread local storage");
   995   return (int)key;
   996 }
   998 // Note: This is currently not used by VM, as we don't destroy TLS key
   999 // on VM exit.
  1000 void os::free_thread_local_storage(int index) {
  1001   int rslt = pthread_key_delete((pthread_key_t)index);
  1002   assert(rslt == 0, "invalid index");
  1005 void os::thread_local_storage_at_put(int index, void* value) {
  1006   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1007   assert(rslt == 0, "pthread_setspecific failed");
  1010 extern "C" Thread* get_thread() {
  1011   return ThreadLocalStorage::thread();
  1014 //////////////////////////////////////////////////////////////////////////////
  1015 // initial thread
  1017 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1018 bool os::Linux::is_initial_thread(void) {
  1019   char dummy;
  1020   // If called before init complete, thread stack bottom will be null.
  1021   // Can be called if fatal error occurs before initialization.
  1022   if (initial_thread_stack_bottom() == NULL) return false;
  1023   assert(initial_thread_stack_bottom() != NULL &&
  1024          initial_thread_stack_size()   != 0,
  1025          "os::init did not locate initial thread's stack region");
  1026   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1027       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1028        return true;
  1029   else return false;
  1032 // Find the virtual memory area that contains addr
  1033 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1034   FILE *fp = fopen("/proc/self/maps", "r");
  1035   if (fp) {
  1036     address low, high;
  1037     while (!feof(fp)) {
  1038       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1039         if (low <= addr && addr < high) {
  1040            if (vma_low)  *vma_low  = low;
  1041            if (vma_high) *vma_high = high;
  1042            fclose (fp);
  1043            return true;
  1046       for (;;) {
  1047         int ch = fgetc(fp);
  1048         if (ch == EOF || ch == (int)'\n') break;
  1051     fclose(fp);
  1053   return false;
  1056 // Locate initial thread stack. This special handling of initial thread stack
  1057 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1058 // bogus value for initial thread.
  1059 void os::Linux::capture_initial_stack(size_t max_size) {
  1060   // stack size is the easy part, get it from RLIMIT_STACK
  1061   size_t stack_size;
  1062   struct rlimit rlim;
  1063   getrlimit(RLIMIT_STACK, &rlim);
  1064   stack_size = rlim.rlim_cur;
  1066   // 6308388: a bug in ld.so will relocate its own .data section to the
  1067   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1068   //   so we won't install guard page on ld.so's data section.
  1069   stack_size -= 2 * page_size();
  1071   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1072   //   7.1, in both cases we will get 2G in return value.
  1073   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1074   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1075   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1076   //   in case other parts in glibc still assumes 2M max stack size.
  1077   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1078 #ifndef IA64
  1079   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
  1080 #else
  1081   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1082   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
  1083 #endif
  1085   // Try to figure out where the stack base (top) is. This is harder.
  1086   //
  1087   // When an application is started, glibc saves the initial stack pointer in
  1088   // a global variable "__libc_stack_end", which is then used by system
  1089   // libraries. __libc_stack_end should be pretty close to stack top. The
  1090   // variable is available since the very early days. However, because it is
  1091   // a private interface, it could disappear in the future.
  1092   //
  1093   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1094   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1095   // stack top. Note that /proc may not exist if VM is running as a chroot
  1096   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1097   // /proc/<pid>/stat could change in the future (though unlikely).
  1098   //
  1099   // We try __libc_stack_end first. If that doesn't work, look for
  1100   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1101   // as a hint, which should work well in most cases.
  1103   uintptr_t stack_start;
  1105   // try __libc_stack_end first
  1106   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1107   if (p && *p) {
  1108     stack_start = *p;
  1109   } else {
  1110     // see if we can get the start_stack field from /proc/self/stat
  1111     FILE *fp;
  1112     int pid;
  1113     char state;
  1114     int ppid;
  1115     int pgrp;
  1116     int session;
  1117     int nr;
  1118     int tpgrp;
  1119     unsigned long flags;
  1120     unsigned long minflt;
  1121     unsigned long cminflt;
  1122     unsigned long majflt;
  1123     unsigned long cmajflt;
  1124     unsigned long utime;
  1125     unsigned long stime;
  1126     long cutime;
  1127     long cstime;
  1128     long prio;
  1129     long nice;
  1130     long junk;
  1131     long it_real;
  1132     uintptr_t start;
  1133     uintptr_t vsize;
  1134     uintptr_t rss;
  1135     unsigned long rsslim;
  1136     uintptr_t scodes;
  1137     uintptr_t ecode;
  1138     int i;
  1140     // Figure what the primordial thread stack base is. Code is inspired
  1141     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1142     // followed by command name surrounded by parentheses, state, etc.
  1143     char stat[2048];
  1144     int statlen;
  1146     fp = fopen("/proc/self/stat", "r");
  1147     if (fp) {
  1148       statlen = fread(stat, 1, 2047, fp);
  1149       stat[statlen] = '\0';
  1150       fclose(fp);
  1152       // Skip pid and the command string. Note that we could be dealing with
  1153       // weird command names, e.g. user could decide to rename java launcher
  1154       // to "java 1.4.2 :)", then the stat file would look like
  1155       //                1234 (java 1.4.2 :)) R ... ...
  1156       // We don't really need to know the command string, just find the last
  1157       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1158       char * s = strrchr(stat, ')');
  1160       i = 0;
  1161       if (s) {
  1162         // Skip blank chars
  1163         do s++; while (isspace(*s));
  1165         /*                                     1   1   1   1   1   1   1   1   1   1   2   2   2   2   2   2   2   2   2 */
  1166         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5   6   7   8 */
  1167         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld "
  1168                    UINTX_FORMAT UINTX_FORMAT UINTX_FORMAT
  1169                    " %lu "
  1170                    UINTX_FORMAT UINTX_FORMAT UINTX_FORMAT,
  1171              &state,          /* 3  %c  */
  1172              &ppid,           /* 4  %d  */
  1173              &pgrp,           /* 5  %d  */
  1174              &session,        /* 6  %d  */
  1175              &nr,             /* 7  %d  */
  1176              &tpgrp,          /* 8  %d  */
  1177              &flags,          /* 9  %lu  */
  1178              &minflt,         /* 10 %lu  */
  1179              &cminflt,        /* 11 %lu  */
  1180              &majflt,         /* 12 %lu  */
  1181              &cmajflt,        /* 13 %lu  */
  1182              &utime,          /* 14 %lu  */
  1183              &stime,          /* 15 %lu  */
  1184              &cutime,         /* 16 %ld  */
  1185              &cstime,         /* 17 %ld  */
  1186              &prio,           /* 18 %ld  */
  1187              &nice,           /* 19 %ld  */
  1188              &junk,           /* 20 %ld  */
  1189              &it_real,        /* 21 %ld  */
  1190              &start,          /* 22 UINTX_FORMAT  */
  1191              &vsize,          /* 23 UINTX_FORMAT  */
  1192              &rss,            /* 24 UINTX_FORMAT  */
  1193              &rsslim,         /* 25 %lu  */
  1194              &scodes,         /* 26 UINTX_FORMAT  */
  1195              &ecode,          /* 27 UINTX_FORMAT  */
  1196              &stack_start);   /* 28 UINTX_FORMAT  */
  1199       if (i != 28 - 2) {
  1200          assert(false, "Bad conversion from /proc/self/stat");
  1201          // product mode - assume we are the initial thread, good luck in the
  1202          // embedded case.
  1203          warning("Can't detect initial thread stack location - bad conversion");
  1204          stack_start = (uintptr_t) &rlim;
  1206     } else {
  1207       // For some reason we can't open /proc/self/stat (for example, running on
  1208       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1209       // most cases, so don't abort:
  1210       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1211       stack_start = (uintptr_t) &rlim;
  1215   // Now we have a pointer (stack_start) very close to the stack top, the
  1216   // next thing to do is to figure out the exact location of stack top. We
  1217   // can find out the virtual memory area that contains stack_start by
  1218   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1219   // and its upper limit is the real stack top. (again, this would fail if
  1220   // running inside chroot, because /proc may not exist.)
  1222   uintptr_t stack_top;
  1223   address low, high;
  1224   if (find_vma((address)stack_start, &low, &high)) {
  1225     // success, "high" is the true stack top. (ignore "low", because initial
  1226     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1227     stack_top = (uintptr_t)high;
  1228   } else {
  1229     // failed, likely because /proc/self/maps does not exist
  1230     warning("Can't detect initial thread stack location - find_vma failed");
  1231     // best effort: stack_start is normally within a few pages below the real
  1232     // stack top, use it as stack top, and reduce stack size so we won't put
  1233     // guard page outside stack.
  1234     stack_top = stack_start;
  1235     stack_size -= 16 * page_size();
  1238   // stack_top could be partially down the page so align it
  1239   stack_top = align_size_up(stack_top, page_size());
  1241   if (max_size && stack_size > max_size) {
  1242      _initial_thread_stack_size = max_size;
  1243   } else {
  1244      _initial_thread_stack_size = stack_size;
  1247   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1248   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1251 ////////////////////////////////////////////////////////////////////////////////
  1252 // time support
  1254 // Time since start-up in seconds to a fine granularity.
  1255 // Used by VMSelfDestructTimer and the MemProfiler.
  1256 double os::elapsedTime() {
  1258   return (double)(os::elapsed_counter()) * 0.000001;
  1261 jlong os::elapsed_counter() {
  1262   timeval time;
  1263   int status = gettimeofday(&time, NULL);
  1264   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
  1267 jlong os::elapsed_frequency() {
  1268   return (1000 * 1000);
  1271 // For now, we say that linux does not support vtime.  I have no idea
  1272 // whether it can actually be made to (DLD, 9/13/05).
  1274 bool os::supports_vtime() { return false; }
  1275 bool os::enable_vtime()   { return false; }
  1276 bool os::vtime_enabled()  { return false; }
  1277 double os::elapsedVTime() {
  1278   // better than nothing, but not much
  1279   return elapsedTime();
  1282 jlong os::javaTimeMillis() {
  1283   timeval time;
  1284   int status = gettimeofday(&time, NULL);
  1285   assert(status != -1, "linux error");
  1286   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1289 #ifndef CLOCK_MONOTONIC
  1290 #define CLOCK_MONOTONIC (1)
  1291 #endif
  1293 void os::Linux::clock_init() {
  1294   // we do dlopen's in this particular order due to bug in linux
  1295   // dynamical loader (see 6348968) leading to crash on exit
  1296   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1297   if (handle == NULL) {
  1298     handle = dlopen("librt.so", RTLD_LAZY);
  1301   if (handle) {
  1302     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1303            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1304     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1305            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1306     if (clock_getres_func && clock_gettime_func) {
  1307       // See if monotonic clock is supported by the kernel. Note that some
  1308       // early implementations simply return kernel jiffies (updated every
  1309       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1310       // for nano time (though the monotonic property is still nice to have).
  1311       // It's fixed in newer kernels, however clock_getres() still returns
  1312       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1313       // resolution for now. Hopefully as people move to new kernels, this
  1314       // won't be a problem.
  1315       struct timespec res;
  1316       struct timespec tp;
  1317       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1318           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1319         // yes, monotonic clock is supported
  1320         _clock_gettime = clock_gettime_func;
  1321       } else {
  1322         // close librt if there is no monotonic clock
  1323         dlclose(handle);
  1329 #ifndef SYS_clock_getres
  1331 #if defined(IA32) || defined(AMD64)
  1332 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1333 #else
  1334 #error Value of SYS_clock_getres not known on this platform
  1335 #endif
  1337 #endif
  1339 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1341 void os::Linux::fast_thread_clock_init() {
  1342   if (!UseLinuxPosixThreadCPUClocks) {
  1343     return;
  1345   clockid_t clockid;
  1346   struct timespec tp;
  1347   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1348       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1350   // Switch to using fast clocks for thread cpu time if
  1351   // the sys_clock_getres() returns 0 error code.
  1352   // Note, that some kernels may support the current thread
  1353   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1354   // returned by the pthread_getcpuclockid().
  1355   // If the fast Posix clocks are supported then the sys_clock_getres()
  1356   // must return at least tp.tv_sec == 0 which means a resolution
  1357   // better than 1 sec. This is extra check for reliability.
  1359   if(pthread_getcpuclockid_func &&
  1360      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1361      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1363     _supports_fast_thread_cpu_time = true;
  1364     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1368 jlong os::javaTimeNanos() {
  1369   if (Linux::supports_monotonic_clock()) {
  1370     struct timespec tp;
  1371     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1372     assert(status == 0, "gettime error");
  1373     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1374     return result;
  1375   } else {
  1376     timeval time;
  1377     int status = gettimeofday(&time, NULL);
  1378     assert(status != -1, "linux error");
  1379     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1380     return 1000 * usecs;
  1384 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1385   if (Linux::supports_monotonic_clock()) {
  1386     info_ptr->max_value = ALL_64_BITS;
  1388     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1389     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1390     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1391   } else {
  1392     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1393     info_ptr->max_value = ALL_64_BITS;
  1395     // gettimeofday is a real time clock so it skips
  1396     info_ptr->may_skip_backward = true;
  1397     info_ptr->may_skip_forward = true;
  1400   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1403 // Return the real, user, and system times in seconds from an
  1404 // arbitrary fixed point in the past.
  1405 bool os::getTimesSecs(double* process_real_time,
  1406                       double* process_user_time,
  1407                       double* process_system_time) {
  1408   struct tms ticks;
  1409   clock_t real_ticks = times(&ticks);
  1411   if (real_ticks == (clock_t) (-1)) {
  1412     return false;
  1413   } else {
  1414     double ticks_per_second = (double) clock_tics_per_sec;
  1415     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1416     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1417     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1419     return true;
  1424 char * os::local_time_string(char *buf, size_t buflen) {
  1425   struct tm t;
  1426   time_t long_time;
  1427   time(&long_time);
  1428   localtime_r(&long_time, &t);
  1429   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1430                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1431                t.tm_hour, t.tm_min, t.tm_sec);
  1432   return buf;
  1435 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1436   return localtime_r(clock, res);
  1439 ////////////////////////////////////////////////////////////////////////////////
  1440 // runtime exit support
  1442 // Note: os::shutdown() might be called very early during initialization, or
  1443 // called from signal handler. Before adding something to os::shutdown(), make
  1444 // sure it is async-safe and can handle partially initialized VM.
