src/cpu/mips/vm/templateInterpreter_mips_64.cpp

Tue, 12 Jun 2018 13:58:17 +0800

author
zhaixiang
date
Tue, 12 Jun 2018 13:58:17 +0800
changeset 9144
cecfc245b19a
parent 8864
e4aeef458496
child 9160
b6ac0b9d8b02
permissions
-rw-r--r--

#7157 Fix all forgot saying delayed() when filling delay slot issues
Summary: enable check_delay and guarantee delay_state is at_delay_slot when filling delay slot
Reviewed-by: aoqi

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright (c) 2015, 2018, Loongson Technology. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #include "precompiled.hpp"
    27 #include "asm/macroAssembler.hpp"
    28 #include "interpreter/bytecodeHistogram.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "interpreter/interpreterGenerator.hpp"
    31 #include "interpreter/interpreterRuntime.hpp"
    32 #include "interpreter/templateTable.hpp"
    33 #include "oops/arrayOop.hpp"
    34 #include "oops/methodData.hpp"
    35 #include "oops/method.hpp"
    36 #include "oops/oop.inline.hpp"
    37 #include "prims/jvmtiExport.hpp"
    38 #include "prims/jvmtiThreadState.hpp"
    39 #include "runtime/arguments.hpp"
    40 #include "runtime/deoptimization.hpp"
    41 #include "runtime/frame.inline.hpp"
    42 #include "runtime/sharedRuntime.hpp"
    43 #include "runtime/stubRoutines.hpp"
    44 #include "runtime/synchronizer.hpp"
    45 #include "runtime/timer.hpp"
    46 #include "runtime/vframeArray.hpp"
    47 #include "utilities/debug.hpp"
    49 #define __ _masm->
    51 #ifndef CC_INTERP
    53 // asm based interpreter deoptimization helpers
    54 int AbstractInterpreter::size_activation(int max_stack,
    55                                          int temps,
    56                                          int extra_args,
    57                                          int monitors,
    58                                          int callee_params,
    59                                          int callee_locals,
    60                                          bool is_top_frame) {
    61   // Note: This calculation must exactly parallel the frame setup
    62   // in AbstractInterpreterGenerator::generate_method_entry.
    64   // fixed size of an interpreter frame:
    65   int overhead = frame::sender_sp_offset -
    66                  frame::interpreter_frame_initial_sp_offset;
    67   // Our locals were accounted for by the caller (or last_frame_adjust
    68   // on the transistion) Since the callee parameters already account
    69   // for the callee's params we only need to account for the extra
    70   // locals.
    71   int size = overhead +
    72          (callee_locals - callee_params)*Interpreter::stackElementWords +
    73          monitors * frame::interpreter_frame_monitor_size() +
    74          temps* Interpreter::stackElementWords + extra_args;
    76   return size;
    77 }
    80 const int Interpreter::return_sentinel = 0xfeedbeed;
    81 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    82 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    83 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    85 //-----------------------------------------------------------------------------
    87 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    88   address entry = __ pc();
    90 #ifdef ASSERT
    91   {
    92     Label L;
    93     __ addi(T1, FP, frame::interpreter_frame_monitor_block_top_offset * wordSize);
    94     __ sub(T1, T1, SP); // T1 = maximal sp for current fp
    95     __ bgez(T1, L);     // check if frame is complete
    96     __ delayed()->nop();
    97     __ stop("interpreter frame not set up");
    98     __ bind(L);
    99   }
   100 #endif // ASSERT
   101   // Restore bcp under the assumption that the current frame is still
   102   // interpreted
   103   // FIXME: please change the func restore_bcp
   104   // S0 is the conventional register for bcp
   105   __ restore_bcp();
   107   // expression stack must be empty before entering the VM if an
   108   // exception happened
   109   __ empty_expression_stack();
   110   // throw exception
   111   // FIXME: why do not pass parameter thread ?
   112   __ call_VM(NOREG, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   113   return entry;
   114 }
   116 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
   117         const char* name) {
   118   address entry = __ pc();
   119   // expression stack must be empty before entering the VM if an
   120   // exception happened
   121   __ empty_expression_stack();
   122   __ li(A1, (long)name);
   123   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
   124   InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), A1, A2);
   125   return entry;
   126 }
   128 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   129   address entry = __ pc();
   131   // object is at TOS
   132   //FIXME, I am not sure if the object is at TOS as x86 do now @jerome, 04/20,2007
   133   //__ pop(c_rarg1);
   135   // expression stack must be empty before entering the VM if an
   136   // exception happened
   137   __ empty_expression_stack();
   138   __ empty_FPU_stack();
   139   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException),  FSR);
   140   return entry;
   141 }
   143 address TemplateInterpreterGenerator::generate_exception_handler_common(
   144         const char* name, const char* message, bool pass_oop) {
   145   assert(!pass_oop || message == NULL, "either oop or message but not both");
   146   address entry = __ pc();
   148   // expression stack must be empty before entering the VM if an exception happened
   149   __ empty_expression_stack();
   150   // setup parameters
   151   __ li(A1, (long)name);
   152   if (pass_oop) {
   153     __ call_VM(V0,
   154     CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), A1, FSR);
   155   } else {
   156     __ li(A2, (long)message);
   157     __ call_VM(V0,
   158     CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), A1, A2);
   159   }
   160   // throw exception
   161   __ jmp(Interpreter::throw_exception_entry(), relocInfo::none);
   162   __ delayed()->nop();
   163   return entry;
   164 }
   167 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   168   address entry = __ pc();
   169   // NULL last_sp until next java call
   170   __ sd(R0,Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
   171   __ dispatch_next(state);
   172   return entry;
   173 }
   176 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
   178   address entry = __ pc();
   180   // Restore stack bottom in case i2c adjusted stack
   181   __ ld(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
   182   // and NULL it as marker that esp is now tos until next java call
   183   __ sd(R0, FP, frame::interpreter_frame_last_sp_offset * wordSize);
   185   __ restore_bcp();
   186   __ restore_locals();
   188   // 2014/11/24 Fu
   189   // mdp: T8
   190   // ret: FSR
   191   // tmp: T9
   192   if (state == atos) {
   193     Register mdp = T8;
   194     Register tmp = T9;
   195     __ profile_return_type(mdp, FSR, tmp);
   196   }
   199   const Register cache = T9;
   200   const Register index = T3;
   201   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
   203   const Register flags = cache;
   204   __ dsll(AT, index, Address::times_ptr);
   205   __ daddu(AT, cache, AT);
   206   __ lw(flags, AT, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   207   __ andi(flags, flags, ConstantPoolCacheEntry::parameter_size_mask);
   208   __ dsll(AT, flags, Interpreter::stackElementScale());
   209   __ daddu(SP, SP, AT);
   211   __ dispatch_next(state, step);
   213   return entry;
   214 }
   217 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
   218                                                                int step) {
   219   address entry = __ pc();
   220   // NULL last_sp until next java call
   221   __ sd(R0, FP, frame::interpreter_frame_last_sp_offset * wordSize);
   222   __ restore_bcp();
   223   __ restore_locals();
   224   // handle exceptions
   225   {
   226     Label L;
   227     const Register thread = TREG;
   228 #ifndef OPT_THREAD
   229     __ get_thread(thread);
   230 #endif
   231     __ lw(AT, thread, in_bytes(Thread::pending_exception_offset()));
   232     __ beq(AT, R0, L);
   233     __ delayed()->nop();
   234     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   235     __ should_not_reach_here();
   236     __ bind(L);
   237   }
   238   __ dispatch_next(state, step);
   239   return entry;
   240 }
   242 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   243   int i = 0;
   244   switch (type) {
   245     case T_BOOLEAN: i = 0; break;
   246     case T_CHAR   : i = 1; break;
   247     case T_BYTE   : i = 2; break;
   248     case T_SHORT  : i = 3; break;
   249     case T_INT    : // fall through
   250     case T_LONG   : // fall through
   251     case T_VOID   : i = 4; break;
   252     case T_FLOAT  : i = 5; break;
   253     case T_DOUBLE : i = 6; break;
   254     case T_OBJECT : // fall through
   255     case T_ARRAY  : i = 7; break;
   256     default       : ShouldNotReachHere();
   257   }
   258   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
   259          "index out of bounds");
   260   return i;
   261 }
   264 // why do not consider float and double , @jerome, 12/27,06, @jerome
   265 //FIXME, aoqi
   266 address TemplateInterpreterGenerator::generate_result_handler_for(
   267         BasicType type) {
   268   address entry = __ pc();
   269   switch (type) {
   270     case T_BOOLEAN: __ c2bool(V0);             break;
   271     case T_CHAR   : __ andi(V0, V0, 0xFFFF);   break;
   272     case T_BYTE   : __ sign_extend_byte (V0);  break;
   273     case T_SHORT  : __ sign_extend_short(V0);  break;
   274     case T_INT    : /* nothing to do */        break;
   275     case T_FLOAT  : /* nothing to do */        break;
   276     case T_DOUBLE : /* nothing to do */        break;
   277     case T_OBJECT :
   278     {
   279        __ ld(V0, FP, frame::interpreter_frame_oop_temp_offset * wordSize);
   280       __ verify_oop(V0);         // and verify it
   281     }
   282                  break;
   283     default       : ShouldNotReachHere();
   284   }
   285   __ jr(RA);                                  // return from result handler
   286   __ delayed()->nop();
   287   return entry;
   288 }
   290 address TemplateInterpreterGenerator::generate_safept_entry_for(
   291         TosState state,
   292         address runtime_entry) {
   293   address entry = __ pc();
   294   __ push(state);
   295   __ call_VM(noreg, runtime_entry);
   296   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   297   return entry;
   298 }
   302 // Helpers for commoning out cases in the various type of method entries.
