src/share/vm/runtime/sharedRuntime.cpp

Sat, 28 Mar 2009 15:47:29 -0700

author
ysr
date
Sat, 28 Mar 2009 15:47:29 -0700
changeset 1114
cea947c8a988
parent 1063
7bb995fbd3c0
child 1100
c89f86385056
permissions
-rw-r--r--

6819891: ParNew: Fix work queue overflow code to deal correctly with +UseCompressedOops
Summary: When using compressed oops, rather than chaining the overflowed grey objects' pre-images through their klass words, we use GC-worker thread-local overflow stacks.
Reviewed-by: jcoomes, jmasa

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_sharedRuntime.cpp.incl"
    27 #include <math.h>
    29 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
    30 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
    31                       char*, int, char*, int, char*, int);
    32 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
    33                       char*, int, char*, int, char*, int);
    35 // Implementation of SharedRuntime
    37 #ifndef PRODUCT
    38 // For statistics
    39 int SharedRuntime::_ic_miss_ctr = 0;
    40 int SharedRuntime::_wrong_method_ctr = 0;
    41 int SharedRuntime::_resolve_static_ctr = 0;
    42 int SharedRuntime::_resolve_virtual_ctr = 0;
    43 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
    44 int SharedRuntime::_implicit_null_throws = 0;
    45 int SharedRuntime::_implicit_div0_throws = 0;
    46 int SharedRuntime::_throw_null_ctr = 0;
    48 int SharedRuntime::_nof_normal_calls = 0;
    49 int SharedRuntime::_nof_optimized_calls = 0;
    50 int SharedRuntime::_nof_inlined_calls = 0;
    51 int SharedRuntime::_nof_megamorphic_calls = 0;
    52 int SharedRuntime::_nof_static_calls = 0;
    53 int SharedRuntime::_nof_inlined_static_calls = 0;
    54 int SharedRuntime::_nof_interface_calls = 0;
    55 int SharedRuntime::_nof_optimized_interface_calls = 0;
    56 int SharedRuntime::_nof_inlined_interface_calls = 0;
    57 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
    58 int SharedRuntime::_nof_removable_exceptions = 0;
    60 int SharedRuntime::_new_instance_ctr=0;
    61 int SharedRuntime::_new_array_ctr=0;
    62 int SharedRuntime::_multi1_ctr=0;
    63 int SharedRuntime::_multi2_ctr=0;
    64 int SharedRuntime::_multi3_ctr=0;
    65 int SharedRuntime::_multi4_ctr=0;
    66 int SharedRuntime::_multi5_ctr=0;
    67 int SharedRuntime::_mon_enter_stub_ctr=0;
    68 int SharedRuntime::_mon_exit_stub_ctr=0;
    69 int SharedRuntime::_mon_enter_ctr=0;
    70 int SharedRuntime::_mon_exit_ctr=0;
    71 int SharedRuntime::_partial_subtype_ctr=0;
    72 int SharedRuntime::_jbyte_array_copy_ctr=0;
    73 int SharedRuntime::_jshort_array_copy_ctr=0;
    74 int SharedRuntime::_jint_array_copy_ctr=0;
    75 int SharedRuntime::_jlong_array_copy_ctr=0;
    76 int SharedRuntime::_oop_array_copy_ctr=0;
    77 int SharedRuntime::_checkcast_array_copy_ctr=0;
    78 int SharedRuntime::_unsafe_array_copy_ctr=0;
    79 int SharedRuntime::_generic_array_copy_ctr=0;
    80 int SharedRuntime::_slow_array_copy_ctr=0;
    81 int SharedRuntime::_find_handler_ctr=0;
    82 int SharedRuntime::_rethrow_ctr=0;
    84 int     SharedRuntime::_ICmiss_index                    = 0;
    85 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
    86 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
    88 void SharedRuntime::trace_ic_miss(address at) {
    89   for (int i = 0; i < _ICmiss_index; i++) {
    90     if (_ICmiss_at[i] == at) {
    91       _ICmiss_count[i]++;
    92       return;
    93     }
    94   }
    95   int index = _ICmiss_index++;
    96   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
    97   _ICmiss_at[index] = at;
    98   _ICmiss_count[index] = 1;
    99 }
   101 void SharedRuntime::print_ic_miss_histogram() {
   102   if (ICMissHistogram) {
   103     tty->print_cr ("IC Miss Histogram:");
   104     int tot_misses = 0;
   105     for (int i = 0; i < _ICmiss_index; i++) {
   106       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   107       tot_misses += _ICmiss_count[i];
   108     }
   109     tty->print_cr ("Total IC misses: %7d", tot_misses);
   110   }
   111 }
   112 #endif // PRODUCT
   114 #ifndef SERIALGC
   116 // G1 write-barrier pre: executed before a pointer store.
   117 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   118   if (orig == NULL) {
   119     assert(false, "should be optimized out");
   120     return;
   121   }
   122   // store the original value that was in the field reference
   123   thread->satb_mark_queue().enqueue(orig);
   124 JRT_END
   126 // G1 write-barrier post: executed after a pointer store.
   127 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   128   thread->dirty_card_queue().enqueue(card_addr);
   129 JRT_END
   131 #endif // !SERIALGC
   134 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   135   return x * y;
   136 JRT_END
   139 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   140   if (x == min_jlong && y == CONST64(-1)) {
   141     return x;
   142   } else {
   143     return x / y;
   144   }
   145 JRT_END
   148 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   149   if (x == min_jlong && y == CONST64(-1)) {
   150     return 0;
   151   } else {
   152     return x % y;
   153   }
   154 JRT_END
   157 const juint  float_sign_mask  = 0x7FFFFFFF;
   158 const juint  float_infinity   = 0x7F800000;
   159 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   160 const julong double_infinity  = CONST64(0x7FF0000000000000);
   162 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   163 #ifdef _WIN64
   164   // 64-bit Windows on amd64 returns the wrong values for
   165   // infinity operands.
   166   union { jfloat f; juint i; } xbits, ybits;
   167   xbits.f = x;
   168   ybits.f = y;
   169   // x Mod Infinity == x unless x is infinity
   170   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   171        ((ybits.i & float_sign_mask) == float_infinity) ) {
   172     return x;
   173   }
   174 #endif
   175   return ((jfloat)fmod((double)x,(double)y));
   176 JRT_END
   179 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   180 #ifdef _WIN64
   181   union { jdouble d; julong l; } xbits, ybits;
   182   xbits.d = x;
   183   ybits.d = y;
   184   // x Mod Infinity == x unless x is infinity
   185   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   186        ((ybits.l & double_sign_mask) == double_infinity) ) {
   187     return x;
   188   }
   189 #endif
   190   return ((jdouble)fmod((double)x,(double)y));
   191 JRT_END
   194 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   195   if (g_isnan(x))
   196     return 0;
   197   if (x >= (jfloat) max_jint)
   198     return max_jint;
   199   if (x <= (jfloat) min_jint)
   200     return min_jint;
   201   return (jint) x;
   202 JRT_END
   205 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   206   if (g_isnan(x))
   207     return 0;
   208   if (x >= (jfloat) max_jlong)
   209     return max_jlong;
   210   if (x <= (jfloat) min_jlong)
   211     return min_jlong;
   212   return (jlong) x;
   213 JRT_END
   216 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   217   if (g_isnan(x))
   218     return 0;
   219   if (x >= (jdouble) max_jint)
   220     return max_jint;
   221   if (x <= (jdouble) min_jint)
   222     return min_jint;
   223   return (jint) x;
   224 JRT_END
   227 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   228   if (g_isnan(x))
   229     return 0;
   230   if (x >= (jdouble) max_jlong)
   231     return max_jlong;
   232   if (x <= (jdouble) min_jlong)
   233     return min_jlong;
   234   return (jlong) x;
   235 JRT_END
   238 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   239   return (jfloat)x;
   240 JRT_END
   243 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   244   return (jfloat)x;
   245 JRT_END
   248 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   249   return (jdouble)x;
   250 JRT_END
   252 // Exception handling accross interpreter/compiler boundaries
   253 //
   254 // exception_handler_for_return_address(...) returns the continuation address.
   255 // The continuation address is the entry point of the exception handler of the
   256 // previous frame depending on the return address.