  1445 void os::shutdown() {
  1447   // allow PerfMemory to attempt cleanup of any persistent resources
  1448   perfMemory_exit();
  1450   // needs to remove object in file system
  1451   AttachListener::abort();
  1453   // flush buffered output, finish log files
  1454   ostream_abort();
  1456   // Check for abort hook
  1457   abort_hook_t abort_hook = Arguments::abort_hook();
  1458   if (abort_hook != NULL) {
  1459     abort_hook();
  1464 // Note: os::abort() might be called very early during initialization, or
  1465 // called from signal handler. Before adding something to os::abort(), make
  1466 // sure it is async-safe and can handle partially initialized VM.
  1467 void os::abort(bool dump_core) {
  1468   os::shutdown();
  1469   if (dump_core) {
  1470 #ifndef PRODUCT
  1471     fdStream out(defaultStream::output_fd());
  1472     out.print_raw("Current thread is ");
  1473     char buf[16];
  1474     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1475     out.print_raw_cr(buf);
  1476     out.print_raw_cr("Dumping core ...");
  1477 #endif
  1478     ::abort(); // dump core
  1481   ::exit(1);
  1484 // Die immediately, no exit hook, no abort hook, no cleanup.
  1485 void os::die() {
  1486   // _exit() on LinuxThreads only kills current thread
  1487   ::abort();
  1490 // unused on linux for now.
  1491 void os::set_error_file(const char *logfile) {}
  1493 intx os::current_thread_id() { return (intx)pthread_self(); }
  1494 int os::current_process_id() {
  1496   // Under the old linux thread library, linux gives each thread
  1497   // its own process id. Because of this each thread will return
  1498   // a different pid if this method were to return the result
  1499   // of getpid(2). Linux provides no api that returns the pid
  1500   // of the launcher thread for the vm. This implementation
  1501   // returns a unique pid, the pid of the launcher thread
  1502   // that starts the vm 'process'.
  1504   // Under the NPTL, getpid() returns the same pid as the
  1505   // launcher thread rather than a unique pid per thread.
  1506   // Use gettid() if you want the old pre NPTL behaviour.
  1508   // if you are looking for the result of a call to getpid() that
  1509   // returns a unique pid for the calling thread, then look at the
  1510   // OSThread::thread_id() method in osThread_linux.hpp file
  1512   return (int)(_initial_pid ? _initial_pid : getpid());
  1515 // DLL functions
  1517 const char* os::dll_file_extension() { return ".so"; }
  1519 const char* os::get_temp_directory() { return "/tmp/"; }
  1521 static bool file_exists(const char* filename) {
  1522   struct stat statbuf;
  1523   if (filename == NULL || strlen(filename) == 0) {
  1524     return false;
  1526   return os::stat(filename, &statbuf) == 0;
  1529 void os::dll_build_name(char* buffer, size_t buflen,
  1530                         const char* pname, const char* fname) {
  1531   // Copied from libhpi
  1532   const size_t pnamelen = pname ? strlen(pname) : 0;
  1534   // Quietly truncate on buffer overflow.  Should be an error.
  1535   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1536       *buffer = '\0';
  1537       return;
  1540   if (pnamelen == 0) {
  1541     snprintf(buffer, buflen, "lib%s.so", fname);
  1542   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1543     int n;
  1544     char** pelements = split_path(pname, &n);
  1545     for (int i = 0 ; i < n ; i++) {
  1546       // Really shouldn't be NULL, but check can't hurt
  1547       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1548         continue; // skip the empty path values
  1550       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1551       if (file_exists(buffer)) {
  1552         break;
  1555     // release the storage
  1556     for (int i = 0 ; i < n ; i++) {
  1557       if (pelements[i] != NULL) {
  1558         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1561     if (pelements != NULL) {
  1562       FREE_C_HEAP_ARRAY(char*, pelements);
  1564   } else {
  1565     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1569 const char* os::get_current_directory(char *buf, int buflen) {
  1570   return getcwd(buf, buflen);
  1573 // check if addr is inside libjvm[_g].so
  1574 bool os::address_is_in_vm(address addr) {
  1575   static address libjvm_base_addr;
  1576   Dl_info dlinfo;
  1578   if (libjvm_base_addr == NULL) {
  1579     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1580     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1581     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1584   if (dladdr((void *)addr, &dlinfo)) {
  1585     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1588   return false;
  1591 bool os::dll_address_to_function_name(address addr, char *buf,
  1592                                       int buflen, int *offset) {
  1593   Dl_info dlinfo;
  1595   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
  1596     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1597     if (offset) *offset = addr - (address)dlinfo.dli_saddr;
  1598     return true;
  1599   } else {
  1600     if (buf) buf[0] = '\0';
  1601     if (offset) *offset = -1;
  1602     return false;
  1606 struct _address_to_library_name {
  1607   address addr;          // input : memory address
  1608   size_t  buflen;        //         size of fname
  1609   char*   fname;         // output: library name
  1610   address base;          //         library base addr
  1611 };
  1613 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1614                                             size_t size, void *data) {
  1615   int i;
  1616   bool found = false;
  1617   address libbase = NULL;
  1618   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1620   // iterate through all loadable segments
  1621   for (i = 0; i < info->dlpi_phnum; i++) {
  1622     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1623     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1624       // base address of a library is the lowest address of its loaded
  1625       // segments.
  1626       if (libbase == NULL || libbase > segbase) {
  1627         libbase = segbase;
  1629       // see if 'addr' is within current segment
  1630       if (segbase <= d->addr &&
  1631           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1632         found = true;
  1637   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1638   // so dll_address_to_library_name() can fall through to use dladdr() which
  1639   // can figure out executable name from argv[0].
  1640   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1641     d->base = libbase;
  1642     if (d->fname) {
  1643       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1645     return 1;
  1647   return 0;
  1650 bool os::dll_address_to_library_name(address addr, char* buf,
  1651                                      int buflen, int* offset) {
  1652   Dl_info dlinfo;
  1653   struct _address_to_library_name data;
  1655   // There is a bug in old glibc dladdr() implementation that it could resolve
  1656   // to wrong library name if the .so file has a base address != NULL. Here
  1657   // we iterate through the program headers of all loaded libraries to find
  1658   // out which library 'addr' really belongs to. This workaround can be
  1659   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1660   data.addr = addr;
  1661   data.fname = buf;
  1662   data.buflen = buflen;
  1663   data.base = NULL;
  1664   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1666   if (rslt) {
  1667      // buf already contains library name
  1668      if (offset) *offset = addr - data.base;
  1669      return true;
  1670   } else if (dladdr((void*)addr, &dlinfo)){
  1671      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1672      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  1673      return true;
  1674   } else {
  1675      if (buf) buf[0] = '\0';
  1676      if (offset) *offset = -1;
  1677      return false;
  1681   // Loads .dll/.so and
  1682   // in case of error it checks if .dll/.so was built for the
  1683   // same architecture as Hotspot is running on
  1685 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1687   void * result= ::dlopen(filename, RTLD_LAZY);
  1688   if (result != NULL) {
  1689     // Successful loading
  1690     return result;
  1693   Elf32_Ehdr elf_head;
  1695   // Read system error message into ebuf
  1696   // It may or may not be overwritten below
  1697   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  1698   ebuf[ebuflen-1]='\0';
  1699   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1700   char* diag_msg_buf=ebuf+strlen(ebuf);
  1702   if (diag_msg_max_length==0) {
  1703     // No more space in ebuf for additional diagnostics message
  1704     return NULL;
  1708   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1710   if (file_descriptor < 0) {
  1711     // Can't open library, report dlerror() message
  1712     return NULL;
  1715   bool failed_to_read_elf_head=
  1716     (sizeof(elf_head)!=
  1717         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1719   ::close(file_descriptor);
  1720   if (failed_to_read_elf_head) {
  1721     // file i/o error - report dlerror() msg
  1722     return NULL;
  1725   typedef struct {
  1726     Elf32_Half  code;         // Actual value as defined in elf.h
  1727     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1728     char        elf_class;    // 32 or 64 bit
  1729     char        endianess;    // MSB or LSB
  1730     char*       name;         // String representation
  1731   } arch_t;
  1733   #ifndef EM_486
  1734   #define EM_486          6               /* Intel 80486 */
  1735   #endif
  1737   static const arch_t arch_array[]={
  1738     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1739     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1740     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1741     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1742     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1743     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1744     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1745     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1746     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"}
  1747   };
  1749   #if  (defined IA32)
  1750     static  Elf32_Half running_arch_code=EM_386;
  1751   #elif   (defined AMD64)
  1752     static  Elf32_Half running_arch_code=EM_X86_64;
  1753   #elif  (defined IA64)
  1754     static  Elf32_Half running_arch_code=EM_IA_64;
  1755   #elif  (defined __sparc) && (defined _LP64)
  1756     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1757   #elif  (defined __sparc) && (!defined _LP64)
  1758     static  Elf32_Half running_arch_code=EM_SPARC;
  1759   #elif  (defined __powerpc64__)
  1760     static  Elf32_Half running_arch_code=EM_PPC64;
  1761   #elif  (defined __powerpc__)
  1762     static  Elf32_Half running_arch_code=EM_PPC;
  1763   #else
  1764     #error Method os::dll_load requires that one of following is defined:\
  1765          IA32, AMD64, IA64, __sparc, __powerpc__
  1766   #endif
  1768   // Identify compatability class for VM's architecture and library's architecture
  1769   // Obtain string descriptions for architectures
  1771   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1772   int running_arch_index=-1;
  1774   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1775     if (running_arch_code == arch_array[i].code) {
  1776       running_arch_index    = i;
  1778     if (lib_arch.code == arch_array[i].code) {
  1779       lib_arch.compat_class = arch_array[i].compat_class;
  1780       lib_arch.name         = arch_array[i].name;
  1784   assert(running_arch_index != -1,
  1785     "Didn't find running architecture code (running_arch_code) in arch_array");
  1786   if (running_arch_index == -1) {
  1787     // Even though running architecture detection failed
  1788     // we may still continue with reporting dlerror() message
  1789     return NULL;
  1792   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1793     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1794     return NULL;
  1797   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1798     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1799     return NULL;
  1802   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1803     if ( lib_arch.name!=NULL ) {
  1804       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1805         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1806         lib_arch.name, arch_array[running_arch_index].name);
  1807     } else {
  1808       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1809       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1810         lib_arch.code,
  1811         arch_array[running_arch_index].name);
  1815   return NULL;
  1818 /*
  1819  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  1820  * chances are you might want to run the generated bits against glibc-2.0
  1821  * libdl.so, so always use locking for any version of glibc.
  1822  */
  1823 void* os::dll_lookup(void* handle, const char* name) {
  1824   pthread_mutex_lock(&dl_mutex);
  1825   void* res = dlsym(handle, name);
  1826   pthread_mutex_unlock(&dl_mutex);
  1827   return res;
  1831 bool _print_ascii_file(const char* filename, outputStream* st) {
  1832   int fd = open(filename, O_RDONLY);
  1833   if (fd == -1) {
  1834      return false;
  1837   char buf[32];
  1838   int bytes;
  1839   while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
  1840     st->print_raw(buf, bytes);
  1843   close(fd);
  1845   return true;
  1848 void os::print_dll_info(outputStream *st) {
  1849    st->print_cr("Dynamic libraries:");
  1851    char fname[32];
  1852    pid_t pid = os::Linux::gettid();
  1854    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  1856    if (!_print_ascii_file(fname, st)) {
  1857      st->print("Can not get library information for pid = %d\n", pid);
  1862 void os::print_os_info(outputStream* st) {
  1863   st->print("OS:");
  1865   // Try to identify popular distros.
  1866   // Most Linux distributions have /etc/XXX-release file, which contains
  1867   // the OS version string. Some have more than one /etc/XXX-release file
  1868   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
  1869   // so the order is important.
  1870   if (!_print_ascii_file("/etc/mandrake-release", st) &&
  1871       !_print_ascii_file("/etc/sun-release", st) &&
  1872       !_print_ascii_file("/etc/redhat-release", st) &&
  1873       !_print_ascii_file("/etc/SuSE-release", st) &&
  1874       !_print_ascii_file("/etc/turbolinux-release", st) &&
  1875       !_print_ascii_file("/etc/gentoo-release", st) &&
  1876       !_print_ascii_file("/etc/debian_version", st)) {
  1877       st->print("Linux");
  1879   st->cr();
  1881   // kernel
  1882   st->print("uname:");
  1883   struct utsname name;
  1884   uname(&name);
  1885   st->print(name.sysname); st->print(" ");
  1886   st->print(name.release); st->print(" ");
  1887   st->print(name.version); st->print(" ");
  1888   st->print(name.machine);
  1889   st->cr();
  1891   // Print warning if unsafe chroot environment detected
  1892   if (unsafe_chroot_detected) {
  1893     st->print("WARNING!! ");
  1894     st->print_cr(unstable_chroot_error);
  1897   // libc, pthread
  1898   st->print("libc:");
  1899   st->print(os::Linux::glibc_version()); st->print(" ");
  1900   st->print(os::Linux::libpthread_version()); st->print(" ");
  1901   if (os::Linux::is_LinuxThreads()) {
  1902      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  1904   st->cr();
  1906   // rlimit
  1907   st->print("rlimit:");
  1908   struct rlimit rlim;
  1910   st->print(" STACK ");
  1911   getrlimit(RLIMIT_STACK, &rlim);
  1912   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1913   else st->print("%uk", rlim.rlim_cur >> 10);
  1915   st->print(", CORE ");
  1916   getrlimit(RLIMIT_CORE, &rlim);
  1917   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1918   else st->print("%uk", rlim.rlim_cur >> 10);
  1920   st->print(", NPROC ");
  1921   getrlimit(RLIMIT_NPROC, &rlim);
  1922   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1923   else st->print("%d", rlim.rlim_cur);
  1925   st->print(", NOFILE ");
  1926   getrlimit(RLIMIT_NOFILE, &rlim);
  1927   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1928   else st->print("%d", rlim.rlim_cur);
  1930   st->print(", AS ");
  1931   getrlimit(RLIMIT_AS, &rlim);
  1932   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1933   else st->print("%uk", rlim.rlim_cur >> 10);
  1934   st->cr();
  1936   // load average
  1937   st->print("load average:");
  1938   double loadavg[3];
  1939   os::loadavg(loadavg, 3);
  1940   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  1941   st->cr();
  1944 void os::print_memory_info(outputStream* st) {
  1946   st->print("Memory:");
  1947   st->print(" %dk page", os::vm_page_size()>>10);
  1949   // values in struct sysinfo are "unsigned long"
  1950   struct sysinfo si;
  1951   sysinfo(&si);
  1953   st->print(", physical " UINT64_FORMAT "k",
  1954             os::physical_memory() >> 10);
  1955   st->print("(" UINT64_FORMAT "k free)",
  1956             os::available_memory() >> 10);
  1957   st->print(", swap " UINT64_FORMAT "k",
  1958             ((jlong)si.totalswap * si.mem_unit) >> 10);
  1959   st->print("(" UINT64_FORMAT "k free)",
  1960             ((jlong)si.freeswap * si.mem_unit) >> 10);
  1961   st->cr();
  1964 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  1965 // but they're the same for all the linux arch that we support
  1966 // and they're the same for solaris but there's no common place to put this.