   303 //
   306 // increment invocation count & check for overflow
   307 //
   308 // Note: checking for negative value instead of overflow
   309 //       so we have a 'sticky' overflow test
   310 //
   311 // prerequisites : method in T0, invocation counter in T3
   312 void InterpreterGenerator::generate_counter_incr(
   313         Label* overflow,
   314         Label* profile_method,
   315         Label* profile_method_continue) {
   316   Label done;
   317   const Address invocation_counter(FSR, in_bytes(MethodCounters::invocation_counter_offset())
   318       + in_bytes(InvocationCounter::counter_offset()));
   319   const Address backedge_counter  (FSR, in_bytes(MethodCounters::backedge_counter_offset())
   320       + in_bytes(InvocationCounter::counter_offset()));
   322   __ get_method_counters(Rmethod, FSR, done);
   324   if (ProfileInterpreter) { // %%% Merge this into methodDataOop
   325     __ lw(T9, FSR, in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
   326     __ incrementl(T9, 1);
   327     __ sw(T9, FSR, in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
   328   }
   329   // Update standard invocation counters
   330   __ lw(T3, invocation_counter);
   331   __ increment(T3, InvocationCounter::count_increment);
   332   __ sw(T3, invocation_counter);  // save invocation count
   334   __ lw(FSR, backedge_counter);  // load backedge counter
   335   __ li(AT, InvocationCounter::count_mask_value);   // mask out the status bits
   336   __ andr(FSR, FSR, AT);
   338   __ dadd(T3, T3, FSR);          // add both counters
   340   if (ProfileInterpreter && profile_method != NULL) {
   341     // Test to see if we should create a method data oop
   342     if (Assembler::is_simm16(InvocationCounter::InterpreterProfileLimit)) {
   343       __ slti(AT, T3, InvocationCounter::InterpreterProfileLimit);
   344     } else {
   345       __ li(AT, (long)&InvocationCounter::InterpreterProfileLimit);
   346       __ lw(AT, AT, 0);
   347       __ slt(AT, T3, AT);
   348     }
   350     __ bne_far(AT, R0, *profile_method_continue);
   351     __ delayed()->nop();
   353     // if no method data exists, go to profile_method
   354     __ test_method_data_pointer(FSR, *profile_method);
   355   }
   357   if (Assembler::is_simm16(CompileThreshold)) {
   358     __ srl(AT, T3, InvocationCounter::count_shift);
   359     __ slti(AT, AT, CompileThreshold);
   360   } else {
   361     __ li(AT, (long)&InvocationCounter::InterpreterInvocationLimit);
   362     __ lw(AT, AT, 0);
   363     __ slt(AT, T3, AT);
   364   }
   366   __ beq_far(AT, R0, *overflow);
   367   __ delayed()->nop();
   368   __ bind(done);
   369 }
   371 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   373   // Asm interpreter on entry
   374   // S7 - locals
   375   // S0 - bcp
   376   // Rmethod - method
   377   // FP - interpreter frame
   379   // On return (i.e. jump to entry_point)
   380   // Rmethod - method
   381   // RA - return address of interpreter caller
   382   // tos - the last parameter to Java method
   383   // SP - sender_sp
   385   //const Address size_of_parameters(Rmethod,in_bytes( Method::size_of_parameters_offset()));
   387   // the bcp is valid if and only if it's not null
   388   __ call_VM(NOREG, CAST_FROM_FN_PTR(address,
   389       InterpreterRuntime::frequency_counter_overflow), R0);
   390   __ ld(Rmethod, FP, method_offset);
   391   // Preserve invariant that esi/edi contain bcp/locals of sender frame
   392   __ b_far(*do_continue);
   393   __ delayed()->nop();
   394 }
   396 // See if we've got enough room on the stack for locals plus overhead.
   397 // The expression stack grows down incrementally, so the normal guard
   398 // page mechanism will work for that.
   399 //
   400 // NOTE: Since the additional locals are also always pushed (wasn't
   401 // obvious in generate_method_entry) so the guard should work for them
   402 // too.
   403 //
   404 // Args:
   405 //      rdx: number of additional locals this frame needs (what we must check)
   406 //      rbx: Method*
   407 //
   408 // Kills:
   409 //      rax
   410 void InterpreterGenerator::generate_stack_overflow_check(void) {
   411   // see if we've got enough room on the stack for locals plus overhead.
   412   // the expression stack grows down incrementally, so the normal guard
   413   // page mechanism will work for that.
   414   //
   415   // Registers live on entry:
   416   //
   417   // T0: Method*
   418   // T2: number of additional locals this frame needs (what we must check)
   420   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
   421   // generate_method_entry) so the guard should work for them too.
   422   //
   424   // monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp
   425   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
   427   // total overhead size: entry_size + (saved ebp thru expr stack bottom).
   428   // be sure to change this if you add/subtract anything to/from the overhead area
   429   const int overhead_size = -(frame::interpreter_frame_initial_sp_offset*wordSize)
   430     + entry_size;
   432   const int page_size = os::vm_page_size();
   434   Label after_frame_check;
   436   // see if the frame is greater than one page in size. If so,
   437   // then we need to verify there is enough stack space remaining
   438   // for the additional locals.
   439   __ move(AT, (page_size - overhead_size) / Interpreter::stackElementSize);
   440   __ slt(AT, AT, T2);
   441   __ beq(AT, R0, after_frame_check);
   442   __ delayed()->nop();
   444   // compute sp as if this were going to be the last frame on
   445   // the stack before the red zone
   446 #ifndef OPT_THREAD
   447   Register thread = T1;
   448   __ get_thread(thread);
   449 #else
   450   Register thread = TREG;
   451 #endif
   453   // locals + overhead, in bytes
   454   //FIXME aoqi
   455   __ dsll(T3, T2, Interpreter::stackElementScale());
   456   __ daddiu(T3, T3, overhead_size);   // locals * 4 + overhead_size --> T3
   458 #ifdef ASSERT
   459   Label stack_base_okay, stack_size_okay;
   460   // verify that thread stack base is non-zero
   461   __ ld(AT, thread, in_bytes(Thread::stack_base_offset()));
   462   __ bne(AT, R0, stack_base_okay);
   463   __ delayed()->nop();
   464   __ stop("stack base is zero");
   465   __ bind(stack_base_okay);
   466   // verify that thread stack size is non-zero
   467   __ ld(AT, thread, in_bytes(Thread::stack_size_offset()));
   468   __ bne(AT, R0, stack_size_okay);
   469   __ delayed()->nop();
   470   __ stop("stack size is zero");
   471   __ bind(stack_size_okay);
   472 #endif
   474   // Add stack base to locals and subtract stack size
   475   __ ld(AT, thread, in_bytes(Thread::stack_base_offset())); // stack_base --> AT
   476   __ dadd(T3, T3, AT);   // locals * 4 + overhead_size + stack_base--> T3
   477   __ ld(AT, thread, in_bytes(Thread::stack_size_offset()));  // stack_size --> AT
   478   __ dsub(T3, T3, AT);  // locals * 4 + overhead_size + stack_base - stack_size --> T3
   481   // add in the redzone and yellow size
   482   __ move(AT, (StackRedPages+StackYellowPages) * page_size);
   483   __ add(T3, T3, AT);
   485   // check against the current stack bottom
   486   __ slt(AT, T3, SP);
   487   __ bne(AT, R0, after_frame_check);
   488   __ delayed()->nop();
   490   // Note: the restored frame is not necessarily interpreted.
   491   // Use the shared runtime version of the StackOverflowError.
   492   __ move(SP, Rsender);
   493   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
   494   __ jmp(StubRoutines::throw_StackOverflowError_entry(), relocInfo::runtime_call_type);
   495   __ delayed()->nop();
   497   // all done with frame size check
   498   __ bind(after_frame_check);
   499 }
   501 // Allocate monitor and lock method (asm interpreter)
   502 // Rmethod - Method*
   503 void InterpreterGenerator::lock_method(void) {
   504   // synchronize method
   505   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   507 #ifdef ASSERT
   508   { Label L;
   509     __ lw(T0, Rmethod, in_bytes(Method::access_flags_offset()));
   510     __ andi(T0, T0, JVM_ACC_SYNCHRONIZED);
   511     __ bne(T0, R0, L);
   512     __ delayed()->nop();
   513     __ stop("method doesn't need synchronization");
   514     __ bind(L);
   515   }
   516 #endif // ASSERT
   517   // get synchronization object
   518   {
   519     Label done;
   520     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   521     __ lw(T0, Rmethod, in_bytes(Method::access_flags_offset()));
   522     __ andi(T2, T0, JVM_ACC_STATIC);
   523     __ ld(T0, LVP, Interpreter::local_offset_in_bytes(0));
   524     __ beq(T2, R0, done);
   525     __ delayed()->nop();
   526     __ ld(T0, Rmethod, in_bytes(Method::const_offset()));
   527     __ ld(T0, T0, in_bytes(ConstMethod::constants_offset()));
   528     __ ld(T0, T0, ConstantPool::pool_holder_offset_in_bytes());
   529     __ ld(T0, T0, mirror_offset);
   530     __ bind(done);
   531   }
   532   // add space for monitor & lock
   533   __ daddi(SP, SP, (-1) * entry_size);           // add space for a monitor entry
   534   __ sd(SP, FP, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   535   // set new monitor block top
   536   __ sd(T0, SP, BasicObjectLock::obj_offset_in_bytes());   // store object
   537   // FIXME: I do not know what lock_object will do and what it will need
   538   __ move(c_rarg0, SP);      // object address
   539   __ lock_object(c_rarg0);
   540 }
   542 // Generate a fixed interpreter frame. This is identical setup for
   543 // interpreted methods and for native methods hence the shared code.
   544 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   546   // [ local var m-1      ] <--- sp
   547   //   ...
   548   // [ local var 0        ]
   549   // [ argumnet word n-1  ] <--- T0(sender's sp)
   550   //   ...
   551   // [ argument word 0    ] <--- S7
   553   // initialize fixed part of activation frame
   554   // sender's sp in Rsender
   555   int i = 0;
   556   __ sd(RA, SP, (-1) * wordSize);   // save return address
   557   __ sd(FP, SP, (-2) * wordSize);  // save sender's fp
   558   __ daddiu(FP, SP, (-2) * wordSize);
   559   __ sd(Rsender, FP, (-++i) * wordSize);  // save sender's sp
   560   __ sd(R0, FP,(-++i)*wordSize);       //save last_sp as null, FIXME aoqi
   561   __ sd(LVP, FP, (-++i) * wordSize);  // save locals offset
   562   __ ld(BCP, Rmethod, in_bytes(Method::const_offset())); // get constMethodOop
   563   __ daddiu(BCP, BCP, in_bytes(ConstMethod::codes_offset())); // get codebase
   564   __ sd(Rmethod, FP, (-++i) * wordSize);                              // save Method*
   565 #ifndef CORE
   566   if (ProfileInterpreter) {
   567     Label method_data_continue;
   568     __ ld(AT, Rmethod,  in_bytes(Method::method_data_offset()));
   569     __ beq(AT, R0, method_data_continue);
   570     __ delayed()->nop();
   571     __ daddi(AT, AT, in_bytes(MethodData::data_offset()));
   572     __ bind(method_data_continue);
   573     __ sd(AT, FP,  (-++i) * wordSize);
   574   } else {
   575     __ sd(R0, FP, (-++i) * wordSize);
   576   }
   577 #endif // !CORE
   579   __ ld(T2, Rmethod, in_bytes(Method::const_offset()));
   580   __ ld(T2, T2, in_bytes(ConstMethod::constants_offset()));
   581   __ ld(T2, T2, ConstantPool::cache_offset_in_bytes());
   582   __ sd(T2, FP, (-++i) * wordSize);                    // set constant pool cache
   583   if (native_call) {
   584     __ sd(R0, FP, (-++i) * wordSize);          // no bcp
   585   } else {
   586     __ sd(BCP, FP, (-++i) * wordSize);          // set bcp
   587   }
   588   __ daddiu(SP, FP, (-++i) * wordSize);
   589   __ sd(SP, FP, (-i) * wordSize);               // reserve word for pointer to expression stack bottom
   590 }
   592 // End of helpers
   594 // Various method entries
   595 //------------------------------------------------------------------------------------------------------------------------
   596 //
   597 //
   599 // Call an accessor method (assuming it is resolved, otherwise drop
   600 // into vanilla (slow path) entry
   601 address InterpreterGenerator::generate_accessor_entry(void) {
   603   // Rmethod: Method*
   604   // V0: receiver (preserve for slow entry into asm interpreter)
   605   //  Rsender: senderSP must preserved for slow path, set SP to it on fast path
   607   address entry_point = __ pc();
   608   Label xreturn_path;
   609   // do fastpath for resolved accessor methods
   610   if (UseFastAccessorMethods) {
   611     Label slow_path;
   612     __ li(T2, SafepointSynchronize::address_of_state());
   613     __ lw(AT, T2, 0);
   614     __ daddi(AT, AT, -(SafepointSynchronize::_not_synchronized));
   615     __ bne(AT, R0, slow_path);
   616     __ delayed()->nop();
   617     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
   618     // parameter size = 1
   619     // Note: We can only use this code if the getfield has been resolved
   620     //       and if we don't have a null-pointer exception => check for
   621     //       these conditions first and use slow path if necessary.