   258 address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
   259   assert(frame::verify_return_pc(return_address), "must be a return pc");
   261   // the fastest case first
   262   CodeBlob* blob = CodeCache::find_blob(return_address);
   263   if (blob != NULL && blob->is_nmethod()) {
   264     nmethod* code = (nmethod*)blob;
   265     assert(code != NULL, "nmethod must be present");
   266     // native nmethods don't have exception handlers
   267     assert(!code->is_native_method(), "no exception handler");
   268     assert(code->header_begin() != code->exception_begin(), "no exception handler");
   269     if (code->is_deopt_pc(return_address)) {
   270       return SharedRuntime::deopt_blob()->unpack_with_exception();
   271     } else {
   272       return code->exception_begin();
   273     }
   274   }
   276   // Entry code
   277   if (StubRoutines::returns_to_call_stub(return_address)) {
   278     return StubRoutines::catch_exception_entry();
   279   }
   280   // Interpreted code
   281   if (Interpreter::contains(return_address)) {
   282     return Interpreter::rethrow_exception_entry();
   283   }
   285   // Compiled code
   286   if (CodeCache::contains(return_address)) {
   287     CodeBlob* blob = CodeCache::find_blob(return_address);
   288     if (blob->is_nmethod()) {
   289       nmethod* code = (nmethod*)blob;
   290       assert(code != NULL, "nmethod must be present");
   291       assert(code->header_begin() != code->exception_begin(), "no exception handler");
   292       return code->exception_begin();
   293     }
   294     if (blob->is_runtime_stub()) {
   295       ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
   296     }
   297   }
   298   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   299 #ifndef PRODUCT
   300   { ResourceMark rm;
   301     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   302     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   303     tty->print_cr("b) other problem");
   304   }
   305 #endif // PRODUCT
   306   ShouldNotReachHere();
   307   return NULL;
   308 }
   311 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
   312   return raw_exception_handler_for_return_address(return_address);
   313 JRT_END
   315 address SharedRuntime::get_poll_stub(address pc) {
   316   address stub;
   317   // Look up the code blob
   318   CodeBlob *cb = CodeCache::find_blob(pc);
   320   // Should be an nmethod
   321   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
   323   // Look up the relocation information
   324   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   325     "safepoint polling: type must be poll" );
   327   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   328     "Only polling locations are used for safepoint");
   330   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   331   if (at_poll_return) {
   332     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   333            "polling page return stub not created yet");
   334     stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
   335   } else {
   336     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   337            "polling page safepoint stub not created yet");
   338     stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
   339   }
   340 #ifndef PRODUCT
   341   if( TraceSafepoint ) {
   342     char buf[256];
   343     jio_snprintf(buf, sizeof(buf),
   344                  "... found polling page %s exception at pc = "
   345                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   346                  at_poll_return ? "return" : "loop",
   347                  (intptr_t)pc, (intptr_t)stub);
   348     tty->print_raw_cr(buf);
   349   }
   350 #endif // PRODUCT
   351   return stub;
   352 }
   355 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
   356   assert(caller.is_interpreted_frame(), "");
   357   int args_size = ArgumentSizeComputer(sig).size() + 1;
   358   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   359   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
   360   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   361   return result;
   362 }
   365 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   366   if (JvmtiExport::can_post_exceptions()) {
   367     vframeStream vfst(thread, true);
   368     methodHandle method = methodHandle(thread, vfst.method());
   369     address bcp = method()->bcp_from(vfst.bci());
   370     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   371   }
   372   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   373 }
   375 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
   376   Handle h_exception = Exceptions::new_exception(thread, name, message);
   377   throw_and_post_jvmti_exception(thread, h_exception);
   378 }
   380 // The interpreter code to call this tracing function is only
   381 // called/generated when TraceRedefineClasses has the right bits
   382 // set. Since obsolete methods are never compiled, we don't have
   383 // to modify the compilers to generate calls to this function.
   384 //
   385 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   386     JavaThread* thread, methodOopDesc* method))
   387   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   389   if (method->is_obsolete()) {
   390     // We are calling an obsolete method, but this is not necessarily
   391     // an error. Our method could have been redefined just after we
   392     // fetched the methodOop from the constant pool.
   394     // RC_TRACE macro has an embedded ResourceMark
   395     RC_TRACE_WITH_THREAD(0x00001000, thread,
   396                          ("calling obsolete method '%s'",
   397                           method->name_and_sig_as_C_string()));
   398     if (RC_TRACE_ENABLED(0x00002000)) {
   399       // this option is provided to debug calls to obsolete methods
   400       guarantee(false, "faulting at call to an obsolete method.");
   401     }
   402   }
   403   return 0;
   404 JRT_END
   406 // ret_pc points into caller; we are returning caller's exception handler
   407 // for given exception
   408 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   409                                                     bool force_unwind, bool top_frame_only) {
   410   assert(nm != NULL, "must exist");
   411   ResourceMark rm;
   413   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   414   // determine handler bci, if any
   415   EXCEPTION_MARK;
   417   int handler_bci = -1;
   418   int scope_depth = 0;
   419   if (!force_unwind) {
   420     int bci = sd->bci();
   421     do {
   422       bool skip_scope_increment = false;
   423       // exception handler lookup
   424       KlassHandle ek (THREAD, exception->klass());
   425       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
   426       if (HAS_PENDING_EXCEPTION) {
   427         // We threw an exception while trying to find the exception handler.
   428         // Transfer the new exception to the exception handle which will
   429         // be set into thread local storage, and do another lookup for an
   430         // exception handler for this exception, this time starting at the
   431         // BCI of the exception handler which caused the exception to be
   432         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   433         // argument to ensure that the correct exception is thrown (4870175).
   434         exception = Handle(THREAD, PENDING_EXCEPTION);
   435         CLEAR_PENDING_EXCEPTION;
   436         if (handler_bci >= 0) {
   437           bci = handler_bci;
   438           handler_bci = -1;
   439           skip_scope_increment = true;
   440         }
   441       }
   442       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   443         sd = sd->sender();
   444         if (sd != NULL) {
   445           bci = sd->bci();
   446         }
   447         ++scope_depth;
   448       }
   449     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
   450   }
   452   // found handling method => lookup exception handler
   453   int catch_pco = ret_pc - nm->instructions_begin();
   455   ExceptionHandlerTable table(nm);
   456   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   457   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   458     // Allow abbreviated catch tables.  The idea is to allow a method
   459     // to materialize its exceptions without committing to the exact
   460     // routing of exceptions.  In particular this is needed for adding
   461     // a synthethic handler to unlock monitors when inlining
   462     // synchonized methods since the unlock path isn't represented in
   463     // the bytecodes.
   464     t = table.entry_for(catch_pco, -1, 0);
   465   }
   467 #ifdef COMPILER1
   468   if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
   469     // Exception is not handled by this frame so unwind.  Note that
   470     // this is not the same as how C2 does this.  C2 emits a table
   471     // entry that dispatches to the unwind code in the nmethod.
   472     return NULL;
   473   }
   474 #endif /* COMPILER1 */
   477   if (t == NULL) {
   478     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   479     tty->print_cr("   Exception:");
   480     exception->print();
   481     tty->cr();
   482     tty->print_cr(" Compiled exception table :");
   483     table.print();
   484     nm->print_code();
   485     guarantee(false, "missing exception handler");
   486     return NULL;
   487   }
   489   return nm->instructions_begin() + t->pco();
   490 }
   492 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   493   // These errors occur only at call sites
   494   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   495 JRT_END
   497 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   498   // These errors occur only at call sites
   499   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   500 JRT_END
   502 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   503   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   504 JRT_END
   506 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   507   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   508 JRT_END
   510 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   511   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   512   // cache sites (when the callee activation is not yet set up) so we are at a call site
   513   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   514 JRT_END
   516 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   517   // We avoid using the normal exception construction in this case because
   518   // it performs an upcall to Java, and we're already out of stack space.
   519   klassOop k = SystemDictionary::StackOverflowError_klass();
   520   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
   521   Handle exception (thread, exception_oop);
   522   if (StackTraceInThrowable) {
   523     java_lang_Throwable::fill_in_stack_trace(exception);
   524   }
   525   throw_and_post_jvmti_exception(thread, exception);
   526 JRT_END
   528 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   529                                                            address pc,
   530                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   531 {
   532   address target_pc = NULL;
   534   if (Interpreter::contains(pc)) {
   535 #ifdef CC_INTERP
   536     // C++ interpreter doesn't throw implicit exceptions
   537     ShouldNotReachHere();
   538 #else
   539     switch (exception_kind) {
   540       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   541       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   542       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   543       default:                      ShouldNotReachHere();
   544     }
   545 #endif // !CC_INTERP
   546   } else {
   547     switch (exception_kind) {
   548       case STACK_OVERFLOW: {
   549         // Stack overflow only occurs upon frame setup; the callee is
   550         // going to be unwound. Dispatch to a shared runtime stub
   551         // which will cause the StackOverflowError to be fabricated
   552         // and processed.
   553         // For stack overflow in deoptimization blob, cleanup thread.
   554         if (thread->deopt_mark() != NULL) {
   555           Deoptimization::cleanup_deopt_info(thread, NULL);
   556         }
   557         return StubRoutines::throw_StackOverflowError_entry();
   558       }
   560       case IMPLICIT_NULL: {
   561         if (VtableStubs::contains(pc)) {
   562           // We haven't yet entered the callee frame. Fabricate an
   563           // exception and begin dispatching it in the caller. Since
   564           // the caller was at a call site, it's safe to destroy all
   565           // caller-saved registers, as these entry points do.
   566           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   568           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   569           if (vt_stub == NULL) return NULL;
   571           if (vt_stub->is_abstract_method_error(pc)) {
   572             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   573             return StubRoutines::throw_AbstractMethodError_entry();
   574           } else {
   575             return StubRoutines::throw_NullPointerException_at_call_entry();
   576           }
   577         } else {
   578           CodeBlob* cb = CodeCache::find_blob(pc);
   580           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   581           if (cb == NULL) return NULL;
   583           // Exception happened in CodeCache. Must be either:
   584           // 1. Inline-cache check in C2I handler blob,
   585           // 2. Inline-cache check in nmethod, or
   586           // 3. Implict null exception in nmethod
   588           if (!cb->is_nmethod()) {
   589             guarantee(cb->is_adapter_blob(),
   590                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
   591             // There is no handler here, so we will simply unwind.