  1967 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  1968                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  1969                           "ILL_COPROC", "ILL_BADSTK" };
  1971 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  1972                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  1973                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  1975 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  1977 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  1979 void os::print_siginfo(outputStream* st, void* siginfo) {
  1980   st->print("siginfo:");
  1982   const int buflen = 100;
  1983   char buf[buflen];
  1984   siginfo_t *si = (siginfo_t*)siginfo;
  1985   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  1986   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  1987     st->print("si_errno=%s", buf);
  1988   } else {
  1989     st->print("si_errno=%d", si->si_errno);
  1991   const int c = si->si_code;
  1992   assert(c > 0, "unexpected si_code");
  1993   switch (si->si_signo) {
  1994   case SIGILL:
  1995     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  1996     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  1997     break;
  1998   case SIGFPE:
  1999     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2000     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2001     break;
  2002   case SIGSEGV:
  2003     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2004     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2005     break;
  2006   case SIGBUS:
  2007     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2008     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2009     break;
  2010   default:
  2011     st->print(", si_code=%d", si->si_code);
  2012     // no si_addr
  2015   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2016       UseSharedSpaces) {
  2017     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2018     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2019       st->print("\n\nError accessing class data sharing archive."   \
  2020                 " Mapped file inaccessible during execution, "      \
  2021                 " possible disk/network problem.");
  2024   st->cr();
  2028 static void print_signal_handler(outputStream* st, int sig,
  2029                                  char* buf, size_t buflen);
  2031 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2032   st->print_cr("Signal Handlers:");
  2033   print_signal_handler(st, SIGSEGV, buf, buflen);
  2034   print_signal_handler(st, SIGBUS , buf, buflen);
  2035   print_signal_handler(st, SIGFPE , buf, buflen);
  2036   print_signal_handler(st, SIGPIPE, buf, buflen);
  2037   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2038   print_signal_handler(st, SIGILL , buf, buflen);
  2039   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2040   print_signal_handler(st, SR_signum, buf, buflen);
  2041   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2042   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2043   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2044   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2047 static char saved_jvm_path[MAXPATHLEN] = {0};
  2049 // Find the full path to the current module, libjvm.so or libjvm_g.so
  2050 void os::jvm_path(char *buf, jint len) {
  2051   // Error checking.
  2052   if (len < MAXPATHLEN) {
  2053     assert(false, "must use a large-enough buffer");
  2054     buf[0] = '\0';
  2055     return;
  2057   // Lazy resolve the path to current module.
  2058   if (saved_jvm_path[0] != 0) {
  2059     strcpy(buf, saved_jvm_path);
  2060     return;
  2063   char dli_fname[MAXPATHLEN];
  2064   bool ret = dll_address_to_library_name(
  2065                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2066                 dli_fname, sizeof(dli_fname), NULL);
  2067   assert(ret != 0, "cannot locate libjvm");
  2068   if (realpath(dli_fname, buf) == NULL)
  2069     return;
  2071   if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
  2072     // Support for the gamma launcher.  Typical value for buf is
  2073     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2074     // the right place in the string, then assume we are installed in a JDK and
  2075     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2076     // up the path so it looks like libjvm.so is installed there (append a
  2077     // fake suffix hotspot/libjvm.so).
  2078     const char *p = buf + strlen(buf) - 1;
  2079     for (int count = 0; p > buf && count < 5; ++count) {
  2080       for (--p; p > buf && *p != '/'; --p)
  2081         /* empty */ ;
  2084     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2085       // Look for JAVA_HOME in the environment.
  2086       char* java_home_var = ::getenv("JAVA_HOME");
  2087       if (java_home_var != NULL && java_home_var[0] != 0) {
  2088         // Check the current module name "libjvm.so" or "libjvm_g.so".
  2089         p = strrchr(buf, '/');
  2090         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2091         p = strstr(p, "_g") ? "_g" : "";
  2093         if (realpath(java_home_var, buf) == NULL)
  2094           return;
  2095         sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
  2096         if (0 == access(buf, F_OK)) {
  2097           // Use current module name "libjvm[_g].so" instead of
  2098           // "libjvm"debug_only("_g")".so" since for fastdebug version
  2099           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
  2100           // It is used when we are choosing the HPI library's name
  2101           // "libhpi[_g].so" in hpi::initialize_get_interface().
  2102           sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
  2103         } else {
  2104           // Go back to path of .so
  2105           if (realpath(dli_fname, buf) == NULL)
  2106             return;
  2112   strcpy(saved_jvm_path, buf);
  2115 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2116   // no prefix required, not even "_"
  2119 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2120   // no suffix required
  2123 ////////////////////////////////////////////////////////////////////////////////
  2124 // sun.misc.Signal support
  2126 static volatile jint sigint_count = 0;
  2128 static void
  2129 UserHandler(int sig, void *siginfo, void *context) {
  2130   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2131   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2132   // don't want to flood the manager thread with sem_post requests.
  2133   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2134       return;
  2136   // Ctrl-C is pressed during error reporting, likely because the error
  2137   // handler fails to abort. Let VM die immediately.
  2138   if (sig == SIGINT && is_error_reported()) {
  2139      os::die();
  2142   os::signal_notify(sig);
  2145 void* os::user_handler() {
  2146   return CAST_FROM_FN_PTR(void*, UserHandler);
  2149 extern "C" {
  2150   typedef void (*sa_handler_t)(int);
  2151   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2154 void* os::signal(int signal_number, void* handler) {
  2155   struct sigaction sigAct, oldSigAct;
  2157   sigfillset(&(sigAct.sa_mask));
  2158   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2159   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2161   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2162     // -1 means registration failed
  2163     return (void *)-1;
  2166   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2169 void os::signal_raise(int signal_number) {
  2170   ::raise(signal_number);
  2173 /*
  2174  * The following code is moved from os.cpp for making this
  2175  * code platform specific, which it is by its very nature.
  2176  */
  2178 // Will be modified when max signal is changed to be dynamic
  2179 int os::sigexitnum_pd() {
  2180   return NSIG;
  2183 // a counter for each possible signal value
  2184 static volatile jint pending_signals[NSIG+1] = { 0 };
  2186 // Linux(POSIX) specific hand shaking semaphore.
  2187 static sem_t sig_sem;
  2189 void os::signal_init_pd() {
  2190   // Initialize signal structures
  2191   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2193   // Initialize signal semaphore
  2194   ::sem_init(&sig_sem, 0, 0);
  2197 void os::signal_notify(int sig) {
  2198   Atomic::inc(&pending_signals[sig]);
  2199   ::sem_post(&sig_sem);
  2202 static int check_pending_signals(bool wait) {
  2203   Atomic::store(0, &sigint_count);
  2204   for (;;) {
  2205     for (int i = 0; i < NSIG + 1; i++) {
  2206       jint n = pending_signals[i];
  2207       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2208         return i;
  2211     if (!wait) {
  2212       return -1;
  2214     JavaThread *thread = JavaThread::current();
  2215     ThreadBlockInVM tbivm(thread);
  2217     bool threadIsSuspended;
  2218     do {
  2219       thread->set_suspend_equivalent();
  2220       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2221       ::sem_wait(&sig_sem);
  2223       // were we externally suspended while we were waiting?
  2224       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2225       if (threadIsSuspended) {
  2226         //
  2227         // The semaphore has been incremented, but while we were waiting
  2228         // another thread suspended us. We don't want to continue running
  2229         // while suspended because that would surprise the thread that
  2230         // suspended us.
  2231         //
  2232         ::sem_post(&sig_sem);
  2234         thread->java_suspend_self();
  2236     } while (threadIsSuspended);
  2240 int os::signal_lookup() {
  2241   return check_pending_signals(false);
  2244 int os::signal_wait() {
  2245   return check_pending_signals(true);
  2248 ////////////////////////////////////////////////////////////////////////////////
  2249 // Virtual Memory
  2251 int os::vm_page_size() {
  2252   // Seems redundant as all get out
  2253   assert(os::Linux::page_size() != -1, "must call os::init");
  2254   return os::Linux::page_size();
  2257 // Solaris allocates memory by pages.
  2258 int os::vm_allocation_granularity() {
  2259   assert(os::Linux::page_size() != -1, "must call os::init");
  2260   return os::Linux::page_size();
  2263 // Rationale behind this function:
  2264 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2265 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2266 //  samples for JITted code. Here we create private executable mapping over the code cache
  2267 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2268 //  info for the reporting script by storing timestamp and location of symbol
  2269 void linux_wrap_code(char* base, size_t size) {
  2270   static volatile jint cnt = 0;
  2272   if (!UseOprofile) {
  2273     return;
  2276   char buf[40];
  2277   int num = Atomic::add(1, &cnt);
  2279   sprintf(buf, "/tmp/hs-vm-%d-%d", os::current_process_id(), num);
  2280   unlink(buf);
  2282   int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2284   if (fd != -1) {
  2285     off_t rv = lseek(fd, size-2, SEEK_SET);
  2286     if (rv != (off_t)-1) {
  2287       if (write(fd, "", 1) == 1) {
  2288         mmap(base, size,
  2289              PROT_READ|PROT_WRITE|PROT_EXEC,
  2290              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2293     close(fd);
  2294     unlink(buf);
  2298 // NOTE: Linux kernel does not really reserve the pages for us.
  2299 //       All it does is to check if there are enough free pages
  2300 //       left at the time of mmap(). This could be a potential
  2301 //       problem.
  2302 bool os::commit_memory(char* addr, size_t size, bool exec) {
  2303   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2304   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2305                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2306   return res != (uintptr_t) MAP_FAILED;
  2309 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  2310                        bool exec) {
  2311   return commit_memory(addr, size, exec);
  2314 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  2316 void os::free_memory(char *addr, size_t bytes) {
  2317   ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
  2318          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2321 void os::numa_make_global(char *addr, size_t bytes) {
  2322   Linux::numa_interleave_memory(addr, bytes);
  2325 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2326   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2329 bool os::numa_topology_changed()   { return false; }
  2331 size_t os::numa_get_groups_num() {
  2332   int max_node = Linux::numa_max_node();
  2333   return max_node > 0 ? max_node + 1 : 1;
  2336 int os::numa_get_group_id() {
  2337   int cpu_id = Linux::sched_getcpu();
  2338   if (cpu_id != -1) {
  2339     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2340     if (lgrp_id != -1) {
  2341       return lgrp_id;
  2344   return 0;
  2347 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2348   for (size_t i = 0; i < size; i++) {
  2349     ids[i] = i;
  2351   return size;
  2354 bool os::get_page_info(char *start, page_info* info) {
  2355   return false;
  2358 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2359   return end;
  2362 extern "C" void numa_warn(int number, char *where, ...) { }
  2363 extern "C" void numa_error(char *where) { }
  2366 // If we are running with libnuma version > 2, then we should
  2367 // be trying to use symbols with versions 1.1
  2368 // If we are running with earlier version, which did not have symbol versions,
  2369 // we should use the base version.
  2370 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2371   void *f = dlvsym(handle, name, "libnuma_1.1");
  2372   if (f == NULL) {
  2373     f = dlsym(handle, name);
  2375   return f;
  2378 bool os::Linux::libnuma_init() {
  2379   // sched_getcpu() should be in libc.
  2380   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2381                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2383   if (sched_getcpu() != -1) { // Does it work?
  2384     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2385     if (handle != NULL) {
  2386       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2387                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2388       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2389                                        libnuma_dlsym(handle, "numa_max_node")));
  2390       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2391                                         libnuma_dlsym(handle, "numa_available")));
  2392       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2393                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2394       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2395                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2398       if (numa_available() != -1) {
  2399         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2400         // Create a cpu -> node mapping
  2401         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
  2402         rebuild_cpu_to_node_map();
  2403         return true;
  2407   return false;
  2410 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2411 // The table is later used in get_node_by_cpu().
  2412 void os::Linux::rebuild_cpu_to_node_map() {
  2413   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2414                               // in libnuma (possible values are starting from 16,
  2415                               // and continuing up with every other power of 2, but less
  2416                               // than the maximum number of CPUs supported by kernel), and
  2417                               // is a subject to change (in libnuma version 2 the requirements
  2418                               // are more reasonable) we'll just hardcode the number they use
  2419                               // in the library.