   622     // Rmethod: method
   623     // V0: receiver
   625     // [ receiver  ] <-- sp
   626     __ ld(T0, SP, 0);
   628     // check if local 0 != NULL and read field
   629     __ beq(T0, R0, slow_path);
   630     __ delayed()->nop();
   631     __ ld(T2, Rmethod, in_bytes(Method::const_offset()));
   632     __ ld(T2, T2, in_bytes(ConstMethod::constants_offset()));
   633     // read first instruction word and extract bytecode @ 1 and index @ 2
   634     __ ld(T3, Rmethod, in_bytes(Method::const_offset()));
   635     __ lw(T3, T3, in_bytes(ConstMethod::codes_offset()));
   636     // Shift codes right to get the index on the right.
   637     // The bytecode fetched looks like <index><0xb4><0x2a>
   638     __ dsrl(T3, T3, 2 * BitsPerByte);
   639     // FIXME: maybe it's wrong
   640     __ dsll(T3, T3, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   641     __ ld(T2, T2, ConstantPool::cache_offset_in_bytes());
   643     // T0: local 0 eax
   644     // Rmethod: method ebx
   645     // V0: receiver - do not destroy since it is needed for slow path! ecx
   646     // ecx: scratch use which register instead ?
   647     // T1: scratch use which register instead ?
   648     // T3: constant pool cache index  edx
   649     // T2: constant pool cache  edi
   650     // esi: send's sp
   651     // Rsender: send's sp
   652     // check if getfield has been resolved and read constant pool cache entry
   653     // check the validity of the cache entry by testing whether _indices field
   654     // contains Bytecode::_getfield in b1 byte.
   655     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
   656     //    __ movl(esi,
   657     //      Address(edi,
   658     //        edx,
   659     //        Address::times_4, ConstantPoolCache::base_offset()
   660     //        + ConstantPoolCacheEntry::indices_offset()));
   663     __ dsll(T8, T3, Address::times_8);
   664     __ move(T1, in_bytes(ConstantPoolCache::base_offset()
   665     + ConstantPoolCacheEntry::indices_offset()));
   666     __ dadd(T1, T8, T1);
   667     __ dadd(T1, T1, T2);
   668     __ lw(T1, T1, 0);
   669     __ dsrl(T1, T1, 2 * BitsPerByte);
   670     __ andi(T1, T1, 0xFF);
   671     __ daddi(T1, T1, (-1) * Bytecodes::_getfield);
   672     __ bne(T1, R0, slow_path);
   673     __ delayed()->nop();
   675     // Note: constant pool entry is not valid before bytecode is resolved
   677     __ move(T1, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
   678     __ dadd(T1, T1, T8);
   679     __ dadd(T1, T1, T2);
   680     __ lw(AT, T1, 0);
   682     __ move(T1, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   683     __ dadd(T1, T1, T8);
   684     __ dadd(T1, T1, T2);
   685     __ lw(T3, T1, 0);
   687     Label notByte, notBool, notShort, notChar, notObj;
   688     //    const Address field_address (eax, esi, Address::times_1);
   690     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   691     // because they are different sizes.
   692     // Use the type from the constant pool cache
   693     __ srl(T3, T3, ConstantPoolCacheEntry::tos_state_shift);
   694     // Make sure we don't need to mask edx for tosBits after the above shift
   695     ConstantPoolCacheEntry::verify_tos_state_shift();
   696     // btos = 0
   697     __ bne(T3, R0, notByte);
   698     __ delayed()->dadd(T0, T0, AT);
   700     __ lb(V0, T0, 0);
   701     __ b(xreturn_path);
   702     __ delayed()->nop();
   704     //ztos
   705     __ bind(notByte);
   706     __ daddi(T1, T3, (-1) * ztos);
   707     __ bne(T1, R0, notBool);
   708     __ delayed()->nop();
   709     __ lb(V0, T0, 0);
   710     __ b(xreturn_path);
   711     __ delayed()->nop();
   713     //stos
   714     __ bind(notBool);
   715     __ daddi(T1, T3, (-1) * stos);
   716     __ bne(T1, R0, notShort);
   717     __ delayed()->nop();
   718     __ lh(V0, T0, 0);
   719     __ b(xreturn_path);
   720     __ delayed()->nop();
   722     //ctos
   723     __ bind(notShort);
   724     __ daddi(T1, T3, (-1) * ctos);
   725     __ bne(T1, R0, notChar);
   726     __ delayed()->nop();
   727     __ lhu(V0, T0, 0);
   728     __ b(xreturn_path);
   729     __ delayed()->nop();
   731     //atos
   732     __ bind(notChar);
   733     __ daddi(T1, T3, (-1) * atos);
   734     __ bne(T1, R0, notObj);
   735     __ delayed()->nop();
   736     //add for compressedoops
   737     __ load_heap_oop(V0, Address(T0, 0));
   738     __ b(xreturn_path);
   739     __ delayed()->nop();
   741     //itos
   742     __ bind(notObj);
   743 #ifdef ASSERT
   744     Label okay;
   745     __ daddi(T1, T3, (-1) * itos);
   746     __ beq(T1, R0, okay);
   747     __ delayed()->nop();
   748     __ stop("what type is this?");
   749     __ bind(okay);
   750 #endif // ASSERT
   751     __ lw(V0, T0, 0);
   753     __ bind(xreturn_path);
   755     // _ireturn/_areturn
   756     //FIXME
   757     __ move(SP, Rsender);//FIXME, set sender's fp to SP
   758     __ jr(RA);
   759     __ delayed()->nop();
   761     // generate a vanilla interpreter entry as the slow path
   762     __ bind(slow_path);
   763     (void) generate_normal_entry(false);
   764   } else {
   765     (void) generate_normal_entry(false);
   766   }
   768   return entry_point;
   769 }
   771 // Method entry for java.lang.ref.Reference.get.
   772 address InterpreterGenerator::generate_Reference_get_entry(void) {
   773 #if INCLUDE_ALL_GCS
   774   // Code: _aload_0, _getfield, _areturn
   775   // parameter size = 1
   776   //
   777   // The code that gets generated by this routine is split into 2 parts:
   778   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   779   //    2. The slow path - which is an expansion of the regular method entry.
   780   //
   781   // Notes:-
   782   // * In the G1 code we do not check whether we need to block for
   783   //   a safepoint. If G1 is enabled then we must execute the specialized
   784   //   code for Reference.get (except when the Reference object is null)
   785   //   so that we can log the value in the referent field with an SATB
   786   //   update buffer.
   787   //   If the code for the getfield template is modified so that the
   788   //   G1 pre-barrier code is executed when the current method is
   789   //   Reference.get() then going through the normal method entry
   790   //   will be fine.
   791   // * The G1 code can, however, check the receiver object (the instance
   792   //   of java.lang.Reference) and jump to the slow path if null. If the
   793   //   Reference object is null then we obviously cannot fetch the referent
   794   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   795   //   regular method entry code to generate the NPE.
   796   //
   797   // This code is based on generate_accessor_enty.
   798   //
   799   // rbx: Method* (Rmethod)
   801   // r13: senderSP must preserve for slow path, set SP to it on fast path (Rsender)
   803   // rax: V0
   804   // rbx: Rmethod
   805   // r13: Rsender
   806   // rdi: T9
   808   address entry = __ pc();
   810   const int referent_offset = java_lang_ref_Reference::referent_offset;
   811   guarantee(referent_offset > 0, "referent offset not initialized");
   813   if (UseG1GC) {
   814     Label slow_path;
   816     // Check if local 0 != NULL
   817     // If the receiver is null then it is OK to jump to the slow path.
   818     __ ld(V0, SP, 0);
   820     __ beq(V0, R0, slow_path);
   821     __ delayed()->nop();
   823     // Generate the G1 pre-barrier code to log the value of
   824     // the referent field in an SATB buffer.
   826     // Load the value of the referent field.
   827     const Address field_address(V0, referent_offset);
   828     __ load_heap_oop(V0, field_address);
   830     __ push(RA);
   831     // Generate the G1 pre-barrier code to log the value of
   832     // the referent field in an SATB buffer.
   833     __ g1_write_barrier_pre(noreg /* obj */,
   834                             V0 /* pre_val */,
   835                             TREG /* thread */,
   836                             Rmethod /* tmp */,
   837                             true /* tosca_live */,
   838                             true /* expand_call */);
   839     __ pop(RA);
   841     __ jr(RA);
   842     __ delayed()->daddu(SP, Rsender, R0);      // set sp to sender sp
   844     // generate a vanilla interpreter entry as the slow path
   845     __ bind(slow_path);
   846     (void) generate_normal_entry(false);
   848     return entry;
   849   }
   850 #endif // INCLUDE_ALL_GCS
   852   // If G1 is not enabled then attempt to go through the accessor entry point
   853   // Reference.get is an accessor
   854   return generate_accessor_entry();
   855 }
   857 // Interpreter stub for calling a native method. (asm interpreter)
   858 // This sets up a somewhat different looking stack for calling the
   859 // native method than the typical interpreter frame setup.
   860 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   861   // determine code generation flags
   862   bool inc_counter  = UseCompiler || CountCompiledCalls;
   863   // Rsender: sender's sp
   864   // Rmethod: Method*
   865   address entry_point = __ pc();
   867 #ifndef CORE
   868   const Address invocation_counter(Rmethod,in_bytes(MethodCounters::invocation_counter_offset() +   // Fu: 20130814
   869   InvocationCounter::counter_offset()));
   870 #endif
   872   // get parameter size (always needed)
   873   // the size in the java stack
   874   __ ld(V0, Rmethod, in_bytes(Method::const_offset()));
   875   __ lhu(V0, V0, in_bytes(ConstMethod::size_of_parameters_offset()));   // Fu: 20130814
   877   // native calls don't need the stack size check since they have no expression stack
   878   // and the arguments are already on the stack and we only add a handful of words
   879   // to the stack
   881   // Rmethod: Method*
   882   // V0: size of parameters
   883   // Layout of frame at this point
   884   //
   885   // [ argument word n-1  ] <--- sp
   886   //   ...
