src/os/linux/vm/os_linux.cpp

Fri, 30 Nov 2012 15:23:16 -0800

author
twisti
date
Fri, 30 Nov 2012 15:23:16 -0800
changeset 4318
cd3d6a6b95d9
parent 4261
6cb0d32b828b
child 4325
d2f8c38e543d
permissions
-rw-r--r--

8003240: x86: move MacroAssembler into separate file
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/java.hpp"
    48 #include "runtime/javaCalls.hpp"
    49 #include "runtime/mutexLocker.hpp"
    50 #include "runtime/objectMonitor.hpp"
    51 #include "runtime/osThread.hpp"
    52 #include "runtime/perfMemory.hpp"
    53 #include "runtime/sharedRuntime.hpp"
    54 #include "runtime/statSampler.hpp"
    55 #include "runtime/stubRoutines.hpp"
    56 #include "runtime/threadCritical.hpp"
    57 #include "runtime/timer.hpp"
    58 #include "services/attachListener.hpp"
    59 #include "services/runtimeService.hpp"
    60 #include "thread_linux.inline.hpp"
    61 #include "utilities/decoder.hpp"
    62 #include "utilities/defaultStream.hpp"
    63 #include "utilities/events.hpp"
    64 #include "utilities/growableArray.hpp"
    65 #include "utilities/vmError.hpp"
    67 // put OS-includes here
    68 # include <sys/types.h>
    69 # include <sys/mman.h>
    70 # include <sys/stat.h>
    71 # include <sys/select.h>
    72 # include <pthread.h>
    73 # include <signal.h>
    74 # include <errno.h>
    75 # include <dlfcn.h>
    76 # include <stdio.h>
    77 # include <unistd.h>
    78 # include <sys/resource.h>
    79 # include <pthread.h>
    80 # include <sys/stat.h>
    81 # include <sys/time.h>
    82 # include <sys/times.h>
    83 # include <sys/utsname.h>
    84 # include <sys/socket.h>
    85 # include <sys/wait.h>
    86 # include <pwd.h>
    87 # include <poll.h>
    88 # include <semaphore.h>
    89 # include <fcntl.h>
    90 # include <string.h>
    91 # include <syscall.h>
    92 # include <sys/sysinfo.h>
    93 # include <gnu/libc-version.h>
    94 # include <sys/ipc.h>
    95 # include <sys/shm.h>
    96 # include <link.h>
    97 # include <stdint.h>
    98 # include <inttypes.h>
    99 # include <sys/ioctl.h>
   101 #define MAX_PATH    (2 * K)
   103 // for timer info max values which include all bits
   104 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   106 #define LARGEPAGES_BIT (1 << 6)
   107 ////////////////////////////////////////////////////////////////////////////////
   108 // global variables
   109 julong os::Linux::_physical_memory = 0;
   111 address   os::Linux::_initial_thread_stack_bottom = NULL;
   112 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   114 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   115 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   116 Mutex* os::Linux::_createThread_lock = NULL;
   117 pthread_t os::Linux::_main_thread;
   118 int os::Linux::_page_size = -1;
   119 bool os::Linux::_is_floating_stack = false;
   120 bool os::Linux::_is_NPTL = false;
   121 bool os::Linux::_supports_fast_thread_cpu_time = false;
   122 const char * os::Linux::_glibc_version = NULL;
   123 const char * os::Linux::_libpthread_version = NULL;
   125 static jlong initial_time_count=0;
   127 static int clock_tics_per_sec = 100;
   129 // For diagnostics to print a message once. see run_periodic_checks
   130 static sigset_t check_signal_done;
   131 static bool check_signals = true;;
   133 static pid_t _initial_pid = 0;
   135 /* Signal number used to suspend/resume a thread */
   137 /* do not use any signal number less than SIGSEGV, see 4355769 */
   138 static int SR_signum = SIGUSR2;
   139 sigset_t SR_sigset;
   141 /* Used to protect dlsym() calls */
   142 static pthread_mutex_t dl_mutex;
   144 #ifdef JAVASE_EMBEDDED
   145 class MemNotifyThread: public Thread {
   146   friend class VMStructs;
   147  public:
   148   virtual void run();
   150  private:
   151   static MemNotifyThread* _memnotify_thread;
   152   int _fd;
   154  public:
   156   // Constructor
   157   MemNotifyThread(int fd);
   159   // Tester
   160   bool is_memnotify_thread() const { return true; }
   162   // Printing
   163   char* name() const { return (char*)"Linux MemNotify Thread"; }
   165   // Returns the single instance of the MemNotifyThread
   166   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
   168   // Create and start the single instance of MemNotifyThread
   169   static void start();
   170 };
   171 #endif // JAVASE_EMBEDDED
   173 // utility functions
   175 static int SR_initialize();
   176 static int SR_finalize();
   178 julong os::available_memory() {
   179   return Linux::available_memory();
   180 }
   182 julong os::Linux::available_memory() {
   183   // values in struct sysinfo are "unsigned long"
   184   struct sysinfo si;
   185   sysinfo(&si);
   187   return (julong)si.freeram * si.mem_unit;
   188 }
   190 julong os::physical_memory() {
   191   return Linux::physical_memory();
   192 }
   194 julong os::allocatable_physical_memory(julong size) {
   195 #ifdef _LP64
   196   return size;
   197 #else
   198   julong result = MIN2(size, (julong)3800*M);
   199    if (!is_allocatable(result)) {
   200      // See comments under solaris for alignment considerations
   201      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
   202      result =  MIN2(size, reasonable_size);
   203    }
   204    return result;
   205 #endif // _LP64
   206 }
   208 ////////////////////////////////////////////////////////////////////////////////
   209 // environment support
   211 bool os::getenv(const char* name, char* buf, int len) {
   212   const char* val = ::getenv(name);
   213   if (val != NULL && strlen(val) < (size_t)len) {
   214     strcpy(buf, val);
   215     return true;
   216   }
   217   if (len > 0) buf[0] = 0;  // return a null string
   218   return false;
   219 }
   222 // Return true if user is running as root.
   224 bool os::have_special_privileges() {
   225   static bool init = false;
   226   static bool privileges = false;
   227   if (!init) {
   228     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   229     init = true;
   230   }
   231   return privileges;
   232 }
   235 #ifndef SYS_gettid
   236 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   237 #ifdef __ia64__
   238 #define SYS_gettid 1105
   239 #elif __i386__
   240 #define SYS_gettid 224
   241 #elif __amd64__
   242 #define SYS_gettid 186
   243 #elif __sparc__
   244 #define SYS_gettid 143
   245 #else
   246 #error define gettid for the arch
   247 #endif
   248 #endif
   250 // Cpu architecture string
   251 #if   defined(ZERO)
   252 static char cpu_arch[] = ZERO_LIBARCH;
   253 #elif defined(IA64)
   254 static char cpu_arch[] = "ia64";
   255 #elif defined(IA32)
   256 static char cpu_arch[] = "i386";
   257 #elif defined(AMD64)
   258 static char cpu_arch[] = "amd64";
   259 #elif defined(ARM)
   260 static char cpu_arch[] = "arm";
   261 #elif defined(PPC)
   262 static char cpu_arch[] = "ppc";
   263 #elif defined(SPARC)
   264 #  ifdef _LP64
   265 static char cpu_arch[] = "sparcv9";
   266 #  else
   267 static char cpu_arch[] = "sparc";
   268 #  endif
   269 #else
   270 #error Add appropriate cpu_arch setting
   271 #endif
   274 // pid_t gettid()
   275 //
   276 // Returns the kernel thread id of the currently running thread. Kernel
   277 // thread id is used to access /proc.
   278 //
   279 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   280 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   281 //
   282 pid_t os::Linux::gettid() {
   283   int rslt = syscall(SYS_gettid);
   284   if (rslt == -1) {
   285      // old kernel, no NPTL support
   286      return getpid();
   287   } else {
   288      return (pid_t)rslt;
   289   }
   290 }
   292 // Most versions of linux have a bug where the number of processors are
   293 // determined by looking at the /proc file system.  In a chroot environment,
   294 // the system call returns 1.  This causes the VM to act as if it is
   295 // a single processor and elide locking (see is_MP() call).
   296 static bool unsafe_chroot_detected = false;
   297 static const char *unstable_chroot_error = "/proc file system not found.\n"
   298                      "Java may be unstable running multithreaded in a chroot "
   299                      "environment on Linux when /proc filesystem is not mounted.";
   301 void os::Linux::initialize_system_info() {
   302   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   303   if (processor_count() == 1) {
   304     pid_t pid = os::Linux::gettid();
   305     char fname[32];
   306     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   307     FILE *fp = fopen(fname, "r");
   308     if (fp == NULL) {
   309       unsafe_chroot_detected = true;
   310     } else {
   311       fclose(fp);
   312     }
   313   }
   314   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   315   assert(processor_count() > 0, "linux error");
   316 }
   318 void os::init_system_properties_values() {
   319 //  char arch[12];
   320 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   322   // The next steps are taken in the product version:
   323   //
   324   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
   325   // This library should be located at:
   326   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
   327   //
   328   // If "/jre/lib/" appears at the right place in the path, then we
   329   // assume libjvm[_g].so is installed in a JDK and we use this path.
   330   //
   331   // Otherwise exit with message: "Could not create the Java virtual machine."
   332   //
   333   // The following extra steps are taken in the debugging version:
   334   //
   335   // If "/jre/lib/" does NOT appear at the right place in the path
   336   // instead of exit check for $JAVA_HOME environment variable.
   337   //
   338   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   339   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
   340   // it looks like libjvm[_g].so is installed there
   341   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
   342   //
   343   // Otherwise exit.
   344   //
   345   // Important note: if the location of libjvm.so changes this
   346   // code needs to be changed accordingly.
   348   // The next few definitions allow the code to be verbatim:
   349 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
   350 #define getenv(n) ::getenv(n)
   352 /*
   353  * See ld(1):
   354  *      The linker uses the following search paths to locate required
   355  *      shared libraries:
   356  *        1: ...
   357  *        ...
   358  *        7: The default directories, normally /lib and /usr/lib.
   359  */
   360 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   361 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   362 #else
   363 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   364 #endif
   366 #define EXTENSIONS_DIR  "/lib/ext"
   367 #define ENDORSED_DIR    "/lib/endorsed"
   368 #define REG_DIR         "/usr/java/packages"
   370   {
   371     /* sysclasspath, java_home, dll_dir */
   372     {
   373         char *home_path;
   374         char *dll_path;
   375         char *pslash;
   376         char buf[MAXPATHLEN];
   377         os::jvm_path(buf, sizeof(buf));
   379         // Found the full path to libjvm.so.
   380         // Now cut the path to <java_home>/jre if we can.
   381         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   382         pslash = strrchr(buf, '/');
   383         if (pslash != NULL)
   384             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   385         dll_path = malloc(strlen(buf) + 1);
   386         if (dll_path == NULL)
   387             return;
   388         strcpy(dll_path, buf);
   389         Arguments::set_dll_dir(dll_path);
   391         if (pslash != NULL) {
   392             pslash = strrchr(buf, '/');
   393             if (pslash != NULL) {
   394                 *pslash = '\0';       /* get rid of /<arch> */
   395                 pslash = strrchr(buf, '/');
   396                 if (pslash != NULL)
   397                     *pslash = '\0';   /* get rid of /lib */
   398             }
   399         }
   401         home_path = malloc(strlen(buf) + 1);
   402         if (home_path == NULL)
   403             return;
   404         strcpy(home_path, buf);
   405         Arguments::set_java_home(home_path);
   407         if (!set_boot_path('/', ':'))
   408             return;
   409     }
   411     /*
   412      * Where to look for native libraries
   413      *
   414      * Note: Due to a legacy implementation, most of the library path
   415      * is set in the launcher.  This was to accomodate linking restrictions
   416      * on legacy Linux implementations (which are no longer supported).
   417      * Eventually, all the library path setting will be done here.
   418      *
   419      * However, to prevent the proliferation of improperly built native
   420      * libraries, the new path component /usr/java/packages is added here.
   421      * Eventually, all the library path setting will be done here.
   422      */
   423     {
   424         char *ld_library_path;
   426         /*
   427          * Construct the invariant part of ld_library_path. Note that the
   428          * space for the colon and the trailing null are provided by the
   429          * nulls included by the sizeof operator (so actually we allocate
   430          * a byte more than necessary).
   431          */
   432         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   433             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   434         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   436         /*
   437          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   438          * should always exist (until the legacy problem cited above is
   439          * addressed).