   592             return StubRoutines::throw_NullPointerException_at_call_entry();
   593           }
   595           // Otherwise, it's an nmethod.  Consult its exception handlers.
   596           nmethod* nm = (nmethod*)cb;
   597           if (nm->inlinecache_check_contains(pc)) {
   598             // exception happened inside inline-cache check code
   599             // => the nmethod is not yet active (i.e., the frame
   600             // is not set up yet) => use return address pushed by
   601             // caller => don't push another return address
   602             return StubRoutines::throw_NullPointerException_at_call_entry();
   603           }
   605 #ifndef PRODUCT
   606           _implicit_null_throws++;
   607 #endif
   608           target_pc = nm->continuation_for_implicit_exception(pc);
   609           guarantee(target_pc != 0, "must have a continuation point");
   610         }
   612         break; // fall through
   613       }
   616       case IMPLICIT_DIVIDE_BY_ZERO: {
   617         nmethod* nm = CodeCache::find_nmethod(pc);
   618         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   619 #ifndef PRODUCT
   620         _implicit_div0_throws++;
   621 #endif
   622         target_pc = nm->continuation_for_implicit_exception(pc);
   623         guarantee(target_pc != 0, "must have a continuation point");
   624         break; // fall through
   625       }
   627       default: ShouldNotReachHere();
   628     }
   630     guarantee(target_pc != NULL, "must have computed destination PC for implicit exception");
   631     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   633     // for AbortVMOnException flag
   634     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   635     if (exception_kind == IMPLICIT_NULL) {
   636       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   637     } else {
   638       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   639     }
   640     return target_pc;
   641   }
   643   ShouldNotReachHere();
   644   return NULL;
   645 }
   648 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
   649 {
   650   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
   651 }
   652 JNI_END
   655 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   656   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   657 }
   660 #ifndef PRODUCT
   661 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   662   const frame f = thread->last_frame();
   663   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   664 #ifndef PRODUCT
   665   methodHandle mh(THREAD, f.interpreter_frame_method());
   666   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   667 #endif // !PRODUCT
   668   return preserve_this_value;
   669 JRT_END
   670 #endif // !PRODUCT
   673 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   674   os::yield_all(attempts);
   675 JRT_END
   678 // ---------------------------------------------------------------------------------------------------------
   679 // Non-product code
   680 #ifndef PRODUCT
   682 void SharedRuntime::verify_caller_frame(frame caller_frame, methodHandle callee_method) {
   683   ResourceMark rm;
   684   assert (caller_frame.is_interpreted_frame(), "sanity check");
   685   assert (callee_method->has_compiled_code(), "callee must be compiled");
   686   methodHandle caller_method (Thread::current(), caller_frame.interpreter_frame_method());
   687   jint bci = caller_frame.interpreter_frame_bci();
   688   methodHandle method = find_callee_method_inside_interpreter(caller_frame, caller_method, bci);
   689   assert (callee_method == method, "incorrect method");
   690 }
   692 methodHandle SharedRuntime::find_callee_method_inside_interpreter(frame caller_frame, methodHandle caller_method, int bci) {
   693   EXCEPTION_MARK;
   694   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller_method, bci);
   695   methodHandle staticCallee = bytecode->static_target(CATCH); // Non-product code
   697   bytecode = Bytecode_invoke_at(caller_method, bci);
   698   int bytecode_index = bytecode->index();
   699   Bytecodes::Code bc = bytecode->adjusted_invoke_code();
   701   Handle receiver;
   702   if (bc == Bytecodes::_invokeinterface ||
   703       bc == Bytecodes::_invokevirtual ||
   704       bc == Bytecodes::_invokespecial) {
   705     symbolHandle signature (THREAD, staticCallee->signature());
   706     receiver = Handle(THREAD, retrieve_receiver(signature, caller_frame));
   707   } else {
   708     receiver = Handle();
   709   }
   710   CallInfo result;
   711   constantPoolHandle constants (THREAD, caller_method->constants());
   712   LinkResolver::resolve_invoke(result, receiver, constants, bytecode_index, bc, CATCH); // Non-product code
   713   methodHandle calleeMethod = result.selected_method();
   714   return calleeMethod;
   715 }
   717 #endif  // PRODUCT
   720 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   721   assert(obj->is_oop(), "must be a valid oop");
   722   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
   723   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
   724 JRT_END
   727 jlong SharedRuntime::get_java_tid(Thread* thread) {
   728   if (thread != NULL) {
   729     if (thread->is_Java_thread()) {
   730       oop obj = ((JavaThread*)thread)->threadObj();
   731       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   732     }
   733   }
   734   return 0;
   735 }
   737 /**
   738  * This function ought to be a void function, but cannot be because
   739  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   740  * 6254741.  Once that is fixed we can remove the dummy return value.
   741  */
   742 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
   743   return dtrace_object_alloc_base(Thread::current(), o);
   744 }
   746 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
   747   assert(DTraceAllocProbes, "wrong call");
   748   Klass* klass = o->blueprint();
   749   int size = o->size();
   750   symbolOop name = klass->name();
   751   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   752                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   753   return 0;
   754 }
   756 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   757     JavaThread* thread, methodOopDesc* method))
   758   assert(DTraceMethodProbes, "wrong call");
   759   symbolOop kname = method->klass_name();
   760   symbolOop name = method->name();
   761   symbolOop sig = method->signature();
   762   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   763       kname->bytes(), kname->utf8_length(),
   764       name->bytes(), name->utf8_length(),
   765       sig->bytes(), sig->utf8_length());
   766   return 0;
   767 JRT_END
   769 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
   770     JavaThread* thread, methodOopDesc* method))
   771   assert(DTraceMethodProbes, "wrong call");
   772   symbolOop kname = method->klass_name();
   773   symbolOop name = method->name();
   774   symbolOop sig = method->signature();
   775   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
   776       kname->bytes(), kname->utf8_length(),
   777       name->bytes(), name->utf8_length(),
   778       sig->bytes(), sig->utf8_length());
   779   return 0;
   780 JRT_END
   783 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
   784 // for a call current in progress, i.e., arguments has been pushed on stack
   785 // put callee has not been invoked yet.  Used by: resolve virtual/static,
   786 // vtable updates, etc.  Caller frame must be compiled.
   787 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
   788   ResourceMark rm(THREAD);
   790   // last java frame on stack (which includes native call frames)
   791   vframeStream vfst(thread, true);  // Do not skip and javaCalls
   793   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
   794 }
   797 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
   798 // for a call current in progress, i.e., arguments has been pushed on stack
   799 // but callee has not been invoked yet.  Caller frame must be compiled.
   800 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
   801                                               vframeStream& vfst,
   802                                               Bytecodes::Code& bc,
   803                                               CallInfo& callinfo, TRAPS) {
   804   Handle receiver;
   805   Handle nullHandle;  //create a handy null handle for exception returns
   807   assert(!vfst.at_end(), "Java frame must exist");
   809   // Find caller and bci from vframe
   810   methodHandle caller (THREAD, vfst.method());
   811   int          bci    = vfst.bci();
   813   // Find bytecode
   814   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
   815   bc = bytecode->adjusted_invoke_code();
   816   int bytecode_index = bytecode->index();
   818   // Find receiver for non-static call
   819   if (bc != Bytecodes::_invokestatic) {
   820     // This register map must be update since we need to find the receiver for
   821     // compiled frames. The receiver might be in a register.
   822     RegisterMap reg_map2(thread);
   823     frame stubFrame   = thread->last_frame();
   824     // Caller-frame is a compiled frame
   825     frame callerFrame = stubFrame.sender(&reg_map2);
   827     methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
   828     if (callee.is_null()) {
   829       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
   830     }
   831     // Retrieve from a compiled argument list
   832     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
   834     if (receiver.is_null()) {
   835       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
   836     }
   837   }
   839   // Resolve method. This is parameterized by bytecode.
   840   constantPoolHandle constants (THREAD, caller->constants());
   841   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
   842   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
   844 #ifdef ASSERT
   845   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
   846   if (bc != Bytecodes::_invokestatic) {
   847     assert(receiver.not_null(), "should have thrown exception");
   848     KlassHandle receiver_klass (THREAD, receiver->klass());
   849     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
   850                             // klass is already loaded
   851     KlassHandle static_receiver_klass (THREAD, rk);
   852     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
   853     if (receiver_klass->oop_is_instance()) {
   854       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
   855         tty->print_cr("ERROR: Klass not yet initialized!!");
   856         receiver_klass.print();
   857       }
   858       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
   859     }
   860   }
   861 #endif
   863   return receiver;
   864 }
   866 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
   867   ResourceMark rm(THREAD);
   868   // We need first to check if any Java activations (compiled, interpreted)
   869   // exist on the stack since last JavaCall.  If not, we need
   870   // to get the target method from the JavaCall wrapper.
   871   vframeStream vfst(thread, true);  // Do not skip any javaCalls
   872   methodHandle callee_method;
   873   if (vfst.at_end()) {
   874     // No Java frames were found on stack since we did the JavaCall.
   875     // Hence the stack can only contain an entry_frame.  We need to
   876     // find the target method from the stub frame.
   877     RegisterMap reg_map(thread, false);
   878     frame fr = thread->last_frame();
   879     assert(fr.is_runtime_frame(), "must be a runtimeStub");
   880     fr = fr.sender(&reg_map);
   881     assert(fr.is_entry_frame(), "must be");
   882     // fr is now pointing to the entry frame.