   887   // [ argument word 0    ]
   889   // for natives the size of locals is zero
   891   // compute beginning of parameters (S7)
   892   __ dsll(LVP, V0, Address::times_8);
   893   __ daddiu(LVP, LVP, (-1) * wordSize);
   894   __ dadd(LVP, LVP, SP);
   897   // add 2 zero-initialized slots for native calls
   898   __ daddi(SP, SP, (-2) * wordSize);
   899   __ sd(R0, SP, 1 * wordSize);  // slot for native oop temp offset (setup via runtime)
   900   __ sd(R0, SP, 0 * wordSize);  // slot for static native result handler3 (setup via runtime)
   902   // Layout of frame at this point
   903   // [ method holder mirror  ] <--- sp
   904   // [ result type info      ]
   905   // [ argument word n-1     ] <--- T0
   906   //   ...
   907   // [ argument word 0      ] <--- LVP
   910 #ifndef CORE
   911   if (inc_counter) __ lw(T3, invocation_counter);  // (pre-)fetch invocation count
   912 #endif
   914   // initialize fixed part of activation frame
   915   generate_fixed_frame(true);
   916   // after this function, the layout of frame is as following
   917   //
   918   // [ monitor block top        ] <--- sp ( the top monitor entry )
   919   // [ byte code pointer (0)    ] (if native, bcp = 0)
   920   // [ constant pool cache      ]
   921   // [ Method*                ]
   922   // [ locals offset            ]
   923   // [ sender's sp              ]
   924   // [ sender's fp              ]
   925   // [ return address           ] <--- fp
   926   // [ method holder mirror     ]
   927   // [ result type info         ]
   928   // [ argumnet word n-1        ] <--- sender's sp
   929   //   ...
   930   // [ argument word 0          ] <--- S7
   933   // make sure method is native & not abstract
   934 #ifdef ASSERT
   935   __ lw(T0, Rmethod, in_bytes(Method::access_flags_offset()));
   936   {
   937     Label L;
   938     __ andi(AT, T0, JVM_ACC_NATIVE);
   939     __ bne(AT, R0, L);
   940     __ delayed()->nop();
   941     __ stop("tried to execute native method as non-native");
   942     __ bind(L);
   943   }
   944   {
   945     Label L;
   946     __ andi(AT, T0, JVM_ACC_ABSTRACT);
   947     __ beq(AT, R0, L);
   948     __ delayed()->nop();
   949     __ stop("tried to execute abstract method in interpreter");
   950     __ bind(L);
   951   }
   952 #endif
   954   // Since at this point in the method invocation the exception handler
   955   // would try to exit the monitor of synchronized methods which hasn't
   956   // been entered yet, we set the thread local variable
   957   // _do_not_unlock_if_synchronized to true. The remove_activation will
   958   // check this flag.
   959   Register thread = TREG;
   960 #ifndef OPT_THREAD
   961   __ get_thread(thread);
   962 #endif
   963   __ move(AT, (int)true);
   964   __ sb(AT, thread, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   966 #ifndef CORE
   967   // increment invocation count & check for overflow
   968   Label invocation_counter_overflow;
   969   if (inc_counter) {
   970     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   971   }
   973   Label continue_after_compile;
   974   __ bind(continue_after_compile);
   975 #endif // CORE
   977   bang_stack_shadow_pages(true);
   979   // reset the _do_not_unlock_if_synchronized flag
   980 #ifndef OPT_THREAD
   981   __ get_thread(thread);
   982 #endif
   983   __ sb(R0, thread, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   985   // check for synchronized methods
   986   // Must happen AFTER invocation_counter check and stack overflow check,
   987   // so method is not locked if overflows.
   988   if (synchronized) {
   989     lock_method();
   990   } else {
   991     // no synchronization necessary
   992 #ifdef ASSERT
   993     {
   994       Label L;
   995       __ lw(T0, Rmethod, in_bytes(Method::access_flags_offset()));
   996       __ andi(AT, T0, JVM_ACC_SYNCHRONIZED);
   997       __ beq(AT, R0, L);
   998       __ delayed()->nop();
   999       __ stop("method needs synchronization");
  1000       __ bind(L);
  1002 #endif
  1005   // after method_lock, the layout of frame is as following
  1006   //
  1007   // [ monitor entry            ] <--- sp
  1008   //   ...
  1009   // [ monitor entry            ]
  1010   // [ monitor block top        ] ( the top monitor entry )
  1011   // [ byte code pointer (0)    ] (if native, bcp = 0)
  1012   // [ constant pool cache      ]
  1013   // [ Method*                ]
  1014   // [ locals offset        ]
  1015   // [ sender's sp              ]
  1016   // [ sender's fp              ]
  1017   // [ return address           ] <--- fp
  1018   // [ method holder mirror     ]
  1019   // [ result type info         ]
  1020   // [ argumnet word n-1        ] <--- ( sender's sp )
  1021   //   ...
  1022   // [ argument word 0          ] <--- S7
  1024   // start execution
  1025 #ifdef ASSERT
  1027     Label L;
  1028     __ ld(AT, FP, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1029     __ beq(AT, SP, L);
  1030     __ delayed()->nop();
  1031     __ stop("broken stack frame setup in interpreter in asm");
  1032     __ bind(L);
  1034 #endif
  1036   // jvmti/jvmpi support
  1037   __ notify_method_entry();
  1039   // work registers
  1040   const Register method = Rmethod;
  1041   //const Register thread = T2;
  1042   const Register t      = RT4;
  1044   __ get_method(method);
  1045   __ verify_oop(method);
  1047     Label L, Lstatic;
  1048     __ ld(t,method,in_bytes(Method::const_offset()));
  1049     __ lhu(t, t, in_bytes(ConstMethod::size_of_parameters_offset()));  // Fu: 20130814
  1050     // MIPS n64 ABI: caller does not reserve space for the register auguments.
  1051     //FIXME, aoqi: A1?
  1052     // A0 and A1(if needed)
  1053     __ lw(AT, Rmethod, in_bytes(Method::access_flags_offset()));
  1054     __ andi(AT, AT, JVM_ACC_STATIC);
  1055     __ beq(AT, R0, Lstatic);
  1056     __ delayed()->nop();
  1057     __ daddiu(t, t, 1);
  1058     __ bind(Lstatic);
  1059     __ daddiu(t, t, -7);
  1060     __ blez(t, L);
  1061     __ delayed()->nop();
  1062     __ dsll(t, t, Address::times_8);
  1063     __ dsub(SP, SP, t);
  1064     __ bind(L);
  1066   __ move(AT, -(StackAlignmentInBytes));
  1067   __ andr(SP, SP, AT);
  1068   __ move(AT, SP);
  1069   // [        ] <--- sp
  1070   //   ...                        (size of parameters - 8 )
  1071   // [ monitor entry            ]
  1072   //   ...
  1073   // [ monitor entry            ]
  1074   // [ monitor block top        ] ( the top monitor entry )
  1075   // [ byte code pointer (0)    ] (if native, bcp = 0)
  1076   // [ constant pool cache      ]
  1077   // [ Method*                ]
  1078   // [ locals offset            ]
  1079   // [ sender's sp              ]
  1080   // [ sender's fp              ]
  1081   // [ return address           ] <--- fp
  1082   // [ method holder mirror     ]
  1083   // [ result type info         ]
  1084   // [ argumnet word n-1        ] <--- ( sender's sp )
  1085   //   ...
  1086   // [ argument word 0          ] <--- LVP
  1088   // get signature handler
  1090     Label L;
  1091     __ ld(T9, method, in_bytes(Method::signature_handler_offset()));
  1092     __ bne(T9, R0, L);
  1093     __ delayed()->nop();
  1094     __ call_VM(NOREG, CAST_FROM_FN_PTR(address,
  1095                InterpreterRuntime::prepare_native_call), method);
  1096     __ get_method(method);
  1097     __ ld(T9, method, in_bytes(Method::signature_handler_offset()));
  1098     __ bind(L);
  1101   // call signature handler
  1102   // FIXME: when change codes in InterpreterRuntime, note this point
  1103   // from: begin of parameters
  1104   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == LVP, "adjust this code");
  1105   // to: current sp
  1106   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == SP, "adjust this code");
  1107   // temp: T3
  1108   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t  , "adjust this code");
  1110   __ jalr(T9);
  1111   __ delayed()->nop();
  1112   __ get_method(method);  // slow path call blows EBX on DevStudio 5.0
  1114   /*
  1115      if native function is static, and its second parameter has type length of double word,
  1116      and first parameter has type length of word, we have to reserve one word
  1117      for the first parameter, according to mips o32 abi.
  1118      if native function is not static, and its third parameter has type length of double word,
  1119      and second parameter has type length of word, we have to reserve one word for the second
  1120      parameter.
  1121    */
  1124   // result handler is in V0
  1125   // set result handler
  1126   __ sd(V0, FP, (frame::interpreter_frame_result_handler_offset)*wordSize);
  1128 #define FIRSTPARA_SHIFT_COUNT 5
  1129 #define SECONDPARA_SHIFT_COUNT 9
  1130 #define THIRDPARA_SHIFT_COUNT 13
  1131 #define PARA_MASK  0xf
  1133   // pass mirror handle if static call
  1135     Label L;
  1136     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  1137     __ lw(t, method, in_bytes(Method::access_flags_offset()));
  1138     __ andi(AT, t, JVM_ACC_STATIC);
  1139     __ beq(AT, R0, L);
  1140     __ delayed()->nop();
  1142     // get mirror
  1143     __ ld(t, method, in_bytes(Method:: const_offset()));
  1144     __ ld(t, t, in_bytes(ConstMethod::constants_offset())); //??
  1145     __ ld(t, t, ConstantPool::pool_holder_offset_in_bytes());
  1146     __ ld(t, t, mirror_offset);
  1147     // copy mirror into activation frame
  1148     //__ sw(t, FP, frame::interpreter_frame_oop_temp_offset * wordSize);
  1149     // pass handle to mirror
  1150     __ sd(t, FP, frame::interpreter_frame_oop_temp_offset * wordSize);
  1151     __ daddi(t, FP, frame::interpreter_frame_oop_temp_offset * wordSize);
  1152     __ move(A1, t);
  1153     __ bind(L);
  1156   // [ mthd holder mirror ptr   ] <--- sp  --------------------| (only for static method)
  1157   // [                          ]                              |
  1158   //   ...                        size of parameters(or +1)    |
  1159   // [ monitor entry            ]                              |
  1160   //   ...                                                     |
  1161   // [ monitor entry            ]                              |
  1162   // [ monitor block top        ] ( the top monitor entry )    |
  1163   // [ byte code pointer (0)    ] (if native, bcp = 0)         |
  1164   // [ constant pool cache      ]                              |
  1165   // [ Method*                ]                              |
  1166   // [ locals offset            ]                              |
  1167   // [ sender's sp              ]                              |
  1168   // [ sender's fp              ]                              |
  1169   // [ return address           ] <--- fp                      |
  1170   // [ method holder mirror     ] <----------------------------|
  1171   // [ result type info         ]
  1172   // [ argumnet word n-1        ] <--- ( sender's sp )
  1173   //   ...