  2420   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2422   size_t cpu_num = os::active_processor_count();
  2423   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2424   size_t cpu_map_valid_size =
  2425     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2427   cpu_to_node()->clear();
  2428   cpu_to_node()->at_grow(cpu_num - 1);
  2429   size_t node_num = numa_get_groups_num();
  2431   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
  2432   for (size_t i = 0; i < node_num; i++) {
  2433     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2434       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2435         if (cpu_map[j] != 0) {
  2436           for (size_t k = 0; k < BitsPerCLong; k++) {
  2437             if (cpu_map[j] & (1UL << k)) {
  2438               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2445   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
  2448 int os::Linux::get_node_by_cpu(int cpu_id) {
  2449   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2450     return cpu_to_node()->at(cpu_id);
  2452   return -1;
  2455 GrowableArray<int>* os::Linux::_cpu_to_node;
  2456 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2457 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2458 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2459 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2460 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2461 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2462 unsigned long* os::Linux::_numa_all_nodes;
  2464 bool os::uncommit_memory(char* addr, size_t size) {
  2465   return ::mmap(addr, size, PROT_NONE,
  2466                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0)
  2467     != MAP_FAILED;
  2470 static address _highest_vm_reserved_address = NULL;
  2472 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  2473 // at 'requested_addr'. If there are existing memory mappings at the same
  2474 // location, however, they will be overwritten. If 'fixed' is false,
  2475 // 'requested_addr' is only treated as a hint, the return value may or
  2476 // may not start from the requested address. Unlike Linux mmap(), this
  2477 // function returns NULL to indicate failure.
  2478 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  2479   char * addr;
  2480   int flags;
  2482   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  2483   if (fixed) {
  2484     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  2485     flags |= MAP_FIXED;
  2488   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
  2489   // to PROT_EXEC if executable when we commit the page.
  2490   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
  2491                        flags, -1, 0);
  2493   if (addr != MAP_FAILED) {
  2494     // anon_mmap() should only get called during VM initialization,
  2495     // don't need lock (actually we can skip locking even it can be called
  2496     // from multiple threads, because _highest_vm_reserved_address is just a
  2497     // hint about the upper limit of non-stack memory regions.)
  2498     if ((address)addr + bytes > _highest_vm_reserved_address) {
  2499       _highest_vm_reserved_address = (address)addr + bytes;
  2503   return addr == MAP_FAILED ? NULL : addr;
  2506 // Don't update _highest_vm_reserved_address, because there might be memory
  2507 // regions above addr + size. If so, releasing a memory region only creates
  2508 // a hole in the address space, it doesn't help prevent heap-stack collision.
  2509 //
  2510 static int anon_munmap(char * addr, size_t size) {
  2511   return ::munmap(addr, size) == 0;
  2514 char* os::reserve_memory(size_t bytes, char* requested_addr,
  2515                          size_t alignment_hint) {
  2516   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  2519 bool os::release_memory(char* addr, size_t size) {
  2520   return anon_munmap(addr, size);
  2523 static address highest_vm_reserved_address() {
  2524   return _highest_vm_reserved_address;
  2527 static bool linux_mprotect(char* addr, size_t size, int prot) {
  2528   // Linux wants the mprotect address argument to be page aligned.
  2529   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  2531   // According to SUSv3, mprotect() should only be used with mappings
  2532   // established by mmap(), and mmap() always maps whole pages. Unaligned
  2533   // 'addr' likely indicates problem in the VM (e.g. trying to change
  2534   // protection of malloc'ed or statically allocated memory). Check the
  2535   // caller if you hit this assert.
  2536   assert(addr == bottom, "sanity check");
  2538   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  2539   return ::mprotect(bottom, size, prot) == 0;
  2542 // Set protections specified
  2543 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2544                         bool is_committed) {
  2545   unsigned int p = 0;
  2546   switch (prot) {
  2547   case MEM_PROT_NONE: p = PROT_NONE; break;
  2548   case MEM_PROT_READ: p = PROT_READ; break;
  2549   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  2550   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  2551   default:
  2552     ShouldNotReachHere();
  2554   // is_committed is unused.
  2555   return linux_mprotect(addr, bytes, p);
  2558 bool os::guard_memory(char* addr, size_t size) {
  2559   return linux_mprotect(addr, size, PROT_NONE);
  2562 bool os::unguard_memory(char* addr, size_t size) {
  2563   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  2566 // Large page support
  2568 static size_t _large_page_size = 0;
  2570 bool os::large_page_init() {
  2571   if (!UseLargePages) return false;
  2573   if (LargePageSizeInBytes) {
  2574     _large_page_size = LargePageSizeInBytes;
  2575   } else {
  2576     // large_page_size on Linux is used to round up heap size. x86 uses either
  2577     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  2578     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  2579     // page as large as 256M.
  2580     //
  2581     // Here we try to figure out page size by parsing /proc/meminfo and looking
  2582     // for a line with the following format:
  2583     //    Hugepagesize:     2048 kB
  2584     //
  2585     // If we can't determine the value (e.g. /proc is not mounted, or the text
  2586     // format has been changed), we'll use the largest page size supported by
  2587     // the processor.
  2589     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M);
  2591     FILE *fp = fopen("/proc/meminfo", "r");
  2592     if (fp) {
  2593       while (!feof(fp)) {
  2594         int x = 0;
  2595         char buf[16];
  2596         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  2597           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  2598             _large_page_size = x * K;
  2599             break;
  2601         } else {
  2602           // skip to next line
  2603           for (;;) {
  2604             int ch = fgetc(fp);
  2605             if (ch == EOF || ch == (int)'\n') break;
  2609       fclose(fp);
  2613   const size_t default_page_size = (size_t)Linux::page_size();
  2614   if (_large_page_size > default_page_size) {
  2615     _page_sizes[0] = _large_page_size;
  2616     _page_sizes[1] = default_page_size;
  2617     _page_sizes[2] = 0;
  2620   // Large page support is available on 2.6 or newer kernel, some vendors
  2621   // (e.g. Redhat) have backported it to their 2.4 based distributions.
  2622   // We optimistically assume the support is available. If later it turns out
  2623   // not true, VM will automatically switch to use regular page size.
  2624   return true;
  2627 #ifndef SHM_HUGETLB
  2628 #define SHM_HUGETLB 04000
  2629 #endif
  2631 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
  2632   // "exec" is passed in but not used.  Creating the shared image for
  2633   // the code cache doesn't have an SHM_X executable permission to check.
  2634   assert(UseLargePages, "only for large pages");
  2636   key_t key = IPC_PRIVATE;
  2637   char *addr;
  2639   bool warn_on_failure = UseLargePages &&
  2640                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  2641                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  2642                         );
  2643   char msg[128];
  2645   // Create a large shared memory region to attach to based on size.
  2646   // Currently, size is the total size of the heap
  2647   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  2648   if (shmid == -1) {
  2649      // Possible reasons for shmget failure:
  2650      // 1. shmmax is too small for Java heap.
  2651      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  2652      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  2653      // 2. not enough large page memory.
  2654      //    > check available large pages: cat /proc/meminfo
  2655      //    > increase amount of large pages:
  2656      //          echo new_value > /proc/sys/vm/nr_hugepages
  2657      //      Note 1: different Linux may use different name for this property,
  2658      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  2659      //      Note 2: it's possible there's enough physical memory available but
  2660      //            they are so fragmented after a long run that they can't
  2661      //            coalesce into large pages. Try to reserve large pages when
  2662      //            the system is still "fresh".
  2663      if (warn_on_failure) {
  2664        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  2665        warning(msg);
  2667      return NULL;
  2670   // attach to the region
  2671   addr = (char*)shmat(shmid, NULL, 0);
  2672   int err = errno;
  2674   // Remove shmid. If shmat() is successful, the actual shared memory segment
  2675   // will be deleted when it's detached by shmdt() or when the process
  2676   // terminates. If shmat() is not successful this will remove the shared
  2677   // segment immediately.
  2678   shmctl(shmid, IPC_RMID, NULL);
  2680   if ((intptr_t)addr == -1) {
  2681      if (warn_on_failure) {
  2682        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  2683        warning(msg);
  2685      return NULL;
  2688   return addr;
  2691 bool os::release_memory_special(char* base, size_t bytes) {
  2692   // detaching the SHM segment will also delete it, see reserve_memory_special()
  2693   int rslt = shmdt(base);
  2694   return rslt == 0;
  2697 size_t os::large_page_size() {
  2698   return _large_page_size;
  2701 // Linux does not support anonymous mmap with large page memory. The only way
  2702 // to reserve large page memory without file backing is through SysV shared
  2703 // memory API. The entire memory region is committed and pinned upfront.
  2704 // Hopefully this will change in the future...
  2705 bool os::can_commit_large_page_memory() {
  2706   return false;
  2709 bool os::can_execute_large_page_memory() {
  2710   return false;
  2713 // Reserve memory at an arbitrary address, only if that area is
  2714 // available (and not reserved for something else).
  2716 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2717   const int max_tries = 10;
  2718   char* base[max_tries];
  2719   size_t size[max_tries];
  2720   const size_t gap = 0x000000;
  2722   // Assert only that the size is a multiple of the page size, since
  2723   // that's all that mmap requires, and since that's all we really know
  2724   // about at this low abstraction level.  If we need higher alignment,
  2725   // we can either pass an alignment to this method or verify alignment
  2726   // in one of the methods further up the call chain.  See bug 5044738.
  2727   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  2729   // Repeatedly allocate blocks until the block is allocated at the
  2730   // right spot. Give up after max_tries. Note that reserve_memory() will
  2731   // automatically update _highest_vm_reserved_address if the call is
  2732   // successful. The variable tracks the highest memory address every reserved
  2733   // by JVM. It is used to detect heap-stack collision if running with
  2734   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  2735   // space than needed, it could confuse the collision detecting code. To
  2736   // solve the problem, save current _highest_vm_reserved_address and
  2737   // calculate the correct value before return.
  2738   address old_highest = _highest_vm_reserved_address;
  2740   // Linux mmap allows caller to pass an address as hint; give it a try first,
  2741   // if kernel honors the hint then we can return immediately.
  2742   char * addr = anon_mmap(requested_addr, bytes, false);
  2743   if (addr == requested_addr) {
  2744      return requested_addr;
  2747   if (addr != NULL) {
  2748      // mmap() is successful but it fails to reserve at the requested address
  2749      anon_munmap(addr, bytes);
  2752   int i;
  2753   for (i = 0; i < max_tries; ++i) {
  2754     base[i] = reserve_memory(bytes);
  2756     if (base[i] != NULL) {
  2757       // Is this the block we wanted?
  2758       if (base[i] == requested_addr) {
  2759         size[i] = bytes;
  2760         break;
  2763       // Does this overlap the block we wanted? Give back the overlapped
  2764       // parts and try again.
  2766       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  2767       if (top_overlap >= 0 && top_overlap < bytes) {
  2768         unmap_memory(base[i], top_overlap);
  2769         base[i] += top_overlap;
  2770         size[i] = bytes - top_overlap;
  2771       } else {
  2772         size_t bottom_overlap = base[i] + bytes - requested_addr;
  2773         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  2774           unmap_memory(requested_addr, bottom_overlap);
  2775           size[i] = bytes - bottom_overlap;
  2776         } else {
  2777           size[i] = bytes;
  2783   // Give back the unused reserved pieces.
  2785   for (int j = 0; j < i; ++j) {
  2786     if (base[j] != NULL) {
  2787       unmap_memory(base[j], size[j]);
  2791   if (i < max_tries) {
  2792     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  2793     return requested_addr;
  2794   } else {
  2795     _highest_vm_reserved_address = old_highest;
  2796     return NULL;
  2800 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  2801   return ::read(fd, buf, nBytes);
  2804 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  2805 // Solaris uses poll(), linux uses park().
  2806 // Poll() is likely a better choice, assuming that Thread.interrupt()
  2807 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  2808 // SIGSEGV, see 4355769.
  2810 const int NANOSECS_PER_MILLISECS = 1000000;
  2812 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  2813   assert(thread == Thread::current(),  "thread consistency check");
  2815   ParkEvent * const slp = thread->_SleepEvent ;
  2816   slp->reset() ;
  2817   OrderAccess::fence() ;
  2819   if (interruptible) {
  2820     jlong prevtime = javaTimeNanos();
  2822     for (;;) {
  2823       if (os::is_interrupted(thread, true)) {
  2824         return OS_INTRPT;
  2827       jlong newtime = javaTimeNanos();
  2829       if (newtime - prevtime < 0) {
  2830         // time moving backwards, should only happen if no monotonic clock
  2831         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  2832         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  2833       } else {
  2834         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  2837       if(millis <= 0) {
  2838         return OS_OK;
  2841       prevtime = newtime;
  2844         assert(thread->is_Java_thread(), "sanity check");
  2845         JavaThread *jt = (JavaThread *) thread;
  2846         ThreadBlockInVM tbivm(jt);
  2847         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  2849         jt->set_suspend_equivalent();
  2850         // cleared by handle_special_suspend_equivalent_condition() or
  2851         // java_suspend_self() via check_and_wait_while_suspended()
  2853         slp->park(millis);
  2855         // were we externally suspended while we were waiting?
  2856         jt->check_and_wait_while_suspended();
  2859   } else {
  2860     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  2861     jlong prevtime = javaTimeNanos();
  2863     for (;;) {
  2864       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  2865       // the 1st iteration ...
  2866       jlong newtime = javaTimeNanos();
  2868       if (newtime - prevtime < 0) {
  2869         // time moving backwards, should only happen if no monotonic clock
  2870         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  2871         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  2872       } else {
  2873         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  2876       if(millis <= 0) break ;
  2878       prevtime = newtime;
  2879       slp->park(millis);
  2881     return OS_OK ;
  2885 int os::naked_sleep() {
  2886   // %% make the sleep time an integer flag. for now use 1 millisec.
  2887   return os::sleep(Thread::current(), 1, false);
  2890 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  2891 void os::infinite_sleep() {
  2892   while (true) {    // sleep forever ...
  2893     ::sleep(100);   // ... 100 seconds at a time
  2897 // Used to convert frequent JVM_Yield() to nops
  2898 bool os::dont_yield() {
  2899   return DontYieldALot;
  2902 void os::yield() {
  2903   sched_yield();
  2906 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  2908 void os::yield_all(int attempts) {
  2909   // Yields to all threads, including threads with lower priorities
  2910   // Threads on Linux are all with same priority. The Solaris style
  2911   // os::yield_all() with nanosleep(1ms) is not necessary.
  2912   sched_yield();
  2915 // Called from the tight loops to possibly influence time-sharing heuristics
  2916 void os::loop_breaker(int attempts) {
  2917   os::yield_all(attempts);
  2920 ////////////////////////////////////////////////////////////////////////////////
  2921 // thread priority support
  2923 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  2924 // only supports dynamic priority, static priority must be zero. For real-time
  2925 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  2926 // However, for large multi-threaded applications, SCHED_RR is not only slower
  2927 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  2928 // of 5 runs - Sep 2005).