   883     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
   884     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
   885   } else {
   886     Bytecodes::Code bc;
   887     CallInfo callinfo;
   888     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
   889     callee_method = callinfo.selected_method();
   890   }
   891   assert(callee_method()->is_method(), "must be");
   892   return callee_method;
   893 }
   895 // Resolves a call.
   896 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
   897                                            bool is_virtual,
   898                                            bool is_optimized, TRAPS) {
   899   methodHandle callee_method;
   900   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
   901   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
   902     int retry_count = 0;
   903     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
   904            callee_method->method_holder() != SystemDictionary::object_klass()) {
   905       // If has a pending exception then there is no need to re-try to
   906       // resolve this method.
   907       // If the method has been redefined, we need to try again.
   908       // Hack: we have no way to update the vtables of arrays, so don't
   909       // require that java.lang.Object has been updated.
   911       // It is very unlikely that method is redefined more than 100 times
   912       // in the middle of resolve. If it is looping here more than 100 times
   913       // means then there could be a bug here.
   914       guarantee((retry_count++ < 100),
   915                 "Could not resolve to latest version of redefined method");
   916       // method is redefined in the middle of resolve so re-try.
   917       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
   918     }
   919   }
   920   return callee_method;
   921 }
   923 // Resolves a call.  The compilers generate code for calls that go here
   924 // and are patched with the real destination of the call.
   925 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
   926                                            bool is_virtual,
   927                                            bool is_optimized, TRAPS) {
   929   ResourceMark rm(thread);
   930   RegisterMap cbl_map(thread, false);
   931   frame caller_frame = thread->last_frame().sender(&cbl_map);
   933   CodeBlob* cb = caller_frame.cb();
   934   guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
   935   // make sure caller is not getting deoptimized
   936   // and removed before we are done with it.
   937   // CLEANUP - with lazy deopt shouldn't need this lock
   938   nmethodLocker caller_lock((nmethod*)cb);
   941   // determine call info & receiver
   942   // note: a) receiver is NULL for static calls
   943   //       b) an exception is thrown if receiver is NULL for non-static calls
   944   CallInfo call_info;
   945   Bytecodes::Code invoke_code = Bytecodes::_illegal;
   946   Handle receiver = find_callee_info(thread, invoke_code,
   947                                      call_info, CHECK_(methodHandle()));
   948   methodHandle callee_method = call_info.selected_method();
   950   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
   951          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
   953 #ifndef PRODUCT
   954   // tracing/debugging/statistics
   955   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
   956                 (is_virtual) ? (&_resolve_virtual_ctr) :
   957                                (&_resolve_static_ctr);
   958   Atomic::inc(addr);
   960   if (TraceCallFixup) {
   961     ResourceMark rm(thread);
   962     tty->print("resolving %s%s (%s) call to",
   963       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
   964       Bytecodes::name(invoke_code));
   965     callee_method->print_short_name(tty);
   966     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
   967   }
   968 #endif
   970   // Compute entry points. This might require generation of C2I converter
   971   // frames, so we cannot be holding any locks here. Furthermore, the
   972   // computation of the entry points is independent of patching the call.  We
   973   // always return the entry-point, but we only patch the stub if the call has
   974   // not been deoptimized.  Return values: For a virtual call this is an
   975   // (cached_oop, destination address) pair. For a static call/optimized
   976   // virtual this is just a destination address.
   978   StaticCallInfo static_call_info;
   979   CompiledICInfo virtual_call_info;
   982   // Make sure the callee nmethod does not get deoptimized and removed before
   983   // we are done patching the code.
   984   nmethod* nm = callee_method->code();
   985   nmethodLocker nl_callee(nm);
   986 #ifdef ASSERT
   987   address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
   988 #endif
   990   if (is_virtual) {
   991     assert(receiver.not_null(), "sanity check");
   992     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
   993     KlassHandle h_klass(THREAD, receiver->klass());
   994     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
   995                      is_optimized, static_bound, virtual_call_info,
   996                      CHECK_(methodHandle()));
   997   } else {
   998     // static call
   999     CompiledStaticCall::compute_entry(callee_method, static_call_info);
  1002   // grab lock, check for deoptimization and potentially patch caller
  1004     MutexLocker ml_patch(CompiledIC_lock);
  1006     // Now that we are ready to patch if the methodOop was redefined then
  1007     // don't update call site and let the caller retry.
  1009     if (!callee_method->is_old()) {
  1010 #ifdef ASSERT
  1011       // We must not try to patch to jump to an already unloaded method.
  1012       if (dest_entry_point != 0) {
  1013         assert(CodeCache::find_blob(dest_entry_point) != NULL,
  1014                "should not unload nmethod while locked");
  1016 #endif
  1017       if (is_virtual) {
  1018         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1019         if (inline_cache->is_clean()) {
  1020           inline_cache->set_to_monomorphic(virtual_call_info);
  1022       } else {
  1023         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1024         if (ssc->is_clean()) ssc->set(static_call_info);
  1028   } // unlock CompiledIC_lock
  1030   return callee_method;
  1034 // Inline caches exist only in compiled code
  1035 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1036 #ifdef ASSERT
  1037   RegisterMap reg_map(thread, false);
  1038   frame stub_frame = thread->last_frame();
  1039   assert(stub_frame.is_runtime_frame(), "sanity check");
  1040   frame caller_frame = stub_frame.sender(&reg_map);
  1041   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1042 #endif /* ASSERT */
  1044   methodHandle callee_method;
  1045   JRT_BLOCK
  1046     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1047     // Return methodOop through TLS
  1048     thread->set_vm_result(callee_method());
  1049   JRT_BLOCK_END
  1050   // return compiled code entry point after potential safepoints
  1051   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1052   return callee_method->verified_code_entry();
  1053 JRT_END
  1056 // Handle call site that has been made non-entrant
  1057 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1058   // 6243940 We might end up in here if the callee is deoptimized
  1059   // as we race to call it.  We don't want to take a safepoint if
  1060   // the caller was interpreted because the caller frame will look
  1061   // interpreted to the stack walkers and arguments are now
  1062   // "compiled" so it is much better to make this transition
  1063   // invisible to the stack walking code. The i2c path will
  1064   // place the callee method in the callee_target. It is stashed
  1065   // there because if we try and find the callee by normal means a
  1066   // safepoint is possible and have trouble gc'ing the compiled args.
  1067   RegisterMap reg_map(thread, false);
  1068   frame stub_frame = thread->last_frame();
  1069   assert(stub_frame.is_runtime_frame(), "sanity check");
  1070   frame caller_frame = stub_frame.sender(&reg_map);
  1071   if (caller_frame.is_interpreted_frame() || caller_frame.is_entry_frame() ) {
  1072     methodOop callee = thread->callee_target();
  1073     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1074     thread->set_vm_result(callee);
  1075     thread->set_callee_target(NULL);
  1076     return callee->get_c2i_entry();
  1079   // Must be compiled to compiled path which is safe to stackwalk
  1080   methodHandle callee_method;
  1081   JRT_BLOCK
  1082     // Force resolving of caller (if we called from compiled frame)
  1083     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1084     thread->set_vm_result(callee_method());
  1085   JRT_BLOCK_END
  1086   // return compiled code entry point after potential safepoints
  1087   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1088   return callee_method->verified_code_entry();
  1089 JRT_END
  1092 // resolve a static call and patch code
  1093 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1094   methodHandle callee_method;
  1095   JRT_BLOCK
  1096     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1097     thread->set_vm_result(callee_method());
  1098   JRT_BLOCK_END
  1099   // return compiled code entry point after potential safepoints
  1100   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1101   return callee_method->verified_code_entry();
  1102 JRT_END
  1105 // resolve virtual call and update inline cache to monomorphic
  1106 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1107   methodHandle callee_method;
  1108   JRT_BLOCK
  1109     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1110     thread->set_vm_result(callee_method());
  1111   JRT_BLOCK_END
  1112   // return compiled code entry point after potential safepoints
  1113   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1114   return callee_method->verified_code_entry();
  1115 JRT_END
  1118 // Resolve a virtual call that can be statically bound (e.g., always
  1119 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1120 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1121   methodHandle callee_method;
  1122   JRT_BLOCK
  1123     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1124     thread->set_vm_result(callee_method());
  1125   JRT_BLOCK_END
  1126   // return compiled code entry point after potential safepoints
  1127   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1128   return callee_method->verified_code_entry();
  1129 JRT_END
  1135 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1136   ResourceMark rm(thread);
  1137   CallInfo call_info;
  1138   Bytecodes::Code bc;
  1140   // receiver is NULL for static calls. An exception is thrown for NULL
  1141   // receivers for non-static calls
  1142   Handle receiver = find_callee_info(thread, bc, call_info,
  1143                                      CHECK_(methodHandle()));
  1144   // Compiler1 can produce virtual call sites that can actually be statically bound
  1145   // If we fell thru to below we would think that the site was going megamorphic
  1146   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1147   // we'd try and do a vtable dispatch however methods that can be statically bound
  1148   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1149   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1150   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1151   // never to miss again. I don't believe C2 will produce code like this but if it
  1152   // did this would still be the correct thing to do for it too, hence no ifdef.