  1174   // [ argument word 0          ] <--- S7
  1176   // get native function entry point
  1177   { Label L;
  1178     __ ld(T9, method, in_bytes(Method::native_function_offset()));
  1179     __ li(V1, SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
  1180     __ bne(V1, T9, L);
  1181     __ delayed()->nop();
  1182     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1183     __ get_method(method);
  1184     __ verify_oop(method);
  1185     __ ld(T9, method, in_bytes(Method::native_function_offset()));
  1186     __ bind(L);
  1188   /*
  1189   __ pushad();
  1190   __ move(A0, T9);
  1191   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::func_debug),relocInfo::runtime_call_type);
  1192   __ popad();
  1193   */
  1195   // pass JNIEnv
  1196   // native function in T9
  1197 #ifndef OPT_THREAD
  1198   __ get_thread(thread);
  1199 #endif
  1200   __ daddi(t, thread, in_bytes(JavaThread::jni_environment_offset()));
  1201   // stack,but I think it won't work when pass float,double etc @jerome,10/17,2006
  1202   __ move(A0, t);
  1203   // [ jni environment          ] <--- sp
  1204   // [ mthd holder mirror ptr   ] ---------------------------->| (only for static method)
  1205   // [                          ]                              |
  1206   //   ...                        size of parameters           |
  1207   // [ monitor entry            ]                              |
  1208   //   ...                                                     |
  1209   // [ monitor entry            ]                              |
  1210   // [ monitor block top        ] ( the top monitor entry )    |
  1211   // [ byte code pointer (0)    ] (if native, bcp = 0)         |
  1212   // [ constant pool cache      ]                              |
  1213   // [ Method*                ]                              |
  1214   // [ locals offset            ]                              |
  1215   // [ sender's sp              ]                              |
  1216   // [ sender's fp              ]                              |
  1217   // [ return address           ] <--- fp                      |
  1218   // [ method holder mirror     ] <----------------------------|
  1219   // [ result type info         ]
  1220   // [ argumnet word n-1        ] <--- ( sender's sp )
  1221   //   ...
  1222   // [ argument word 0          ] <--- S7
  1224   // set_last_Java_frame_before_call
  1225   __ sd(FP, thread, in_bytes(JavaThread::last_Java_fp_offset()));
  1226   // Change state to native (we save the return address in the thread, since it might not
  1227   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1228   // points into the right code segment. It does not have to be the correct return pc.
  1229   __ li(t, __ pc());
  1230   __ sd(t, thread, in_bytes(JavaThread::last_Java_pc_offset()));
  1231   __ sd(SP, thread, in_bytes(JavaThread::last_Java_sp_offset()));
  1233   // change thread state
  1234 #ifdef ASSERT
  1236     Label L;
  1237     __ lw(t, thread, in_bytes(JavaThread::thread_state_offset()));
  1238     __ daddi(t, t, (-1) * _thread_in_Java);
  1239     __ beq(t, R0, L);
  1240     __ delayed()->nop();
  1241     __ stop("Wrong thread state in native stub");
  1242     __ bind(L);
  1244 #endif
  1246   __ move(t, _thread_in_native);
  1247   __ sw(t, thread, in_bytes(JavaThread::thread_state_offset()));
  1249   // call native method
  1250   __ jalr(T9);
  1251   __ delayed()->nop();
  1252   // result potentially in V2:V1 or F0:F1
  1255   // via _last_native_pc and not via _last_jave_sp
  1256   // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result.
  1257   //  If the order changes or anything else is added to the stack the code in
  1258   // interpreter_frame_result will have to be changed.
  1259   //FIXME, should modify here
  1260   // save return value to keep the value from being destroyed by other calls
  1261   __ move(S1, V0);
  1262   __ move(S3, V1);
  1263   __ dmfc1(S4, F0);
  1264   __ dmfc1(S2, F1);
  1266   // change thread state
  1267   __ get_thread(thread);
  1268   __ move(t, _thread_in_native_trans);
  1269   __ sw(t, thread, in_bytes(JavaThread::thread_state_offset()));
  1271   if( os::is_MP() ) __ sync(); // Force this write out before the read below
  1273   // check for safepoint operation in progress and/or pending suspend requests
  1274   { Label Continue;
  1276     // Don't use call_VM as it will see a possible pending exception and forward it
  1277     // and never return here preventing us from clearing _last_native_pc down below.
  1278     // Also can't use call_VM_leaf either as it will check to see if esi & edi are
  1279     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1280     // by hand.
  1281     //
  1282     Label L;
  1283     __ li(AT, SafepointSynchronize::address_of_state());
  1284     __ lw(AT, AT, 0);
  1285     __ bne(AT, R0, L);
  1286     __ delayed()->nop();
  1287     __ lw(AT, thread, in_bytes(JavaThread::suspend_flags_offset()));
  1288     __ beq(AT, R0, Continue);
  1289     __ delayed()->nop();
  1290     __ bind(L);
  1291     __ move(A0, thread);
  1292     __ call(CAST_FROM_FN_PTR(address,
  1293     JavaThread::check_special_condition_for_native_trans),
  1294   relocInfo::runtime_call_type);
  1295     __ delayed()->nop();
  1297 #ifndef OPT_THREAD
  1298     __ get_thread(thread);
  1299 #endif
  1300     //add for compressedoops
  1301     __ reinit_heapbase();
  1302     __ bind(Continue);
  1305   // change thread state
  1306   __ move(t, _thread_in_Java);
  1307   __ sw(t, thread, in_bytes(JavaThread::thread_state_offset()));
  1308   __ reset_last_Java_frame(thread, true, true);
  1310   // reset handle block
  1311   __ ld(t, thread, in_bytes(JavaThread::active_handles_offset()));
  1312   __ sw(R0, t, JNIHandleBlock::top_offset_in_bytes());
  1314   // If result was an oop then unbox and save it in the frame
  1315   { Label L;
  1316     Label no_oop, store_result;
  1317     //FIXME, addi only support 16-bit imeditate
  1318     __ ld(AT, FP, frame::interpreter_frame_result_handler_offset*wordSize);
  1319     __ li(T0, AbstractInterpreter::result_handler(T_OBJECT));
  1320     __ bne(AT, T0, no_oop);
  1321     __ delayed()->nop();
  1322     __ move(V0, S1);
  1323     __ beq(V0, R0, store_result);
  1324     __ delayed()->nop();
  1325     // unbox
  1326     __ ld(V0, V0, 0);
  1327     __ bind(store_result);
  1328     __ sd(V0, FP, (frame::interpreter_frame_oop_temp_offset)*wordSize);
  1329     // keep stack depth as expected by pushing oop which will eventually be discarded
  1330     __ bind(no_oop);
  1333     Label no_reguard;
  1334     __ lw(t, thread, in_bytes(JavaThread::stack_guard_state_offset()));
  1335     __ move(AT,(int) JavaThread::stack_guard_yellow_disabled);
  1336     __ bne(t, AT, no_reguard);
  1337     __ delayed()->nop();
  1338     __ pushad();
  1339     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), relocInfo::runtime_call_type);
  1340     __ delayed()->nop();
  1341     __ popad();
  1342     //add for compressedoops
  1343     __ reinit_heapbase();
  1344     __ bind(no_reguard);
  1346   // restore esi to have legal interpreter frame,
  1347   // i.e., bci == 0 <=> esi == code_base()
  1348   // Can't call_VM until bcp is within reasonable.
  1349   __ get_method(method);      // method is junk from thread_in_native to now.
  1350   __ verify_oop(method);
  1351   __ ld(BCP, method, in_bytes(Method::const_offset()));
  1352   __ lea(BCP, Address(BCP, in_bytes(ConstMethod::codes_offset())));
  1353   // handle exceptions (exception handling will handle unlocking!)
  1355     Label L;
  1356     __ lw(t, thread, in_bytes(Thread::pending_exception_offset()));
  1357     __ beq(t, R0, L);
  1358     __ delayed()->nop();
  1359     // Note: At some point we may want to unify this with the code used in
  1360     // call_VM_base();
  1361     // i.e., we should use the StubRoutines::forward_exception code. For now this
  1362     // doesn't work here because the esp is not correctly set at this point.
  1363     __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address,
  1364     InterpreterRuntime::throw_pending_exception));
  1365     __ should_not_reach_here();
  1366     __ bind(L);
  1369   // do unlocking if necessary
  1371     Label L;
  1372     __ lw(t, method, in_bytes(Method::access_flags_offset()));
  1373     __ andi(t, t, JVM_ACC_SYNCHRONIZED);
  1374     __ beq(t, R0, L);
  1375     // the code below should be shared with interpreter macro assembler implementation
  1377       Label unlock;
  1378       // BasicObjectLock will be first in list,
  1379       // since this is a synchronized method. However, need
  1380       // to check that the object has not been unlocked by
  1381       // an explicit monitorexit bytecode.
  1382       __ delayed()->daddi(c_rarg0, FP, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
  1383       // address of first monitor
  1385       __ ld(t, c_rarg0, BasicObjectLock::obj_offset_in_bytes());
  1386       __ bne(t, R0, unlock);
  1387       __ delayed()->nop();
  1389       // Entry already unlocked, need to throw exception
  1390       __ MacroAssembler::call_VM(NOREG, CAST_FROM_FN_PTR(address,
  1391       InterpreterRuntime::throw_illegal_monitor_state_exception));
  1392       __ should_not_reach_here();
  1394       __ bind(unlock);
  1395       __ unlock_object(c_rarg0);
  1397     __ bind(L);
  1400   // jvmti/jvmpi support
  1401   // Note: This must happen _after_ handling/throwing any exceptions since
  1402   //       the exception handler code notifies the runtime of method exits
  1403   //       too. If this happens before, method entry/exit notifications are
  1404   //       not properly paired (was bug - gri 11/22/99).