   440          */
   441         char *v = getenv("LD_LIBRARY_PATH");
   442         if (v != NULL) {
   443             char *t = ld_library_path;
   444             /* That's +1 for the colon and +1 for the trailing '\0' */
   445             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   446             sprintf(ld_library_path, "%s:%s", v, t);
   447         }
   448         Arguments::set_library_path(ld_library_path);
   449     }
   451     /*
   452      * Extensions directories.
   453      *
   454      * Note that the space for the colon and the trailing null are provided
   455      * by the nulls included by the sizeof operator (so actually one byte more
   456      * than necessary is allocated).
   457      */
   458     {
   459         char *buf = malloc(strlen(Arguments::get_java_home()) +
   460             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   461         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   462             Arguments::get_java_home());
   463         Arguments::set_ext_dirs(buf);
   464     }
   466     /* Endorsed standards default directory. */
   467     {
   468         char * buf;
   469         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   470         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   471         Arguments::set_endorsed_dirs(buf);
   472     }
   473   }
   475 #undef malloc
   476 #undef getenv
   477 #undef EXTENSIONS_DIR
   478 #undef ENDORSED_DIR
   480   // Done
   481   return;
   482 }
   484 ////////////////////////////////////////////////////////////////////////////////
   485 // breakpoint support
   487 void os::breakpoint() {
   488   BREAKPOINT;
   489 }
   491 extern "C" void breakpoint() {
   492   // use debugger to set breakpoint here
   493 }
   495 ////////////////////////////////////////////////////////////////////////////////
   496 // signal support
   498 debug_only(static bool signal_sets_initialized = false);
   499 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   501 bool os::Linux::is_sig_ignored(int sig) {
   502       struct sigaction oact;
   503       sigaction(sig, (struct sigaction*)NULL, &oact);
   504       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   505                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   506       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   507            return true;
   508       else
   509            return false;
   510 }
   512 void os::Linux::signal_sets_init() {
   513   // Should also have an assertion stating we are still single-threaded.
   514   assert(!signal_sets_initialized, "Already initialized");
   515   // Fill in signals that are necessarily unblocked for all threads in
   516   // the VM. Currently, we unblock the following signals:
   517   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   518   //                         by -Xrs (=ReduceSignalUsage));
   519   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   520   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   521   // the dispositions or masks wrt these signals.
   522   // Programs embedding the VM that want to use the above signals for their
   523   // own purposes must, at this time, use the "-Xrs" option to prevent
   524   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   525   // (See bug 4345157, and other related bugs).
   526   // In reality, though, unblocking these signals is really a nop, since
   527   // these signals are not blocked by default.
   528   sigemptyset(&unblocked_sigs);
   529   sigemptyset(&allowdebug_blocked_sigs);
   530   sigaddset(&unblocked_sigs, SIGILL);
   531   sigaddset(&unblocked_sigs, SIGSEGV);
   532   sigaddset(&unblocked_sigs, SIGBUS);
   533   sigaddset(&unblocked_sigs, SIGFPE);
   534   sigaddset(&unblocked_sigs, SR_signum);
   536   if (!ReduceSignalUsage) {
   537    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   538       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   539       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   540    }
   541    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   542       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   543       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   544    }
   545    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   546       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   547       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   548    }
   549   }
   550   // Fill in signals that are blocked by all but the VM thread.
   551   sigemptyset(&vm_sigs);
   552   if (!ReduceSignalUsage)
   553     sigaddset(&vm_sigs, BREAK_SIGNAL);
   554   debug_only(signal_sets_initialized = true);
   556 }
   558 // These are signals that are unblocked while a thread is running Java.
   559 // (For some reason, they get blocked by default.)
   560 sigset_t* os::Linux::unblocked_signals() {
   561   assert(signal_sets_initialized, "Not initialized");
   562   return &unblocked_sigs;
   563 }
   565 // These are the signals that are blocked while a (non-VM) thread is
   566 // running Java. Only the VM thread handles these signals.
   567 sigset_t* os::Linux::vm_signals() {
   568   assert(signal_sets_initialized, "Not initialized");
   569   return &vm_sigs;
   570 }
   572 // These are signals that are blocked during cond_wait to allow debugger in
   573 sigset_t* os::Linux::allowdebug_blocked_signals() {
   574   assert(signal_sets_initialized, "Not initialized");
   575   return &allowdebug_blocked_sigs;
   576 }
   578 void os::Linux::hotspot_sigmask(Thread* thread) {
   580   //Save caller's signal mask before setting VM signal mask
   581   sigset_t caller_sigmask;
   582   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   584   OSThread* osthread = thread->osthread();
   585   osthread->set_caller_sigmask(caller_sigmask);
   587   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   589   if (!ReduceSignalUsage) {
   590     if (thread->is_VM_thread()) {
   591       // Only the VM thread handles BREAK_SIGNAL ...
   592       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   593     } else {
   594       // ... all other threads block BREAK_SIGNAL
   595       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   596     }
   597   }
   598 }
   600 //////////////////////////////////////////////////////////////////////////////
   601 // detecting pthread library
   603 void os::Linux::libpthread_init() {
   604   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   605   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   606   // generic name for earlier versions.
   607   // Define macros here so we can build HotSpot on old systems.
   608 # ifndef _CS_GNU_LIBC_VERSION
   609 # define _CS_GNU_LIBC_VERSION 2
   610 # endif
   611 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   612 # define _CS_GNU_LIBPTHREAD_VERSION 3
   613 # endif
   615   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   616   if (n > 0) {
   617      char *str = (char *)malloc(n, mtInternal);
   618      confstr(_CS_GNU_LIBC_VERSION, str, n);
   619      os::Linux::set_glibc_version(str);
   620   } else {
   621      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   622      static char _gnu_libc_version[32];
   623      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   624               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   625      os::Linux::set_glibc_version(_gnu_libc_version);
   626   }
   628   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   629   if (n > 0) {
   630      char *str = (char *)malloc(n, mtInternal);
   631      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   632      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   633      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   634      // is the case. LinuxThreads has a hard limit on max number of threads.
   635      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   636      // On the other hand, NPTL does not have such a limit, sysconf()
   637      // will return -1 and errno is not changed. Check if it is really NPTL.
   638      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   639          strstr(str, "NPTL") &&
   640          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   641        free(str);
   642        os::Linux::set_libpthread_version("linuxthreads");
   643      } else {
   644        os::Linux::set_libpthread_version(str);
   645      }
   646   } else {
   647     // glibc before 2.3.2 only has LinuxThreads.
   648     os::Linux::set_libpthread_version("linuxthreads");
   649   }
   651   if (strstr(libpthread_version(), "NPTL")) {
   652      os::Linux::set_is_NPTL();
   653   } else {
   654      os::Linux::set_is_LinuxThreads();
   655   }
   657   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   658   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   659   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   660      os::Linux::set_is_floating_stack();
   661   }
   662 }
   664 /////////////////////////////////////////////////////////////////////////////
   665 // thread stack
   667 // Force Linux kernel to expand current thread stack. If "bottom" is close
   668 // to the stack guard, caller should block all signals.
   669 //
   670 // MAP_GROWSDOWN:
   671 //   A special mmap() flag that is used to implement thread stacks. It tells
   672 //   kernel that the memory region should extend downwards when needed. This
   673 //   allows early versions of LinuxThreads to only mmap the first few pages
   674 //   when creating a new thread. Linux kernel will automatically expand thread
   675 //   stack as needed (on page faults).
   676 //
   677 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   678 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   679 //   region, it's hard to tell if the fault is due to a legitimate stack
   680 //   access or because of reading/writing non-exist memory (e.g. buffer
   681 //   overrun). As a rule, if the fault happens below current stack pointer,
   682 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   683 //   application (see Linux kernel fault.c).
   684 //
   685 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   686 //   stack overflow detection.
   687 //
   688 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   689 //   not use this flag. However, the stack of initial thread is not created
   690 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   691 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   692 //   and then attach the thread to JVM.
   693 //
   694 // To get around the problem and allow stack banging on Linux, we need to
   695 // manually expand thread stack after receiving the SIGSEGV.
   696 //
   697 // There are two ways to expand thread stack to address "bottom", we used
   698 // both of them in JVM before 1.5:
   699 //   1. adjust stack pointer first so that it is below "bottom", and then
   700 //      touch "bottom"
   701 //   2. mmap() the page in question
   702 //
   703 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   704 // if current sp is already near the lower end of page 101, and we need to
   705 // call mmap() to map page 100, it is possible that part of the mmap() frame
   706 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   707 // That will destroy the mmap() frame and cause VM to crash.
   708 //
   709 // The following code works by adjusting sp first, then accessing the "bottom"
   710 // page to force a page fault. Linux kernel will then automatically expand the
   711 // stack mapping.
   712 //
   713 // _expand_stack_to() assumes its frame size is less than page size, which
   714 // should always be true if the function is not inlined.
   716 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   717 #define NOINLINE
   718 #else
   719 #define NOINLINE __attribute__ ((noinline))
   720 #endif
   722 static void _expand_stack_to(address bottom) NOINLINE;
   724 static void _expand_stack_to(address bottom) {
   725   address sp;
   726   size_t size;
   727   volatile char *p;
   729   // Adjust bottom to point to the largest address within the same page, it
   730   // gives us a one-page buffer if alloca() allocates slightly more memory.
   731   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   732   bottom += os::Linux::page_size() - 1;
   734   // sp might be slightly above current stack pointer; if that's the case, we
   735   // will alloca() a little more space than necessary, which is OK. Don't use
   736   // os::current_stack_pointer(), as its result can be slightly below current
   737   // stack pointer, causing us to not alloca enough to reach "bottom".
   738   sp = (address)&sp;
   740   if (sp > bottom) {
   741     size = sp - bottom;
   742     p = (volatile char *)alloca(size);
   743     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   744     p[0] = '\0';
   745   }
   746 }
   748 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   749   assert(t!=NULL, "just checking");
   750   assert(t->osthread()->expanding_stack(), "expand should be set");
   751   assert(t->stack_base() != NULL, "stack_base was not initialized");
   753   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   754     sigset_t mask_all, old_sigset;
   755     sigfillset(&mask_all);
   756     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   757     _expand_stack_to(addr);
   758     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   759     return true;
   760   }
   761   return false;
   762 }
   764 //////////////////////////////////////////////////////////////////////////////
   765 // create new thread
   767 static address highest_vm_reserved_address();
   769 // check if it's safe to start a new thread
   770 static bool _thread_safety_check(Thread* thread) {
   771   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   772     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   773     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   774     //   allocated (MAP_FIXED) from high address space. Every thread stack
   775     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   776     //   it to other values if they rebuild LinuxThreads).
   777     //
   778     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   779     // the memory region has already been mmap'ed. That means if we have too
   780     // many threads and/or very large heap, eventually thread stack will
   781     // collide with heap.
   782     //
   783     // Here we try to prevent heap/stack collision by comparing current
   784     // stack bottom with the highest address that has been mmap'ed by JVM
   785     // plus a safety margin for memory maps created by native code.
   786     //
   787     // This feature can be disabled by setting ThreadSafetyMargin to 0
   788     //
   789     if (ThreadSafetyMargin > 0) {
   790       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   792       // not safe if our stack extends below the safety margin
   793       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   794     } else {
   795       return true;
   796     }
   797   } else {
   798     // Floating stack LinuxThreads or NPTL:
   799     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   800     //   there's not enough space left, pthread_create() will fail. If we come
   801     //   here, that means enough space has been reserved for stack.
   802     return true;
   803   }
   804 }
   806 // Thread start routine for all newly created threads
   807 static void *java_start(Thread *thread) {
   808   // Try to randomize the cache line index of hot stack frames.
   809   // This helps when threads of the same stack traces evict each other's
   810   // cache lines. The threads can be either from the same JVM instance, or
   811   // from different JVM instances. The benefit is especially true for
   812   // processors with hyperthreading technology.