  1153   //
  1154   if (call_info.resolved_method()->can_be_statically_bound()) {
  1155     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1156     if (TraceCallFixup) {
  1157       RegisterMap reg_map(thread, false);
  1158       frame caller_frame = thread->last_frame().sender(&reg_map);
  1159       ResourceMark rm(thread);
  1160       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1161       callee_method->print_short_name(tty);
  1162       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1163       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1165     return callee_method;
  1168   methodHandle callee_method = call_info.selected_method();
  1170   bool should_be_mono = false;
  1172 #ifndef PRODUCT
  1173   Atomic::inc(&_ic_miss_ctr);
  1175   // Statistics & Tracing
  1176   if (TraceCallFixup) {
  1177     ResourceMark rm(thread);
  1178     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1179     callee_method->print_short_name(tty);
  1180     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1183   if (ICMissHistogram) {
  1184     MutexLocker m(VMStatistic_lock);
  1185     RegisterMap reg_map(thread, false);
  1186     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1187     // produce statistics under the lock
  1188     trace_ic_miss(f.pc());
  1190 #endif
  1192   // install an event collector so that when a vtable stub is created the
  1193   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1194   // event can't be posted when the stub is created as locks are held
  1195   // - instead the event will be deferred until the event collector goes
  1196   // out of scope.
  1197   JvmtiDynamicCodeEventCollector event_collector;
  1199   // Update inline cache to megamorphic. Skip update if caller has been
  1200   // made non-entrant or we are called from interpreted.
  1201   { MutexLocker ml_patch (CompiledIC_lock);
  1202     RegisterMap reg_map(thread, false);
  1203     frame caller_frame = thread->last_frame().sender(&reg_map);
  1204     CodeBlob* cb = caller_frame.cb();
  1205     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
  1206       // Not a non-entrant nmethod, so find inline_cache
  1207       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1208       bool should_be_mono = false;
  1209       if (inline_cache->is_optimized()) {
  1210         if (TraceCallFixup) {
  1211           ResourceMark rm(thread);
  1212           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1213           callee_method->print_short_name(tty);
  1214           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1216         should_be_mono = true;
  1217       } else {
  1218         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
  1219         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
  1221           if (receiver()->klass() == ic_oop->holder_klass()) {
  1222             // This isn't a real miss. We must have seen that compiled code
  1223             // is now available and we want the call site converted to a
  1224             // monomorphic compiled call site.
  1225             // We can't assert for callee_method->code() != NULL because it
  1226             // could have been deoptimized in the meantime
  1227             if (TraceCallFixup) {
  1228               ResourceMark rm(thread);
  1229               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1230               callee_method->print_short_name(tty);
  1231               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1233             should_be_mono = true;
  1238       if (should_be_mono) {
  1240         // We have a path that was monomorphic but was going interpreted
  1241         // and now we have (or had) a compiled entry. We correct the IC
  1242         // by using a new icBuffer.
  1243         CompiledICInfo info;
  1244         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1245         inline_cache->compute_monomorphic_entry(callee_method,
  1246                                                 receiver_klass,
  1247                                                 inline_cache->is_optimized(),
  1248                                                 false,
  1249                                                 info, CHECK_(methodHandle()));
  1250         inline_cache->set_to_monomorphic(info);
  1251       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1252         // Change to megamorphic
  1253         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1254       } else {
  1255         // Either clean or megamorphic
  1258   } // Release CompiledIC_lock
  1260   return callee_method;
  1263 //
  1264 // Resets a call-site in compiled code so it will get resolved again.
  1265 // This routines handles both virtual call sites, optimized virtual call
  1266 // sites, and static call sites. Typically used to change a call sites
  1267 // destination from compiled to interpreted.
  1268 //
  1269 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1270   ResourceMark rm(thread);
  1271   RegisterMap reg_map(thread, false);
  1272   frame stub_frame = thread->last_frame();
  1273   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1274   frame caller = stub_frame.sender(&reg_map);
  1276   // Do nothing if the frame isn't a live compiled frame.
  1277   // nmethod could be deoptimized by the time we get here
  1278   // so no update to the caller is needed.
  1280   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1282     address pc = caller.pc();
  1283     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
  1285     // Default call_addr is the location of the "basic" call.
  1286     // Determine the address of the call we a reresolving. With
  1287     // Inline Caches we will always find a recognizable call.
  1288     // With Inline Caches disabled we may or may not find a
  1289     // recognizable call. We will always find a call for static
  1290     // calls and for optimized virtual calls. For vanilla virtual
  1291     // calls it depends on the state of the UseInlineCaches switch.
  1292     //
  1293     // With Inline Caches disabled we can get here for a virtual call
  1294     // for two reasons:
  1295     //   1 - calling an abstract method. The vtable for abstract methods
  1296     //       will run us thru handle_wrong_method and we will eventually
  1297     //       end up in the interpreter to throw the ame.
  1298     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1299     //       call and between the time we fetch the entry address and
  1300     //       we jump to it the target gets deoptimized. Similar to 1
  1301     //       we will wind up in the interprter (thru a c2i with c2).
  1302     //
  1303     address call_addr = NULL;
  1305       // Get call instruction under lock because another thread may be
  1306       // busy patching it.
  1307       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1308       // Location of call instruction
  1309       if (NativeCall::is_call_before(pc)) {
  1310         NativeCall *ncall = nativeCall_before(pc);
  1311         call_addr = ncall->instruction_address();
  1315     // Check for static or virtual call
  1316     bool is_static_call = false;
  1317     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1318     // Make sure nmethod doesn't get deoptimized and removed until
  1319     // this is done with it.
  1320     // CLEANUP - with lazy deopt shouldn't need this lock
  1321     nmethodLocker nmlock(caller_nm);
  1323     if (call_addr != NULL) {
  1324       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1325       int ret = iter.next(); // Get item
  1326       if (ret) {
  1327         assert(iter.addr() == call_addr, "must find call");
  1328         if (iter.type() == relocInfo::static_call_type) {
  1329           is_static_call = true;
  1330         } else {
  1331           assert(iter.type() == relocInfo::virtual_call_type ||
  1332                  iter.type() == relocInfo::opt_virtual_call_type
  1333                 , "unexpected relocInfo. type");
  1335       } else {
  1336         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1339       // Cleaning the inline cache will force a new resolve. This is more robust
  1340       // than directly setting it to the new destination, since resolving of calls
  1341       // is always done through the same code path. (experience shows that it
  1342       // leads to very hard to track down bugs, if an inline cache gets updated
  1343       // to a wrong method). It should not be performance critical, since the
  1344       // resolve is only done once.
  1346       MutexLocker ml(CompiledIC_lock);
  1347       //
  1348       // We do not patch the call site if the nmethod has been made non-entrant
  1349       // as it is a waste of time
  1350       //
  1351       if (caller_nm->is_in_use()) {
  1352         if (is_static_call) {
  1353           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1354           ssc->set_to_clean();
  1355         } else {
  1356           // compiled, dispatched call (which used to call an interpreted method)
  1357           CompiledIC* inline_cache = CompiledIC_at(call_addr);
  1358           inline_cache->set_to_clean();
  1365   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1368 #ifndef PRODUCT
  1369   Atomic::inc(&_wrong_method_ctr);
  1371   if (TraceCallFixup) {
  1372     ResourceMark rm(thread);
  1373     tty->print("handle_wrong_method reresolving call to");
  1374     callee_method->print_short_name(tty);
  1375     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1377 #endif
  1379   return callee_method;
  1382 // ---------------------------------------------------------------------------
  1383 // We are calling the interpreter via a c2i. Normally this would mean that
  1384 // we were called by a compiled method. However we could have lost a race
  1385 // where we went int -> i2c -> c2i and so the caller could in fact be
  1386 // interpreted. If the caller is compiled we attampt to patch the caller
  1387 // so he no longer calls into the interpreter.
  1388 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
  1389   methodOop moop(method);
  1391   address entry_point = moop->from_compiled_entry();
  1393   // It's possible that deoptimization can occur at a call site which hasn't
  1394   // been resolved yet, in which case this function will be called from
  1395   // an nmethod that has been patched for deopt and we can ignore the
  1396   // request for a fixup.
  1397   // Also it is possible that we lost a race in that from_compiled_entry
  1398   // is now back to the i2c in that case we don't need to patch and if
  1399   // we did we'd leap into space because the callsite needs to use
  1400   // "to interpreter" stub in order to load up the methodOop. Don't
  1401   // ask me how I know this...
  1402   //
  1404   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1405   if ( !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1406     return;
  1409   // There is a benign race here. We could be attempting to patch to a compiled
  1410   // entry point at the same time the callee is being deoptimized. If that is
  1411   // the case then entry_point may in fact point to a c2i and we'd patch the
  1412   // call site with the same old data. clear_code will set code() to NULL
  1413   // at the end of it. If we happen to see that NULL then we can skip trying
  1414   // to patch. If we hit the window where the callee has a c2i in the
  1415   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1416   // and patch the code with the same old data. Asi es la vida.
  1418   if (moop->code() == NULL) return;
  1420   if (((nmethod*)cb)->is_in_use()) {
  1422     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1423     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1424     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
  1425       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
  1426       //
  1427       // bug 6281185. We might get here after resolving a call site to a vanilla
  1428       // virtual call. Because the resolvee uses the verified entry it may then
  1429       // see compiled code and attempt to patch the site by calling us. This would
  1430       // then incorrectly convert the call site to optimized and its downhill from
  1431       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1432       // just made a call site that could be megamorphic into a monomorphic site
  1433       // for the rest of its life! Just another racing bug in the life of
  1434       // fixup_callers_callsite ...