  1405   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::NotifyJVMTI );
  1407   // restore potential result in V0:V1,
  1408   // call result handler to restore potential result in ST0 & handle result
  1409   //__ lw(V0, SP, 3 * wordSize);
  1410   //__ lw(V1, SP, 2 * wordSize);
  1411   //__ lwc1(F0, SP, 1 * wordSize);
  1412   //__ lwc1(F1, SP, 0 * wordSize);
  1413   //__ addi(SP, SP, 4 * wordSize);
  1414   __ move(V0, S1);
  1415   __ move(V1, S3);
  1416   __ dmtc1(S4, F0);
  1417   __ dmtc1(S2, F1);
  1418   __ ld(t, FP, (frame::interpreter_frame_result_handler_offset) * wordSize);
  1419   __ jalr(t);
  1420   __ delayed()->nop();
  1423   // remove activation
  1424   __ ld(SP, FP, frame::interpreter_frame_sender_sp_offset * wordSize); // get sender sp
  1425   __ ld(RA, FP, frame::interpreter_frame_return_addr_offset * wordSize); // get return address
  1426   __ ld(FP, FP, frame::interpreter_frame_sender_fp_offset * wordSize); // restore sender's fp
  1427   __ jr(RA);
  1428   __ delayed()->nop();
  1430 #ifndef CORE
  1431   if (inc_counter) {
  1432     // Handle overflow of counter and compile method
  1433     __ bind(invocation_counter_overflow);
  1434     generate_counter_overflow(&continue_after_compile);
  1435     // entry_point is the beginning of this
  1436     // function and checks again for compiled code
  1438 #endif
  1439   return entry_point;
  1442 //
  1443 // Generic interpreted method entry to (asm) interpreter
  1444 //
  1445 // Layout of frame just at the entry
  1446 //
  1447 //   [ argument word n-1  ] <--- sp
  1448 //     ...
  1449 //   [ argument word 0    ]
  1450 // assume Method* in Rmethod before call this method.
  1451 // prerequisites to the generated stub : the callee Method* in Rmethod
  1452 // note you must save the caller bcp before call the generated stub
  1453 //
  1454 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1455   // determine code generation flags
  1456   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1458   // Rmethod: Method*
  1459   // Rsender: sender 's sp
  1460   address entry_point = __ pc();
  1462   const Address invocation_counter(Rmethod,
  1463       in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()));
  1465   // get parameter size (always needed)
  1466   __ ld(T3, Rmethod, in_bytes(Method::const_offset()));  //T3 --> Rmethod._constMethod
  1467   __ lhu(V0, T3, in_bytes(ConstMethod::size_of_parameters_offset()));
  1469   // Rmethod: Method*
  1470   // V0: size of parameters
  1471   // Rsender: sender 's sp ,could be different frome sp+ wordSize if we call via c2i
  1472   // get size of locals in words to T2
  1473   __ lhu(T2, T3, in_bytes(ConstMethod::size_of_locals_offset()));
  1474   // T2 = no. of additional locals, locals include parameters
  1475   __ dsub(T2, T2, V0);
  1477   // see if we've got enough room on the stack for locals plus overhead.
  1478   // Layout of frame at this point
  1479   //
  1480   // [ argument word n-1  ] <--- sp
  1481   //   ...
  1482   // [ argument word 0    ]
  1483   generate_stack_overflow_check();
  1484   // after this function, the layout of frame does not change
  1486   // compute beginning of parameters (LVP)
  1487   __ dsll(LVP, V0, LogBytesPerWord);
  1488   __ daddiu(LVP, LVP, (-1) * wordSize);
  1489   __ dadd(LVP, LVP, SP);
  1491   // T2 - # of additional locals
  1492   // allocate space for locals
  1493   // explicitly initialize locals
  1495     Label exit, loop;
  1496     __ beq(T2, R0, exit);
  1497     __ delayed()->nop();
  1499     __ bind(loop);
  1500     __ sd(R0, SP, -1 * wordSize);     // initialize local variables
  1501     __ daddiu(T2, T2, -1);               // until everything initialized
  1502     __ bne(T2, R0, loop);
  1503     __ delayed();
  1505     __ daddiu(SP, SP, (-1) * wordSize); //fill delay slot
  1507     __ bind(exit);
  1510   //
  1511   // [ local var m-1  ] <--- sp
  1512   //   ...
  1513   // [ local var 0  ]
  1514   // [ argument word n-1  ] <--- T0?
  1515   //   ...
  1516   // [ argument word 0    ] <--- LVP
  1518   // initialize fixed part of activation frame
  1520   generate_fixed_frame(false);
  1523   // after this function, the layout of frame is as following
  1524   //
  1525   // [ monitor block top        ] <--- sp ( the top monitor entry )
  1526   // [ byte code pointer        ] (if native, bcp = 0)
  1527   // [ constant pool cache      ]
  1528   // [ Method*                ]
  1529   // [ locals offset    ]
  1530   // [ sender's sp              ]
  1531   // [ sender's fp              ] <--- fp
  1532   // [ return address           ]
  1533   // [ local var m-1            ]
  1534   //   ...
  1535   // [ local var 0              ]
  1536   // [ argumnet word n-1        ] <--- ( sender's sp )
  1537   //   ...
  1538   // [ argument word 0          ] <--- LVP
  1541   // make sure method is not native & not abstract
  1542 #ifdef ASSERT
  1543   __ ld(AT, Rmethod, in_bytes(Method::access_flags_offset()));
  1545     Label L;
  1546     __ andi(T2, AT, JVM_ACC_NATIVE);
  1547     __ beq(T2, R0, L);
  1548     __ delayed()->nop();
  1549     __ stop("tried to execute native method as non-native");
  1550     __ bind(L);
  1553     Label L;
  1554     __ andi(T2, AT, JVM_ACC_ABSTRACT);
  1555     __ beq(T2, R0, L);
  1556     __ delayed()->nop();
  1557     __ stop("tried to execute abstract method in interpreter");
  1558     __ bind(L);
  1560 #endif
  1562   // Since at this point in the method invocation the exception handler
  1563   // would try to exit the monitor of synchronized methods which hasn't
  1564   // been entered yet, we set the thread local variable
  1565   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1566   // check this flag.
  1568 #ifndef OPT_THREAD
  1569   Register thread = T8;
  1570   __ get_thread(thread);
  1571 #else
  1572   Register thread = TREG;
  1573 #endif
  1574   __ move(AT, (int)true);
  1575   __ sb(AT, thread, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1577 #ifndef CORE
  1579   // 2014/11/24 Fu
  1580   // mdp : T8
  1581   // tmp1: T9
  1582   // tmp2: T2
  1583    __ profile_parameters_type(T8, T9, T2);
  1585   // increment invocation count & check for overflow
  1586   Label invocation_counter_overflow;
  1587   Label profile_method;
  1588   Label profile_method_continue;
  1589   if (inc_counter) {
  1590     generate_counter_incr(&invocation_counter_overflow,
  1591                           &profile_method,
  1592                           &profile_method_continue);
  1593     if (ProfileInterpreter) {
  1594       __ bind(profile_method_continue);
  1598   Label continue_after_compile;
  1599   __ bind(continue_after_compile);
  1601 #endif // CORE
  1603   bang_stack_shadow_pages(false);
  1605   // reset the _do_not_unlock_if_synchronized flag
  1606 #ifndef OPT_THREAD
  1607   __ get_thread(thread);
  1608 #endif
  1609   __ sb(R0, thread, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1611   // check for synchronized methods
  1612   // Must happen AFTER invocation_counter check and stack overflow check,
  1613   // so method is not locked if overflows.
  1614   //
  1615   if (synchronized) {
  1616     // Allocate monitor and lock method
  1617     lock_method();
  1618   } else {
  1619     // no synchronization necessary
  1620 #ifdef ASSERT
  1621     { Label L;
  1622       __ lw(AT, Rmethod, in_bytes(Method::access_flags_offset()));
  1623       __ andi(T2, AT, JVM_ACC_SYNCHRONIZED);
  1624       __ beq(T2, R0, L);
  1625       __ delayed()->nop();
  1626       __ stop("method needs synchronization");
  1627       __ bind(L);
  1629 #endif
  1632   // layout of frame after lock_method
  1633   // [ monitor entry        ] <--- sp
  1634   //   ...
  1635   // [ monitor entry        ]
  1636   // [ monitor block top        ] ( the top monitor entry )
  1637   // [ byte code pointer        ] (if native, bcp = 0)
  1638   // [ constant pool cache      ]
  1639   // [ Method*                ]
  1640   // [ locals offset        ]
  1641   // [ sender's sp              ]
  1642   // [ sender's fp              ]
  1643   // [ return address           ] <--- fp
  1644   // [ local var m-1            ]
  1645   //   ...
  1646   // [ local var 0              ]
  1647   // [ argumnet word n-1        ] <--- ( sender's sp )
  1648   //   ...
  1649   // [ argument word 0          ] <--- LVP
  1652   // start execution
  1653 #ifdef ASSERT
  1655     Label L;
  1656     __ ld(AT, FP, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1657     __ beq(AT, SP, L);
  1658     __ delayed()->nop();
  1659     __ stop("broken stack frame setup in interpreter in native");
  1660     __ bind(L);
  1662 #endif
  1664   // jvmti/jvmpi support
  1665   __ notify_method_entry();
  1667   __ dispatch_next(vtos);
  1669   // invocation counter overflow
  1670   if (inc_counter) {
  1671     if (ProfileInterpreter) {
  1672       // We have decided to profile this method in the interpreter
  1673       __ bind(profile_method);
  1674       __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  1675                  InterpreterRuntime::profile_method));
  1676       __ set_method_data_pointer_for_bcp();
  1677       __ get_method(Rmethod);
  1678       __ b(profile_method_continue);
  1679       __ delayed()->nop();
  1681     // Handle overflow of counter and compile method
  1682     __ bind(invocation_counter_overflow);
  1683     generate_counter_overflow(&continue_after_compile);
  1686   return entry_point;
  1689 // Entry points
  1690 //
  1691 // Here we generate the various kind of entries into the interpreter.
  1692 // The two main entry type are generic bytecode methods and native
  1693 // call method.  These both come in synchronized and non-synchronized
  1694 // versions but the frame layout they create is very similar. The
  1695 // other method entry types are really just special purpose entries
  1696 // that are really entry and interpretation all in one. These are for
  1697 // trivial methods like accessor, empty, or special math methods.
  1698 //
  1699 // When control flow reaches any of the entry types for the interpreter
  1700 // the following holds ->
  1701 //
  1702 // Arguments:
  1703 //
  1704 // Rmethod: Method*
  1705 // V0: receiver
  1706 //
  1707 //
  1708 // Stack layout immediately at entry
  1709 //
  1710 // [ parameter n-1      ] <--- sp
  1711 //   ...
  1712 // [ parameter 0        ]
  1713 // [ expression stack   ] (caller's java expression stack)
  1715 // Assuming that we don't go to one of the trivial specialized entries
  1716 // the stack will look like below when we are ready to execute the
  1717 // first bytecode (or call the native routine). The register usage
  1718 // will be as the template based interpreter expects (see
  1719 // interpreter_amd64.hpp).
  1720 //
  1721 // local variables follow incoming parameters immediately; i.e.
  1722 // the return address is moved to the end of the locals).