   813   static int counter = 0;
   814   int pid = os::current_process_id();
   815   alloca(((pid ^ counter++) & 7) * 128);
   817   ThreadLocalStorage::set_thread(thread);
   819   OSThread* osthread = thread->osthread();
   820   Monitor* sync = osthread->startThread_lock();
   822   // non floating stack LinuxThreads needs extra check, see above
   823   if (!_thread_safety_check(thread)) {
   824     // notify parent thread
   825     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   826     osthread->set_state(ZOMBIE);
   827     sync->notify_all();
   828     return NULL;
   829   }
   831   // thread_id is kernel thread id (similar to Solaris LWP id)
   832   osthread->set_thread_id(os::Linux::gettid());
   834   if (UseNUMA) {
   835     int lgrp_id = os::numa_get_group_id();
   836     if (lgrp_id != -1) {
   837       thread->set_lgrp_id(lgrp_id);
   838     }
   839   }
   840   // initialize signal mask for this thread
   841   os::Linux::hotspot_sigmask(thread);
   843   // initialize floating point control register
   844   os::Linux::init_thread_fpu_state();
   846   // handshaking with parent thread
   847   {
   848     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   850     // notify parent thread
   851     osthread->set_state(INITIALIZED);
   852     sync->notify_all();
   854     // wait until os::start_thread()
   855     while (osthread->get_state() == INITIALIZED) {
   856       sync->wait(Mutex::_no_safepoint_check_flag);
   857     }
   858   }
   860   // call one more level start routine
   861   thread->run();
   863   return 0;
   864 }
   866 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   867   assert(thread->osthread() == NULL, "caller responsible");
   869   // Allocate the OSThread object
   870   OSThread* osthread = new OSThread(NULL, NULL);
   871   if (osthread == NULL) {
   872     return false;
   873   }
   875   // set the correct thread state
   876   osthread->set_thread_type(thr_type);
   878   // Initial state is ALLOCATED but not INITIALIZED
   879   osthread->set_state(ALLOCATED);
   881   thread->set_osthread(osthread);
   883   // init thread attributes
   884   pthread_attr_t attr;
   885   pthread_attr_init(&attr);
   886   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   888   // stack size
   889   if (os::Linux::supports_variable_stack_size()) {
   890     // calculate stack size if it's not specified by caller
   891     if (stack_size == 0) {
   892       stack_size = os::Linux::default_stack_size(thr_type);
   894       switch (thr_type) {
   895       case os::java_thread:
   896         // Java threads use ThreadStackSize which default value can be
   897         // changed with the flag -Xss
   898         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   899         stack_size = JavaThread::stack_size_at_create();
   900         break;
   901       case os::compiler_thread:
   902         if (CompilerThreadStackSize > 0) {
   903           stack_size = (size_t)(CompilerThreadStackSize * K);
   904           break;
   905         } // else fall through:
   906           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   907       case os::vm_thread:
   908       case os::pgc_thread:
   909       case os::cgc_thread:
   910       case os::watcher_thread:
   911         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   912         break;
   913       }
   914     }
   916     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   917     pthread_attr_setstacksize(&attr, stack_size);
   918   } else {
   919     // let pthread_create() pick the default value.
   920   }
   922   // glibc guard page
   923   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   925   ThreadState state;
   927   {
   928     // Serialize thread creation if we are running with fixed stack LinuxThreads
   929     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   930     if (lock) {
   931       os::Linux::createThread_lock()->lock_without_safepoint_check();
   932     }
   934     pthread_t tid;
   935     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   937     pthread_attr_destroy(&attr);
   939     if (ret != 0) {
   940       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   941         perror("pthread_create()");
   942       }
   943       // Need to clean up stuff we've allocated so far
   944       thread->set_osthread(NULL);
   945       delete osthread;
   946       if (lock) os::Linux::createThread_lock()->unlock();
   947       return false;
   948     }
   950     // Store pthread info into the OSThread
   951     osthread->set_pthread_id(tid);
   953     // Wait until child thread is either initialized or aborted
   954     {
   955       Monitor* sync_with_child = osthread->startThread_lock();
   956       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   957       while ((state = osthread->get_state()) == ALLOCATED) {
   958         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   959       }
   960     }
   962     if (lock) {
   963       os::Linux::createThread_lock()->unlock();
   964     }
   965   }
   967   // Aborted due to thread limit being reached
   968   if (state == ZOMBIE) {
   969       thread->set_osthread(NULL);
   970       delete osthread;
   971       return false;
   972   }
   974   // The thread is returned suspended (in state INITIALIZED),
   975   // and is started higher up in the call chain
   976   assert(state == INITIALIZED, "race condition");
   977   return true;
   978 }
   980 /////////////////////////////////////////////////////////////////////////////
   981 // attach existing thread
   983 // bootstrap the main thread
   984 bool os::create_main_thread(JavaThread* thread) {
   985   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   986   return create_attached_thread(thread);
   987 }
   989 bool os::create_attached_thread(JavaThread* thread) {
   990 #ifdef ASSERT
   991     thread->verify_not_published();
   992 #endif
   994   // Allocate the OSThread object
   995   OSThread* osthread = new OSThread(NULL, NULL);
   997   if (osthread == NULL) {
   998     return false;
   999   }
  1001   // Store pthread info into the OSThread
  1002   osthread->set_thread_id(os::Linux::gettid());
  1003   osthread->set_pthread_id(::pthread_self());
  1005   // initialize floating point control register
  1006   os::Linux::init_thread_fpu_state();
  1008   // Initial thread state is RUNNABLE
  1009   osthread->set_state(RUNNABLE);
  1011   thread->set_osthread(osthread);
  1013   if (UseNUMA) {
  1014     int lgrp_id = os::numa_get_group_id();
  1015     if (lgrp_id != -1) {
  1016       thread->set_lgrp_id(lgrp_id);
  1020   if (os::Linux::is_initial_thread()) {
  1021     // If current thread is initial thread, its stack is mapped on demand,
  1022     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1023     // the entire stack region to avoid SEGV in stack banging.
  1024     // It is also useful to get around the heap-stack-gap problem on SuSE
  1025     // kernel (see 4821821 for details). We first expand stack to the top
  1026     // of yellow zone, then enable stack yellow zone (order is significant,
  1027     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1028     // is no gap between the last two virtual memory regions.
  1030     JavaThread *jt = (JavaThread *)thread;
  1031     address addr = jt->stack_yellow_zone_base();
  1032     assert(addr != NULL, "initialization problem?");
  1033     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1035     osthread->set_expanding_stack();
  1036     os::Linux::manually_expand_stack(jt, addr);
  1037     osthread->clear_expanding_stack();
  1040   // initialize signal mask for this thread
  1041   // and save the caller's signal mask
  1042   os::Linux::hotspot_sigmask(thread);
  1044   return true;
  1047 void os::pd_start_thread(Thread* thread) {
  1048   OSThread * osthread = thread->osthread();
  1049   assert(osthread->get_state() != INITIALIZED, "just checking");
  1050   Monitor* sync_with_child = osthread->startThread_lock();
  1051   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1052   sync_with_child->notify();
  1055 // Free Linux resources related to the OSThread
  1056 void os::free_thread(OSThread* osthread) {
  1057   assert(osthread != NULL, "osthread not set");
  1059   if (Thread::current()->osthread() == osthread) {
  1060     // Restore caller's signal mask
  1061     sigset_t sigmask = osthread->caller_sigmask();
  1062     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1065   delete osthread;
  1068 //////////////////////////////////////////////////////////////////////////////
  1069 // thread local storage
  1071 int os::allocate_thread_local_storage() {
  1072   pthread_key_t key;
  1073   int rslt = pthread_key_create(&key, NULL);
  1074   assert(rslt == 0, "cannot allocate thread local storage");
  1075   return (int)key;
  1078 // Note: This is currently not used by VM, as we don't destroy TLS key
  1079 // on VM exit.
  1080 void os::free_thread_local_storage(int index) {
  1081   int rslt = pthread_key_delete((pthread_key_t)index);
  1082   assert(rslt == 0, "invalid index");
  1085 void os::thread_local_storage_at_put(int index, void* value) {
  1086   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1087   assert(rslt == 0, "pthread_setspecific failed");
  1090 extern "C" Thread* get_thread() {
  1091   return ThreadLocalStorage::thread();
  1094 //////////////////////////////////////////////////////////////////////////////
  1095 // initial thread
  1097 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1098 bool os::Linux::is_initial_thread(void) {
  1099   char dummy;
  1100   // If called before init complete, thread stack bottom will be null.
  1101   // Can be called if fatal error occurs before initialization.
  1102   if (initial_thread_stack_bottom() == NULL) return false;
  1103   assert(initial_thread_stack_bottom() != NULL &&
  1104          initial_thread_stack_size()   != 0,
  1105          "os::init did not locate initial thread's stack region");
  1106   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1107       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1108        return true;
  1109   else return false;
  1112 // Find the virtual memory area that contains addr
  1113 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1114   FILE *fp = fopen("/proc/self/maps", "r");
  1115   if (fp) {
  1116     address low, high;
  1117     while (!feof(fp)) {
  1118       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1119         if (low <= addr && addr < high) {
  1120            if (vma_low)  *vma_low  = low;
  1121            if (vma_high) *vma_high = high;
  1122            fclose (fp);
  1123            return true;
  1126       for (;;) {
  1127         int ch = fgetc(fp);
  1128         if (ch == EOF || ch == (int)'\n') break;
  1131     fclose(fp);
  1133   return false;
  1136 // Locate initial thread stack. This special handling of initial thread stack
  1137 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1138 // bogus value for initial thread.
  1139 void os::Linux::capture_initial_stack(size_t max_size) {
  1140   // stack size is the easy part, get it from RLIMIT_STACK
  1141   size_t stack_size;
  1142   struct rlimit rlim;
  1143   getrlimit(RLIMIT_STACK, &rlim);
  1144   stack_size = rlim.rlim_cur;
  1146   // 6308388: a bug in ld.so will relocate its own .data section to the
  1147   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1148   //   so we won't install guard page on ld.so's data section.
  1149   stack_size -= 2 * page_size();
  1151   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1152   //   7.1, in both cases we will get 2G in return value.
  1153   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1154   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1155   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1156   //   in case other parts in glibc still assumes 2M max stack size.
  1157   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1158 #ifndef IA64
  1159   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
  1160 #else
  1161   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1162   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
  1163 #endif
  1165   // Try to figure out where the stack base (top) is. This is harder.
  1166   //
  1167   // When an application is started, glibc saves the initial stack pointer in
  1168   // a global variable "__libc_stack_end", which is then used by system
  1169   // libraries. __libc_stack_end should be pretty close to stack top. The
  1170   // variable is available since the very early days. However, because it is
  1171   // a private interface, it could disappear in the future.
  1172   //
  1173   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1174   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1175   // stack top. Note that /proc may not exist if VM is running as a chroot
  1176   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1177   // /proc/<pid>/stat could change in the future (though unlikely).
  1178   //
  1179   // We try __libc_stack_end first. If that doesn't work, look for
  1180   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1181   // as a hint, which should work well in most cases.
  1183   uintptr_t stack_start;
  1185   // try __libc_stack_end first
  1186   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1187   if (p && *p) {
  1188     stack_start = *p;
  1189   } else {
  1190     // see if we can get the start_stack field from /proc/self/stat
  1191     FILE *fp;
  1192     int pid;
  1193     char state;
  1194     int ppid;
  1195     int pgrp;
  1196     int session;
  1197     int nr;
  1198     int tpgrp;
  1199     unsigned long flags;
  1200     unsigned long minflt;
  1201     unsigned long cminflt;
  1202     unsigned long majflt;
  1203     unsigned long cmajflt;
  1204     unsigned long utime;
  1205     unsigned long stime;
  1206     long cutime;
  1207     long cstime;
  1208     long prio;
  1209     long nice;
  1210     long junk;
  1211     long it_real;
  1212     uintptr_t start;
  1213     uintptr_t vsize;
  1214     intptr_t rss;
  1215     uintptr_t rsslim;
  1216     uintptr_t scodes;
  1217     uintptr_t ecode;
  1218     int i;
  1220     // Figure what the primordial thread stack base is. Code is inspired
  1221     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1222     // followed by command name surrounded by parentheses, state, etc.
  1223     char stat[2048];
  1224     int statlen;
  1226     fp = fopen("/proc/self/stat", "r");
  1227     if (fp) {
  1228       statlen = fread(stat, 1, 2047, fp);
  1229       stat[statlen] = '\0';
  1230       fclose(fp);
  1232       // Skip pid and the command string. Note that we could be dealing with
  1233       // weird command names, e.g. user could decide to rename java launcher
  1234       // to "java 1.4.2 :)", then the stat file would look like
  1235       //                1234 (java 1.4.2 :)) R ... ...
