src/share/vm/runtime/virtualspace.cpp

Fri, 30 Nov 2012 15:23:16 -0800

author
twisti
date
Fri, 30 Nov 2012 15:23:16 -0800
changeset 4318
cd3d6a6b95d9
parent 4037
da91efe96a93
child 4369
730cc4ddd550
permissions
-rw-r--r--

8003240: x86: move MacroAssembler into separate file
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "oops/markOop.hpp"
    27 #include "oops/oop.inline.hpp"
    28 #include "runtime/virtualspace.hpp"
    29 #include "services/memTracker.hpp"
    30 #ifdef TARGET_OS_FAMILY_linux
    31 # include "os_linux.inline.hpp"
    32 #endif
    33 #ifdef TARGET_OS_FAMILY_solaris
    34 # include "os_solaris.inline.hpp"
    35 #endif
    36 #ifdef TARGET_OS_FAMILY_windows
    37 # include "os_windows.inline.hpp"
    38 #endif
    39 #ifdef TARGET_OS_FAMILY_bsd
    40 # include "os_bsd.inline.hpp"
    41 #endif
    44 // ReservedSpace
    45 ReservedSpace::ReservedSpace(size_t size) {
    46   initialize(size, 0, false, NULL, 0, false);
    47 }
    49 ReservedSpace::ReservedSpace(size_t size, size_t alignment,
    50                              bool large,
    51                              char* requested_address,
    52                              const size_t noaccess_prefix) {
    53   initialize(size+noaccess_prefix, alignment, large, requested_address,
    54              noaccess_prefix, false);
    55 }
    57 ReservedSpace::ReservedSpace(size_t size, size_t alignment,
    58                              bool large,
    59                              bool executable) {
    60   initialize(size, alignment, large, NULL, 0, executable);
    61 }
    63 char *
    64 ReservedSpace::align_reserved_region(char* addr, const size_t len,
    65                                      const size_t prefix_size,
    66                                      const size_t prefix_align,
    67                                      const size_t suffix_size,
    68                                      const size_t suffix_align)
    69 {
    70   assert(addr != NULL, "sanity");
    71   const size_t required_size = prefix_size + suffix_size;
    72   assert(len >= required_size, "len too small");
    74   const size_t s = size_t(addr);
    75   const size_t beg_ofs = (s + prefix_size) & (suffix_align - 1);
    76   const size_t beg_delta = beg_ofs == 0 ? 0 : suffix_align - beg_ofs;
    78   if (len < beg_delta + required_size) {
    79      return NULL; // Cannot do proper alignment.
    80   }
    81   const size_t end_delta = len - (beg_delta + required_size);
    83   if (beg_delta != 0) {
    84     os::release_memory(addr, beg_delta);
    85   }
    87   if (end_delta != 0) {
    88     char* release_addr = (char*) (s + beg_delta + required_size);
    89     os::release_memory(release_addr, end_delta);
    90   }
    92   return (char*) (s + beg_delta);
    93 }
    95 char* ReservedSpace::reserve_and_align(const size_t reserve_size,
    96                                        const size_t prefix_size,
    97                                        const size_t prefix_align,
    98                                        const size_t suffix_size,
    99                                        const size_t suffix_align)
   100 {
   101   assert(reserve_size > prefix_size + suffix_size, "should not be here");
   103   char* raw_addr = os::reserve_memory(reserve_size, NULL, prefix_align);
   104   if (raw_addr == NULL) return NULL;
   106   char* result = align_reserved_region(raw_addr, reserve_size, prefix_size,
   107                                        prefix_align, suffix_size,
   108                                        suffix_align);
   109   if (result == NULL && !os::release_memory(raw_addr, reserve_size)) {
   110     fatal("os::release_memory failed");
   111   }
   113 #ifdef ASSERT
   114   if (result != NULL) {
   115     const size_t raw = size_t(raw_addr);
   116     const size_t res = size_t(result);
   117     assert(res >= raw, "alignment decreased start addr");
   118     assert(res + prefix_size + suffix_size <= raw + reserve_size,
   119            "alignment increased end addr");
   120     assert((res & (prefix_align - 1)) == 0, "bad alignment of prefix");
   121     assert(((res + prefix_size) & (suffix_align - 1)) == 0,
   122            "bad alignment of suffix");
   123   }
   124 #endif
   126   return result;
   127 }
   129 // Helper method.