  1723 //
  1724 // [ monitor entry        ] <--- sp
  1725 //   ...
  1726 // [ monitor entry        ]
  1727 // [ monitor block top        ] ( the top monitor entry )
  1728 // [ byte code pointer        ] (if native, bcp = 0)
  1729 // [ constant pool cache      ]
  1730 // [ Method*                ]
  1731 // [ locals offset        ]
  1732 // [ sender's sp              ]
  1733 // [ sender's fp              ]
  1734 // [ return address           ] <--- fp
  1735 // [ local var m-1            ]
  1736 //   ...
  1737 // [ local var 0              ]
  1738 // [ argumnet word n-1        ] <--- ( sender's sp )
  1739 //   ...
  1740 // [ argument word 0          ] <--- S7
  1742 address AbstractInterpreterGenerator::generate_method_entry(
  1743                                         AbstractInterpreter::MethodKind kind) {
  1744   // determine code generation flags
  1745   bool synchronized = false;
  1746   address entry_point = NULL;
  1747   switch (kind) {
  1748     case Interpreter::zerolocals             :
  1749       break;
  1750     case Interpreter::zerolocals_synchronized:
  1751       synchronized = true;
  1752       break;
  1753     case Interpreter::native                 :
  1754       entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);
  1755       break;
  1756     case Interpreter::native_synchronized    :
  1757       entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);
  1758       break;
  1759     case Interpreter::empty                  :
  1760       entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();
  1761       break;
  1762     case Interpreter::accessor               :
  1763       entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();
  1764       break;
  1765     case Interpreter::abstract               :
  1766       entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();
  1767       break;
  1769     case Interpreter::java_lang_math_sin     : // fall thru
  1770     case Interpreter::java_lang_math_cos     : // fall thru
  1771     case Interpreter::java_lang_math_tan     : // fall thru
  1772     case Interpreter::java_lang_math_log     : // fall thru
  1773     case Interpreter::java_lang_math_log10   : // fall thru
  1774     case Interpreter::java_lang_math_pow     : // fall thru
  1775     case Interpreter::java_lang_math_exp     : break;
  1776     case Interpreter::java_lang_math_abs     : // fall thru
  1777     case Interpreter::java_lang_math_sqrt    :
  1778       entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);    break;
  1779     case Interpreter::java_lang_ref_reference_get:
  1780       entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
  1781     default:
  1782       fatal(err_msg("unexpected method kind: %d", kind));
  1783       break;
  1785   if (entry_point) return entry_point;
  1787   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
  1790 // These should never be compiled since the interpreter will prefer
  1791 // the compiled version to the intrinsic version.
  1792 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1793   switch (method_kind(m)) {
  1794     case Interpreter::java_lang_math_sin     : // fall thru
  1795     case Interpreter::java_lang_math_cos     : // fall thru
  1796     case Interpreter::java_lang_math_tan     : // fall thru
  1797     case Interpreter::java_lang_math_abs     : // fall thru
  1798     case Interpreter::java_lang_math_log     : // fall thru
  1799     case Interpreter::java_lang_math_log10   : // fall thru
  1800     case Interpreter::java_lang_math_sqrt    : // fall thru
  1801     case Interpreter::java_lang_math_pow     : // fall thru
  1802     case Interpreter::java_lang_math_exp     :
  1803       return false;
  1804     default:
  1805       return true;
  1809 // How much stack a method activation needs in words.
  1810 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  1812   const int entry_size    = frame::interpreter_frame_monitor_size();
  1814   // total overhead size: entry_size + (saved ebp thru expr stack bottom).
  1815   // be sure to change this if you add/subtract anything to/from the overhead area
  1816   const int overhead_size = -(frame::interpreter_frame_initial_sp_offset) + entry_size;
  1818   const int stub_code = 6;  // see generate_call_stub
  1819   // return overhead_size + method->max_locals() + method->max_stack() + stub_code;
  1820   const int method_stack = (method->max_locals() + method->max_stack()) *
  1821           Interpreter::stackElementWords;
  1822   return overhead_size + method_stack + stub_code;
  1825 void AbstractInterpreter::layout_activation(Method* method,
  1826                                            int tempcount,
  1827                                            int popframe_extra_args,
  1828                                            int moncount,
  1829                                            int caller_actual_parameters,
  1830                                            int callee_param_count,
  1831                                            int callee_locals,
  1832                                            frame* caller,
  1833                                            frame* interpreter_frame,
  1834                                            bool is_top_frame,
  1835                                            bool is_bottom_frame) {
  1836   // Note: This calculation must exactly parallel the frame setup
  1837   // in AbstractInterpreterGenerator::generate_method_entry.
  1838   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  1839   // The frame interpreter_frame, if not NULL, is guaranteed to be the
  1840   // right size, as determined by a previous call to this method.
  1841   // It is also guaranteed to be walkable even though it is in a skeletal state
  1843   // fixed size of an interpreter frame:
  1845   int max_locals = method->max_locals() * Interpreter::stackElementWords;
  1846   int extra_locals = (method->max_locals() - method->size_of_parameters()) * Interpreter::stackElementWords;
  1848 #ifdef ASSERT
  1849   if (!EnableInvokeDynamic) {
  1850     // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
  1851     // Probably, since deoptimization doesn't work yet.
  1852     assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  1854   assert(caller->sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable(2)");
  1855 #endif
  1857     interpreter_frame->interpreter_frame_set_method(method);
  1858     // NOTE the difference in using sender_sp and interpreter_frame_sender_sp
  1859     // interpreter_frame_sender_sp is the original sp of the caller (the unextended_sp)
  1860     // and sender_sp is fp+8
  1861     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
  1863 #ifdef ASSERT
  1864   if (caller->is_interpreted_frame()) {
  1865     assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
  1867 #endif
  1869   interpreter_frame->interpreter_frame_set_locals(locals);
  1870   BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
  1871   BasicObjectLock* monbot = montop - moncount;
  1872   interpreter_frame->interpreter_frame_set_monitor_end(montop - moncount);
  1874   //set last sp;
  1875   intptr_t*  esp = (intptr_t*) monbot - tempcount*Interpreter::stackElementWords -
  1876                       popframe_extra_args;
  1877   interpreter_frame->interpreter_frame_set_last_sp(esp);
  1878   // All frames but the initial interpreter frame we fill in have a
  1879   // value for sender_sp that allows walking the stack but isn't
  1880   // truly correct. Correct the value here.
  1881   //
  1882     if (extra_locals != 0 &&
  1883         interpreter_frame->sender_sp() == interpreter_frame->interpreter_frame_sender_sp() ) {
  1884       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() + extra_locals);
  1886     *interpreter_frame->interpreter_frame_cache_addr() = method->constants()->cache();
  1889 //-----------------------------------------------------------------------------
  1890 // Exceptions
  1892 void TemplateInterpreterGenerator::generate_throw_exception() {
  1893   // Entry point in previous activation (i.e., if the caller was
  1894   // interpreted)
  1895   Interpreter::_rethrow_exception_entry = __ pc();
  1896   // Restore sp to interpreter_frame_last_sp even though we are going
  1897   // to empty the expression stack for the exception processing.
  1898   __ sd(R0,FP, frame::interpreter_frame_last_sp_offset * wordSize);
  1900   // V0: exception
  1901   // V1: return address/pc that threw exception
  1902   __ restore_bcp();                              // esi points to call/send
  1903   __ restore_locals();
  1905   //add for compressedoops
  1906   __ reinit_heapbase();
  1907   // Entry point for exceptions thrown within interpreter code
  1908   Interpreter::_throw_exception_entry = __ pc();
  1909   // expression stack is undefined here
  1910   // V0: exception
  1911   // BCP: exception bcp
  1912   __ verify_oop(V0);
  1914   // expression stack must be empty before entering the VM in case of an exception
  1915   __ empty_expression_stack();
  1916   // find exception handler address and preserve exception oop
  1917   __ move(A1, V0);
  1918   __ call_VM(V1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), A1);
  1919   // V0: exception handler entry point
  1920   // V1: preserved exception oop
  1921   // S0: bcp for exception handler
  1922   __ daddi(SP, SP, (-1) * wordSize);
  1923   __ sd(V1, SP, 0);                              // push exception which is now the only value on the stack
  1924   __ jr(V0);                                   // jump to exception handler (may be _remove_activation_entry!)
  1925   __ delayed()->nop();
  1927   // If the exception is not handled in the current frame the frame is removed and
  1928   // the exception is rethrown (i.e. exception continuation is _rethrow_exception).
  1929   //
  1930   // Note: At this point the bci is still the bxi for the instruction which caused
  1931   //       the exception and the expression stack is empty. Thus, for any VM calls
  1932   //       at this point, GC will find a legal oop map (with empty expression stack).
  1934   // In current activation
  1935   // V0: exception
  1936   // BCP: exception bcp
  1938   //
  1939   // JVMTI PopFrame support
  1940   //
  1942   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1943   __ empty_expression_stack();
  1944   // Set the popframe_processing bit in pending_popframe_condition indicating that we are
  1945   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1946   // popframe handling cycles.
  1947 #ifndef OPT_THREAD
  1948   Register thread = T2;
  1949   __ get_thread(T2);
  1950 #else
  1951   Register thread = TREG;
  1952 #endif
  1953   __ lw(T3, thread, in_bytes(JavaThread::popframe_condition_offset()));
  1954   __ ori(T3, T3, JavaThread::popframe_processing_bit);
  1955   __ sw(T3, thread, in_bytes(JavaThread::popframe_condition_offset()));
  1957 #ifndef CORE
  1959     // Check to see whether we are returning to a deoptimized frame.
  1960     // (The PopFrame call ensures that the caller of the popped frame is
  1961     // either interpreted or compiled and deoptimizes it if compiled.)
  1962     // In this case, we can't call dispatch_next() after the frame is
  1963     // popped, but instead must save the incoming arguments and restore
  1964     // them after deoptimization has occurred.
  1965     //
  1966     // Note that we don't compare the return PC against the
  1967     // deoptimization blob's unpack entry because of the presence of
  1968     // adapter frames in C2.