  1236       // We don't really need to know the command string, just find the last
  1237       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1238       char * s = strrchr(stat, ')');
  1240       i = 0;
  1241       if (s) {
  1242         // Skip blank chars
  1243         do s++; while (isspace(*s));
  1245 #define _UFM UINTX_FORMAT
  1246 #define _DFM INTX_FORMAT
  1248         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1249         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1250         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1251              &state,          /* 3  %c  */
  1252              &ppid,           /* 4  %d  */
  1253              &pgrp,           /* 5  %d  */
  1254              &session,        /* 6  %d  */
  1255              &nr,             /* 7  %d  */
  1256              &tpgrp,          /* 8  %d  */
  1257              &flags,          /* 9  %lu  */
  1258              &minflt,         /* 10 %lu  */
  1259              &cminflt,        /* 11 %lu  */
  1260              &majflt,         /* 12 %lu  */
  1261              &cmajflt,        /* 13 %lu  */
  1262              &utime,          /* 14 %lu  */
  1263              &stime,          /* 15 %lu  */
  1264              &cutime,         /* 16 %ld  */
  1265              &cstime,         /* 17 %ld  */
  1266              &prio,           /* 18 %ld  */
  1267              &nice,           /* 19 %ld  */
  1268              &junk,           /* 20 %ld  */
  1269              &it_real,        /* 21 %ld  */
  1270              &start,          /* 22 UINTX_FORMAT */
  1271              &vsize,          /* 23 UINTX_FORMAT */
  1272              &rss,            /* 24 INTX_FORMAT  */
  1273              &rsslim,         /* 25 UINTX_FORMAT */
  1274              &scodes,         /* 26 UINTX_FORMAT */
  1275              &ecode,          /* 27 UINTX_FORMAT */
  1276              &stack_start);   /* 28 UINTX_FORMAT */
  1279 #undef _UFM
  1280 #undef _DFM
  1282       if (i != 28 - 2) {
  1283          assert(false, "Bad conversion from /proc/self/stat");
  1284          // product mode - assume we are the initial thread, good luck in the
  1285          // embedded case.
  1286          warning("Can't detect initial thread stack location - bad conversion");
  1287          stack_start = (uintptr_t) &rlim;
  1289     } else {
  1290       // For some reason we can't open /proc/self/stat (for example, running on
  1291       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1292       // most cases, so don't abort:
  1293       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1294       stack_start = (uintptr_t) &rlim;
  1298   // Now we have a pointer (stack_start) very close to the stack top, the
  1299   // next thing to do is to figure out the exact location of stack top. We
  1300   // can find out the virtual memory area that contains stack_start by
  1301   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1302   // and its upper limit is the real stack top. (again, this would fail if
  1303   // running inside chroot, because /proc may not exist.)
  1305   uintptr_t stack_top;
  1306   address low, high;
  1307   if (find_vma((address)stack_start, &low, &high)) {
  1308     // success, "high" is the true stack top. (ignore "low", because initial
  1309     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1310     stack_top = (uintptr_t)high;
  1311   } else {
  1312     // failed, likely because /proc/self/maps does not exist
  1313     warning("Can't detect initial thread stack location - find_vma failed");
  1314     // best effort: stack_start is normally within a few pages below the real
  1315     // stack top, use it as stack top, and reduce stack size so we won't put
  1316     // guard page outside stack.
  1317     stack_top = stack_start;
  1318     stack_size -= 16 * page_size();
  1321   // stack_top could be partially down the page so align it
  1322   stack_top = align_size_up(stack_top, page_size());
  1324   if (max_size && stack_size > max_size) {
  1325      _initial_thread_stack_size = max_size;
  1326   } else {
  1327      _initial_thread_stack_size = stack_size;
  1330   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1331   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1334 ////////////////////////////////////////////////////////////////////////////////
  1335 // time support
  1337 // Time since start-up in seconds to a fine granularity.
  1338 // Used by VMSelfDestructTimer and the MemProfiler.
  1339 double os::elapsedTime() {
  1341   return (double)(os::elapsed_counter()) * 0.000001;
  1344 jlong os::elapsed_counter() {
  1345   timeval time;
  1346   int status = gettimeofday(&time, NULL);
  1347   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
  1350 jlong os::elapsed_frequency() {
  1351   return (1000 * 1000);
  1354 // For now, we say that linux does not support vtime.  I have no idea
  1355 // whether it can actually be made to (DLD, 9/13/05).
  1357 bool os::supports_vtime() { return false; }
  1358 bool os::enable_vtime()   { return false; }
  1359 bool os::vtime_enabled()  { return false; }
  1360 double os::elapsedVTime() {
  1361   // better than nothing, but not much
  1362   return elapsedTime();
  1365 jlong os::javaTimeMillis() {
  1366   timeval time;
  1367   int status = gettimeofday(&time, NULL);
  1368   assert(status != -1, "linux error");
  1369   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1372 #ifndef CLOCK_MONOTONIC
  1373 #define CLOCK_MONOTONIC (1)
  1374 #endif
  1376 void os::Linux::clock_init() {
  1377   // we do dlopen's in this particular order due to bug in linux
  1378   // dynamical loader (see 6348968) leading to crash on exit
  1379   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1380   if (handle == NULL) {
  1381     handle = dlopen("librt.so", RTLD_LAZY);
  1384   if (handle) {
  1385     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1386            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1387     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1388            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1389     if (clock_getres_func && clock_gettime_func) {
  1390       // See if monotonic clock is supported by the kernel. Note that some
  1391       // early implementations simply return kernel jiffies (updated every
  1392       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1393       // for nano time (though the monotonic property is still nice to have).
  1394       // It's fixed in newer kernels, however clock_getres() still returns
  1395       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1396       // resolution for now. Hopefully as people move to new kernels, this
  1397       // won't be a problem.
  1398       struct timespec res;
  1399       struct timespec tp;
  1400       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1401           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1402         // yes, monotonic clock is supported
  1403         _clock_gettime = clock_gettime_func;
  1404       } else {
  1405         // close librt if there is no monotonic clock
  1406         dlclose(handle);
  1412 #ifndef SYS_clock_getres
  1414 #if defined(IA32) || defined(AMD64)
  1415 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1416 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1417 #else
  1418 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1419 #define sys_clock_getres(x,y)  -1
  1420 #endif
  1422 #else
  1423 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1424 #endif
  1426 void os::Linux::fast_thread_clock_init() {
  1427   if (!UseLinuxPosixThreadCPUClocks) {
  1428     return;
  1430   clockid_t clockid;
  1431   struct timespec tp;
  1432   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1433       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1435   // Switch to using fast clocks for thread cpu time if
  1436   // the sys_clock_getres() returns 0 error code.
  1437   // Note, that some kernels may support the current thread
  1438   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1439   // returned by the pthread_getcpuclockid().
  1440   // If the fast Posix clocks are supported then the sys_clock_getres()
  1441   // must return at least tp.tv_sec == 0 which means a resolution
  1442   // better than 1 sec. This is extra check for reliability.
  1444   if(pthread_getcpuclockid_func &&
  1445      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1446      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1448     _supports_fast_thread_cpu_time = true;
  1449     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1453 jlong os::javaTimeNanos() {
  1454   if (Linux::supports_monotonic_clock()) {
  1455     struct timespec tp;
  1456     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1457     assert(status == 0, "gettime error");
  1458     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1459     return result;
  1460   } else {
  1461     timeval time;
  1462     int status = gettimeofday(&time, NULL);
  1463     assert(status != -1, "linux error");
  1464     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1465     return 1000 * usecs;
  1469 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1470   if (Linux::supports_monotonic_clock()) {
  1471     info_ptr->max_value = ALL_64_BITS;
  1473     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1474     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1475     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1476   } else {
  1477     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1478     info_ptr->max_value = ALL_64_BITS;
  1480     // gettimeofday is a real time clock so it skips
  1481     info_ptr->may_skip_backward = true;
  1482     info_ptr->may_skip_forward = true;
  1485   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1488 // Return the real, user, and system times in seconds from an
  1489 // arbitrary fixed point in the past.
  1490 bool os::getTimesSecs(double* process_real_time,
  1491                       double* process_user_time,
  1492                       double* process_system_time) {
  1493   struct tms ticks;
  1494   clock_t real_ticks = times(&ticks);
  1496   if (real_ticks == (clock_t) (-1)) {
  1497     return false;
  1498   } else {
  1499     double ticks_per_second = (double) clock_tics_per_sec;
  1500     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1501     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1502     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1504     return true;
  1509 char * os::local_time_string(char *buf, size_t buflen) {
  1510   struct tm t;
  1511   time_t long_time;
  1512   time(&long_time);
  1513   localtime_r(&long_time, &t);
  1514   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1515                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1516                t.tm_hour, t.tm_min, t.tm_sec);
  1517   return buf;
  1520 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1521   return localtime_r(clock, res);
  1524 ////////////////////////////////////////////////////////////////////////////////
  1525 // runtime exit support
  1527 // Note: os::shutdown() might be called very early during initialization, or
  1528 // called from signal handler. Before adding something to os::shutdown(), make
  1529 // sure it is async-safe and can handle partially initialized VM.
  1530 void os::shutdown() {
  1532   // allow PerfMemory to attempt cleanup of any persistent resources
  1533   perfMemory_exit();
  1535   // needs to remove object in file system
  1536   AttachListener::abort();
  1538   // flush buffered output, finish log files
  1539   ostream_abort();
  1541   // Check for abort hook
  1542   abort_hook_t abort_hook = Arguments::abort_hook();
  1543   if (abort_hook != NULL) {
  1544     abort_hook();
  1549 // Note: os::abort() might be called very early during initialization, or
  1550 // called from signal handler. Before adding something to os::abort(), make
  1551 // sure it is async-safe and can handle partially initialized VM.
  1552 void os::abort(bool dump_core) {
  1553   os::shutdown();
  1554   if (dump_core) {
  1555 #ifndef PRODUCT
  1556     fdStream out(defaultStream::output_fd());
  1557     out.print_raw("Current thread is ");
  1558     char buf[16];
  1559     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1560     out.print_raw_cr(buf);
  1561     out.print_raw_cr("Dumping core ...");
  1562 #endif
  1563     ::abort(); // dump core
  1566   ::exit(1);
  1569 // Die immediately, no exit hook, no abort hook, no cleanup.
  1570 void os::die() {
  1571   // _exit() on LinuxThreads only kills current thread
  1572   ::abort();
  1575 // unused on linux for now.
  1576 void os::set_error_file(const char *logfile) {}
  1579 // This method is a copy of JDK's sysGetLastErrorString
  1580 // from src/solaris/hpi/src/system_md.c
  1582 size_t os::lasterror(char *buf, size_t len) {
  1584   if (errno == 0)  return 0;
  1586   const char *s = ::strerror(errno);
  1587   size_t n = ::strlen(s);
  1588   if (n >= len) {
  1589     n = len - 1;
  1591   ::strncpy(buf, s, n);
  1592   buf[n] = '\0';
  1593   return n;
  1596 intx os::current_thread_id() { return (intx)pthread_self(); }
  1597 int os::current_process_id() {
  1599   // Under the old linux thread library, linux gives each thread
  1600   // its own process id. Because of this each thread will return
  1601   // a different pid if this method were to return the result
  1602   // of getpid(2). Linux provides no api that returns the pid
  1603   // of the launcher thread for the vm. This implementation
  1604   // returns a unique pid, the pid of the launcher thread
  1605   // that starts the vm 'process'.
  1607   // Under the NPTL, getpid() returns the same pid as the
  1608   // launcher thread rather than a unique pid per thread.
  1609   // Use gettid() if you want the old pre NPTL behaviour.
  1611   // if you are looking for the result of a call to getpid() that
  1612   // returns a unique pid for the calling thread, then look at the
  1613   // OSThread::thread_id() method in osThread_linux.hpp file
  1615   return (int)(_initial_pid ? _initial_pid : getpid());
  1618 // DLL functions
  1620 const char* os::dll_file_extension() { return ".so"; }
  1622 // This must be hard coded because it's the system's temporary
  1623 // directory not the java application's temp directory, ala java.io.tmpdir.
  1624 const char* os::get_temp_directory() { return "/tmp"; }
  1626 static bool file_exists(const char* filename) {
  1627   struct stat statbuf;
  1628   if (filename == NULL || strlen(filename) == 0) {
  1629     return false;
  1631   return os::stat(filename, &statbuf) == 0;
  1634 bool os::dll_build_name(char* buffer, size_t buflen,
  1635                         const char* pname, const char* fname) {
  1636   bool retval = false;
  1637   // Copied from libhpi
  1638   const size_t pnamelen = pname ? strlen(pname) : 0;
  1640   // Return error on buffer overflow.