  1435       //
  1436       RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
  1437       iter.next();
  1438       assert(iter.has_current(), "must have a reloc at java call site");
  1439       relocInfo::relocType typ = iter.reloc()->type();
  1440       if ( typ != relocInfo::static_call_type &&
  1441            typ != relocInfo::opt_virtual_call_type &&
  1442            typ != relocInfo::static_stub_type) {
  1443         return;
  1445       address destination = call->destination();
  1446       if (destination != entry_point) {
  1447         CodeBlob* callee = CodeCache::find_blob(destination);
  1448         // callee == cb seems weird. It means calling interpreter thru stub.
  1449         if (callee == cb || callee->is_adapter_blob()) {
  1450           // static call or optimized virtual
  1451           if (TraceCallFixup) {
  1452             tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1453             moop->print_short_name(tty);
  1454             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1456           call->set_destination_mt_safe(entry_point);
  1457         } else {
  1458           if (TraceCallFixup) {
  1459             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1460             moop->print_short_name(tty);
  1461             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1463           // assert is too strong could also be resolve destinations.
  1464           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1466       } else {
  1467           if (TraceCallFixup) {
  1468             tty->print("already patched  callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1469             moop->print_short_name(tty);
  1470             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1476 IRT_END
  1479 // same as JVM_Arraycopy, but called directly from compiled code
  1480 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1481                                                 oopDesc* dest, jint dest_pos,
  1482                                                 jint length,
  1483                                                 JavaThread* thread)) {
  1484 #ifndef PRODUCT
  1485   _slow_array_copy_ctr++;
  1486 #endif
  1487   // Check if we have null pointers
  1488   if (src == NULL || dest == NULL) {
  1489     THROW(vmSymbols::java_lang_NullPointerException());
  1491   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1492   // even though the copy_array API also performs dynamic checks to ensure
  1493   // that src and dest are truly arrays (and are conformable).
  1494   // The copy_array mechanism is awkward and could be removed, but
  1495   // the compilers don't call this function except as a last resort,
  1496   // so it probably doesn't matter.
  1497   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
  1498                                         (arrayOopDesc*)dest, dest_pos,
  1499                                         length, thread);
  1501 JRT_END
  1503 char* SharedRuntime::generate_class_cast_message(
  1504     JavaThread* thread, const char* objName) {
  1506   // Get target class name from the checkcast instruction
  1507   vframeStream vfst(thread, true);
  1508   assert(!vfst.at_end(), "Java frame must exist");
  1509   Bytecode_checkcast* cc = Bytecode_checkcast_at(
  1510     vfst.method()->bcp_from(vfst.bci()));
  1511   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
  1512     cc->index(), thread));
  1513   return generate_class_cast_message(objName, targetKlass->external_name());
  1516 char* SharedRuntime::generate_class_cast_message(
  1517     const char* objName, const char* targetKlassName) {
  1518   const char* desc = " cannot be cast to ";
  1519   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1521   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1522   if (NULL == message) {
  1523     // Shouldn't happen, but don't cause even more problems if it does
  1524     message = const_cast<char*>(objName);
  1525   } else {
  1526     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1528   return message;
  1531 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1532   (void) JavaThread::current()->reguard_stack();
  1533 JRT_END
  1536 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1537 #ifndef PRODUCT
  1538 int SharedRuntime::_monitor_enter_ctr=0;
  1539 #endif
  1540 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1541   oop obj(_obj);
  1542 #ifndef PRODUCT
  1543   _monitor_enter_ctr++;             // monitor enter slow
  1544 #endif
  1545   if (PrintBiasedLockingStatistics) {
  1546     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1548   Handle h_obj(THREAD, obj);
  1549   if (UseBiasedLocking) {
  1550     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1551     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1552   } else {
  1553     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1555   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1556 JRT_END
  1558 #ifndef PRODUCT
  1559 int SharedRuntime::_monitor_exit_ctr=0;
  1560 #endif
  1561 // Handles the uncommon cases of monitor unlocking in compiled code
  1562 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1563    oop obj(_obj);
  1564 #ifndef PRODUCT
  1565   _monitor_exit_ctr++;              // monitor exit slow
  1566 #endif
  1567   Thread* THREAD = JavaThread::current();
  1568   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1569   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1570   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1571 #undef MIGHT_HAVE_PENDING
  1572 #ifdef MIGHT_HAVE_PENDING
  1573   // Save and restore any pending_exception around the exception mark.
  1574   // While the slow_exit must not throw an exception, we could come into
  1575   // this routine with one set.
  1576   oop pending_excep = NULL;
  1577   const char* pending_file;
  1578   int pending_line;
  1579   if (HAS_PENDING_EXCEPTION) {
  1580     pending_excep = PENDING_EXCEPTION;
  1581     pending_file  = THREAD->exception_file();
  1582     pending_line  = THREAD->exception_line();
  1583     CLEAR_PENDING_EXCEPTION;
  1585 #endif /* MIGHT_HAVE_PENDING */
  1588     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1589     EXCEPTION_MARK;
  1590     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1593 #ifdef MIGHT_HAVE_PENDING
  1594   if (pending_excep != NULL) {
  1595     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1597 #endif /* MIGHT_HAVE_PENDING */
  1598 JRT_END
  1600 #ifndef PRODUCT
  1602 void SharedRuntime::print_statistics() {
  1603   ttyLocker ttyl;
  1604   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1606   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1607   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1608   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1610   SharedRuntime::print_ic_miss_histogram();
  1612   if (CountRemovableExceptions) {
  1613     if (_nof_removable_exceptions > 0) {
  1614       Unimplemented(); // this counter is not yet incremented
  1615       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1619   // Dump the JRT_ENTRY counters
  1620   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1621   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1622   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1623   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1624   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1625   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1626   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1628   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1629   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1630   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1631   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1632   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1634   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1635   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1636   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1637   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1638   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1639   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1640   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1641   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1642   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1643   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1644   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1645   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1646   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1647   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1648   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1649   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1651   if (xtty != NULL)  xtty->tail("statistics");
  1654 inline double percent(int x, int y) {
  1655   return 100.0 * x / MAX2(y, 1);
  1658 class MethodArityHistogram {
  1659  public:
  1660   enum { MAX_ARITY = 256 };
  1661  private:
  1662   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1663   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1664   static int _max_arity;                      // max. arity seen
  1665   static int _max_size;                       // max. arg size seen
  1667   static void add_method_to_histogram(nmethod* nm) {
  1668     methodOop m = nm->method();
  1669     ArgumentCount args(m->signature());
  1670     int arity   = args.size() + (m->is_static() ? 0 : 1);
  1671     int argsize = m->size_of_parameters();
  1672     arity   = MIN2(arity, MAX_ARITY-1);
  1673     argsize = MIN2(argsize, MAX_ARITY-1);
  1674     int count = nm->method()->compiled_invocation_count();
  1675     _arity_histogram[arity]  += count;
  1676     _size_histogram[argsize] += count;
  1677     _max_arity = MAX2(_max_arity, arity);
  1678     _max_size  = MAX2(_max_size, argsize);
  1681   void print_histogram_helper(int n, int* histo, const char* name) {
  1682     const int N = MIN2(5, n);
  1683     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1684     double sum = 0;
  1685     double weighted_sum = 0;
  1686     int i;
  1687     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  1688     double rest = sum;
  1689     double percent = sum / 100;
  1690     for (i = 0; i <= N; i++) {
  1691       rest -= histo[i];
  1692       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  1694     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  1695     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  1698   void print_histogram() {
  1699     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1700     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  1701     tty->print_cr("\nSame for parameter size (in words):");
  1702     print_histogram_helper(_max_size, _size_histogram, "size");
  1703     tty->cr();
  1706  public:
  1707   MethodArityHistogram() {
  1708     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1709     _max_arity = _max_size = 0;
  1710     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  1711     CodeCache::nmethods_do(add_method_to_histogram);
  1712     print_histogram();
  1714 };
  1716 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  1717 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  1718 int MethodArityHistogram::_max_arity;
  1719 int MethodArityHistogram::_max_size;
  1721 void SharedRuntime::print_call_statistics(int comp_total) {
  1722   tty->print_cr("Calls from compiled code:");
  1723   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  1724   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  1725   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  1726   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  1727   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  1728   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  1729   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  1730   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  1731   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  1732   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  1733   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  1734   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  1735   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  1736   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  1737   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  1738   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  1739   tty->cr();
  1740   tty->print_cr("Note 1: counter updates are not MT-safe.");
  1741   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  1742   tty->print_cr("        %% in nested categories are relative to their category");
  1743   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  1744   tty->cr();
  1746   MethodArityHistogram h;
  1748 #endif
  1751 // ---------------------------------------------------------------------------
  1752 // Implementation of AdapterHandlerLibrary
  1753 const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
  1754 GrowableArray<uint64_t>* AdapterHandlerLibrary::_fingerprints = NULL;
  1755 GrowableArray<AdapterHandlerEntry* >* AdapterHandlerLibrary::_handlers = NULL;
  1756 const int AdapterHandlerLibrary_size = 16*K;
  1757 u_char                   AdapterHandlerLibrary::_buffer[AdapterHandlerLibrary_size + 32];
  1759 void AdapterHandlerLibrary::initialize() {
  1760   if (_fingerprints != NULL) return;
  1761   _fingerprints = new(ResourceObj::C_HEAP)GrowableArray<uint64_t>(32, true);
  1762   _handlers = new(ResourceObj::C_HEAP)GrowableArray<AdapterHandlerEntry*>(32, true);
  1763   // Index 0 reserved for the slow path handler
  1764   _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
  1765   _handlers->append(NULL);
  1767   // Create a special handler for abstract methods.  Abstract methods
  1768   // are never compiled so an i2c entry is somewhat meaningless, but
  1769   // fill it in with something appropriate just in case.  Pass handle
  1770   // wrong method for the c2i transitions.