   130 static bool failed_to_reserve_as_requested(char* base, char* requested_address,
   131                                            const size_t size, bool special)
   132 {
   133   if (base == requested_address || requested_address == NULL)
   134     return false; // did not fail
   136   if (base != NULL) {
   137     // Different reserve address may be acceptable in other cases
   138     // but for compressed oops heap should be at requested address.
   139     assert(UseCompressedOops, "currently requested address used only for compressed oops");
   140     if (PrintCompressedOopsMode) {
   141       tty->cr();
   142       tty->print_cr("Reserved memory not at requested address: " PTR_FORMAT " vs " PTR_FORMAT, base, requested_address);
   143     }
   144     // OS ignored requested address. Try different address.
   145     if (special) {
   146       if (!os::release_memory_special(base, size)) {
   147         fatal("os::release_memory_special failed");
   148       }
   149     } else {
   150       if (!os::release_memory(base, size)) {
   151         fatal("os::release_memory failed");
   152       }
   153     }
   154   }
   155   return true;
   156 }
   158 ReservedSpace::ReservedSpace(const size_t suffix_size,
   159                              const size_t suffix_align,
   160                              char* requested_address,
   161                              const size_t noaccess_prefix)
   162 {
   163   assert(suffix_size != 0, "sanity");
   164   assert(suffix_align != 0, "sanity");
   165   assert((suffix_size & (suffix_align - 1)) == 0,
   166     "suffix_size not divisible by suffix_align");
   168   // Assert that if noaccess_prefix is used, it is the same as prefix_align.
   169   // Add in noaccess_prefix to prefix
   170   const size_t adjusted_prefix_size = noaccess_prefix;
   171   const size_t size = adjusted_prefix_size + suffix_size;
   173   // On systems where the entire region has to be reserved and committed up
   174   // front, the compound alignment normally done by this method is unnecessary.
   175   const bool try_reserve_special = UseLargePages &&
   176     suffix_align == os::large_page_size();
   177   if (!os::can_commit_large_page_memory() && try_reserve_special) {
   178     initialize(size, suffix_align, true, requested_address, noaccess_prefix,
   179                false);
   180     return;
   181   }
   183   _base = NULL;
   184   _size = 0;
   185   _alignment = 0;
   186   _special = false;
   187   _noaccess_prefix = 0;
   188   _executable = false;
   190   // Optimistically try to reserve the exact size needed.
   191   char* addr;
   192   if (requested_address != 0) {
   193     requested_address -= noaccess_prefix; // adjust address
   194     assert(requested_address != NULL, "huge noaccess prefix?");
   195     addr = os::attempt_reserve_memory_at(size, requested_address);
   196     if (failed_to_reserve_as_requested(addr, requested_address, size, false)) {
   197       // OS ignored requested address. Try different address.
   198       addr = NULL;
   199     }
   200   } else {
   201     addr = os::reserve_memory(size, NULL, suffix_align);
   202   }
   203   if (addr == NULL) return;
   205   // Check whether the result has the needed alignment
   206   const size_t ofs = (size_t(addr) + adjusted_prefix_size) & (suffix_align - 1);
   207   if (ofs != 0) {
   208     // Wrong alignment.  Release, allocate more space and do manual alignment.
   209     //
   210     // On most operating systems, another allocation with a somewhat larger size
   211     // will return an address "close to" that of the previous allocation.  The
   212     // result is often the same address (if the kernel hands out virtual
   213     // addresses from low to high), or an address that is offset by the increase
   214     // in size.  Exploit that to minimize the amount of extra space requested.
   215     if (!os::release_memory(addr, size)) {
   216       fatal("os::release_memory failed");
   217     }
   219     const size_t extra = MAX2(ofs, suffix_align - ofs);
   220     addr = reserve_and_align(size + extra, adjusted_prefix_size, suffix_align,
   221                              suffix_size, suffix_align);
   222     if (addr == NULL) {
   223       // Try an even larger region.  If this fails, address space is exhausted.
   224       addr = reserve_and_align(size + suffix_align, adjusted_prefix_size,
   225                                suffix_align, suffix_size, suffix_align);
   226     }
   228     if (requested_address != 0 &&
   229         failed_to_reserve_as_requested(addr, requested_address, size, false)) {
   230       // As a result of the alignment constraints, the allocated addr differs
   231       // from the requested address. Return back to the caller who can
   232       // take remedial action (like try again without a requested address).