  2929 //
  2930 // The following code actually changes the niceness of kernel-thread/LWP. It
  2931 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  2932 // not the entire user process, and user level threads are 1:1 mapped to kernel
  2933 // threads. It has always been the case, but could change in the future. For
  2934 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  2935 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  2937 int os::java_to_os_priority[MaxPriority + 1] = {
  2938   19,              // 0 Entry should never be used
  2940    4,              // 1 MinPriority
  2941    3,              // 2
  2942    2,              // 3
  2944    1,              // 4
  2945    0,              // 5 NormPriority
  2946   -1,              // 6
  2948   -2,              // 7
  2949   -3,              // 8
  2950   -4,              // 9 NearMaxPriority
  2952   -5               // 10 MaxPriority
  2953 };
  2955 static int prio_init() {
  2956   if (ThreadPriorityPolicy == 1) {
  2957     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  2958     // if effective uid is not root. Perhaps, a more elegant way of doing
  2959     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  2960     if (geteuid() != 0) {
  2961       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  2962         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  2964       ThreadPriorityPolicy = 0;
  2967   return 0;
  2970 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  2971   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  2973   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  2974   return (ret == 0) ? OS_OK : OS_ERR;
  2977 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  2978   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  2979     *priority_ptr = java_to_os_priority[NormPriority];
  2980     return OS_OK;
  2983   errno = 0;
  2984   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  2985   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  2988 // Hint to the underlying OS that a task switch would not be good.
  2989 // Void return because it's a hint and can fail.
  2990 void os::hint_no_preempt() {}
  2992 ////////////////////////////////////////////////////////////////////////////////
  2993 // suspend/resume support
  2995 //  the low-level signal-based suspend/resume support is a remnant from the
  2996 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  2997 //  within hotspot. Now there is a single use-case for this:
  2998 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  2999 //      that runs in the watcher thread.
  3000 //  The remaining code is greatly simplified from the more general suspension
  3001 //  code that used to be used.
  3002 //
  3003 //  The protocol is quite simple:
  3004 //  - suspend:
  3005 //      - sends a signal to the target thread
  3006 //      - polls the suspend state of the osthread using a yield loop
  3007 //      - target thread signal handler (SR_handler) sets suspend state
  3008 //        and blocks in sigsuspend until continued
  3009 //  - resume:
  3010 //      - sets target osthread state to continue
  3011 //      - sends signal to end the sigsuspend loop in the SR_handler
  3012 //
  3013 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3014 //
  3016 static void resume_clear_context(OSThread *osthread) {
  3017   osthread->set_ucontext(NULL);
  3018   osthread->set_siginfo(NULL);
  3020   // notify the suspend action is completed, we have now resumed
  3021   osthread->sr.clear_suspended();
  3024 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3025   osthread->set_ucontext(context);
  3026   osthread->set_siginfo(siginfo);
  3029 //
  3030 // Handler function invoked when a thread's execution is suspended or
  3031 // resumed. We have to be careful that only async-safe functions are
  3032 // called here (Note: most pthread functions are not async safe and
  3033 // should be avoided.)
  3034 //
  3035 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3036 // interface point of view, but sigwait() prevents the signal hander
  3037 // from being run. libpthread would get very confused by not having
  3038 // its signal handlers run and prevents sigwait()'s use with the
  3039 // mutex granting granting signal.
  3040 //
  3041 // Currently only ever called on the VMThread
  3042 //
  3043 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3044   // Save and restore errno to avoid confusing native code with EINTR
  3045   // after sigsuspend.
  3046   int old_errno = errno;
  3048   Thread* thread = Thread::current();
  3049   OSThread* osthread = thread->osthread();
  3050   assert(thread->is_VM_thread(), "Must be VMThread");
  3051   // read current suspend action
  3052   int action = osthread->sr.suspend_action();
  3053   if (action == SR_SUSPEND) {
  3054     suspend_save_context(osthread, siginfo, context);
  3056     // Notify the suspend action is about to be completed. do_suspend()
  3057     // waits until SR_SUSPENDED is set and then returns. We will wait
  3058     // here for a resume signal and that completes the suspend-other
  3059     // action. do_suspend/do_resume is always called as a pair from
  3060     // the same thread - so there are no races
  3062     // notify the caller
  3063     osthread->sr.set_suspended();
  3065     sigset_t suspend_set;  // signals for sigsuspend()
  3067     // get current set of blocked signals and unblock resume signal
  3068     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  3069     sigdelset(&suspend_set, SR_signum);
  3071     // wait here until we are resumed
  3072     do {
  3073       sigsuspend(&suspend_set);
  3074       // ignore all returns until we get a resume signal
  3075     } while (osthread->sr.suspend_action() != SR_CONTINUE);
  3077     resume_clear_context(osthread);
  3079   } else {
  3080     assert(action == SR_CONTINUE, "unexpected sr action");
  3081     // nothing special to do - just leave the handler
  3084   errno = old_errno;
  3088 static int SR_initialize() {
  3089   struct sigaction act;
  3090   char *s;
  3091   /* Get signal number to use for suspend/resume */
  3092   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  3093     int sig = ::strtol(s, 0, 10);
  3094     if (sig > 0 || sig < _NSIG) {
  3095         SR_signum = sig;
  3099   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  3100         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  3102   sigemptyset(&SR_sigset);
  3103   sigaddset(&SR_sigset, SR_signum);
  3105   /* Set up signal handler for suspend/resume */
  3106   act.sa_flags = SA_RESTART|SA_SIGINFO;
  3107   act.sa_handler = (void (*)(int)) SR_handler;
  3109   // SR_signum is blocked by default.
  3110   // 4528190 - We also need to block pthread restart signal (32 on all
  3111   // supported Linux platforms). Note that LinuxThreads need to block
  3112   // this signal for all threads to work properly. So we don't have
  3113   // to use hard-coded signal number when setting up the mask.
  3114   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  3116   if (sigaction(SR_signum, &act, 0) == -1) {
  3117     return -1;
  3120   // Save signal flag
  3121   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  3122   return 0;
  3125 static int SR_finalize() {
  3126   return 0;
  3130 // returns true on success and false on error - really an error is fatal
  3131 // but this seems the normal response to library errors
  3132 static bool do_suspend(OSThread* osthread) {
  3133   // mark as suspended and send signal
  3134   osthread->sr.set_suspend_action(SR_SUSPEND);
  3135   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3136   assert_status(status == 0, status, "pthread_kill");
  3138   // check status and wait until notified of suspension
  3139   if (status == 0) {
  3140     for (int i = 0; !osthread->sr.is_suspended(); i++) {
  3141       os::yield_all(i);
  3143     osthread->sr.set_suspend_action(SR_NONE);
  3144     return true;
  3146   else {
  3147     osthread->sr.set_suspend_action(SR_NONE);
  3148     return false;
  3152 static void do_resume(OSThread* osthread) {
  3153   assert(osthread->sr.is_suspended(), "thread should be suspended");
  3154   osthread->sr.set_suspend_action(SR_CONTINUE);
  3156   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3157   assert_status(status == 0, status, "pthread_kill");
  3158   // check status and wait unit notified of resumption
  3159   if (status == 0) {
  3160     for (int i = 0; osthread->sr.is_suspended(); i++) {
  3161       os::yield_all(i);
  3164   osthread->sr.set_suspend_action(SR_NONE);
  3167 ////////////////////////////////////////////////////////////////////////////////
  3168 // interrupt support
  3170 void os::interrupt(Thread* thread) {
  3171   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3172     "possibility of dangling Thread pointer");
  3174   OSThread* osthread = thread->osthread();
  3176   if (!osthread->interrupted()) {
  3177     osthread->set_interrupted(true);
  3178     // More than one thread can get here with the same value of osthread,
  3179     // resulting in multiple notifications.  We do, however, want the store
  3180     // to interrupted() to be visible to other threads before we execute unpark().
  3181     OrderAccess::fence();
  3182     ParkEvent * const slp = thread->_SleepEvent ;
  3183     if (slp != NULL) slp->unpark() ;
  3186   // For JSR166. Unpark even if interrupt status already was set
  3187   if (thread->is_Java_thread())
  3188     ((JavaThread*)thread)->parker()->unpark();
  3190   ParkEvent * ev = thread->_ParkEvent ;
  3191   if (ev != NULL) ev->unpark() ;
  3195 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3196   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3197     "possibility of dangling Thread pointer");
  3199   OSThread* osthread = thread->osthread();
  3201   bool interrupted = osthread->interrupted();
  3203   if (interrupted && clear_interrupted) {
  3204     osthread->set_interrupted(false);
  3205     // consider thread->_SleepEvent->reset() ... optional optimization
  3208   return interrupted;
  3211 ///////////////////////////////////////////////////////////////////////////////////
  3212 // signal handling (except suspend/resume)
  3214 // This routine may be used by user applications as a "hook" to catch signals.
  3215 // The user-defined signal handler must pass unrecognized signals to this
  3216 // routine, and if it returns true (non-zero), then the signal handler must
  3217 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  3218 // routine will never retun false (zero), but instead will execute a VM panic
  3219 // routine kill the process.
  3220 //
  3221 // If this routine returns false, it is OK to call it again.  This allows
  3222 // the user-defined signal handler to perform checks either before or after
  3223 // the VM performs its own checks.  Naturally, the user code would be making
  3224 // a serious error if it tried to handle an exception (such as a null check
  3225 // or breakpoint) that the VM was generating for its own correct operation.
  3226 //
  3227 // This routine may recognize any of the following kinds of signals:
  3228 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  3229 // It should be consulted by handlers for any of those signals.
  3230 //
  3231 // The caller of this routine must pass in the three arguments supplied
  3232 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  3233 // field of the structure passed to sigaction().  This routine assumes that
  3234 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  3235 //
  3236 // Note that the VM will print warnings if it detects conflicting signal
  3237 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  3238 //
  3239 extern "C" int
  3240 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  3241                         void* ucontext, int abort_if_unrecognized);
  3243 void signalHandler(int sig, siginfo_t* info, void* uc) {
  3244   assert(info != NULL && uc != NULL, "it must be old kernel");
  3245   JVM_handle_linux_signal(sig, info, uc, true);
  3249 // This boolean allows users to forward their own non-matching signals
  3250 // to JVM_handle_linux_signal, harmlessly.
  3251 bool os::Linux::signal_handlers_are_installed = false;
  3253 // For signal-chaining
  3254 struct sigaction os::Linux::sigact[MAXSIGNUM];
  3255 unsigned int os::Linux::sigs = 0;
  3256 bool os::Linux::libjsig_is_loaded = false;
  3257 typedef struct sigaction *(*get_signal_t)(int);
  3258 get_signal_t os::Linux::get_signal_action = NULL;
  3260 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  3261   struct sigaction *actp = NULL;
  3263   if (libjsig_is_loaded) {
  3264     // Retrieve the old signal handler from libjsig
  3265     actp = (*get_signal_action)(sig);
  3267   if (actp == NULL) {
  3268     // Retrieve the preinstalled signal handler from jvm
  3269     actp = get_preinstalled_handler(sig);
  3272   return actp;
  3275 static bool call_chained_handler(struct sigaction *actp, int sig,
  3276                                  siginfo_t *siginfo, void *context) {
  3277   // Call the old signal handler
  3278   if (actp->sa_handler == SIG_DFL) {
  3279     // It's more reasonable to let jvm treat it as an unexpected exception
  3280     // instead of taking the default action.
  3281     return false;
  3282   } else if (actp->sa_handler != SIG_IGN) {
  3283     if ((actp->sa_flags & SA_NODEFER) == 0) {
  3284       // automaticlly block the signal
  3285       sigaddset(&(actp->sa_mask), sig);
  3288     sa_handler_t hand;
  3289     sa_sigaction_t sa;
  3290     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  3291     // retrieve the chained handler
  3292     if (siginfo_flag_set) {
  3293       sa = actp->sa_sigaction;
  3294     } else {
  3295       hand = actp->sa_handler;
  3298     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  3299       actp->sa_handler = SIG_DFL;
  3302     // try to honor the signal mask
  3303     sigset_t oset;
  3304     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  3306     // call into the chained handler
  3307     if (siginfo_flag_set) {
  3308       (*sa)(sig, siginfo, context);
  3309     } else {
  3310       (*hand)(sig);
  3313     // restore the signal mask
  3314     pthread_sigmask(SIG_SETMASK, &oset, 0);
  3316   // Tell jvm's signal handler the signal is taken care of.
  3317   return true;
  3320 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  3321   bool chained = false;
  3322   // signal-chaining
  3323   if (UseSignalChaining) {
  3324     struct sigaction *actp = get_chained_signal_action(sig);
  3325     if (actp != NULL) {
  3326       chained = call_chained_handler(actp, sig, siginfo, context);
  3329   return chained;
  3332 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  3333   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  3334     return &sigact[sig];
  3336   return NULL;
  3339 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  3340   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3341   sigact[sig] = oldAct;
  3342   sigs |= (unsigned int)1 << sig;
  3345 // for diagnostic
  3346 int os::Linux::sigflags[MAXSIGNUM];
  3348 int os::Linux::get_our_sigflags(int sig) {
  3349   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3350   return sigflags[sig];
  3353 void os::Linux::set_our_sigflags(int sig, int flags) {
  3354   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3355   sigflags[sig] = flags;
  3358 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  3359   // Check for overwrite.
  3360   struct sigaction oldAct;
  3361   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  3363   void* oldhand = oldAct.sa_sigaction
  3364                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  3365                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  3366   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  3367       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  3368       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  3369     if (AllowUserSignalHandlers || !set_installed) {
  3370       // Do not overwrite; user takes responsibility to forward to us.
  3371       return;
  3372     } else if (UseSignalChaining) {
  3373       // save the old handler in jvm
  3374       save_preinstalled_handler(sig, oldAct);
  3375       // libjsig also interposes the sigaction() call below and saves the
  3376       // old sigaction on it own.