  1641   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1642     return retval;
  1645   if (pnamelen == 0) {
  1646     snprintf(buffer, buflen, "lib%s.so", fname);
  1647     retval = true;
  1648   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1649     int n;
  1650     char** pelements = split_path(pname, &n);
  1651     for (int i = 0 ; i < n ; i++) {
  1652       // Really shouldn't be NULL, but check can't hurt
  1653       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1654         continue; // skip the empty path values
  1656       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1657       if (file_exists(buffer)) {
  1658         retval = true;
  1659         break;
  1662     // release the storage
  1663     for (int i = 0 ; i < n ; i++) {
  1664       if (pelements[i] != NULL) {
  1665         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1668     if (pelements != NULL) {
  1669       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1671   } else {
  1672     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1673     retval = true;
  1675   return retval;
  1678 const char* os::get_current_directory(char *buf, int buflen) {
  1679   return getcwd(buf, buflen);
  1682 // check if addr is inside libjvm[_g].so
  1683 bool os::address_is_in_vm(address addr) {
  1684   static address libjvm_base_addr;
  1685   Dl_info dlinfo;
  1687   if (libjvm_base_addr == NULL) {
  1688     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1689     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1690     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1693   if (dladdr((void *)addr, &dlinfo)) {
  1694     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1697   return false;
  1700 bool os::dll_address_to_function_name(address addr, char *buf,
  1701                                       int buflen, int *offset) {
  1702   Dl_info dlinfo;
  1704   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
  1705     if (buf != NULL) {
  1706       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1707         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1710     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1711     return true;
  1712   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1713     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1714         buf, buflen, offset, dlinfo.dli_fname)) {
  1715        return true;
  1719   if (buf != NULL) buf[0] = '\0';
  1720   if (offset != NULL) *offset = -1;
  1721   return false;
  1724 struct _address_to_library_name {
  1725   address addr;          // input : memory address
  1726   size_t  buflen;        //         size of fname
  1727   char*   fname;         // output: library name
  1728   address base;          //         library base addr
  1729 };
  1731 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1732                                             size_t size, void *data) {
  1733   int i;
  1734   bool found = false;
  1735   address libbase = NULL;
  1736   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1738   // iterate through all loadable segments
  1739   for (i = 0; i < info->dlpi_phnum; i++) {
  1740     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1741     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1742       // base address of a library is the lowest address of its loaded
  1743       // segments.
  1744       if (libbase == NULL || libbase > segbase) {
  1745         libbase = segbase;
  1747       // see if 'addr' is within current segment
  1748       if (segbase <= d->addr &&
  1749           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1750         found = true;
  1755   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1756   // so dll_address_to_library_name() can fall through to use dladdr() which
  1757   // can figure out executable name from argv[0].
  1758   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1759     d->base = libbase;
  1760     if (d->fname) {
  1761       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1763     return 1;
  1765   return 0;
  1768 bool os::dll_address_to_library_name(address addr, char* buf,
  1769                                      int buflen, int* offset) {
  1770   Dl_info dlinfo;
  1771   struct _address_to_library_name data;
  1773   // There is a bug in old glibc dladdr() implementation that it could resolve
  1774   // to wrong library name if the .so file has a base address != NULL. Here
  1775   // we iterate through the program headers of all loaded libraries to find
  1776   // out which library 'addr' really belongs to. This workaround can be
  1777   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1778   data.addr = addr;
  1779   data.fname = buf;
  1780   data.buflen = buflen;
  1781   data.base = NULL;
  1782   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1784   if (rslt) {
  1785      // buf already contains library name
  1786      if (offset) *offset = addr - data.base;
  1787      return true;
  1788   } else if (dladdr((void*)addr, &dlinfo)){
  1789      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1790      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  1791      return true;
  1792   } else {
  1793      if (buf) buf[0] = '\0';
  1794      if (offset) *offset = -1;
  1795      return false;
  1799   // Loads .dll/.so and
  1800   // in case of error it checks if .dll/.so was built for the
  1801   // same architecture as Hotspot is running on
  1803 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1805   void * result= ::dlopen(filename, RTLD_LAZY);
  1806   if (result != NULL) {
  1807     // Successful loading
  1808     return result;
  1811   Elf32_Ehdr elf_head;
  1813   // Read system error message into ebuf
  1814   // It may or may not be overwritten below
  1815   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  1816   ebuf[ebuflen-1]='\0';
  1817   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1818   char* diag_msg_buf=ebuf+strlen(ebuf);
  1820   if (diag_msg_max_length==0) {
  1821     // No more space in ebuf for additional diagnostics message
  1822     return NULL;
  1826   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1828   if (file_descriptor < 0) {
  1829     // Can't open library, report dlerror() message
  1830     return NULL;
  1833   bool failed_to_read_elf_head=
  1834     (sizeof(elf_head)!=
  1835         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1837   ::close(file_descriptor);
  1838   if (failed_to_read_elf_head) {
  1839     // file i/o error - report dlerror() msg
  1840     return NULL;
  1843   typedef struct {
  1844     Elf32_Half  code;         // Actual value as defined in elf.h
  1845     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1846     char        elf_class;    // 32 or 64 bit
  1847     char        endianess;    // MSB or LSB
  1848     char*       name;         // String representation
  1849   } arch_t;
  1851   #ifndef EM_486
  1852   #define EM_486          6               /* Intel 80486 */
  1853   #endif
  1855   static const arch_t arch_array[]={
  1856     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1857     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1858     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1859     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1860     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1861     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1862     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1863     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1864     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1865     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1866     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1867     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1868     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1869     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1870     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1871     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1872   };
  1874   #if  (defined IA32)
  1875     static  Elf32_Half running_arch_code=EM_386;
  1876   #elif   (defined AMD64)
  1877     static  Elf32_Half running_arch_code=EM_X86_64;
  1878   #elif  (defined IA64)
  1879     static  Elf32_Half running_arch_code=EM_IA_64;
  1880   #elif  (defined __sparc) && (defined _LP64)
  1881     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1882   #elif  (defined __sparc) && (!defined _LP64)
  1883     static  Elf32_Half running_arch_code=EM_SPARC;
  1884   #elif  (defined __powerpc64__)
  1885     static  Elf32_Half running_arch_code=EM_PPC64;
  1886   #elif  (defined __powerpc__)
  1887     static  Elf32_Half running_arch_code=EM_PPC;
  1888   #elif  (defined ARM)
  1889     static  Elf32_Half running_arch_code=EM_ARM;
  1890   #elif  (defined S390)
  1891     static  Elf32_Half running_arch_code=EM_S390;
  1892   #elif  (defined ALPHA)
  1893     static  Elf32_Half running_arch_code=EM_ALPHA;
  1894   #elif  (defined MIPSEL)
  1895     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1896   #elif  (defined PARISC)
  1897     static  Elf32_Half running_arch_code=EM_PARISC;
  1898   #elif  (defined MIPS)
  1899     static  Elf32_Half running_arch_code=EM_MIPS;
  1900   #elif  (defined M68K)
  1901     static  Elf32_Half running_arch_code=EM_68K;
  1902   #else
  1903     #error Method os::dll_load requires that one of following is defined:\
  1904          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1905   #endif
  1907   // Identify compatability class for VM's architecture and library's architecture
  1908   // Obtain string descriptions for architectures
  1910   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1911   int running_arch_index=-1;
  1913   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1914     if (running_arch_code == arch_array[i].code) {
  1915       running_arch_index    = i;
  1917     if (lib_arch.code == arch_array[i].code) {
  1918       lib_arch.compat_class = arch_array[i].compat_class;
  1919       lib_arch.name         = arch_array[i].name;
  1923   assert(running_arch_index != -1,
  1924     "Didn't find running architecture code (running_arch_code) in arch_array");
  1925   if (running_arch_index == -1) {
  1926     // Even though running architecture detection failed
  1927     // we may still continue with reporting dlerror() message
  1928     return NULL;
  1931   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1932     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1933     return NULL;
  1936 #ifndef S390
  1937   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1938     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1939     return NULL;
  1941 #endif // !S390
  1943   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1944     if ( lib_arch.name!=NULL ) {
  1945       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1946         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1947         lib_arch.name, arch_array[running_arch_index].name);
  1948     } else {
  1949       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1950       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1951         lib_arch.code,
  1952         arch_array[running_arch_index].name);
  1956   return NULL;
  1959 /*
  1960  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  1961  * chances are you might want to run the generated bits against glibc-2.0
  1962  * libdl.so, so always use locking for any version of glibc.
  1963  */
  1964 void* os::dll_lookup(void* handle, const char* name) {
  1965   pthread_mutex_lock(&dl_mutex);
  1966   void* res = dlsym(handle, name);
  1967   pthread_mutex_unlock(&dl_mutex);
  1968   return res;
  1972 static bool _print_ascii_file(const char* filename, outputStream* st) {
  1973   int fd = ::open(filename, O_RDONLY);
  1974   if (fd == -1) {
  1975      return false;
  1978   char buf[32];
  1979   int bytes;
  1980   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  1981     st->print_raw(buf, bytes);
  1984   ::close(fd);
  1986   return true;
  1989 void os::print_dll_info(outputStream *st) {
  1990    st->print_cr("Dynamic libraries:");
  1992    char fname[32];
  1993    pid_t pid = os::Linux::gettid();
  1995    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  1997    if (!_print_ascii_file(fname, st)) {
  1998      st->print("Can not get library information for pid = %d\n", pid);
  2002 void os::print_os_info_brief(outputStream* st) {
  2003   os::Linux::print_distro_info(st);
  2005   os::Posix::print_uname_info(st);
  2007   os::Linux::print_libversion_info(st);
  2011 void os::print_os_info(outputStream* st) {
  2012   st->print("OS:");
  2014   os::Linux::print_distro_info(st);
  2016   os::Posix::print_uname_info(st);
  2018   // Print warning if unsafe chroot environment detected
  2019   if (unsafe_chroot_detected) {
  2020     st->print("WARNING!! ");
  2021     st->print_cr(unstable_chroot_error);
  2024   os::Linux::print_libversion_info(st);
  2026   os::Posix::print_rlimit_info(st);
  2028   os::Posix::print_load_average(st);
  2030   os::Linux::print_full_memory_info(st);
  2033 // Try to identify popular distros.
  2034 // Most Linux distributions have /etc/XXX-release file, which contains
  2035 // the OS version string. Some have more than one /etc/XXX-release file
  2036 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
  2037 // so the order is important.
  2038 void os::Linux::print_distro_info(outputStream* st) {
  2039   if (!_print_ascii_file("/etc/mandrake-release", st) &&
  2040       !_print_ascii_file("/etc/sun-release", st) &&
  2041       !_print_ascii_file("/etc/redhat-release", st) &&
  2042       !_print_ascii_file("/etc/SuSE-release", st) &&
  2043       !_print_ascii_file("/etc/turbolinux-release", st) &&
  2044       !_print_ascii_file("/etc/gentoo-release", st) &&
  2045       !_print_ascii_file("/etc/debian_version", st) &&
  2046       !_print_ascii_file("/etc/ltib-release", st) &&
  2047       !_print_ascii_file("/etc/angstrom-version", st)) {
  2048       st->print("Linux");
  2050   st->cr();
  2053 void os::Linux::print_libversion_info(outputStream* st) {
  2054   // libc, pthread
  2055   st->print("libc:");
  2056   st->print(os::Linux::glibc_version()); st->print(" ");
  2057   st->print(os::Linux::libpthread_version()); st->print(" ");
  2058   if (os::Linux::is_LinuxThreads()) {
  2059      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2061   st->cr();
  2064 void os::Linux::print_full_memory_info(outputStream* st) {
  2065    st->print("\n/proc/meminfo:\n");
  2066    _print_ascii_file("/proc/meminfo", st);
  2067    st->cr();
  2070 void os::print_memory_info(outputStream* st) {
  2072   st->print("Memory:");
  2073   st->print(" %dk page", os::vm_page_size()>>10);
  2075   // values in struct sysinfo are "unsigned long"
  2076   struct sysinfo si;
  2077   sysinfo(&si);
  2079   st->print(", physical " UINT64_FORMAT "k",
  2080             os::physical_memory() >> 10);
  2081   st->print("(" UINT64_FORMAT "k free)",
  2082             os::available_memory() >> 10);
  2083   st->print(", swap " UINT64_FORMAT "k",
  2084             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2085   st->print("(" UINT64_FORMAT "k free)",
  2086             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2087   st->cr();
  2090 void os::pd_print_cpu_info(outputStream* st) {
  2091   st->print("\n/proc/cpuinfo:\n");
  2092   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2093     st->print("  <Not Available>");
  2095   st->cr();
  2098 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  2099 // but they're the same for all the linux arch that we support
  2100 // and they're the same for solaris but there's no common place to put this.