   233       assert(_base == NULL, "should be");
   234       return;
   235     }
   236   }
   238   _base = addr;
   239   _size = size;
   240   _alignment = suffix_align;
   241   _noaccess_prefix = noaccess_prefix;
   242 }
   244 void ReservedSpace::initialize(size_t size, size_t alignment, bool large,
   245                                char* requested_address,
   246                                const size_t noaccess_prefix,
   247                                bool executable) {
   248   const size_t granularity = os::vm_allocation_granularity();
   249   assert((size & (granularity - 1)) == 0,
   250          "size not aligned to os::vm_allocation_granularity()");
   251   assert((alignment & (granularity - 1)) == 0,
   252          "alignment not aligned to os::vm_allocation_granularity()");
   253   assert(alignment == 0 || is_power_of_2((intptr_t)alignment),
   254          "not a power of 2");
   256   alignment = MAX2(alignment, (size_t)os::vm_page_size());
   258   // Assert that if noaccess_prefix is used, it is the same as alignment.
   259   assert(noaccess_prefix == 0 ||
   260          noaccess_prefix == alignment, "noaccess prefix wrong");
   262   _base = NULL;
   263   _size = 0;
   264   _special = false;
   265   _executable = executable;
   266   _alignment = 0;
   267   _noaccess_prefix = 0;
   268   if (size == 0) {
   269     return;
   270   }
   272   // If OS doesn't support demand paging for large page memory, we need
   273   // to use reserve_memory_special() to reserve and pin the entire region.
   274   bool special = large && !os::can_commit_large_page_memory();
   275   char* base = NULL;
   277   if (requested_address != 0) {
   278     requested_address -= noaccess_prefix; // adjust requested address
   279     assert(requested_address != NULL, "huge noaccess prefix?");
   280   }
   282   if (special) {
   284     base = os::reserve_memory_special(size, requested_address, executable);
   286     if (base != NULL) {
   287       if (failed_to_reserve_as_requested(base, requested_address, size, true)) {
   288         // OS ignored requested address. Try different address.
   289         return;
   290       }
   291       // Check alignment constraints
   292       assert((uintptr_t) base % alignment == 0,
   293              "Large pages returned a non-aligned address");
   294       _special = true;
   295     } else {
   296       // failed; try to reserve regular memory below
   297       if (UseLargePages && (!FLAG_IS_DEFAULT(UseLargePages) ||
   298                             !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {
   299         if (PrintCompressedOopsMode) {
   300           tty->cr();
   301           tty->print_cr("Reserve regular memory without large pages.");
   302         }
   303       }
   304     }
   305   }
   307   if (base == NULL) {
   308     // Optimistically assume that the OSes returns an aligned base pointer.
   309     // When reserving a large address range, most OSes seem to align to at
   310     // least 64K.
   312     // If the memory was requested at a particular address, use
   313     // os::attempt_reserve_memory_at() to avoid over mapping something
   314     // important.  If available space is not detected, return NULL.
   316     if (requested_address != 0) {
   317       base = os::attempt_reserve_memory_at(size, requested_address);
   318       if (failed_to_reserve_as_requested(base, requested_address, size, false)) {
   319         // OS ignored requested address. Try different address.
   320         base = NULL;
   321       }
   322     } else {
   323       base = os::reserve_memory(size, NULL, alignment);
   324     }
   326     if (base == NULL) return;
   328     // Check alignment constraints
   329     if ((((size_t)base + noaccess_prefix) & (alignment - 1)) != 0) {
   330       // Base not aligned, retry
   331       if (!os::release_memory(base, size)) fatal("os::release_memory failed");
   332       // Reserve size large enough to do manual alignment and
   333       // increase size to a multiple of the desired alignment
   334       size = align_size_up(size, alignment);
   335       size_t extra_size = size + alignment;
   336       do {
   337         char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
   338         if (extra_base == NULL) return;
   339         // Do manual alignement
   340         base = (char*) align_size_up((uintptr_t) extra_base, alignment);
   341         assert(base >= extra_base, "just checking");
   342         // Re-reserve the region at the aligned base address.
   343         os::release_memory(extra_base, extra_size);
   344         base = os::reserve_memory(size, base);
   345       } while (base == NULL);
   347       if (requested_address != 0 &&
   348           failed_to_reserve_as_requested(base, requested_address, size, false)) {
   349         // As a result of the alignment constraints, the allocated base differs
   350         // from the requested address. Return back to the caller who can
   351         // take remedial action (like try again without a requested address).