  1771   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
  1772   _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
  1773   assert(_handlers->length() == AbstractMethodHandler, "in wrong slot");
  1774   _handlers->append(new AdapterHandlerEntry(StubRoutines::throw_AbstractMethodError_entry(),
  1775                                             wrong_method, wrong_method));
  1778 int AdapterHandlerLibrary::get_create_adapter_index(methodHandle method) {
  1779   // Use customized signature handler.  Need to lock around updates to the
  1780   // _fingerprints array (it is not safe for concurrent readers and a single
  1781   // writer: this can be fixed if it becomes a problem).
  1783   // Get the address of the ic_miss handlers before we grab the
  1784   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  1785   // was caused by the initialization of the stubs happening
  1786   // while we held the lock and then notifying jvmti while
  1787   // holding it. This just forces the initialization to be a little
  1788   // earlier.
  1789   address ic_miss = SharedRuntime::get_ic_miss_stub();
  1790   assert(ic_miss != NULL, "must have handler");
  1792   int result;
  1793   BufferBlob *B = NULL;
  1794   uint64_t fingerprint;
  1796     MutexLocker mu(AdapterHandlerLibrary_lock);
  1797     // make sure data structure is initialized
  1798     initialize();
  1800     if (method->is_abstract()) {
  1801       return AbstractMethodHandler;
  1804     // Lookup method signature's fingerprint
  1805     fingerprint = Fingerprinter(method).fingerprint();
  1806     assert( fingerprint != CONST64( 0), "no zero fingerprints allowed" );
  1807     // Fingerprints are small fixed-size condensed representations of
  1808     // signatures.  If the signature is too large, it won't fit in a
  1809     // fingerprint.  Signatures which cannot support a fingerprint get a new i2c
  1810     // adapter gen'd each time, instead of searching the cache for one.  This -1
  1811     // game can be avoided if I compared signatures instead of using
  1812     // fingerprints.  However, -1 fingerprints are very rare.
  1813     if( fingerprint != UCONST64(-1) ) { // If this is a cache-able fingerprint
  1814       // Turns out i2c adapters do not care what the return value is.  Mask it
  1815       // out so signatures that only differ in return type will share the same
  1816       // adapter.
  1817       fingerprint &= ~(SignatureIterator::result_feature_mask << SignatureIterator::static_feature_size);
  1818       // Search for a prior existing i2c/c2i adapter
  1819       int index = _fingerprints->find(fingerprint);
  1820       if( index >= 0 ) return index; // Found existing handlers?
  1821     } else {
  1822       // Annoyingly, I end up adding -1 fingerprints to the array of handlers,
  1823       // because I need a unique handler index.  It cannot be scanned for
  1824       // because all -1's look alike.  Instead, the matching index is passed out
  1825       // and immediately used to collect the 2 return values (the c2i and i2c
  1826       // adapters).
  1829     // Create I2C & C2I handlers
  1830     ResourceMark rm;
  1831     // Improve alignment slightly
  1832     u_char *buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
  1833     CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
  1834     short buffer_locs[20];
  1835     buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  1836                                            sizeof(buffer_locs)/sizeof(relocInfo));
  1837     MacroAssembler _masm(&buffer);
  1839     // Fill in the signature array, for the calling-convention call.
  1840     int total_args_passed = method->size_of_parameters(); // All args on stack
  1842     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
  1843     VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
  1844     int i=0;
  1845     if( !method->is_static() )  // Pass in receiver first
  1846       sig_bt[i++] = T_OBJECT;
  1847     for( SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  1848       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  1849       if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  1850         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  1852     assert( i==total_args_passed, "" );
  1854     // Now get the re-packed compiled-Java layout.
  1855     int comp_args_on_stack;
  1857     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  1858     comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  1860     AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  1861                                                                         total_args_passed,
  1862                                                                         comp_args_on_stack,
  1863                                                                         sig_bt,
  1864                                                                         regs);
  1866     B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
  1867     if (B == NULL) {
  1868       // CodeCache is full, disable compilation
  1869       // Ought to log this but compile log is only per compile thread
  1870       // and we're some non descript Java thread.
  1871       UseInterpreter = true;
  1872       if (UseCompiler || AlwaysCompileLoopMethods ) {
  1873 #ifndef PRODUCT
  1874         warning("CodeCache is full. Compiler has been disabled");
  1875         if (CompileTheWorld || ExitOnFullCodeCache) {
  1876           before_exit(JavaThread::current());
  1877           exit_globals(); // will delete tty
  1878           vm_direct_exit(CompileTheWorld ? 0 : 1);
  1880 #endif
  1881         UseCompiler               = false;
  1882         AlwaysCompileLoopMethods  = false;
  1884       return 0; // Out of CodeCache space (_handlers[0] == NULL)
  1886     entry->relocate(B->instructions_begin());
  1887 #ifndef PRODUCT
  1888     // debugging suppport
  1889     if (PrintAdapterHandlers) {
  1890       tty->cr();
  1891       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = 0x%llx, %d bytes generated)",
  1892                     _handlers->length(), (method->is_static() ? "static" : "receiver"),
  1893                     method->signature()->as_C_string(), fingerprint, buffer.code_size() );
  1894       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  1895       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + buffer.code_size());
  1897 #endif
  1899     // add handlers to library
  1900     _fingerprints->append(fingerprint);
  1901     _handlers->append(entry);
  1902     // set handler index
  1903     assert(_fingerprints->length() == _handlers->length(), "sanity check");
  1904     result = _fingerprints->length() - 1;
  1906   // Outside of the lock
  1907   if (B != NULL) {
  1908     char blob_id[256];
  1909     jio_snprintf(blob_id,
  1910                  sizeof(blob_id),
  1911                  "%s(" PTR64_FORMAT ")@" PTR_FORMAT,
  1912                  AdapterHandlerEntry::name,
  1913                  fingerprint,
  1914                  B->instructions_begin());
  1915     VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
  1916     Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
  1918     if (JvmtiExport::should_post_dynamic_code_generated()) {
  1919       JvmtiExport::post_dynamic_code_generated(blob_id,
  1920                                                B->instructions_begin(),
  1921                                                B->instructions_end());
  1924   return result;
  1927 void AdapterHandlerEntry::relocate(address new_base) {
  1928     ptrdiff_t delta = new_base - _i2c_entry;
  1929     _i2c_entry += delta;
  1930     _c2i_entry += delta;
  1931     _c2i_unverified_entry += delta;
  1934 // Create a native wrapper for this native method.  The wrapper converts the
  1935 // java compiled calling convention to the native convention, handlizes
  1936 // arguments, and transitions to native.  On return from the native we transition
  1937 // back to java blocking if a safepoint is in progress.
  1938 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
  1939   ResourceMark rm;
  1940   nmethod* nm = NULL;
  1942   if (PrintCompilation) {
  1943     ttyLocker ttyl;
  1944     tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
  1945     method->print_short_name(tty);
  1946     if (method->is_static()) {
  1947       tty->print(" (static)");
  1949     tty->cr();
  1952   assert(method->has_native_function(), "must have something valid to call!");
  1955     // perform the work while holding the lock, but perform any printing outside the lock
  1956     MutexLocker mu(AdapterHandlerLibrary_lock);
  1957     // See if somebody beat us to it
  1958     nm = method->code();
  1959     if (nm) {
  1960       return nm;
  1963     // Improve alignment slightly
  1964     u_char* buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
  1965     CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
  1966     // Need a few relocation entries
  1967     double locs_buf[20];
  1968     buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  1969     MacroAssembler _masm(&buffer);
  1971     // Fill in the signature array, for the calling-convention call.
  1972     int total_args_passed = method->size_of_parameters();
  1974     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
  1975     VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
  1976     int i=0;
  1977     if( !method->is_static() )  // Pass in receiver first
  1978       sig_bt[i++] = T_OBJECT;
  1979     SignatureStream ss(method->signature());
  1980     for( ; !ss.at_return_type(); ss.next()) {
  1981       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  1982       if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  1983         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  1985     assert( i==total_args_passed, "" );
  1986     BasicType ret_type = ss.type();
  1988     // Now get the compiled-Java layout as input arguments
  1989     int comp_args_on_stack;
  1990     comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  1992     // Generate the compiled-to-native wrapper code
  1993     nm = SharedRuntime::generate_native_wrapper(&_masm,
  1994                                                 method,
  1995                                                 total_args_passed,
  1996                                                 comp_args_on_stack,
  1997                                                 sig_bt,regs,
  1998                                                 ret_type);
  2001   // Must unlock before calling set_code
  2002   // Install the generated code.