  2101 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2102                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2103                           "ILL_COPROC", "ILL_BADSTK" };
  2105 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2106                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2107                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  2109 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2111 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2113 void os::print_siginfo(outputStream* st, void* siginfo) {
  2114   st->print("siginfo:");
  2116   const int buflen = 100;
  2117   char buf[buflen];
  2118   siginfo_t *si = (siginfo_t*)siginfo;
  2119   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2120   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  2121     st->print("si_errno=%s", buf);
  2122   } else {
  2123     st->print("si_errno=%d", si->si_errno);
  2125   const int c = si->si_code;
  2126   assert(c > 0, "unexpected si_code");
  2127   switch (si->si_signo) {
  2128   case SIGILL:
  2129     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2130     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2131     break;
  2132   case SIGFPE:
  2133     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2134     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2135     break;
  2136   case SIGSEGV:
  2137     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2138     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2139     break;
  2140   case SIGBUS:
  2141     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2142     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2143     break;
  2144   default:
  2145     st->print(", si_code=%d", si->si_code);
  2146     // no si_addr
  2149   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2150       UseSharedSpaces) {
  2151     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2152     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2153       st->print("\n\nError accessing class data sharing archive."   \
  2154                 " Mapped file inaccessible during execution, "      \
  2155                 " possible disk/network problem.");
  2158   st->cr();
  2162 static void print_signal_handler(outputStream* st, int sig,
  2163                                  char* buf, size_t buflen);
  2165 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2166   st->print_cr("Signal Handlers:");
  2167   print_signal_handler(st, SIGSEGV, buf, buflen);
  2168   print_signal_handler(st, SIGBUS , buf, buflen);
  2169   print_signal_handler(st, SIGFPE , buf, buflen);
  2170   print_signal_handler(st, SIGPIPE, buf, buflen);
  2171   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2172   print_signal_handler(st, SIGILL , buf, buflen);
  2173   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2174   print_signal_handler(st, SR_signum, buf, buflen);
  2175   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2176   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2177   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2178   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2181 static char saved_jvm_path[MAXPATHLEN] = {0};
  2183 // Find the full path to the current module, libjvm.so or libjvm_g.so
  2184 void os::jvm_path(char *buf, jint buflen) {
  2185   // Error checking.
  2186   if (buflen < MAXPATHLEN) {
  2187     assert(false, "must use a large-enough buffer");
  2188     buf[0] = '\0';
  2189     return;
  2191   // Lazy resolve the path to current module.
  2192   if (saved_jvm_path[0] != 0) {
  2193     strcpy(buf, saved_jvm_path);
  2194     return;
  2197   char dli_fname[MAXPATHLEN];
  2198   bool ret = dll_address_to_library_name(
  2199                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2200                 dli_fname, sizeof(dli_fname), NULL);
  2201   assert(ret != 0, "cannot locate libjvm");
  2202   char *rp = realpath(dli_fname, buf);
  2203   if (rp == NULL)
  2204     return;
  2206   if (Arguments::created_by_gamma_launcher()) {
  2207     // Support for the gamma launcher.  Typical value for buf is
  2208     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2209     // the right place in the string, then assume we are installed in a JDK and
  2210     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2211     // up the path so it looks like libjvm.so is installed there (append a
  2212     // fake suffix hotspot/libjvm.so).
  2213     const char *p = buf + strlen(buf) - 1;
  2214     for (int count = 0; p > buf && count < 5; ++count) {
  2215       for (--p; p > buf && *p != '/'; --p)
  2216         /* empty */ ;
  2219     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2220       // Look for JAVA_HOME in the environment.
  2221       char* java_home_var = ::getenv("JAVA_HOME");
  2222       if (java_home_var != NULL && java_home_var[0] != 0) {
  2223         char* jrelib_p;
  2224         int len;
  2226         // Check the current module name "libjvm.so" or "libjvm_g.so".
  2227         p = strrchr(buf, '/');
  2228         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2229         p = strstr(p, "_g") ? "_g" : "";
  2231         rp = realpath(java_home_var, buf);
  2232         if (rp == NULL)
  2233           return;
  2235         // determine if this is a legacy image or modules image
  2236         // modules image doesn't have "jre" subdirectory
  2237         len = strlen(buf);
  2238         jrelib_p = buf + len;
  2239         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2240         if (0 != access(buf, F_OK)) {
  2241           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2244         if (0 == access(buf, F_OK)) {
  2245           // Use current module name "libjvm[_g].so" instead of
  2246           // "libjvm"debug_only("_g")".so" since for fastdebug version
  2247           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
  2248           len = strlen(buf);
  2249           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
  2250         } else {
  2251           // Go back to path of .so
  2252           rp = realpath(dli_fname, buf);
  2253           if (rp == NULL)
  2254             return;
  2260   strcpy(saved_jvm_path, buf);
  2263 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2264   // no prefix required, not even "_"
  2267 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2268   // no suffix required
  2271 ////////////////////////////////////////////////////////////////////////////////
  2272 // sun.misc.Signal support
  2274 static volatile jint sigint_count = 0;
  2276 static void
  2277 UserHandler(int sig, void *siginfo, void *context) {
  2278   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2279   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2280   // don't want to flood the manager thread with sem_post requests.
  2281   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2282       return;
  2284   // Ctrl-C is pressed during error reporting, likely because the error
  2285   // handler fails to abort. Let VM die immediately.
  2286   if (sig == SIGINT && is_error_reported()) {
  2287      os::die();
  2290   os::signal_notify(sig);
  2293 void* os::user_handler() {
  2294   return CAST_FROM_FN_PTR(void*, UserHandler);
  2297 extern "C" {
  2298   typedef void (*sa_handler_t)(int);
  2299   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2302 void* os::signal(int signal_number, void* handler) {
  2303   struct sigaction sigAct, oldSigAct;
  2305   sigfillset(&(sigAct.sa_mask));
  2306   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2307   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2309   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2310     // -1 means registration failed
  2311     return (void *)-1;
  2314   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2317 void os::signal_raise(int signal_number) {
  2318   ::raise(signal_number);
  2321 /*
  2322  * The following code is moved from os.cpp for making this
  2323  * code platform specific, which it is by its very nature.
  2324  */
  2326 // Will be modified when max signal is changed to be dynamic
  2327 int os::sigexitnum_pd() {
  2328   return NSIG;
  2331 // a counter for each possible signal value
  2332 static volatile jint pending_signals[NSIG+1] = { 0 };
  2334 // Linux(POSIX) specific hand shaking semaphore.
  2335 static sem_t sig_sem;
  2337 void os::signal_init_pd() {
  2338   // Initialize signal structures
  2339   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2341   // Initialize signal semaphore
  2342   ::sem_init(&sig_sem, 0, 0);
  2345 void os::signal_notify(int sig) {
  2346   Atomic::inc(&pending_signals[sig]);
  2347   ::sem_post(&sig_sem);
  2350 static int check_pending_signals(bool wait) {
  2351   Atomic::store(0, &sigint_count);
  2352   for (;;) {
  2353     for (int i = 0; i < NSIG + 1; i++) {
  2354       jint n = pending_signals[i];
  2355       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2356         return i;
  2359     if (!wait) {
  2360       return -1;
  2362     JavaThread *thread = JavaThread::current();
  2363     ThreadBlockInVM tbivm(thread);
  2365     bool threadIsSuspended;
  2366     do {
  2367       thread->set_suspend_equivalent();
  2368       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2369       ::sem_wait(&sig_sem);
  2371       // were we externally suspended while we were waiting?
  2372       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2373       if (threadIsSuspended) {
  2374         //
  2375         // The semaphore has been incremented, but while we were waiting
  2376         // another thread suspended us. We don't want to continue running
  2377         // while suspended because that would surprise the thread that
  2378         // suspended us.
  2379         //
  2380         ::sem_post(&sig_sem);
  2382         thread->java_suspend_self();
  2384     } while (threadIsSuspended);
  2388 int os::signal_lookup() {
  2389   return check_pending_signals(false);
  2392 int os::signal_wait() {
  2393   return check_pending_signals(true);
  2396 ////////////////////////////////////////////////////////////////////////////////
  2397 // Virtual Memory
  2399 int os::vm_page_size() {
  2400   // Seems redundant as all get out
  2401   assert(os::Linux::page_size() != -1, "must call os::init");
  2402   return os::Linux::page_size();
  2405 // Solaris allocates memory by pages.
  2406 int os::vm_allocation_granularity() {
  2407   assert(os::Linux::page_size() != -1, "must call os::init");
  2408   return os::Linux::page_size();
  2411 // Rationale behind this function:
  2412 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2413 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2414 //  samples for JITted code. Here we create private executable mapping over the code cache
  2415 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2416 //  info for the reporting script by storing timestamp and location of symbol
  2417 void linux_wrap_code(char* base, size_t size) {
  2418   static volatile jint cnt = 0;
  2420   if (!UseOprofile) {
  2421     return;
  2424   char buf[PATH_MAX+1];
  2425   int num = Atomic::add(1, &cnt);
  2427   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2428            os::get_temp_directory(), os::current_process_id(), num);
  2429   unlink(buf);
  2431   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2433   if (fd != -1) {
  2434     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2435     if (rv != (off_t)-1) {
  2436       if (::write(fd, "", 1) == 1) {
  2437         mmap(base, size,
  2438              PROT_READ|PROT_WRITE|PROT_EXEC,
  2439              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2442     ::close(fd);
  2443     unlink(buf);
  2447 // NOTE: Linux kernel does not really reserve the pages for us.
  2448 //       All it does is to check if there are enough free pages
  2449 //       left at the time of mmap(). This could be a potential
  2450 //       problem.
  2451 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2452   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2453   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2454                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2455   if (res != (uintptr_t) MAP_FAILED) {
  2456     if (UseNUMAInterleaving) {
  2457       numa_make_global(addr, size);
  2459     return true;
  2461   return false;
  2464 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2465 #ifndef MAP_HUGETLB
  2466 #define MAP_HUGETLB 0x40000
  2467 #endif
  2469 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2470 #ifndef MADV_HUGEPAGE
  2471 #define MADV_HUGEPAGE 14
  2472 #endif
  2474 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2475                        bool exec) {
  2476   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
  2477     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2478     uintptr_t res =
  2479       (uintptr_t) ::mmap(addr, size, prot,
  2480                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
  2481                          -1, 0);
  2482     if (res != (uintptr_t) MAP_FAILED) {
  2483       if (UseNUMAInterleaving) {
  2484         numa_make_global(addr, size);
  2486       return true;
  2488     // Fall through and try to use small pages
  2491   if (commit_memory(addr, size, exec)) {
  2492     realign_memory(addr, size, alignment_hint);
  2493     return true;
  2495   return false;
  2498 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2499   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
  2500     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2501     // be supported or the memory may already be backed by huge pages.
  2502     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2506 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2507   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2508   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2509   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2510   // small pages on top of the SHM segment. This method always works for small pages, so we
  2511   // allow that in any case.
  2512   if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
  2513     commit_memory(addr, bytes, alignment_hint, false);
  2517 void os::numa_make_global(char *addr, size_t bytes) {
  2518   Linux::numa_interleave_memory(addr, bytes);
  2521 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2522   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2525 bool os::numa_topology_changed()   { return false; }
  2527 size_t os::numa_get_groups_num() {
  2528   int max_node = Linux::numa_max_node();
  2529   return max_node > 0 ? max_node + 1 : 1;
  2532 int os::numa_get_group_id() {
  2533   int cpu_id = Linux::sched_getcpu();
  2534   if (cpu_id != -1) {
  2535     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2536     if (lgrp_id != -1) {
  2537       return lgrp_id;
  2540   return 0;
  2543 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2544   for (size_t i = 0; i < size; i++) {
  2545     ids[i] = i;
  2547   return size;
  2550 bool os::get_page_info(char *start, page_info* info) {
  2551   return false;
  2554 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2555   return end;
  2559 int os::Linux::sched_getcpu_syscall(void) {
  2560   unsigned int cpu;
  2561   int retval = -1;
  2563 #if defined(IA32)
  2564 # ifndef SYS_getcpu
  2565 # define SYS_getcpu 318
  2566 # endif
  2567   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2568 #elif defined(AMD64)
  2569 // Unfortunately we have to bring all these macros here from vsyscall.h
  2570 // to be able to compile on old linuxes.