  3377     } else {
  3378       fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
  3382   struct sigaction sigAct;
  3383   sigfillset(&(sigAct.sa_mask));
  3384   sigAct.sa_handler = SIG_DFL;
  3385   if (!set_installed) {
  3386     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3387   } else {
  3388     sigAct.sa_sigaction = signalHandler;
  3389     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3391   // Save flags, which are set by ours
  3392   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3393   sigflags[sig] = sigAct.sa_flags;
  3395   int ret = sigaction(sig, &sigAct, &oldAct);
  3396   assert(ret == 0, "check");
  3398   void* oldhand2  = oldAct.sa_sigaction
  3399                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  3400                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  3401   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  3404 // install signal handlers for signals that HotSpot needs to
  3405 // handle in order to support Java-level exception handling.
  3407 void os::Linux::install_signal_handlers() {
  3408   if (!signal_handlers_are_installed) {
  3409     signal_handlers_are_installed = true;
  3411     // signal-chaining
  3412     typedef void (*signal_setting_t)();
  3413     signal_setting_t begin_signal_setting = NULL;
  3414     signal_setting_t end_signal_setting = NULL;
  3415     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3416                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  3417     if (begin_signal_setting != NULL) {
  3418       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3419                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  3420       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  3421                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  3422       libjsig_is_loaded = true;
  3423       assert(UseSignalChaining, "should enable signal-chaining");
  3425     if (libjsig_is_loaded) {
  3426       // Tell libjsig jvm is setting signal handlers
  3427       (*begin_signal_setting)();
  3430     set_signal_handler(SIGSEGV, true);
  3431     set_signal_handler(SIGPIPE, true);
  3432     set_signal_handler(SIGBUS, true);
  3433     set_signal_handler(SIGILL, true);
  3434     set_signal_handler(SIGFPE, true);
  3435     set_signal_handler(SIGXFSZ, true);
  3437     if (libjsig_is_loaded) {
  3438       // Tell libjsig jvm finishes setting signal handlers
  3439       (*end_signal_setting)();
  3442     // We don't activate signal checker if libjsig is in place, we trust ourselves
  3443     // and if UserSignalHandler is installed all bets are off
  3444     if (CheckJNICalls) {
  3445       if (libjsig_is_loaded) {
  3446         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  3447         check_signals = false;
  3449       if (AllowUserSignalHandlers) {
  3450         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  3451         check_signals = false;
  3457 // This is the fastest way to get thread cpu time on Linux.
  3458 // Returns cpu time (user+sys) for any thread, not only for current.
  3459 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  3460 // It might work on 2.6.10+ with a special kernel/glibc patch.
  3461 // For reference, please, see IEEE Std 1003.1-2004:
  3462 //   http://www.unix.org/single_unix_specification
  3464 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  3465   struct timespec tp;
  3466   int rc = os::Linux::clock_gettime(clockid, &tp);
  3467   assert(rc == 0, "clock_gettime is expected to return 0 code");
  3469   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
  3472 /////
  3473 // glibc on Linux platform uses non-documented flag
  3474 // to indicate, that some special sort of signal
  3475 // trampoline is used.
  3476 // We will never set this flag, and we should
  3477 // ignore this flag in our diagnostic
  3478 #ifdef SIGNIFICANT_SIGNAL_MASK
  3479 #undef SIGNIFICANT_SIGNAL_MASK
  3480 #endif
  3481 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  3483 static const char* get_signal_handler_name(address handler,
  3484                                            char* buf, int buflen) {
  3485   int offset;
  3486   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  3487   if (found) {
  3488     // skip directory names
  3489     const char *p1, *p2;
  3490     p1 = buf;
  3491     size_t len = strlen(os::file_separator());
  3492     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  3493     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  3494   } else {
  3495     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  3497   return buf;
  3500 static void print_signal_handler(outputStream* st, int sig,
  3501                                  char* buf, size_t buflen) {
  3502   struct sigaction sa;
  3504   sigaction(sig, NULL, &sa);
  3506   // See comment for SIGNIFICANT_SIGNAL_MASK define
  3507   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3509   st->print("%s: ", os::exception_name(sig, buf, buflen));
  3511   address handler = (sa.sa_flags & SA_SIGINFO)
  3512     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  3513     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  3515   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  3516     st->print("SIG_DFL");
  3517   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  3518     st->print("SIG_IGN");
  3519   } else {
  3520     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  3523   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  3525   address rh = VMError::get_resetted_sighandler(sig);
  3526   // May be, handler was resetted by VMError?
  3527   if(rh != NULL) {
  3528     handler = rh;
  3529     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  3532   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  3534   // Check: is it our handler?
  3535   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  3536      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  3537     // It is our signal handler
  3538     // check for flags, reset system-used one!
  3539     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  3540       st->print(
  3541                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  3542                 os::Linux::get_our_sigflags(sig));
  3545   st->cr();
  3549 #define DO_SIGNAL_CHECK(sig) \
  3550   if (!sigismember(&check_signal_done, sig)) \
  3551     os::Linux::check_signal_handler(sig)
  3553 // This method is a periodic task to check for misbehaving JNI applications
  3554 // under CheckJNI, we can add any periodic checks here
  3556 void os::run_periodic_checks() {
  3558   if (check_signals == false) return;
  3560   // SEGV and BUS if overridden could potentially prevent
  3561   // generation of hs*.log in the event of a crash, debugging
  3562   // such a case can be very challenging, so we absolutely
  3563   // check the following for a good measure:
  3564   DO_SIGNAL_CHECK(SIGSEGV);
  3565   DO_SIGNAL_CHECK(SIGILL);
  3566   DO_SIGNAL_CHECK(SIGFPE);
  3567   DO_SIGNAL_CHECK(SIGBUS);
  3568   DO_SIGNAL_CHECK(SIGPIPE);
  3569   DO_SIGNAL_CHECK(SIGXFSZ);
  3572   // ReduceSignalUsage allows the user to override these handlers
  3573   // see comments at the very top and jvm_solaris.h
  3574   if (!ReduceSignalUsage) {
  3575     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  3576     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  3577     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  3578     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  3581   DO_SIGNAL_CHECK(SR_signum);
  3582   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  3585 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  3587 static os_sigaction_t os_sigaction = NULL;
  3589 void os::Linux::check_signal_handler(int sig) {
  3590   char buf[O_BUFLEN];
  3591   address jvmHandler = NULL;
  3594   struct sigaction act;
  3595   if (os_sigaction == NULL) {
  3596     // only trust the default sigaction, in case it has been interposed
  3597     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  3598     if (os_sigaction == NULL) return;
  3601   os_sigaction(sig, (struct sigaction*)NULL, &act);
  3604   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3606   address thisHandler = (act.sa_flags & SA_SIGINFO)
  3607     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  3608     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  3611   switch(sig) {
  3612   case SIGSEGV:
  3613   case SIGBUS:
  3614   case SIGFPE:
  3615   case SIGPIPE:
  3616   case SIGILL:
  3617   case SIGXFSZ:
  3618     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  3619     break;
  3621   case SHUTDOWN1_SIGNAL:
  3622   case SHUTDOWN2_SIGNAL:
  3623   case SHUTDOWN3_SIGNAL:
  3624   case BREAK_SIGNAL:
  3625     jvmHandler = (address)user_handler();
  3626     break;
  3628   case INTERRUPT_SIGNAL:
  3629     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  3630     break;
  3632   default:
  3633     if (sig == SR_signum) {
  3634       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  3635     } else {
  3636       return;
  3638     break;
  3641   if (thisHandler != jvmHandler) {
  3642     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  3643     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  3644     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  3645     // No need to check this sig any longer
  3646     sigaddset(&check_signal_done, sig);
  3647   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  3648     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  3649     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  3650     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  3651     // No need to check this sig any longer
  3652     sigaddset(&check_signal_done, sig);
  3655   // Dump all the signal
  3656   if (sigismember(&check_signal_done, sig)) {
  3657     print_signal_handlers(tty, buf, O_BUFLEN);
  3661 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  3663 extern bool signal_name(int signo, char* buf, size_t len);
  3665 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  3666   if (0 < exception_code && exception_code <= SIGRTMAX) {
  3667     // signal
  3668     if (!signal_name(exception_code, buf, size)) {
  3669       jio_snprintf(buf, size, "SIG%d", exception_code);
  3671     return buf;
  3672   } else {
  3673     return NULL;
  3677 // this is called _before_ the most of global arguments have been parsed
  3678 void os::init(void) {
  3679   char dummy;   /* used to get a guess on initial stack address */
  3680 //  first_hrtime = gethrtime();
  3682   // With LinuxThreads the JavaMain thread pid (primordial thread)
  3683   // is different than the pid of the java launcher thread.
  3684   // So, on Linux, the launcher thread pid is passed to the VM
  3685   // via the sun.java.launcher.pid property.
  3686   // Use this property instead of getpid() if it was correctly passed.
  3687   // See bug 6351349.
  3688   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  3690   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  3692   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  3694   init_random(1234567);
  3696   ThreadCritical::initialize();
  3698   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  3699   if (Linux::page_size() == -1) {
  3700     fatal1("os_linux.cpp: os::init: sysconf failed (%s)", strerror(errno));
  3702   init_page_sizes((size_t) Linux::page_size());
  3704   Linux::initialize_system_info();
  3706   // main_thread points to the aboriginal thread
  3707   Linux::_main_thread = pthread_self();
  3709   Linux::clock_init();
  3710   initial_time_count = os::elapsed_counter();
  3711   pthread_mutex_init(&dl_mutex, NULL);
  3714 // To install functions for atexit system call
  3715 extern "C" {
  3716   static void perfMemory_exit_helper() {
  3717     perfMemory_exit();
  3721 // this is called _after_ the global arguments have been parsed
  3722 jint os::init_2(void)
  3724   Linux::fast_thread_clock_init();
  3726   // Allocate a single page and mark it as readable for safepoint polling
  3727   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  3728   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  3730   os::set_polling_page( polling_page );
  3732 #ifndef PRODUCT
  3733   if(Verbose && PrintMiscellaneous)
  3734     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3735 #endif
  3737   if (!UseMembar) {
  3738     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  3739     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  3740     os::set_memory_serialize_page( mem_serialize_page );
  3742 #ifndef PRODUCT
  3743     if(Verbose && PrintMiscellaneous)
  3744       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3745 #endif
  3748   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
  3750   // initialize suspend/resume support - must do this before signal_sets_init()
  3751   if (SR_initialize() != 0) {
  3752     perror("SR_initialize failed");
  3753     return JNI_ERR;
  3756   Linux::signal_sets_init();
  3757   Linux::install_signal_handlers();
  3759   size_t threadStackSizeInBytes = ThreadStackSize * K;
  3760   if (threadStackSizeInBytes != 0 &&
  3761       threadStackSizeInBytes < Linux::min_stack_allowed) {
  3762         tty->print_cr("\nThe stack size specified is too small, "
  3763                       "Specify at least %dk",
  3764                       Linux::min_stack_allowed / K);
  3765         return JNI_ERR;
  3768   // Make the stack size a multiple of the page size so that
  3769   // the yellow/red zones can be guarded.
  3770   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  3771         vm_page_size()));
  3773   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  3775   Linux::libpthread_init();
  3776   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  3777      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  3778           Linux::glibc_version(), Linux::libpthread_version(),
  3779           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  3782   if (UseNUMA) {
  3783     if (!Linux::libnuma_init()) {
  3784       UseNUMA = false;
  3785     } else {
  3786       if ((Linux::numa_max_node() < 1)) {
  3787         // There's only one node(they start from 0), disable NUMA.
  3788         UseNUMA = false;
  3791     if (!UseNUMA && ForceNUMA) {
  3792       UseNUMA = true;
  3796   if (MaxFDLimit) {
  3797     // set the number of file descriptors to max. print out error
  3798     // if getrlimit/setrlimit fails but continue regardless.
  3799     struct rlimit nbr_files;
  3800     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  3801     if (status != 0) {
  3802       if (PrintMiscellaneous && (Verbose || WizardMode))
  3803         perror("os::init_2 getrlimit failed");
  3804     } else {
  3805       nbr_files.rlim_cur = nbr_files.rlim_max;
  3806       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  3807       if (status != 0) {
  3808         if (PrintMiscellaneous && (Verbose || WizardMode))
  3809           perror("os::init_2 setrlimit failed");
  3814   // Initialize lock used to serialize thread creation (see os::create_thread)
  3815   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  3817   // Initialize HPI.
  3818   jint hpi_result = hpi::initialize();
  3819   if (hpi_result != JNI_OK) {
  3820     tty->print_cr("There was an error trying to initialize the HPI library.");
  3821     return hpi_result;
  3824   // at-exit methods are called in the reverse order of their registration.
  3825   // atexit functions are called on return from main or as a result of a
  3826   // call to exit(3C). There can be only 32 of these functions registered
  3827   // and atexit() does not set errno.
  3829   if (PerfAllowAtExitRegistration) {
  3830     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3831     // atexit functions can be delayed until process exit time, which
  3832     // can be problematic for embedded VM situations. Embedded VMs should
  3833     // call DestroyJavaVM() to assure that VM resources are released.
  3835     // note: perfMemory_exit_helper atexit function may be removed in
  3836     // the future if the appropriate cleanup code can be added to the
  3837     // VM_Exit VMOperation's doit method.
  3838     if (atexit(perfMemory_exit_helper) != 0) {
  3839       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  3843   // initialize thread priority policy
  3844   prio_init();
  3846   return JNI_OK;
  3849 // Mark the polling page as unreadable
  3850 void os::make_polling_page_unreadable(void) {
  3851   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  3852     fatal("Could not disable polling page");
  3853 };
  3855 // Mark the polling page as readable
  3856 void os::make_polling_page_readable(void) {
  3857   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  3858     fatal("Could not enable polling page");
  3860 };
  3862 int os::active_processor_count() {
  3863   // Linux doesn't yet have a (official) notion of processor sets,
  3864   // so just return the number of online processors.
  3865   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  3866   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  3867   return online_cpus;
  3870 bool os::distribute_processes(uint length, uint* distribution) {
  3871   // Not yet implemented.
  3872   return false;
  3875 bool os::bind_to_processor(uint processor_id) {
  3876   // Not yet implemented.