   352         assert(_base == NULL, "should be");
   353         return;
   354       }
   355     }
   356   }
   357   // Done
   358   _base = base;
   359   _size = size;
   360   _alignment = alignment;
   361   _noaccess_prefix = noaccess_prefix;
   363   // Assert that if noaccess_prefix is used, it is the same as alignment.
   364   assert(noaccess_prefix == 0 ||
   365          noaccess_prefix == _alignment, "noaccess prefix wrong");
   367   assert(markOopDesc::encode_pointer_as_mark(_base)->decode_pointer() == _base,
   368          "area must be distinguisable from marks for mark-sweep");
   369   assert(markOopDesc::encode_pointer_as_mark(&_base[size])->decode_pointer() == &_base[size],
   370          "area must be distinguisable from marks for mark-sweep");
   371 }
   374 ReservedSpace::ReservedSpace(char* base, size_t size, size_t alignment,
   375                              bool special, bool executable) {
   376   assert((size % os::vm_allocation_granularity()) == 0,
   377          "size not allocation aligned");
   378   _base = base;
   379   _size = size;
   380   _alignment = alignment;
   381   _noaccess_prefix = 0;
   382   _special = special;
   383   _executable = executable;
   384 }
   387 ReservedSpace ReservedSpace::first_part(size_t partition_size, size_t alignment,
   388                                         bool split, bool realloc) {
   389   assert(partition_size <= size(), "partition failed");
   390   if (split) {
   391     os::split_reserved_memory(base(), size(), partition_size, realloc);
   392   }
   393   ReservedSpace result(base(), partition_size, alignment, special(),
   394                        executable());
   395   return result;
   396 }
   399 ReservedSpace
   400 ReservedSpace::last_part(size_t partition_size, size_t alignment) {
   401   assert(partition_size <= size(), "partition failed");
   402   ReservedSpace result(base() + partition_size, size() - partition_size,
   403                        alignment, special(), executable());
   404   return result;
   405 }
   408 size_t ReservedSpace::page_align_size_up(size_t size) {
   409   return align_size_up(size, os::vm_page_size());
   410 }
   413 size_t ReservedSpace::page_align_size_down(size_t size) {
   414   return align_size_down(size, os::vm_page_size());
   415 }
   418 size_t ReservedSpace::allocation_align_size_up(size_t size) {
   419   return align_size_up(size, os::vm_allocation_granularity());
   420 }
   423 size_t ReservedSpace::allocation_align_size_down(size_t size) {
   424   return align_size_down(size, os::vm_allocation_granularity());
   425 }
   428 void ReservedSpace::release() {
   429   if (is_reserved()) {
   430     char *real_base = _base - _noaccess_prefix;
   431     const size_t real_size = _size + _noaccess_prefix;
   432     if (special()) {
   433       os::release_memory_special(real_base, real_size);
   434     } else{
   435       os::release_memory(real_base, real_size);
   436     }
   437     _base = NULL;
   438     _size = 0;
   439     _noaccess_prefix = 0;
   440     _special = false;
   441     _executable = false;
   442   }
   443 }
   445 void ReservedSpace::protect_noaccess_prefix(const size_t size) {
   446   assert( (_noaccess_prefix != 0) == (UseCompressedOops && _base != NULL &&
   447                                       (Universe::narrow_oop_base() != NULL) &&
   448                                       Universe::narrow_oop_use_implicit_null_checks()),
   449          "noaccess_prefix should be used only with non zero based compressed oops");
   451   // If there is no noaccess prefix, return.
   452   if (_noaccess_prefix == 0) return;
   454   assert(_noaccess_prefix >= (size_t)os::vm_page_size(),
   455          "must be at least page size big");
   457   // Protect memory at the base of the allocated region.
