src/share/vm/asm/assembler.cpp

Fri, 30 Nov 2012 15:23:16 -0800

author
twisti
date
Fri, 30 Nov 2012 15:23:16 -0800
changeset 4318
cd3d6a6b95d9
parent 4317
6ab62ad83507
child 4356
18d56ca3e901
permissions
-rw-r--r--

8003240: x86: move MacroAssembler into separate file
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "asm/codeBuffer.hpp"
    29 #include "runtime/atomic.hpp"
    30 #include "runtime/atomic.inline.hpp"
    31 #include "runtime/icache.hpp"
    32 #include "runtime/os.hpp"
    35 // Implementation of AbstractAssembler
    36 //
    37 // The AbstractAssembler is generating code into a CodeBuffer. To make code generation faster,
    38 // the assembler keeps a copy of the code buffers boundaries & modifies them when
    39 // emitting bytes rather than using the code buffers accessor functions all the time.
    40 // The code buffer is updated via set_code_end(...) after emitting a whole instruction.
    42 AbstractAssembler::AbstractAssembler(CodeBuffer* code) {
    43   if (code == NULL)  return;
    44   CodeSection* cs = code->insts();
    45   cs->clear_mark();   // new assembler kills old mark
    46   if (cs->start() == NULL)  {
    47     vm_exit_out_of_memory(0, err_msg("CodeCache: no room for %s",
    48                                      code->name()));
    49   }
    50   _code_section = cs;
    51   _oop_recorder= code->oop_recorder();
    52   DEBUG_ONLY( _short_branch_delta = 0; )
    53 }
    55 void AbstractAssembler::set_code_section(CodeSection* cs) {
    56   assert(cs->outer() == code_section()->outer(), "sanity");
    57   assert(cs->is_allocated(), "need to pre-allocate this section");
    58   cs->clear_mark();  // new assembly into this section kills old mark
    59   _code_section = cs;
    60 }
    62 // Inform CodeBuffer that incoming code and relocation will be for stubs
    63 address AbstractAssembler::start_a_stub(int required_space) {
    64   CodeBuffer*  cb = code();
    65   CodeSection* cs = cb->stubs();
    66   assert(_code_section == cb->insts(), "not in insts?");
    67   if (cs->maybe_expand_to_ensure_remaining(required_space)
    68       && cb->blob() == NULL) {
    69     return NULL;
    70   }
    71   set_code_section(cs);
    72   return pc();
    73 }
    75 // Inform CodeBuffer that incoming code and relocation will be code
    76 // Should not be called if start_a_stub() returned NULL
    77 void AbstractAssembler::end_a_stub() {
    78   assert(_code_section == code()->stubs(), "not in stubs?");
    79   set_code_section(code()->insts());
    80 }
    82 // Inform CodeBuffer that incoming code and relocation will be for stubs
    83 address AbstractAssembler::start_a_const(int required_space, int required_align) {
    84   CodeBuffer*  cb = code();
    85   CodeSection* cs = cb->consts();
    86   assert(_code_section == cb->insts() || _code_section == cb->stubs(), "not in insts/stubs?");
    87   address end = cs->end();
    88   int pad = -(intptr_t)end & (required_align-1);
    89   if (cs->maybe_expand_to_ensure_remaining(pad + required_space)) {
    90     if (cb->blob() == NULL)  return NULL;
    91     end = cs->end();  // refresh pointer
    92   }
    93   if (pad > 0) {
    94     while (--pad >= 0) { *end++ = 0; }
    95     cs->set_end(end);
    96   }
    97   set_code_section(cs);
    98   return end;
    99 }
   101 // Inform CodeBuffer that incoming code and relocation will be code
   102 // in section cs (insts or stubs).
   103 void AbstractAssembler::end_a_const(CodeSection* cs) {
   104   assert(_code_section == code()->consts(), "not in consts?");
   105   set_code_section(cs);
   106 }
   108 void AbstractAssembler::flush() {
   109   ICache::invalidate_range(addr_at(0), offset());
   110 }
   113 void AbstractAssembler::a_byte(int x) {
   114   emit_byte(x);
   115 }
   118 void AbstractAssembler::a_long(jint x) {
   119   emit_long(x);
   120 }
   122 // Labels refer to positions in the (to be) generated code.  There are bound
   123 // and unbound
   124 //
   125 // Bound labels refer to known positions in the already generated code.
   126 // offset() is the position the label refers to.
   127 //
   128 // Unbound labels refer to unknown positions in the code to be generated; it
   129 // may contain a list of unresolved displacements that refer to it
   130 #ifndef PRODUCT
   131 void AbstractAssembler::print(Label& L) {
   132   if (L.is_bound()) {
   133     tty->print_cr("bound label to %d|%d", L.loc_pos(), L.loc_sect());
   134   } else if (L.is_unbound()) {
   135     L.print_instructions((MacroAssembler*)this);
   136   } else {
   137     tty->print_cr("label in inconsistent state (loc = %d)", L.loc());
   138   }
   139 }
   140 #endif // PRODUCT
   143 void AbstractAssembler::bind(Label& L) {
   144   if (L.is_bound()) {
   145     // Assembler can bind a label more than once to the same place.