  3877   return false;
  3880 ///
  3882 // Suspends the target using the signal mechanism and then grabs the PC before
  3883 // resuming the target. Used by the flat-profiler only
  3884 ExtendedPC os::get_thread_pc(Thread* thread) {
  3885   // Make sure that it is called by the watcher for the VMThread
  3886   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  3887   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  3889   ExtendedPC epc;
  3891   OSThread* osthread = thread->osthread();
  3892   if (do_suspend(osthread)) {
  3893     if (osthread->ucontext() != NULL) {
  3894       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
  3895     } else {
  3896       // NULL context is unexpected, double-check this is the VMThread
  3897       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  3899     do_resume(osthread);
  3901   // failure means pthread_kill failed for some reason - arguably this is
  3902   // a fatal problem, but such problems are ignored elsewhere
  3904   return epc;
  3907 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  3909    if (is_NPTL()) {
  3910       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  3911    } else {
  3912 #ifndef IA64
  3913       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  3914       // word back to default 64bit precision if condvar is signaled. Java
  3915       // wants 53bit precision.  Save and restore current value.
  3916       int fpu = get_fpu_control_word();
  3917 #endif // IA64
  3918       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  3919 #ifndef IA64
  3920       set_fpu_control_word(fpu);
  3921 #endif // IA64
  3922       return status;
  3926 ////////////////////////////////////////////////////////////////////////////////
  3927 // debug support
  3929 #ifndef PRODUCT
  3930 static address same_page(address x, address y) {
  3931   int page_bits = -os::vm_page_size();
  3932   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  3933     return x;
  3934   else if (x > y)
  3935     return (address)(intptr_t(y) | ~page_bits) + 1;
  3936   else
  3937     return (address)(intptr_t(y) & page_bits);
  3940 bool os::find(address addr) {
  3941   Dl_info dlinfo;
  3942   memset(&dlinfo, 0, sizeof(dlinfo));
  3943   if (dladdr(addr, &dlinfo)) {
  3944     tty->print(PTR_FORMAT ": ", addr);
  3945     if (dlinfo.dli_sname != NULL) {
  3946       tty->print("%s+%#x", dlinfo.dli_sname,
  3947                  addr - (intptr_t)dlinfo.dli_saddr);
  3948     } else if (dlinfo.dli_fname) {
  3949       tty->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  3950     } else {
  3951       tty->print("<absolute address>");
  3953     if (dlinfo.dli_fname) {
  3954       tty->print(" in %s", dlinfo.dli_fname);
  3956     if (dlinfo.dli_fbase) {
  3957       tty->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  3959     tty->cr();
  3961     if (Verbose) {
  3962       // decode some bytes around the PC
  3963       address begin = same_page(addr-40, addr);
  3964       address end   = same_page(addr+40, addr);
  3965       address       lowest = (address) dlinfo.dli_sname;
  3966       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  3967       if (begin < lowest)  begin = lowest;
  3968       Dl_info dlinfo2;
  3969       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  3970           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  3971         end = (address) dlinfo2.dli_saddr;
  3972       Disassembler::decode(begin, end);
  3974     return true;
  3976   return false;
  3979 #endif
  3981 ////////////////////////////////////////////////////////////////////////////////
  3982 // misc
  3984 // This does not do anything on Linux. This is basically a hook for being
  3985 // able to use structured exception handling (thread-local exception filters)
  3986 // on, e.g., Win32.
  3987 void
  3988 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  3989                          JavaCallArguments* args, Thread* thread) {
  3990   f(value, method, args, thread);
  3993 void os::print_statistics() {
  3996 int os::message_box(const char* title, const char* message) {
  3997   int i;
  3998   fdStream err(defaultStream::error_fd());
  3999   for (i = 0; i < 78; i++) err.print_raw("=");
  4000   err.cr();
  4001   err.print_raw_cr(title);
  4002   for (i = 0; i < 78; i++) err.print_raw("-");
  4003   err.cr();
  4004   err.print_raw_cr(message);
  4005   for (i = 0; i < 78; i++) err.print_raw("=");
  4006   err.cr();
  4008   char buf[16];
  4009   // Prevent process from exiting upon "read error" without consuming all CPU
  4010   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4012   return buf[0] == 'y' || buf[0] == 'Y';
  4015 int os::stat(const char *path, struct stat *sbuf) {
  4016   char pathbuf[MAX_PATH];
  4017   if (strlen(path) > MAX_PATH - 1) {
  4018     errno = ENAMETOOLONG;
  4019     return -1;
  4021   hpi::native_path(strcpy(pathbuf, path));
  4022   return ::stat(pathbuf, sbuf);
  4025 bool os::check_heap(bool force) {
  4026   return true;
  4029 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  4030   return ::vsnprintf(buf, count, format, args);
  4033 // Is a (classpath) directory empty?
  4034 bool os::dir_is_empty(const char* path) {
  4035   DIR *dir = NULL;
  4036   struct dirent *ptr;
  4038   dir = opendir(path);
  4039   if (dir == NULL) return true;
  4041   /* Scan the directory */
  4042   bool result = true;
  4043   char buf[sizeof(struct dirent) + MAX_PATH];
  4044   while (result && (ptr = ::readdir(dir)) != NULL) {
  4045     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  4046       result = false;
  4049   closedir(dir);
  4050   return result;
  4053 // create binary file, rewriting existing file if required
  4054 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4055   int oflags = O_WRONLY | O_CREAT;
  4056   if (!rewrite_existing) {
  4057     oflags |= O_EXCL;
  4059   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  4062 // return current position of file pointer
  4063 jlong os::current_file_offset(int fd) {
  4064   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  4067 // move file pointer to the specified offset
  4068 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4069   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  4072 // Map a block of memory.
  4073 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  4074                      char *addr, size_t bytes, bool read_only,
  4075                      bool allow_exec) {
  4076   int prot;
  4077   int flags;
  4079   if (read_only) {
  4080     prot = PROT_READ;
  4081     flags = MAP_SHARED;
  4082   } else {
  4083     prot = PROT_READ | PROT_WRITE;
  4084     flags = MAP_PRIVATE;
  4087   if (allow_exec) {
  4088     prot |= PROT_EXEC;
  4091   if (addr != NULL) {
  4092     flags |= MAP_FIXED;
  4095   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  4096                                      fd, file_offset);
  4097   if (mapped_address == MAP_FAILED) {
  4098     return NULL;
  4100   return mapped_address;
  4104 // Remap a block of memory.
  4105 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  4106                        char *addr, size_t bytes, bool read_only,
  4107                        bool allow_exec) {
  4108   // same as map_memory() on this OS
  4109   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4110                         allow_exec);
  4114 // Unmap a block of memory.
  4115 bool os::unmap_memory(char* addr, size_t bytes) {
  4116   return munmap(addr, bytes) == 0;
  4119 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  4121 static clockid_t thread_cpu_clockid(Thread* thread) {
  4122   pthread_t tid = thread->osthread()->pthread_id();
  4123   clockid_t clockid;
  4125   // Get thread clockid
  4126   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  4127   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  4128   return clockid;
  4131 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4132 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4133 // of a thread.
  4134 //
  4135 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4136 // the fast estimate available on the platform.
  4138 jlong os::current_thread_cpu_time() {
  4139   if (os::Linux::supports_fast_thread_cpu_time()) {
  4140     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4141   } else {
  4142     // return user + sys since the cost is the same
  4143     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  4147 jlong os::thread_cpu_time(Thread* thread) {
  4148   // consistent with what current_thread_cpu_time() returns
  4149   if (os::Linux::supports_fast_thread_cpu_time()) {
  4150     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4151   } else {
  4152     return slow_thread_cpu_time(thread, true /* user + sys */);
  4156 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4157   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4158     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4159   } else {
  4160     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4164 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4165   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4166     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4167   } else {
  4168     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  4172 //
  4173 //  -1 on error.
  4174 //
  4176 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4177   static bool proc_pid_cpu_avail = true;
  4178   static bool proc_task_unchecked = true;
  4179   static const char *proc_stat_path = "/proc/%d/stat";
  4180   pid_t  tid = thread->osthread()->thread_id();
  4181   int i;
  4182   char *s;
  4183   char stat[2048];
  4184   int statlen;
  4185   char proc_name[64];
  4186   int count;
  4187   long sys_time, user_time;
  4188   char string[64];
  4189   int idummy;
  4190   long ldummy;
  4191   FILE *fp;
  4193   // We first try accessing /proc/<pid>/cpu since this is faster to
  4194   // process.  If this file is not present (linux kernels 2.5 and above)
  4195   // then we open /proc/<pid>/stat.
  4196   if ( proc_pid_cpu_avail ) {
  4197     sprintf(proc_name, "/proc/%d/cpu", tid);
  4198     fp =  fopen(proc_name, "r");
  4199     if ( fp != NULL ) {
  4200       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
  4201       fclose(fp);
  4202       if ( count != 3 ) return -1;
  4204       if (user_sys_cpu_time) {
  4205         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4206       } else {
  4207         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4210     else proc_pid_cpu_avail = false;
  4213   // The /proc/<tid>/stat aggregates per-process usage on
  4214   // new Linux kernels 2.6+ where NPTL is supported.
  4215   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  4216   // See bug 6328462.
  4217   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
  4218   // and possibly in some other cases, so we check its availability.
  4219   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  4220     // This is executed only once
  4221     proc_task_unchecked = false;
  4222     fp = fopen("/proc/self/task", "r");
  4223     if (fp != NULL) {
  4224       proc_stat_path = "/proc/self/task/%d/stat";
  4225       fclose(fp);
  4229   sprintf(proc_name, proc_stat_path, tid);
  4230   fp = fopen(proc_name, "r");
  4231   if ( fp == NULL ) return -1;
  4232   statlen = fread(stat, 1, 2047, fp);
  4233   stat[statlen] = '\0';
  4234   fclose(fp);
  4236   // Skip pid and the command string. Note that we could be dealing with
  4237   // weird command names, e.g. user could decide to rename java launcher
  4238   // to "java 1.4.2 :)", then the stat file would look like
  4239   //                1234 (java 1.4.2 :)) R ... ...
  4240   // We don't really need to know the command string, just find the last
  4241   // occurrence of ")" and then start parsing from there. See bug 4726580.
  4242   s = strrchr(stat, ')');
  4243   i = 0;
  4244   if (s == NULL ) return -1;
  4246   // Skip blank chars
  4247   do s++; while (isspace(*s));
  4249   count = sscanf(s,"%*c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  4250                  &idummy, &idummy, &idummy, &idummy, &idummy,
  4251                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  4252                  &user_time, &sys_time);
  4253   if ( count != 12 ) return -1;
  4254   if (user_sys_cpu_time) {
  4255     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4256   } else {
  4257     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4261 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4262   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4263   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4264   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4265   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4268 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4269   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4270   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4271   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4272   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4275 bool os::is_thread_cpu_time_supported() {
  4276   return true;
  4279 // System loadavg support.  Returns -1 if load average cannot be obtained.
  4280 // Linux doesn't yet have a (official) notion of processor sets,
  4281 // so just return the system wide load average.
  4282 int os::loadavg(double loadavg[], int nelem) {
  4283   return ::getloadavg(loadavg, nelem);
  4286 void os::pause() {
  4287   char filename[MAX_PATH];
  4288   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4289     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4290   } else {
  4291     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4294   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4295   if (fd != -1) {
  4296     struct stat buf;
  4297     close(fd);
  4298     while (::stat(filename, &buf) == 0) {
  4299       (void)::poll(NULL, 0, 100);
  4301   } else {
  4302     jio_fprintf(stderr,
  4303       "Could not open pause file '%s', continuing immediately.\n", filename);
  4307 extern "C" {
  4309 /**
  4310  * NOTE: the following code is to keep the green threads code
  4311  * in the libjava.so happy. Once the green threads is removed,
  4312  * these code will no longer be needed.
  4313  */
  4314 int
  4315 jdk_waitpid(pid_t pid, int* status, int options) {
  4316     return waitpid(pid, status, options);
  4319 int
  4320 fork1() {
  4321     return fork();
  4324 int
  4325 jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
  4326     return sem_init(sem, pshared, value);
  4329 int
  4330 jdk_sem_post(sem_t *sem) {
  4331     return sem_post(sem);
  4334 int
  4335 jdk_sem_wait(sem_t *sem) {
  4336     return sem_wait(sem);
  4339 int
  4340 jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
  4341     return pthread_sigmask(how , newmask, oldmask);
  4346 // Refer to the comments in os_solaris.cpp park-unpark.
  4347 //
  4348 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  4349 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  4350 // For specifics regarding the bug see GLIBC BUGID 261237 :
  4351 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  4352 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  4353 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  4354 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  4355 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  4356 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  4357 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  4358 // of libpthread avoids the problem, but isn't practical.
  4359 //
  4360 // Possible remedies:
  4361 //
  4362 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  4363 //      This is palliative and probabilistic, however.  If the thread is preempted
  4364 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  4365 //      than the minimum period may have passed, and the abstime may be stale (in the
  4366 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  4367 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  4368 //
  4369 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  4370 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  4371 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  4372 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  4373 //      thread.
  4374 //
  4375 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  4376 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  4377 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  4378 //      This also works well.  In fact it avoids kernel-level scalability impediments
  4379 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  4380 //      timers in a graceful fashion.
  4381 //
  4382 // 4.   When the abstime value is in the past it appears that control returns
  4383 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  4384 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  4385 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  4386 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  4387 //      It may be possible to avoid reinitialization by checking the return
  4388 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  4389 //      condvar we must establish the invariant that cond_signal() is only called
  4390 //      within critical sections protected by the adjunct mutex.  This prevents
  4391 //      cond_signal() from "seeing" a condvar that's in the midst of being
  4392 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  4393 //      desirable signal-after-unlock optimization that avoids futile context switching.
  4394 //
  4395 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  4396 //      structure when a condvar is used or initialized.  cond_destroy()  would
  4397 //      release the helper structure.  Our reinitialize-after-timedwait fix
  4398 //      put excessive stress on malloc/free and locks protecting the c-heap.
  4399 //
  4400 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  4401 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  4402 // and only enabling the work-around for vulnerable environments.