   458   // If special, the page was committed (only matters on windows)
   459   if (!os::protect_memory(_base, _noaccess_prefix, os::MEM_PROT_NONE,
   460                           _special)) {
   461     fatal("cannot protect protection page");
   462   }
   463   if (PrintCompressedOopsMode) {
   464     tty->cr();
   465     tty->print_cr("Protected page at the reserved heap base: " PTR_FORMAT " / " INTX_FORMAT " bytes", _base, _noaccess_prefix);
   466   }
   468   _base += _noaccess_prefix;
   469   _size -= _noaccess_prefix;
   470   assert((size == _size) && ((uintptr_t)_base % _alignment == 0),
   471          "must be exactly of required size and alignment");
   472 }
   474 ReservedHeapSpace::ReservedHeapSpace(size_t size, size_t alignment,
   475                                      bool large, char* requested_address) :
   476   ReservedSpace(size, alignment, large,
   477                 requested_address,
   478                 (UseCompressedOops && (Universe::narrow_oop_base() != NULL) &&
   479                  Universe::narrow_oop_use_implicit_null_checks()) ?
   480                   lcm(os::vm_page_size(), alignment) : 0) {
   481   if (base() > 0) {
   482     MemTracker::record_virtual_memory_type((address)base(), mtJavaHeap);
   483   }
   485   // Only reserved space for the java heap should have a noaccess_prefix
   486   // if using compressed oops.
   487   protect_noaccess_prefix(size);
   488 }
   490 ReservedHeapSpace::ReservedHeapSpace(const size_t heap_space_size,
   491                                      const size_t alignment,
   492                                      char* requested_address) :
   493   ReservedSpace(heap_space_size, alignment,
   494                 requested_address,
   495                 (UseCompressedOops && (Universe::narrow_oop_base() != NULL) &&
   496                  Universe::narrow_oop_use_implicit_null_checks()) ?
   497                   lcm(os::vm_page_size(), alignment) : 0) {
   498   if (base() > 0) {
   499     MemTracker::record_virtual_memory_type((address)base(), mtJavaHeap);
   500   }
   501   protect_noaccess_prefix(heap_space_size);
   502 }
   504 // Reserve space for code segment.  Same as Java heap only we mark this as
   505 // executable.
   506 ReservedCodeSpace::ReservedCodeSpace(size_t r_size,
   507                                      size_t rs_align,
   508                                      bool large) :
   509   ReservedSpace(r_size, rs_align, large, /*executable*/ true) {
   510   MemTracker::record_virtual_memory_type((address)base(), mtCode);
   511 }
   513 // VirtualSpace
   515 VirtualSpace::VirtualSpace() {
   516   _low_boundary           = NULL;
   517   _high_boundary          = NULL;
   518   _low                    = NULL;
   519   _high                   = NULL;
   520   _lower_high             = NULL;
   521   _middle_high            = NULL;
   522   _upper_high             = NULL;
   523   _lower_high_boundary    = NULL;
   524   _middle_high_boundary   = NULL;
   525   _upper_high_boundary    = NULL;
   526   _lower_alignment        = 0;
   527   _middle_alignment       = 0;
   528   _upper_alignment        = 0;
   529   _special                = false;
   530   _executable             = false;
   531 }
   534 bool VirtualSpace::initialize(ReservedSpace rs, size_t committed_size) {
   535   if(!rs.is_reserved()) return false;  // allocation failed.
   536   assert(_low_boundary == NULL, "VirtualSpace already initialized");
   537   _low_boundary  = rs.base();
   538   _high_boundary = low_boundary() + rs.size();
   540   _low = low_boundary();
   541   _high = low();
   543   _special = rs.special();
   544   _executable = rs.executable();
   546   // When a VirtualSpace begins life at a large size, make all future expansion
   547   // and shrinking occur aligned to a granularity of large pages.  This avoids
   548   // fragmentation of physical addresses that inhibits the use of large pages
   549   // by the OS virtual memory system.  Empirically,  we see that with a 4MB
   550   // page size, the only spaces that get handled this way are codecache and
   551   // the heap itself, both of which provide a substantial performance
   552   // boost in many benchmarks when covered by large pages.
   553   //
   554   // No attempt is made to force large page alignment at the very top and
   555   // bottom of the space if they are not aligned so already.
   556   _lower_alignment  = os::vm_page_size();
   557   _middle_alignment = os::page_size_for_region(rs.size(), rs.size(), 1);
   558   _upper_alignment  = os::vm_page_size();
   560   // End of each region
   561   _lower_high_boundary = (char*) round_to((intptr_t) low_boundary(), middle_alignment());
   562   _middle_high_boundary = (char*) round_down((intptr_t) high_boundary(), middle_alignment());
   563   _upper_high_boundary = high_boundary();
   565   // High address of each region
   566   _lower_high = low_boundary();
   567   _middle_high = lower_high_boundary();
   568   _upper_high = middle_high_boundary();
   570   // commit to initial size
   571   if (committed_size > 0) {
   572     if (!expand_by(committed_size)) {
   573       return false;
   574     }
   575   }
   576   return true;
   577 }
   580 VirtualSpace::~VirtualSpace() {
   581   release();
   582 }
   585 void VirtualSpace::release() {
   586   // This does not release memory it never reserved.