   146     guarantee(L.loc() == locator(), "attempt to redefine label");
   147     return;
   148   }
   149   L.bind_loc(locator());
   150   L.patch_instructions((MacroAssembler*)this);
   151 }
   153 void AbstractAssembler::generate_stack_overflow_check( int frame_size_in_bytes) {
   154   if (UseStackBanging) {
   155     // Each code entry causes one stack bang n pages down the stack where n
   156     // is configurable by StackBangPages.  The setting depends on the maximum
   157     // depth of VM call stack or native before going back into java code,
   158     // since only java code can raise a stack overflow exception using the
   159     // stack banging mechanism.  The VM and native code does not detect stack
   160     // overflow.
   161     // The code in JavaCalls::call() checks that there is at least n pages
   162     // available, so all entry code needs to do is bang once for the end of
   163     // this shadow zone.
   164     // The entry code may need to bang additional pages if the framesize
   165     // is greater than a page.
   167     const int page_size = os::vm_page_size();
   168     int bang_end = StackShadowPages*page_size;
   170     // This is how far the previous frame's stack banging extended.
   171     const int bang_end_safe = bang_end;
   173     if (frame_size_in_bytes > page_size) {
   174       bang_end += frame_size_in_bytes;
   175     }
   177     int bang_offset = bang_end_safe;
   178     while (bang_offset <= bang_end) {
   179       // Need at least one stack bang at end of shadow zone.
   180       bang_stack_with_offset(bang_offset);
   181       bang_offset += page_size;
   182     }
   183   } // end (UseStackBanging)
   184 }
   186 void Label::add_patch_at(CodeBuffer* cb, int branch_loc) {
   187   assert(_loc == -1, "Label is unbound");
   188   if (_patch_index < PatchCacheSize) {
   189     _patches[_patch_index] = branch_loc;
   190   } else {
   191     if (_patch_overflow == NULL) {
   192       _patch_overflow = cb->create_patch_overflow();
   193     }
   194     _patch_overflow->push(branch_loc);
   195   }
   196   ++_patch_index;
   197 }
   199 void Label::patch_instructions(MacroAssembler* masm) {
   200   assert(is_bound(), "Label is bound");
   201   CodeBuffer* cb = masm->code();
   202   int target_sect = CodeBuffer::locator_sect(loc());
   203   address target = cb->locator_address(loc());
   204   while (_patch_index > 0) {
   205     --_patch_index;
   206     int branch_loc;
   207     if (_patch_index >= PatchCacheSize) {
   208       branch_loc = _patch_overflow->pop();
   209     } else {
   210       branch_loc = _patches[_patch_index];
   211     }
   212     int branch_sect = CodeBuffer::locator_sect(branch_loc);
   213     address branch = cb->locator_address(branch_loc);
   214     if (branch_sect == CodeBuffer::SECT_CONSTS) {
   215       // The thing to patch is a constant word.
   216       *(address*)branch = target;
   217       continue;
   218     }
   220 #ifdef ASSERT
   221     // Cross-section branches only work if the
   222     // intermediate section boundaries are frozen.
   223     if (target_sect != branch_sect) {
   224       for (int n = MIN2(target_sect, branch_sect),
   225                nlimit = (target_sect + branch_sect) - n;
   226            n < nlimit; n++) {
   227         CodeSection* cs = cb->code_section(n);
   228         assert(cs->is_frozen(), "cross-section branch needs stable offsets");
   229       }
   230     }
   231 #endif //ASSERT
   233     // Push the target offset into the branch instruction.
   234     masm->pd_patch_instruction(branch, target);
   235   }
   236 }
   238 struct DelayedConstant {
   239   typedef void (*value_fn_t)();
   240   BasicType type;
   241   intptr_t value;
   242   value_fn_t value_fn;
   243   // This limit of 20 is generous for initial uses.
   244   // The limit needs to be large enough to store the field offsets
   245   // into classes which do not have statically fixed layouts.
   246   // (Initial use is for method handle object offsets.)
   247   // Look for uses of "delayed_value" in the source code
   248   // and make sure this number is generous enough to handle all of them.