  2571 # define __NR_vgetcpu 2
  2572 # define VSYSCALL_START (-10UL << 20)
  2573 # define VSYSCALL_SIZE 1024
  2574 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2575   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2576   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2577   retval = vgetcpu(&cpu, NULL, NULL);
  2578 #endif
  2580   return (retval == -1) ? retval : cpu;
  2583 // Something to do with the numa-aware allocator needs these symbols
  2584 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2585 extern "C" JNIEXPORT void numa_error(char *where) { }
  2586 extern "C" JNIEXPORT int fork1() { return fork(); }
  2589 // If we are running with libnuma version > 2, then we should
  2590 // be trying to use symbols with versions 1.1
  2591 // If we are running with earlier version, which did not have symbol versions,
  2592 // we should use the base version.
  2593 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2594   void *f = dlvsym(handle, name, "libnuma_1.1");
  2595   if (f == NULL) {
  2596     f = dlsym(handle, name);
  2598   return f;
  2601 bool os::Linux::libnuma_init() {
  2602   // sched_getcpu() should be in libc.
  2603   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2604                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2606   // If it's not, try a direct syscall.
  2607   if (sched_getcpu() == -1)
  2608     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2610   if (sched_getcpu() != -1) { // Does it work?
  2611     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2612     if (handle != NULL) {
  2613       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2614                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2615       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2616                                        libnuma_dlsym(handle, "numa_max_node")));
  2617       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2618                                         libnuma_dlsym(handle, "numa_available")));
  2619       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2620                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2621       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2622                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2625       if (numa_available() != -1) {
  2626         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2627         // Create a cpu -> node mapping
  2628         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2629         rebuild_cpu_to_node_map();
  2630         return true;
  2634   return false;
  2637 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2638 // The table is later used in get_node_by_cpu().
  2639 void os::Linux::rebuild_cpu_to_node_map() {
  2640   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2641                               // in libnuma (possible values are starting from 16,
  2642                               // and continuing up with every other power of 2, but less
  2643                               // than the maximum number of CPUs supported by kernel), and
  2644                               // is a subject to change (in libnuma version 2 the requirements
  2645                               // are more reasonable) we'll just hardcode the number they use
  2646                               // in the library.
  2647   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2649   size_t cpu_num = os::active_processor_count();
  2650   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2651   size_t cpu_map_valid_size =
  2652     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2654   cpu_to_node()->clear();
  2655   cpu_to_node()->at_grow(cpu_num - 1);
  2656   size_t node_num = numa_get_groups_num();
  2658   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  2659   for (size_t i = 0; i < node_num; i++) {
  2660     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2661       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2662         if (cpu_map[j] != 0) {
  2663           for (size_t k = 0; k < BitsPerCLong; k++) {
  2664             if (cpu_map[j] & (1UL << k)) {
  2665               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2672   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  2675 int os::Linux::get_node_by_cpu(int cpu_id) {
  2676   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2677     return cpu_to_node()->at(cpu_id);
  2679   return -1;
  2682 GrowableArray<int>* os::Linux::_cpu_to_node;
  2683 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2684 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2685 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2686 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2687 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2688 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2689 unsigned long* os::Linux::_numa_all_nodes;
  2691 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2692   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2693                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2694   return res  != (uintptr_t) MAP_FAILED;
  2697 // Linux uses a growable mapping for the stack, and if the mapping for
  2698 // the stack guard pages is not removed when we detach a thread the
  2699 // stack cannot grow beyond the pages where the stack guard was
  2700 // mapped.  If at some point later in the process the stack expands to
  2701 // that point, the Linux kernel cannot expand the stack any further
  2702 // because the guard pages are in the way, and a segfault occurs.
  2703 //
  2704 // However, it's essential not to split the stack region by unmapping
  2705 // a region (leaving a hole) that's already part of the stack mapping,
  2706 // so if the stack mapping has already grown beyond the guard pages at
  2707 // the time we create them, we have to truncate the stack mapping.
  2708 // So, we need to know the extent of the stack mapping when
  2709 // create_stack_guard_pages() is called.
  2711 // Find the bounds of the stack mapping.  Return true for success.
  2712 //
  2713 // We only need this for stacks that are growable: at the time of
  2714 // writing thread stacks don't use growable mappings (i.e. those
  2715 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  2716 // only applies to the main thread.
  2718 static
  2719 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
  2721   char buf[128];
  2722   int fd, sz;
  2724   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
  2725     return false;
  2728   const char kw[] = "[stack]";
  2729   const int kwlen = sizeof(kw)-1;
  2731   // Address part of /proc/self/maps couldn't be more than 128 bytes
  2732   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
  2733      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
  2734         // Extract addresses
  2735         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
  2736            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
  2737            if (sp >= *bottom && sp <= *top) {
  2738               ::close(fd);
  2739               return true;
  2745  ::close(fd);
  2746   return false;
  2750 // If the (growable) stack mapping already extends beyond the point
  2751 // where we're going to put our guard pages, truncate the mapping at
  2752 // that point by munmap()ping it.  This ensures that when we later
  2753 // munmap() the guard pages we don't leave a hole in the stack
  2754 // mapping. This only affects the main/initial thread, but guard
  2755 // against future OS changes
  2756 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  2757   uintptr_t stack_extent, stack_base;
  2758   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  2759   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
  2760       assert(os::Linux::is_initial_thread(),
  2761            "growable stack in non-initial thread");
  2762     if (stack_extent < (uintptr_t)addr)
  2763       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
  2766   return os::commit_memory(addr, size);
  2769 // If this is a growable mapping, remove the guard pages entirely by
  2770 // munmap()ping them.  If not, just call uncommit_memory(). This only
  2771 // affects the main/initial thread, but guard against future OS changes
  2772 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2773   uintptr_t stack_extent, stack_base;
  2774   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  2775   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
  2776       assert(os::Linux::is_initial_thread(),
  2777            "growable stack in non-initial thread");
  2779     return ::munmap(addr, size) == 0;
  2782   return os::uncommit_memory(addr, size);
  2785 static address _highest_vm_reserved_address = NULL;
  2787 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  2788 // at 'requested_addr'. If there are existing memory mappings at the same
  2789 // location, however, they will be overwritten. If 'fixed' is false,
  2790 // 'requested_addr' is only treated as a hint, the return value may or
  2791 // may not start from the requested address. Unlike Linux mmap(), this
  2792 // function returns NULL to indicate failure.
  2793 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  2794   char * addr;
  2795   int flags;
  2797   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  2798   if (fixed) {
  2799     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  2800     flags |= MAP_FIXED;
  2803   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
  2804   // to PROT_EXEC if executable when we commit the page.
  2805   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
  2806                        flags, -1, 0);
  2808   if (addr != MAP_FAILED) {
  2809     // anon_mmap() should only get called during VM initialization,
  2810     // don't need lock (actually we can skip locking even it can be called
  2811     // from multiple threads, because _highest_vm_reserved_address is just a
  2812     // hint about the upper limit of non-stack memory regions.)
  2813     if ((address)addr + bytes > _highest_vm_reserved_address) {
  2814       _highest_vm_reserved_address = (address)addr + bytes;
  2818   return addr == MAP_FAILED ? NULL : addr;
  2821 // Don't update _highest_vm_reserved_address, because there might be memory
  2822 // regions above addr + size. If so, releasing a memory region only creates
  2823 // a hole in the address space, it doesn't help prevent heap-stack collision.
  2824 //
  2825 static int anon_munmap(char * addr, size_t size) {
  2826   return ::munmap(addr, size) == 0;
  2829 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  2830                          size_t alignment_hint) {
  2831   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  2834 bool os::pd_release_memory(char* addr, size_t size) {
  2835   return anon_munmap(addr, size);
  2838 static address highest_vm_reserved_address() {
  2839   return _highest_vm_reserved_address;
  2842 static bool linux_mprotect(char* addr, size_t size, int prot) {
  2843   // Linux wants the mprotect address argument to be page aligned.
  2844   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  2846   // According to SUSv3, mprotect() should only be used with mappings
  2847   // established by mmap(), and mmap() always maps whole pages. Unaligned
  2848   // 'addr' likely indicates problem in the VM (e.g. trying to change
  2849   // protection of malloc'ed or statically allocated memory). Check the
  2850   // caller if you hit this assert.
  2851   assert(addr == bottom, "sanity check");
  2853   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  2854   return ::mprotect(bottom, size, prot) == 0;
  2857 // Set protections specified
  2858 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2859                         bool is_committed) {
  2860   unsigned int p = 0;
  2861   switch (prot) {
  2862   case MEM_PROT_NONE: p = PROT_NONE; break;
  2863   case MEM_PROT_READ: p = PROT_READ; break;
  2864   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  2865   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  2866   default:
  2867     ShouldNotReachHere();
  2869   // is_committed is unused.
  2870   return linux_mprotect(addr, bytes, p);
  2873 bool os::guard_memory(char* addr, size_t size) {
  2874   return linux_mprotect(addr, size, PROT_NONE);
  2877 bool os::unguard_memory(char* addr, size_t size) {
  2878   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  2881 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  2882   bool result = false;
  2883   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
  2884                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  2885                   -1, 0);
  2887   if (p != (void *) -1) {
  2888     // We don't know if this really is a huge page or not.
  2889     FILE *fp = fopen("/proc/self/maps", "r");
  2890     if (fp) {
  2891       while (!feof(fp)) {
  2892         char chars[257];
  2893         long x = 0;
  2894         if (fgets(chars, sizeof(chars), fp)) {
  2895           if (sscanf(chars, "%lx-%*x", &x) == 1
  2896               && x == (long)p) {
  2897             if (strstr (chars, "hugepage")) {
  2898               result = true;
  2899               break;
  2904       fclose(fp);
  2906     munmap (p, page_size);
  2907     if (result)
  2908       return true;
  2911   if (warn) {
  2912     warning("HugeTLBFS is not supported by the operating system.");
  2915   return result;
  2918 /*
  2919 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  2921 * From the coredump_filter documentation:
  2923 * - (bit 0) anonymous private memory
  2924 * - (bit 1) anonymous shared memory
  2925 * - (bit 2) file-backed private memory
  2926 * - (bit 3) file-backed shared memory
  2927 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  2928 *           effective only if the bit 2 is cleared)
  2929 * - (bit 5) hugetlb private memory
  2930 * - (bit 6) hugetlb shared memory
  2931 */
  2932 static void set_coredump_filter(void) {
  2933   FILE *f;
  2934   long cdm;
  2936   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  2937     return;
  2940   if (fscanf(f, "%lx", &cdm) != 1) {
  2941     fclose(f);
  2942     return;
  2945   rewind(f);
  2947   if ((cdm & LARGEPAGES_BIT) == 0) {
  2948     cdm |= LARGEPAGES_BIT;
  2949     fprintf(f, "%#lx", cdm);
  2952   fclose(f);
  2955 // Large page support
  2957 static size_t _large_page_size = 0;
  2959 void os::large_page_init() {
  2960   if (!UseLargePages) {
  2961     UseHugeTLBFS = false;
  2962     UseSHM = false;
  2963     return;
  2966   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
  2967     // If UseLargePages is specified on the command line try both methods,
  2968     // if it's default, then try only HugeTLBFS.
  2969     if (FLAG_IS_DEFAULT(UseLargePages)) {
  2970       UseHugeTLBFS = true;
  2971     } else {
  2972       UseHugeTLBFS = UseSHM = true;
  2976   if (LargePageSizeInBytes) {
  2977     _large_page_size = LargePageSizeInBytes;
  2978   } else {
  2979     // large_page_size on Linux is used to round up heap size. x86 uses either
  2980     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  2981     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  2982     // page as large as 256M.
  2983     //
  2984     // Here we try to figure out page size by parsing /proc/meminfo and looking
  2985     // for a line with the following format:
  2986     //    Hugepagesize:     2048 kB
  2987     //
  2988     // If we can't determine the value (e.g. /proc is not mounted, or the text
  2989     // format has been changed), we'll use the largest page size supported by
  2990     // the processor.