   587   // Caller must release via rs.release();
   588   _low_boundary           = NULL;
   589   _high_boundary          = NULL;
   590   _low                    = NULL;
   591   _high                   = NULL;
   592   _lower_high             = NULL;
   593   _middle_high            = NULL;
   594   _upper_high             = NULL;
   595   _lower_high_boundary    = NULL;
   596   _middle_high_boundary   = NULL;
   597   _upper_high_boundary    = NULL;
   598   _lower_alignment        = 0;
   599   _middle_alignment       = 0;
   600   _upper_alignment        = 0;
   601   _special                = false;
   602   _executable             = false;
   603 }
   606 size_t VirtualSpace::committed_size() const {
   607   return pointer_delta(high(), low(), sizeof(char));
   608 }
   611 size_t VirtualSpace::reserved_size() const {
   612   return pointer_delta(high_boundary(), low_boundary(), sizeof(char));
   613 }
   616 size_t VirtualSpace::uncommitted_size()  const {
   617   return reserved_size() - committed_size();
   618 }
   621 bool VirtualSpace::contains(const void* p) const {
   622   return low() <= (const char*) p && (const char*) p < high();
   623 }
   625 /*
   626    First we need to determine if a particular virtual space is using large
   627    pages.  This is done at the initialize function and only virtual spaces
   628    that are larger than LargePageSizeInBytes use large pages.  Once we
   629    have determined this, all expand_by and shrink_by calls must grow and
   630    shrink by large page size chunks.  If a particular request
   631    is within the current large page, the call to commit and uncommit memory
   632    can be ignored.  In the case that the low and high boundaries of this
   633    space is not large page aligned, the pages leading to the first large
   634    page address and the pages after the last large page address must be
   635    allocated with default pages.
   636 */
   637 bool VirtualSpace::expand_by(size_t bytes, bool pre_touch) {
   638   if (uncommitted_size() < bytes) return false;
   640   if (special()) {
   641     // don't commit memory if the entire space is pinned in memory
   642     _high += bytes;
   643     return true;
   644   }
   646   char* previous_high = high();
   647   char* unaligned_new_high = high() + bytes;
   648   assert(unaligned_new_high <= high_boundary(),
   649          "cannot expand by more than upper boundary");
   651   // Calculate where the new high for each of the regions should be.  If
   652   // the low_boundary() and high_boundary() are LargePageSizeInBytes aligned
   653   // then the unaligned lower and upper new highs would be the
   654   // lower_high() and upper_high() respectively.
   655   char* unaligned_lower_new_high =
   656     MIN2(unaligned_new_high, lower_high_boundary());
   657   char* unaligned_middle_new_high =
   658     MIN2(unaligned_new_high, middle_high_boundary());
   659   char* unaligned_upper_new_high =
   660     MIN2(unaligned_new_high, upper_high_boundary());
   662   // Align the new highs based on the regions alignment.  lower and upper
   663   // alignment will always be default page size.  middle alignment will be
   664   // LargePageSizeInBytes if the actual size of the virtual space is in
   665   // fact larger than LargePageSizeInBytes.
   666   char* aligned_lower_new_high =
   667     (char*) round_to((intptr_t) unaligned_lower_new_high, lower_alignment());
   668   char* aligned_middle_new_high =
   669     (char*) round_to((intptr_t) unaligned_middle_new_high, middle_alignment());
   670   char* aligned_upper_new_high =
   671     (char*) round_to((intptr_t) unaligned_upper_new_high, upper_alignment());
   673   // Determine which regions need to grow in this expand_by call.
   674   // If you are growing in the lower region, high() must be in that
   675   // region so calcuate the size based on high().  For the middle and
   676   // upper regions, determine the starting point of growth based on the
   677   // location of high().  By getting the MAX of the region's low address
   678   // (or the prevoius region's high address) and high(), we can tell if it
   679   // is an intra or inter region growth.