  2003   if (nm != NULL) {
  2004     method->set_code(method, nm);
  2005     nm->post_compiled_method_load_event();
  2006   } else {
  2007     // CodeCache is full, disable compilation
  2008     // Ought to log this but compile log is only per compile thread
  2009     // and we're some non descript Java thread.
  2010     UseInterpreter = true;
  2011     if (UseCompiler || AlwaysCompileLoopMethods ) {
  2012 #ifndef PRODUCT
  2013       warning("CodeCache is full. Compiler has been disabled");
  2014       if (CompileTheWorld || ExitOnFullCodeCache) {
  2015         before_exit(JavaThread::current());
  2016         exit_globals(); // will delete tty
  2017         vm_direct_exit(CompileTheWorld ? 0 : 1);
  2019 #endif
  2020       UseCompiler               = false;
  2021       AlwaysCompileLoopMethods  = false;
  2024   return nm;
  2027 #ifdef HAVE_DTRACE_H
  2028 // Create a dtrace nmethod for this method.  The wrapper converts the
  2029 // java compiled calling convention to the native convention, makes a dummy call
  2030 // (actually nops for the size of the call instruction, which become a trap if
  2031 // probe is enabled). The returns to the caller. Since this all looks like a
  2032 // leaf no thread transition is needed.
  2034 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2035   ResourceMark rm;
  2036   nmethod* nm = NULL;
  2038   if (PrintCompilation) {
  2039     ttyLocker ttyl;
  2040     tty->print("---   n%s  ");
  2041     method->print_short_name(tty);
  2042     if (method->is_static()) {
  2043       tty->print(" (static)");
  2045     tty->cr();
  2049     // perform the work while holding the lock, but perform any printing
  2050     // outside the lock
  2051     MutexLocker mu(AdapterHandlerLibrary_lock);
  2052     // See if somebody beat us to it
  2053     nm = method->code();
  2054     if (nm) {
  2055       return nm;
  2058     // Improve alignment slightly
  2059     u_char* buf = (u_char*)
  2060         (((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
  2061     CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
  2062     // Need a few relocation entries
  2063     double locs_buf[20];
  2064     buffer.insts()->initialize_shared_locs(
  2065         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2066     MacroAssembler _masm(&buffer);
  2068     // Generate the compiled-to-native wrapper code
  2069     nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2071   return nm;
  2074 // the dtrace method needs to convert java lang string to utf8 string.
  2075 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2076   typeArrayOop jlsValue  = java_lang_String::value(src);
  2077   int          jlsOffset = java_lang_String::offset(src);
  2078   int          jlsLen    = java_lang_String::length(src);
  2079   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2080                                            jlsValue->char_at_addr(jlsOffset);
  2081   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2083 #endif // ndef HAVE_DTRACE_H
  2085 // -------------------------------------------------------------------------
  2086 // Java-Java calling convention
  2087 // (what you use when Java calls Java)
  2089 //------------------------------name_for_receiver----------------------------------
  2090 // For a given signature, return the VMReg for parameter 0.
  2091 VMReg SharedRuntime::name_for_receiver() {
  2092   VMRegPair regs;
  2093   BasicType sig_bt = T_OBJECT;
  2094   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2095   // Return argument 0 register.  In the LP64 build pointers
  2096   // take 2 registers, but the VM wants only the 'main' name.
  2097   return regs.first();
  2100 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool is_static, int* arg_size) {
  2101   // This method is returning a data structure allocating as a
  2102   // ResourceObject, so do not put any ResourceMarks in here.
  2103   char *s = sig->as_C_string();
  2104   int len = (int)strlen(s);
  2105   *s++; len--;                  // Skip opening paren
  2106   char *t = s+len;
  2107   while( *(--t) != ')' ) ;      // Find close paren
  2109   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2110   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2111   int cnt = 0;
  2112   if (!is_static) {
  2113     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2116   while( s < t ) {
  2117     switch( *s++ ) {            // Switch on signature character
  2118     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2119     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2120     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2121     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2122     case 'I': sig_bt[cnt++] = T_INT;     break;
  2123     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2124     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2125     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2126     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2127     case 'L':                   // Oop
  2128       while( *s++ != ';'  ) ;   // Skip signature
  2129       sig_bt[cnt++] = T_OBJECT;
  2130       break;
  2131     case '[': {                 // Array
  2132       do {                      // Skip optional size
  2133         while( *s >= '0' && *s <= '9' ) s++;
  2134       } while( *s++ == '[' );   // Nested arrays?
  2135       // Skip element type
  2136       if( s[-1] == 'L' )
  2137         while( *s++ != ';'  ) ; // Skip signature
  2138       sig_bt[cnt++] = T_ARRAY;
  2139       break;
  2141     default : ShouldNotReachHere();
  2144   assert( cnt < 256, "grow table size" );
  2146   int comp_args_on_stack;
  2147   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2149   // the calling convention doesn't count out_preserve_stack_slots so
  2150   // we must add that in to get "true" stack offsets.
  2152   if (comp_args_on_stack) {
  2153     for (int i = 0; i < cnt; i++) {
  2154       VMReg reg1 = regs[i].first();
  2155       if( reg1->is_stack()) {
  2156         // Yuck
  2157         reg1 = reg1->bias(out_preserve_stack_slots());
  2159       VMReg reg2 = regs[i].second();
  2160       if( reg2->is_stack()) {
  2161         // Yuck
  2162         reg2 = reg2->bias(out_preserve_stack_slots());
  2164       regs[i].set_pair(reg2, reg1);
  2168   // results
  2169   *arg_size = cnt;
  2170   return regs;
  2173 // OSR Migration Code
  2174 //
  2175 // This code is used convert interpreter frames into compiled frames.  It is
  2176 // called from very start of a compiled OSR nmethod.  A temp array is
  2177 // allocated to hold the interesting bits of the interpreter frame.  All
  2178 // active locks are inflated to allow them to move.  The displaced headers and
  2179 // active interpeter locals are copied into the temp buffer.  Then we return
  2180 // back to the compiled code.  The compiled code then pops the current
  2181 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2182 // copies the interpreter locals and displaced headers where it wants.
  2183 // Finally it calls back to free the temp buffer.
  2184 //
  2185 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2187 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2189 #ifdef IA64
  2190   ShouldNotReachHere(); // NYI
  2191 #endif /* IA64 */
  2193   //
  2194   // This code is dependent on the memory layout of the interpreter local
  2195   // array and the monitors. On all of our platforms the layout is identical
  2196   // so this code is shared. If some platform lays the their arrays out
  2197   // differently then this code could move to platform specific code or
  2198   // the code here could be modified to copy items one at a time using
  2199   // frame accessor methods and be platform independent.
  2201   frame fr = thread->last_frame();
  2202   assert( fr.is_interpreted_frame(), "" );
  2203   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2205   // Figure out how many monitors are active.
  2206   int active_monitor_count = 0;
  2207   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2208        kptr < fr.interpreter_frame_monitor_begin();
  2209        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2210     if( kptr->obj() != NULL ) active_monitor_count++;
  2213   // QQQ we could place number of active monitors in the array so that compiled code
  2214   // could double check it.
  2216   methodOop moop = fr.interpreter_frame_method();
  2217   int max_locals = moop->max_locals();
  2218   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2219   int buf_size_words = max_locals + active_monitor_count*2;
  2220   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
  2222   // Copy the locals.  Order is preserved so that loading of longs works.
  2223   // Since there's no GC I can copy the oops blindly.
  2224   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2225   if (TaggedStackInterpreter) {
  2226     for (int i = 0; i < max_locals; i++) {
  2227       // copy only each local separately to the buffer avoiding the tag
  2228       buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
  2230   } else {
  2231     Copy::disjoint_words(
  2232                        (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2233                        (HeapWord*)&buf[0],
  2234                        max_locals);
  2237   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2238   int i = max_locals;
  2239   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2240        kptr2 < fr.interpreter_frame_monitor_begin();
  2241        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2242     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2243       BasicLock *lock = kptr2->lock();
  2244       // Inflate so the displaced header becomes position-independent
  2245       if (lock->displaced_header()->is_unlocked())
  2246         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2247       // Now the displaced header is free to move
  2248       buf[i++] = (intptr_t)lock->displaced_header();
  2249       buf[i++] = (intptr_t)kptr2->obj();
  2252   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2254   return buf;
  2255 JRT_END
  2257 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2258   FREE_C_HEAP_ARRAY(intptr_t,buf);
  2259 JRT_END
  2261 #ifndef PRODUCT
  2262 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2264   if (_handlers == NULL) return false;
  2266   for (int i = 0 ; i < _handlers->length() ; i++) {
  2267     AdapterHandlerEntry* a = get_entry(i);
  2268     if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2270   return false;
  2273 void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
  2275   for (int i = 0 ; i < _handlers->length() ; i++) {
  2276     AdapterHandlerEntry* a = get_entry(i);
  2277     if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) {
  2278       tty->print("Adapter for signature: ");
  2279       // Fingerprinter::print(_fingerprints->at(i));
  2280       tty->print("0x%" FORMAT64_MODIFIER "x", _fingerprints->at(i));
  2281       tty->print_cr(" i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  2282                     a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
  2284       return;
  2287   assert(false, "Should have found handler");
  2289 #endif /* PRODUCT */

mercurial