   249   enum { DC_LIMIT = 20 };
   250   static DelayedConstant delayed_constants[DC_LIMIT];
   251   static DelayedConstant* add(BasicType type, value_fn_t value_fn);
   252   bool match(BasicType t, value_fn_t cfn) {
   253     return type == t && value_fn == cfn;
   254   }
   255   static void update_all();
   256 };
   258 DelayedConstant DelayedConstant::delayed_constants[DC_LIMIT];
   259 // Default C structure initialization rules have the following effect here:
   260 // = { { (BasicType)0, (intptr_t)NULL }, ... };
   262 DelayedConstant* DelayedConstant::add(BasicType type,
   263                                       DelayedConstant::value_fn_t cfn) {
   264   for (int i = 0; i < DC_LIMIT; i++) {
   265     DelayedConstant* dcon = &delayed_constants[i];
   266     if (dcon->match(type, cfn))
   267       return dcon;
   268     if (dcon->value_fn == NULL) {
   269       // (cmpxchg not because this is multi-threaded but because I'm paranoid)
   270       if (Atomic::cmpxchg_ptr(CAST_FROM_FN_PTR(void*, cfn), &dcon->value_fn, NULL) == NULL) {
   271         dcon->type = type;
   272         return dcon;
   273       }
   274     }
   275   }
   276   // If this assert is hit (in pre-integration testing!) then re-evaluate
   277   // the comment on the definition of DC_LIMIT.
   278   guarantee(false, "too many delayed constants");
   279   return NULL;
   280 }
   282 void DelayedConstant::update_all() {
   283   for (int i = 0; i < DC_LIMIT; i++) {
   284     DelayedConstant* dcon = &delayed_constants[i];
   285     if (dcon->value_fn != NULL && dcon->value == 0) {
   286       typedef int     (*int_fn_t)();
   287       typedef address (*address_fn_t)();
   288       switch (dcon->type) {
   289       case T_INT:     dcon->value = (intptr_t) ((int_fn_t)    dcon->value_fn)(); break;
   290       case T_ADDRESS: dcon->value = (intptr_t) ((address_fn_t)dcon->value_fn)(); break;
   291       }
   292     }
   293   }
   294 }
   296 RegisterOrConstant AbstractAssembler::delayed_value(int(*value_fn)(), Register tmp, int offset) {
   297   intptr_t val = (intptr_t) (*value_fn)();
   298   if (val != 0)  return val + offset;
   299   return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
   300 }
   301 RegisterOrConstant AbstractAssembler::delayed_value(address(*value_fn)(), Register tmp, int offset) {
   302   intptr_t val = (intptr_t) (*value_fn)();
   303   if (val != 0)  return val + offset;
   304   return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
   305 }
   306 intptr_t* AbstractAssembler::delayed_value_addr(int(*value_fn)()) {
   307   DelayedConstant* dcon = DelayedConstant::add(T_INT, (DelayedConstant::value_fn_t) value_fn);
   308   return &dcon->value;
   309 }
   310 intptr_t* AbstractAssembler::delayed_value_addr(address(*value_fn)()) {
   311   DelayedConstant* dcon = DelayedConstant::add(T_ADDRESS, (DelayedConstant::value_fn_t) value_fn);
   312   return &dcon->value;
   313 }
   314 void AbstractAssembler::update_delayed_values() {
   315   DelayedConstant::update_all();
   316 }
   321 void AbstractAssembler::block_comment(const char* comment) {
   322   if (sect() == CodeBuffer::SECT_INSTS) {
   323     code_section()->outer()->block_comment(offset(), comment);
   324   }
   325 }
   327 bool MacroAssembler::needs_explicit_null_check(intptr_t offset) {
   328   // Exception handler checks the nmethod's implicit null checks table
   329   // only when this method returns false.
   330 #ifdef _LP64
   331   if (UseCompressedOops && Universe::narrow_oop_base() != NULL) {
   332     assert (Universe::heap() != NULL, "java heap should be initialized");
   333     // The first page after heap_base is unmapped and
   334     // the 'offset' is equal to [heap_base + offset] for
   335     // narrow oop implicit null checks.
   336     uintptr_t base = (uintptr_t)Universe::narrow_oop_base();
   337     if ((uintptr_t)offset >= base) {
   338       // Normalize offset for the next check.
   339       offset = (intptr_t)(pointer_delta((void*)offset, (void*)base, 1));
   340     }
   341   }
   342 #endif
   343   return offset < 0 || os::vm_page_size() <= offset;
   344 }
   346 #ifndef PRODUCT
   347 void Label::print_instructions(MacroAssembler* masm) const {
   348   CodeBuffer* cb = masm->code();
   349   for (int i = 0; i < _patch_index; ++i) {
   350     int branch_loc;
   351     if (i >= PatchCacheSize) {
   352       branch_loc = _patch_overflow->at(i - PatchCacheSize);
   353     } else {
   354       branch_loc = _patches[i];
   355     }
   356     int branch_pos  = CodeBuffer::locator_pos(branch_loc);
   357     int branch_sect = CodeBuffer::locator_sect(branch_loc);
   358     address branch = cb->locator_address(branch_loc);
   359     tty->print_cr("unbound label");
   360     tty->print("@ %d|%d ", branch_pos, branch_sect);
   361     if (branch_sect == CodeBuffer::SECT_CONSTS) {
   362       tty->print_cr(PTR_FORMAT, *(address*)branch);
   363       continue;
   364     }
   365     masm->pd_print_patched_instruction(branch);
   366     tty->cr();
   367   }
   368 }
   369 #endif // ndef PRODUCT

mercurial