  1969     Label caller_not_deoptimized;
  1970     __ ld(A0, FP, frame::return_addr_offset * wordSize);
  1971     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), A0);
  1972     __ bne(V0, R0, caller_not_deoptimized);
  1973     __ delayed()->nop();
  1975     // Compute size of arguments for saving when returning to deoptimized caller
  1976     __ get_method(A1);
  1977     __ verify_oop(A1);
  1978     __ ld(A1,A1,in_bytes(Method::const_offset()));
  1979     __ lhu(A1, A1, in_bytes(ConstMethod::size_of_parameters_offset()));
  1980     __ shl(A1, Interpreter::logStackElementSize);
  1981     __ restore_locals();
  1982     __ dsub(A2, LVP, T0);
  1983     __ daddiu(A2, A2, wordSize);
  1984     // Save these arguments
  1985 #ifndef OPT_THREAD
  1986     __ get_thread(A0);
  1987 #else
  1988     __ move(A0, TREG);
  1989 #endif
  1990     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), A0, A1, A2);
  1992     __ remove_activation(vtos, T9, false, false, false);
  1994     // Inform deoptimization that it is responsible for restoring these arguments
  1995 #ifndef OPT_THREAD
  1996     __ get_thread(thread);
  1997 #endif
  1998     __ move(AT, JavaThread::popframe_force_deopt_reexecution_bit);
  1999     __ sw(AT, thread, in_bytes(JavaThread::popframe_condition_offset()));
  2000     // Continue in deoptimization handler
  2001     __ jr(T9);
  2002     __ delayed()->nop();
  2004     __ bind(caller_not_deoptimized);
  2006 #endif /* !CORE */
  2008   __ remove_activation(vtos, T3,
  2009                        /* throw_monitor_exception */ false,
  2010                        /* install_monitor_exception */ false,
  2011                        /* notify_jvmdi */ false);
  2013   // Clear the popframe condition flag
  2014   // Finish with popframe handling
  2015   // A previous I2C followed by a deoptimization might have moved the
  2016   // outgoing arguments further up the stack. PopFrame expects the
  2017   // mutations to those outgoing arguments to be preserved and other
  2018   // constraints basically require this frame to look exactly as
  2019   // though it had previously invoked an interpreted activation with
  2020   // no space between the top of the expression stack (current
  2021   // last_sp) and the top of stack. Rather than force deopt to
  2022   // maintain this kind of invariant all the time we call a small
  2023   // fixup routine to move the mutated arguments onto the top of our
  2024   // expression stack if necessary.
  2025   __ move(T8, SP);
  2026   __ ld(A2, FP, frame::interpreter_frame_last_sp_offset * wordSize);
  2027 #ifndef OPT_THREAD
  2028   __ get_thread(thread);
  2029 #endif
  2030   // PC must point into interpreter here
  2031   __ set_last_Java_frame(thread, noreg, FP, __ pc());
  2032   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, T8, A2);
  2033   __ reset_last_Java_frame(thread, true, true);
  2034   // Restore the last_sp and null it out
  2035   __ ld(SP, FP, frame::interpreter_frame_last_sp_offset * wordSize);
  2036   __ sd(R0, FP, frame::interpreter_frame_last_sp_offset * wordSize);
  2040   __ move(AT, JavaThread::popframe_inactive);
  2041   __ sw(AT, thread, in_bytes(JavaThread::popframe_condition_offset()));
  2043   // Finish with popframe handling
  2044   __ restore_bcp();
  2045   __ restore_locals();
  2046 #ifndef CORE
  2047   // The method data pointer was incremented already during
  2048   // call profiling. We have to restore the mdp for the current bcp.
  2049   if (ProfileInterpreter) {
  2050     __ set_method_data_pointer_for_bcp();
  2052 #endif // !CORE
  2053   // Clear the popframe condition flag
  2054 #ifndef OPT_THREAD
  2055   __ get_thread(thread);
  2056 #endif
  2057   __ move(AT, JavaThread::popframe_inactive);
  2058   __ sw(AT, thread, in_bytes(JavaThread::popframe_condition_offset()));
  2059   __ dispatch_next(vtos);
  2060   // end of PopFrame support
  2062   Interpreter::_remove_activation_entry = __ pc();
  2064   // preserve exception over this code sequence
  2065   __ ld(T0, SP, 0);
  2066   __ daddi(SP, SP, wordSize);
  2067 #ifndef OPT_THREAD
  2068   __ get_thread(thread);
  2069 #endif
  2070   __ sd(T0, thread, in_bytes(JavaThread::vm_result_offset()));
  2071   // remove the activation (without doing throws on illegalMonitorExceptions)
  2072   __ remove_activation(vtos, T3, false, true, false);
  2073   // restore exception
  2074   __ get_vm_result(T0, thread);
  2075   __ verify_oop(T0);
  2077   // Inbetween activations - previous activation type unknown yet
  2078   // compute continuation point - the continuation point expects
  2079   // the following registers set up:
  2080   //
  2081   // T0: exception                                eax
  2082   // T1: return address/pc that threw exception    edx
  2083   // SP: expression stack of caller      esp
  2084   // FP: ebp of caller          ebp
  2085   __ daddi(SP, SP, (-2) * wordSize);
  2086   __ sd(T0, SP, wordSize);      // save exception
  2087   __ sd(T3, SP, 0);                               // save return address
  2088   __ move(A1, T3);
  2089   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, A1);
  2090   __ move(T9, V0);                             // save exception handler
  2091   __ ld(V0, SP, wordSize);        // restore exception
  2092   __ ld(V1, SP, 0);                               // restore return address
  2093   __ daddi(SP, SP, 2 * wordSize);
  2095   // Note that an "issuing PC" is actually the next PC after the call
  2096   __ jr(T9);                                   // jump to exception handler of caller
  2097   __ delayed()->nop();
  2101 //
  2102 // JVMTI ForceEarlyReturn support
  2103 //
  2104 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  2105   address entry = __ pc();
  2106   __ restore_bcp();
  2107   __ restore_locals();
  2108   __ empty_expression_stack();
  2109   __ empty_FPU_stack();
  2110   __ load_earlyret_value(state);
  2112 #ifndef OPT_THREAD
  2113   __ get_thread(TREG);
  2114 #endif
  2115    __ ld_ptr(T9, TREG, in_bytes(JavaThread::jvmti_thread_state_offset()));
  2116   //const Address cond_addr(ecx, JvmtiThreadState::earlyret_state_offset());
  2117   const Address cond_addr(T9, in_bytes(JvmtiThreadState::earlyret_state_offset()));
  2118   // Clear the earlyret state
  2119     __ move(AT,JvmtiThreadState::earlyret_inactive);
  2120     __ sw(AT,cond_addr);
  2121     __ sync();
  2124     __ remove_activation(state, T0,
  2125                          false, /* throw_monitor_exception */
  2126                          false, /* install_monitor_exception */
  2127                          true); /* notify_jvmdi */
  2128     __ sync();
  2129     __ jr(T0);
  2130     __ delayed()->nop();
  2131   return entry;
  2132 } // end of ForceEarlyReturn support
  2135 //-----------------------------------------------------------------------------
  2136 // Helper for vtos entry point generation
  2138 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
  2139                                                          address& bep,
  2140                                                          address& cep,
  2141                                                          address& sep,
  2142                                                          address& aep,
  2143                                                          address& iep,
  2144                                                          address& lep,
  2145                                                          address& fep,
  2146                                                          address& dep,
  2147                                                          address& vep) {
  2148   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  2149   Label L;
  2150   fep = __ pc(); __ push(ftos); __ b(L); __ delayed()->nop();
  2151   dep = __ pc(); __ push(dtos); __ b(L); __ delayed()->nop();
  2152   lep = __ pc(); __ push(ltos); __ b(L); __ delayed()->nop();
  2153   aep  =__ pc(); __ push(atos); __ b(L); __ delayed()->nop();
  2154   bep = cep = sep =
  2155   iep = __ pc(); __ push(itos);
  2156   vep = __ pc();
  2157   __ bind(L);
  2158   generate_and_dispatch(t);
  2162 //-----------------------------------------------------------------------------
  2163 // Generation of individual instructions
  2165 // helpers for generate_and_dispatch
  2168 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  2169   : TemplateInterpreterGenerator(code) {
  2170    generate_all(); // down here so it can be "virtual"
  2173 //-----------------------------------------------------------------------------
  2175 // Non-product code
  2176 #ifndef PRODUCT
  2177 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  2178   address entry = __ pc();
  2180   // prepare expression stack
  2181   __ push(state);       // save tosca
  2183   // tos & tos2, added by yjl 7/15/2005
  2184   // trace_bytecode need actually 4 args, the last two is tos&tos2
  2185   // this work fine for x86. but mips o32 call convention will store A2-A3
  2186   // to the stack position it think is the tos&tos2
  2187   // when the expression stack have no more than 2 data, error occur.
  2188   __ ld(A2, SP, 0);
  2189   __ ld(A3, SP, 1 * wordSize);
  2191   // pass arguments & call tracer
  2192   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), RA, A2, A3);
  2193   __ move(RA, V0);    // make sure return address is not destroyed by pop(state)
  2195   // restore expression stack
  2196   __ pop(state);        // restore tosca
  2198   // return
  2199   __ jr(RA);
  2200   __ delayed()->nop();
  2202   return entry;
  2205 void TemplateInterpreterGenerator::count_bytecode() {
  2206   __ li(T8, (long)&BytecodeCounter::_counter_value);
  2207   __ lw(AT, T8, 0);
  2208   __ daddi(AT, AT, 1);
  2209   __ sw(AT, T8, 0);
  2212 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  2213   __ li(T8, (long)&BytecodeHistogram::_counters[t->bytecode()]);
  2214   __ lw(AT, T8, 0);
  2215   __ daddi(AT, AT, 1);
  2216   __ sw(AT, T8, 0);
  2219 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  2220   __ li(T8, (long)&BytecodePairHistogram::_index);
  2221   __ lw(T9, T8, 0);
  2222   __ dsrl(T9, T9, BytecodePairHistogram::log2_number_of_codes);
  2223   __ li(T8, ((long)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
  2224   __ orr(T9, T9, T8);
  2225   __ li(T8, (long)&BytecodePairHistogram::_index);
  2226   __ sw(T9, T8, 0);
  2227   __ dsll(T9, T9, 2);
  2228   __ li(T8, (long)BytecodePairHistogram::_counters);
  2229   __ dadd(T8, T8, T9);
  2230   __ lw(AT, T8, 0);
  2231   __ daddi(AT, AT, 1);
  2232   __ sw(AT, T8, 0);
  2236 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  2237   // Call a little run-time stub to avoid blow-up for each bytecode.
  2238   // The run-time runtime saves the right registers, depending on
  2239   // the tosca in-state for the given template.
  2241   address entry = Interpreter::trace_code(t->tos_in());
  2242   assert(entry != NULL, "entry must have been generated");
  2243   __ call(entry, relocInfo::none);
  2244   __ delayed()->nop();
  2245   //add for compressedoops
  2246   __ reinit_heapbase();
  2250 void TemplateInterpreterGenerator::stop_interpreter_at() {
  2251   Label L;
  2252   __ li(T8, long(&BytecodeCounter::_counter_value));
  2253   __ lw(T8, T8, 0);
  2254   __ move(AT, StopInterpreterAt);
  2255   __ bne(T8, AT, L);
  2256   __ delayed()->nop();
  2257   __ call(CAST_FROM_FN_PTR(address, os::breakpoint), relocInfo::runtime_call_type);
  2258   __ delayed()->nop();
  2259   __ bind(L);
  2261 #endif // !PRODUCT
  2262 #endif // ! CC_INTERP

mercurial