  4404 // utility to compute the abstime argument to timedwait:
  4405 // millis is the relative timeout time
  4406 // abstime will be the absolute timeout time
  4407 // TODO: replace compute_abstime() with unpackTime()
  4409 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  4410   if (millis < 0)  millis = 0;
  4411   struct timeval now;
  4412   int status = gettimeofday(&now, NULL);
  4413   assert(status == 0, "gettimeofday");
  4414   jlong seconds = millis / 1000;
  4415   millis %= 1000;
  4416   if (seconds > 50000000) { // see man cond_timedwait(3T)
  4417     seconds = 50000000;
  4419   abstime->tv_sec = now.tv_sec  + seconds;
  4420   long       usec = now.tv_usec + millis * 1000;
  4421   if (usec >= 1000000) {
  4422     abstime->tv_sec += 1;
  4423     usec -= 1000000;
  4425   abstime->tv_nsec = usec * 1000;
  4426   return abstime;
  4430 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  4431 // Conceptually TryPark() should be equivalent to park(0).
  4433 int os::PlatformEvent::TryPark() {
  4434   for (;;) {
  4435     const int v = _Event ;
  4436     guarantee ((v == 0) || (v == 1), "invariant") ;
  4437     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  4441 void os::PlatformEvent::park() {       // AKA "down()"
  4442   // Invariant: Only the thread associated with the Event/PlatformEvent
  4443   // may call park().
  4444   // TODO: assert that _Assoc != NULL or _Assoc == Self
  4445   int v ;
  4446   for (;;) {
  4447       v = _Event ;
  4448       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4450   guarantee (v >= 0, "invariant") ;
  4451   if (v == 0) {
  4452      // Do this the hard way by blocking ...
  4453      int status = pthread_mutex_lock(_mutex);
  4454      assert_status(status == 0, status, "mutex_lock");
  4455      guarantee (_nParked == 0, "invariant") ;
  4456      ++ _nParked ;
  4457      while (_Event < 0) {
  4458         status = pthread_cond_wait(_cond, _mutex);
  4459         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  4460         // Treat this the same as if the wait was interrupted
  4461         if (status == ETIME) { status = EINTR; }
  4462         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  4464      -- _nParked ;
  4466     // In theory we could move the ST of 0 into _Event past the unlock(),
  4467     // but then we'd need a MEMBAR after the ST.
  4468     _Event = 0 ;
  4469      status = pthread_mutex_unlock(_mutex);
  4470      assert_status(status == 0, status, "mutex_unlock");
  4472   guarantee (_Event >= 0, "invariant") ;
  4475 int os::PlatformEvent::park(jlong millis) {
  4476   guarantee (_nParked == 0, "invariant") ;
  4478   int v ;
  4479   for (;;) {
  4480       v = _Event ;
  4481       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4483   guarantee (v >= 0, "invariant") ;
  4484   if (v != 0) return OS_OK ;
  4486   // We do this the hard way, by blocking the thread.
  4487   // Consider enforcing a minimum timeout value.
  4488   struct timespec abst;
  4489   compute_abstime(&abst, millis);
  4491   int ret = OS_TIMEOUT;
  4492   int status = pthread_mutex_lock(_mutex);
  4493   assert_status(status == 0, status, "mutex_lock");
  4494   guarantee (_nParked == 0, "invariant") ;
  4495   ++_nParked ;
  4497   // Object.wait(timo) will return because of
  4498   // (a) notification
  4499   // (b) timeout
  4500   // (c) thread.interrupt
  4501   //
  4502   // Thread.interrupt and object.notify{All} both call Event::set.
  4503   // That is, we treat thread.interrupt as a special case of notification.
  4504   // The underlying Solaris implementation, cond_timedwait, admits
  4505   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  4506   // JVM from making those visible to Java code.  As such, we must
  4507   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  4508   //
  4509   // TODO: properly differentiate simultaneous notify+interrupt.
  4510   // In that case, we should propagate the notify to another waiter.
  4512   while (_Event < 0) {
  4513     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  4514     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4515       pthread_cond_destroy (_cond);
  4516       pthread_cond_init (_cond, NULL) ;
  4518     assert_status(status == 0 || status == EINTR ||
  4519                   status == ETIME || status == ETIMEDOUT,
  4520                   status, "cond_timedwait");
  4521     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  4522     if (status == ETIME || status == ETIMEDOUT) break ;
  4523     // We consume and ignore EINTR and spurious wakeups.
  4525   --_nParked ;
  4526   if (_Event >= 0) {
  4527      ret = OS_OK;
  4529   _Event = 0 ;
  4530   status = pthread_mutex_unlock(_mutex);
  4531   assert_status(status == 0, status, "mutex_unlock");
  4532   assert (_nParked == 0, "invariant") ;
  4533   return ret;
  4536 void os::PlatformEvent::unpark() {
  4537   int v, AnyWaiters ;
  4538   for (;;) {
  4539       v = _Event ;
  4540       if (v > 0) {
  4541          // The LD of _Event could have reordered or be satisfied
  4542          // by a read-aside from this processor's write buffer.
  4543          // To avoid problems execute a barrier and then
  4544          // ratify the value.
  4545          OrderAccess::fence() ;
  4546          if (_Event == v) return ;
  4547          continue ;
  4549       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  4551   if (v < 0) {
  4552      // Wait for the thread associated with the event to vacate
  4553      int status = pthread_mutex_lock(_mutex);
  4554      assert_status(status == 0, status, "mutex_lock");
  4555      AnyWaiters = _nParked ;
  4556      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  4557      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  4558         AnyWaiters = 0 ;
  4559         pthread_cond_signal (_cond);
  4561      status = pthread_mutex_unlock(_mutex);
  4562      assert_status(status == 0, status, "mutex_unlock");
  4563      if (AnyWaiters != 0) {
  4564         status = pthread_cond_signal(_cond);
  4565         assert_status(status == 0, status, "cond_signal");
  4569   // Note that we signal() _after dropping the lock for "immortal" Events.
  4570   // This is safe and avoids a common class of  futile wakeups.  In rare
  4571   // circumstances this can cause a thread to return prematurely from
  4572   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  4573   // simply re-test the condition and re-park itself.
  4577 // JSR166
  4578 // -------------------------------------------------------
  4580 /*
  4581  * The solaris and linux implementations of park/unpark are fairly
  4582  * conservative for now, but can be improved. They currently use a
  4583  * mutex/condvar pair, plus a a count.
  4584  * Park decrements count if > 0, else does a condvar wait.  Unpark
  4585  * sets count to 1 and signals condvar.  Only one thread ever waits
  4586  * on the condvar. Contention seen when trying to park implies that someone
  4587  * is unparking you, so don't wait. And spurious returns are fine, so there
  4588  * is no need to track notifications.
  4589  */
  4592 #define NANOSECS_PER_SEC 1000000000
  4593 #define NANOSECS_PER_MILLISEC 1000000
  4594 #define MAX_SECS 100000000
  4595 /*
  4596  * This code is common to linux and solaris and will be moved to a
  4597  * common place in dolphin.
  4599  * The passed in time value is either a relative time in nanoseconds
  4600  * or an absolute time in milliseconds. Either way it has to be unpacked
  4601  * into suitable seconds and nanoseconds components and stored in the
  4602  * given timespec structure.
  4603  * Given time is a 64-bit value and the time_t used in the timespec is only
  4604  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  4605  * overflow if times way in the future are given. Further on Solaris versions
  4606  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  4607  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  4608  * As it will be 28 years before "now + 100000000" will overflow we can
  4609  * ignore overflow and just impose a hard-limit on seconds using the value
  4610  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  4611  * years from "now".
  4612  */
  4614 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  4615   assert (time > 0, "convertTime");
  4617   struct timeval now;
  4618   int status = gettimeofday(&now, NULL);
  4619   assert(status == 0, "gettimeofday");
  4621   time_t max_secs = now.tv_sec + MAX_SECS;
  4623   if (isAbsolute) {
  4624     jlong secs = time / 1000;
  4625     if (secs > max_secs) {
  4626       absTime->tv_sec = max_secs;
  4628     else {
  4629       absTime->tv_sec = secs;
  4631     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  4633   else {
  4634     jlong secs = time / NANOSECS_PER_SEC;
  4635     if (secs >= MAX_SECS) {
  4636       absTime->tv_sec = max_secs;
  4637       absTime->tv_nsec = 0;
  4639     else {
  4640       absTime->tv_sec = now.tv_sec + secs;
  4641       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  4642       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  4643         absTime->tv_nsec -= NANOSECS_PER_SEC;
  4644         ++absTime->tv_sec; // note: this must be <= max_secs
  4648   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  4649   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  4650   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  4651   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  4654 void Parker::park(bool isAbsolute, jlong time) {
  4655   // Optional fast-path check:
  4656   // Return immediately if a permit is available.
  4657   if (_counter > 0) {
  4658       _counter = 0 ;
  4659       return ;
  4662   Thread* thread = Thread::current();
  4663   assert(thread->is_Java_thread(), "Must be JavaThread");
  4664   JavaThread *jt = (JavaThread *)thread;
  4666   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  4667   // Check interrupt before trying to wait
  4668   if (Thread::is_interrupted(thread, false)) {
  4669     return;
  4672   // Next, demultiplex/decode time arguments
  4673   timespec absTime;
  4674   if (time < 0) { // don't wait at all
  4675     return;
  4677   if (time > 0) {
  4678     unpackTime(&absTime, isAbsolute, time);
  4682   // Enter safepoint region
  4683   // Beware of deadlocks such as 6317397.
  4684   // The per-thread Parker:: mutex is a classic leaf-lock.
  4685   // In particular a thread must never block on the Threads_lock while
  4686   // holding the Parker:: mutex.  If safepoints are pending both the
  4687   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  4688   ThreadBlockInVM tbivm(jt);
  4690   // Don't wait if cannot get lock since interference arises from
  4691   // unblocking.  Also. check interrupt before trying wait
  4692   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  4693     return;
  4696   int status ;
  4697   if (_counter > 0)  { // no wait needed
  4698     _counter = 0;
  4699     status = pthread_mutex_unlock(_mutex);
  4700     assert (status == 0, "invariant") ;
  4701     return;
  4704 #ifdef ASSERT
  4705   // Don't catch signals while blocked; let the running threads have the signals.
  4706   // (This allows a debugger to break into the running thread.)
  4707   sigset_t oldsigs;
  4708   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  4709   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  4710 #endif
  4712   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4713   jt->set_suspend_equivalent();
  4714   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  4716   if (time == 0) {
  4717     status = pthread_cond_wait (_cond, _mutex) ;
  4718   } else {
  4719     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  4720     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4721       pthread_cond_destroy (_cond) ;
  4722       pthread_cond_init    (_cond, NULL);
  4725   assert_status(status == 0 || status == EINTR ||
  4726                 status == ETIME || status == ETIMEDOUT,
  4727                 status, "cond_timedwait");
  4729 #ifdef ASSERT
  4730   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  4731 #endif
  4733   _counter = 0 ;
  4734   status = pthread_mutex_unlock(_mutex) ;
  4735   assert_status(status == 0, status, "invariant") ;
  4736   // If externally suspended while waiting, re-suspend
  4737   if (jt->handle_special_suspend_equivalent_condition()) {
  4738     jt->java_suspend_self();
  4743 void Parker::unpark() {
  4744   int s, status ;
  4745   status = pthread_mutex_lock(_mutex);
  4746   assert (status == 0, "invariant") ;
  4747   s = _counter;
  4748   _counter = 1;
  4749   if (s < 1) {
  4750      if (WorkAroundNPTLTimedWaitHang) {
  4751         status = pthread_cond_signal (_cond) ;
  4752         assert (status == 0, "invariant") ;
  4753         status = pthread_mutex_unlock(_mutex);
  4754         assert (status == 0, "invariant") ;
  4755      } else {
  4756         status = pthread_mutex_unlock(_mutex);
  4757         assert (status == 0, "invariant") ;
  4758         status = pthread_cond_signal (_cond) ;
  4759         assert (status == 0, "invariant") ;
  4761   } else {
  4762     pthread_mutex_unlock(_mutex);
  4763     assert (status == 0, "invariant") ;
  4768 extern char** environ;
  4770 #ifndef __NR_fork
  4771 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  4772 #endif
  4774 #ifndef __NR_execve
  4775 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  4776 #endif
  4778 // Run the specified command in a separate process. Return its exit value,
  4779 // or -1 on failure (e.g. can't fork a new process).
  4780 // Unlike system(), this function can be called from signal handler. It
  4781 // doesn't block SIGINT et al.
  4782 int os::fork_and_exec(char* cmd) {
  4783   const char * argv[4] = {"sh", "-c", cmd, NULL};
  4785   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  4786   // pthread_atfork handlers and reset pthread library. All we need is a
  4787   // separate process to execve. Make a direct syscall to fork process.
  4788   // On IA64 there's no fork syscall, we have to use fork() and hope for
  4789   // the best...
  4790   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  4791               IA64_ONLY(fork();)
  4793   if (pid < 0) {
  4794     // fork failed
  4795     return -1;
  4797   } else if (pid == 0) {
  4798     // child process
  4800     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  4801     // first to kill every thread on the thread list. Because this list is
  4802     // not reset by fork() (see notes above), execve() will instead kill
  4803     // every thread in the parent process. We know this is the only thread
  4804     // in the new process, so make a system call directly.
  4805     // IA64 should use normal execve() from glibc to match the glibc fork()
  4806     // above.
  4807     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  4808     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  4810     // execve failed
  4811     _exit(-1);
  4813   } else  {
  4814     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  4815     // care about the actual exit code, for now.
  4817     int status;
  4819     // Wait for the child process to exit.  This returns immediately if
  4820     // the child has already exited. */
  4821     while (waitpid(pid, &status, 0) < 0) {
  4822         switch (errno) {
  4823         case ECHILD: return 0;
  4824         case EINTR: break;
  4825         default: return -1;
  4829     if (WIFEXITED(status)) {
  4830        // The child exited normally; get its exit code.
  4831        return WEXITSTATUS(status);
  4832     } else if (WIFSIGNALED(status)) {
  4833        // The child exited because of a signal
  4834        // The best value to return is 0x80 + signal number,
  4835        // because that is what all Unix shells do, and because
  4836        // it allows callers to distinguish between process exit and
  4837        // process death by signal.
  4838        return 0x80 + WTERMSIG(status);
  4839     } else {
  4840        // Unknown exit code; pass it through
  4841        return status;

mercurial