   680   size_t lower_needs = 0;
   681   if (aligned_lower_new_high > lower_high()) {
   682     lower_needs =
   683       pointer_delta(aligned_lower_new_high, lower_high(), sizeof(char));
   684   }
   685   size_t middle_needs = 0;
   686   if (aligned_middle_new_high > middle_high()) {
   687     middle_needs =
   688       pointer_delta(aligned_middle_new_high, middle_high(), sizeof(char));
   689   }
   690   size_t upper_needs = 0;
   691   if (aligned_upper_new_high > upper_high()) {
   692     upper_needs =
   693       pointer_delta(aligned_upper_new_high, upper_high(), sizeof(char));
   694   }
   696   // Check contiguity.
   697   assert(low_boundary() <= lower_high() &&
   698          lower_high() <= lower_high_boundary(),
   699          "high address must be contained within the region");
   700   assert(lower_high_boundary() <= middle_high() &&
   701          middle_high() <= middle_high_boundary(),
   702          "high address must be contained within the region");
   703   assert(middle_high_boundary() <= upper_high() &&
   704          upper_high() <= upper_high_boundary(),
   705          "high address must be contained within the region");
   707   // Commit regions
   708   if (lower_needs > 0) {
   709     assert(low_boundary() <= lower_high() &&
   710            lower_high() + lower_needs <= lower_high_boundary(),
   711            "must not expand beyond region");
   712     if (!os::commit_memory(lower_high(), lower_needs, _executable)) {
   713       debug_only(warning("os::commit_memory failed"));
   714       return false;
   715     } else {
   716       _lower_high += lower_needs;
   717      }
   718   }
   719   if (middle_needs > 0) {
   720     assert(lower_high_boundary() <= middle_high() &&
   721            middle_high() + middle_needs <= middle_high_boundary(),
   722            "must not expand beyond region");
   723     if (!os::commit_memory(middle_high(), middle_needs, middle_alignment(),
   724                            _executable)) {
   725       debug_only(warning("os::commit_memory failed"));
   726       return false;
   727     }
   728     _middle_high += middle_needs;
   729   }
   730   if (upper_needs > 0) {
   731     assert(middle_high_boundary() <= upper_high() &&
   732            upper_high() + upper_needs <= upper_high_boundary(),
   733            "must not expand beyond region");
   734     if (!os::commit_memory(upper_high(), upper_needs, _executable)) {
   735       debug_only(warning("os::commit_memory failed"));
   736       return false;
   737     } else {
   738       _upper_high += upper_needs;
   739     }
   740   }
   742   if (pre_touch || AlwaysPreTouch) {
   743     int vm_ps = os::vm_page_size();
   744     for (char* curr = previous_high;
   745          curr < unaligned_new_high;
   746          curr += vm_ps) {
   747       // Note the use of a write here; originally we tried just a read, but
   748       // since the value read was unused, the optimizer removed the read.
   749       // If we ever have a concurrent touchahead thread, we'll want to use
   750       // a read, to avoid the potential of overwriting data (if a mutator
   751       // thread beats the touchahead thread to a page).  There are various
   752       // ways of making sure this read is not optimized away: for example,
   753       // generating the code for a read procedure at runtime.
   754       *curr = 0;
   755     }
   756   }
   758   _high += bytes;
   759   return true;
   760 }
   762 // A page is uncommitted if the contents of the entire page is deemed unusable.
   763 // Continue to decrement the high() pointer until it reaches a page boundary
   764 // in which case that particular page can now be uncommitted.
   765 void VirtualSpace::shrink_by(size_t size) {
   766   if (committed_size() < size)
   767     fatal("Cannot shrink virtual space to negative size");
   769   if (special()) {
   770     // don't uncommit if the entire space is pinned in memory
   771     _high -= size;
   772     return;
   773   }
   775   char* unaligned_new_high = high() - size;
   776   assert(unaligned_new_high >= low_boundary(), "cannot shrink past lower boundary");
   778   // Calculate new unaligned address
   779   char* unaligned_upper_new_high =
   780     MAX2(unaligned_new_high, middle_high_boundary());
   781   char* unaligned_middle_new_high =
   782     MAX2(unaligned_new_high, lower_high_boundary());
   783   char* unaligned_lower_new_high =
   784     MAX2(unaligned_new_high, low_boundary());
   786   // Align address to region's alignment
   787   char* aligned_upper_new_high =
   788     (char*) round_to((intptr_t) unaligned_upper_new_high, upper_alignment());
   789   char* aligned_middle_new_high =
   790     (char*) round_to((intptr_t) unaligned_middle_new_high, middle_alignment());
   791   char* aligned_lower_new_high =
   792     (char*) round_to((intptr_t) unaligned_lower_new_high, lower_alignment());
   794   // Determine which regions need to shrink
   795   size_t upper_needs = 0;
   796   if (aligned_upper_new_high < upper_high()) {
   797     upper_needs =
   798       pointer_delta(upper_high(), aligned_upper_new_high, sizeof(char));
   799   }
   800   size_t middle_needs = 0;
   801   if (aligned_middle_new_high < middle_high()) {
   802     middle_needs =
   803       pointer_delta(middle_high(), aligned_middle_new_high, sizeof(char));
   804   }
   805   size_t lower_needs = 0;
   806   if (aligned_lower_new_high < lower_high()) {
   807     lower_needs =
   808       pointer_delta(lower_high(), aligned_lower_new_high, sizeof(char));
   809   }
   811   // Check contiguity.
   812   assert(middle_high_boundary() <= upper_high() &&
   813          upper_high() <= upper_high_boundary(),
   814          "high address must be contained within the region");
   815   assert(lower_high_boundary() <= middle_high() &&
   816          middle_high() <= middle_high_boundary(),
   817          "high address must be contained within the region");
   818   assert(low_boundary() <= lower_high() &&
   819          lower_high() <= lower_high_boundary(),
   820          "high address must be contained within the region");
   822   // Uncommit
   823   if (upper_needs > 0) {
   824     assert(middle_high_boundary() <= aligned_upper_new_high &&
   825            aligned_upper_new_high + upper_needs <= upper_high_boundary(),
   826            "must not shrink beyond region");
   827     if (!os::uncommit_memory(aligned_upper_new_high, upper_needs)) {
   828       debug_only(warning("os::uncommit_memory failed"));
   829       return;
   830     } else {
   831       _upper_high -= upper_needs;
   832     }
   833   }
   834   if (middle_needs > 0) {
   835     assert(lower_high_boundary() <= aligned_middle_new_high &&
   836            aligned_middle_new_high + middle_needs <= middle_high_boundary(),
   837            "must not shrink beyond region");
   838     if (!os::uncommit_memory(aligned_middle_new_high, middle_needs)) {
   839       debug_only(warning("os::uncommit_memory failed"));
   840       return;
   841     } else {
   842       _middle_high -= middle_needs;
   843     }
   844   }
   845   if (lower_needs > 0) {
   846     assert(low_boundary() <= aligned_lower_new_high &&
   847            aligned_lower_new_high + lower_needs <= lower_high_boundary(),
   848            "must not shrink beyond region");
   849     if (!os::uncommit_memory(aligned_lower_new_high, lower_needs)) {
   850       debug_only(warning("os::uncommit_memory failed"));
   851       return;
   852     } else {
   853       _lower_high -= lower_needs;
   854     }
   855   }
   857   _high -= size;
   858 }
   860 #ifndef PRODUCT
   861 void VirtualSpace::check_for_contiguity() {
   862   // Check contiguity.
   863   assert(low_boundary() <= lower_high() &&
   864          lower_high() <= lower_high_boundary(),
   865          "high address must be contained within the region");
   866   assert(lower_high_boundary() <= middle_high() &&
   867          middle_high() <= middle_high_boundary(),
   868          "high address must be contained within the region");
   869   assert(middle_high_boundary() <= upper_high() &&
   870          upper_high() <= upper_high_boundary(),
   871          "high address must be contained within the region");
   872   assert(low() >= low_boundary(), "low");
   873   assert(low_boundary() <= lower_high_boundary(), "lower high boundary");
   874   assert(upper_high_boundary() <= high_boundary(), "upper high boundary");
   875   assert(high() <= upper_high(), "upper high");
   876 }
   878 void VirtualSpace::print() {
   879   tty->print   ("Virtual space:");
   880   if (special()) tty->print(" (pinned in memory)");
   881   tty->cr();
   882   tty->print_cr(" - committed: %ld", committed_size());
   883   tty->print_cr(" - reserved:  %ld", reserved_size());
   884   tty->print_cr(" - [low, high]:     [" INTPTR_FORMAT ", " INTPTR_FORMAT "]",  low(), high());
   885   tty->print_cr(" - [low_b, high_b]: [" INTPTR_FORMAT ", " INTPTR_FORMAT "]",  low_boundary(), high_boundary());
   886 }
   888 #endif

mercurial