  2992 #ifndef ZERO
  2993     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  2994                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  2995 #endif // ZERO
  2997     FILE *fp = fopen("/proc/meminfo", "r");
  2998     if (fp) {
  2999       while (!feof(fp)) {
  3000         int x = 0;
  3001         char buf[16];
  3002         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3003           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3004             _large_page_size = x * K;
  3005             break;
  3007         } else {
  3008           // skip to next line
  3009           for (;;) {
  3010             int ch = fgetc(fp);
  3011             if (ch == EOF || ch == (int)'\n') break;
  3015       fclose(fp);
  3019   // print a warning if any large page related flag is specified on command line
  3020   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3022   const size_t default_page_size = (size_t)Linux::page_size();
  3023   if (_large_page_size > default_page_size) {
  3024     _page_sizes[0] = _large_page_size;
  3025     _page_sizes[1] = default_page_size;
  3026     _page_sizes[2] = 0;
  3028   UseHugeTLBFS = UseHugeTLBFS &&
  3029                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
  3031   if (UseHugeTLBFS)
  3032     UseSHM = false;
  3034   UseLargePages = UseHugeTLBFS || UseSHM;
  3036   set_coredump_filter();
  3039 #ifndef SHM_HUGETLB
  3040 #define SHM_HUGETLB 04000
  3041 #endif
  3043 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
  3044   // "exec" is passed in but not used.  Creating the shared image for
  3045   // the code cache doesn't have an SHM_X executable permission to check.
  3046   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3048   key_t key = IPC_PRIVATE;
  3049   char *addr;
  3051   bool warn_on_failure = UseLargePages &&
  3052                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  3053                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3054                         );
  3055   char msg[128];
  3057   // Create a large shared memory region to attach to based on size.
  3058   // Currently, size is the total size of the heap
  3059   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3060   if (shmid == -1) {
  3061      // Possible reasons for shmget failure:
  3062      // 1. shmmax is too small for Java heap.
  3063      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3064      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3065      // 2. not enough large page memory.
  3066      //    > check available large pages: cat /proc/meminfo
  3067      //    > increase amount of large pages:
  3068      //          echo new_value > /proc/sys/vm/nr_hugepages
  3069      //      Note 1: different Linux may use different name for this property,
  3070      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3071      //      Note 2: it's possible there's enough physical memory available but
  3072      //            they are so fragmented after a long run that they can't
  3073      //            coalesce into large pages. Try to reserve large pages when
  3074      //            the system is still "fresh".
  3075      if (warn_on_failure) {
  3076        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3077        warning(msg);
  3079      return NULL;
  3082   // attach to the region
  3083   addr = (char*)shmat(shmid, req_addr, 0);
  3084   int err = errno;
  3086   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3087   // will be deleted when it's detached by shmdt() or when the process
  3088   // terminates. If shmat() is not successful this will remove the shared
  3089   // segment immediately.
  3090   shmctl(shmid, IPC_RMID, NULL);
  3092   if ((intptr_t)addr == -1) {
  3093      if (warn_on_failure) {
  3094        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3095        warning(msg);
  3097      return NULL;
  3100   if ((addr != NULL) && UseNUMAInterleaving) {
  3101     numa_make_global(addr, bytes);
  3104   return addr;
  3107 bool os::release_memory_special(char* base, size_t bytes) {
  3108   // detaching the SHM segment will also delete it, see reserve_memory_special()
  3109   int rslt = shmdt(base);
  3110   return rslt == 0;
  3113 size_t os::large_page_size() {
  3114   return _large_page_size;
  3117 // HugeTLBFS allows application to commit large page memory on demand;
  3118 // with SysV SHM the entire memory region must be allocated as shared
  3119 // memory.
  3120 bool os::can_commit_large_page_memory() {
  3121   return UseHugeTLBFS;
  3124 bool os::can_execute_large_page_memory() {
  3125   return UseHugeTLBFS;
  3128 // Reserve memory at an arbitrary address, only if that area is
  3129 // available (and not reserved for something else).
  3131 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3132   const int max_tries = 10;
  3133   char* base[max_tries];
  3134   size_t size[max_tries];
  3135   const size_t gap = 0x000000;
  3137   // Assert only that the size is a multiple of the page size, since
  3138   // that's all that mmap requires, and since that's all we really know
  3139   // about at this low abstraction level.  If we need higher alignment,
  3140   // we can either pass an alignment to this method or verify alignment
  3141   // in one of the methods further up the call chain.  See bug 5044738.
  3142   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3144   // Repeatedly allocate blocks until the block is allocated at the
  3145   // right spot. Give up after max_tries. Note that reserve_memory() will
  3146   // automatically update _highest_vm_reserved_address if the call is
  3147   // successful. The variable tracks the highest memory address every reserved
  3148   // by JVM. It is used to detect heap-stack collision if running with
  3149   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3150   // space than needed, it could confuse the collision detecting code. To
  3151   // solve the problem, save current _highest_vm_reserved_address and
  3152   // calculate the correct value before return.
  3153   address old_highest = _highest_vm_reserved_address;
  3155   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3156   // if kernel honors the hint then we can return immediately.
  3157   char * addr = anon_mmap(requested_addr, bytes, false);
  3158   if (addr == requested_addr) {
  3159      return requested_addr;
  3162   if (addr != NULL) {
  3163      // mmap() is successful but it fails to reserve at the requested address
  3164      anon_munmap(addr, bytes);
  3167   int i;
  3168   for (i = 0; i < max_tries; ++i) {
  3169     base[i] = reserve_memory(bytes);
  3171     if (base[i] != NULL) {
  3172       // Is this the block we wanted?
  3173       if (base[i] == requested_addr) {
  3174         size[i] = bytes;
  3175         break;
  3178       // Does this overlap the block we wanted? Give back the overlapped
  3179       // parts and try again.
  3181       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3182       if (top_overlap >= 0 && top_overlap < bytes) {
  3183         unmap_memory(base[i], top_overlap);
  3184         base[i] += top_overlap;
  3185         size[i] = bytes - top_overlap;
  3186       } else {
  3187         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3188         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3189           unmap_memory(requested_addr, bottom_overlap);
  3190           size[i] = bytes - bottom_overlap;
  3191         } else {
  3192           size[i] = bytes;
  3198   // Give back the unused reserved pieces.
  3200   for (int j = 0; j < i; ++j) {
  3201     if (base[j] != NULL) {
  3202       unmap_memory(base[j], size[j]);
  3206   if (i < max_tries) {
  3207     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3208     return requested_addr;
  3209   } else {
  3210     _highest_vm_reserved_address = old_highest;
  3211     return NULL;
  3215 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3216   return ::read(fd, buf, nBytes);
  3219 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3220 // Solaris uses poll(), linux uses park().
  3221 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3222 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3223 // SIGSEGV, see 4355769.
  3225 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3226   assert(thread == Thread::current(),  "thread consistency check");
  3228   ParkEvent * const slp = thread->_SleepEvent ;
  3229   slp->reset() ;
  3230   OrderAccess::fence() ;
  3232   if (interruptible) {
  3233     jlong prevtime = javaTimeNanos();
  3235     for (;;) {
  3236       if (os::is_interrupted(thread, true)) {
  3237         return OS_INTRPT;
  3240       jlong newtime = javaTimeNanos();
  3242       if (newtime - prevtime < 0) {
  3243         // time moving backwards, should only happen if no monotonic clock
  3244         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3245         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3246       } else {
  3247         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3250       if(millis <= 0) {
  3251         return OS_OK;
  3254       prevtime = newtime;
  3257         assert(thread->is_Java_thread(), "sanity check");
  3258         JavaThread *jt = (JavaThread *) thread;
  3259         ThreadBlockInVM tbivm(jt);
  3260         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3262         jt->set_suspend_equivalent();
  3263         // cleared by handle_special_suspend_equivalent_condition() or
  3264         // java_suspend_self() via check_and_wait_while_suspended()
  3266         slp->park(millis);
  3268         // were we externally suspended while we were waiting?
  3269         jt->check_and_wait_while_suspended();
  3272   } else {
  3273     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3274     jlong prevtime = javaTimeNanos();
  3276     for (;;) {
  3277       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3278       // the 1st iteration ...
  3279       jlong newtime = javaTimeNanos();
  3281       if (newtime - prevtime < 0) {
  3282         // time moving backwards, should only happen if no monotonic clock
  3283         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3284         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3285       } else {
  3286         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3289       if(millis <= 0) break ;
  3291       prevtime = newtime;
  3292       slp->park(millis);
  3294     return OS_OK ;
  3298 int os::naked_sleep() {
  3299   // %% make the sleep time an integer flag. for now use 1 millisec.
  3300   return os::sleep(Thread::current(), 1, false);
  3303 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3304 void os::infinite_sleep() {
  3305   while (true) {    // sleep forever ...
  3306     ::sleep(100);   // ... 100 seconds at a time
  3310 // Used to convert frequent JVM_Yield() to nops
  3311 bool os::dont_yield() {
  3312   return DontYieldALot;
  3315 void os::yield() {
  3316   sched_yield();
  3319 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3321 void os::yield_all(int attempts) {
  3322   // Yields to all threads, including threads with lower priorities
  3323   // Threads on Linux are all with same priority. The Solaris style
  3324   // os::yield_all() with nanosleep(1ms) is not necessary.
  3325   sched_yield();
  3328 // Called from the tight loops to possibly influence time-sharing heuristics
  3329 void os::loop_breaker(int attempts) {
  3330   os::yield_all(attempts);
  3333 ////////////////////////////////////////////////////////////////////////////////
  3334 // thread priority support
  3336 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3337 // only supports dynamic priority, static priority must be zero. For real-time
  3338 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3339 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3340 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3341 // of 5 runs - Sep 2005).
  3342 //
  3343 // The following code actually changes the niceness of kernel-thread/LWP. It
  3344 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3345 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3346 // threads. It has always been the case, but could change in the future. For
  3347 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3348 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3350 int os::java_to_os_priority[CriticalPriority + 1] = {
  3351   19,              // 0 Entry should never be used
  3353    4,              // 1 MinPriority
  3354    3,              // 2
  3355    2,              // 3
  3357    1,              // 4
  3358    0,              // 5 NormPriority
  3359   -1,              // 6
  3361   -2,              // 7
  3362   -3,              // 8
  3363   -4,              // 9 NearMaxPriority
  3365   -5,              // 10 MaxPriority
  3367   -5               // 11 CriticalPriority
  3368 };
  3370 static int prio_init() {
  3371   if (ThreadPriorityPolicy == 1) {
  3372     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3373     // if effective uid is not root. Perhaps, a more elegant way of doing
  3374     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3375     if (geteuid() != 0) {
  3376       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3377         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3379       ThreadPriorityPolicy = 0;
  3382   if (UseCriticalJavaThreadPriority) {
  3383     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  3385   return 0;
  3388 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3389   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3391   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3392   return (ret == 0) ? OS_OK : OS_ERR;
  3395 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3396   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3397     *priority_ptr = java_to_os_priority[NormPriority];
  3398     return OS_OK;
  3401   errno = 0;
  3402   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3403   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3406 // Hint to the underlying OS that a task switch would not be good.
  3407 // Void return because it's a hint and can fail.
  3408 void os::hint_no_preempt() {}
  3410 ////////////////////////////////////////////////////////////////////////////////
  3411 // suspend/resume support
  3413 //  the low-level signal-based suspend/resume support is a remnant from the
  3414 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3415 //  within hotspot. Now there is a single use-case for this:
  3416 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3417 //      that runs in the watcher thread.
  3418 //  The remaining code is greatly simplified from the more general suspension
  3419 //  code that used to be used.
  3420 //
  3421 //  The protocol is quite simple:
  3422 //  - suspend:
  3423 //      - sends a signal to the target thread
  3424 //      - polls the suspend state of the osthread using a yield loop
  3425 //      - target thread signal handler (SR_handler) sets suspend state
  3426 //        and blocks in sigsuspend until continued
  3427 //  - resume:
  3428 //      - sets target osthread state to continue
  3429 //      - sends signal to end the sigsuspend loop in the SR_handler
  3430 //
  3431 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3432 //
  3434 static void resume_clear_context(OSThread *osthread) {
  3435   osthread->set_ucontext(NULL);
  3436   osthread->set_siginfo(NULL);
  3438   // notify the suspend action is completed, we have now resumed
  3439   osthread->sr.clear_suspended();
  3442 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3443   osthread->set_ucontext(context);
  3444   osthread->set_siginfo(siginfo);
  3447 //
  3448 // Handler function invoked when a thread's execution is suspended or
  3449 // resumed. We have to be careful that only async-safe functions are
  3450 // called here (Note: most pthread functions are not async safe and
  3451 // should be avoided.)
  3452 //
  3453 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3454 // interface point of view, but sigwait() prevents the signal hander
  3455 // from being run. libpthread would get very confused by not having
  3456 // its signal handlers run and prevents sigwait()'s use with the
  3457 // mutex granting granting signal.
  3458 //
  3459 // Currently only ever called on the VMThread
  3460 //
  3461 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3462   // Save and restore errno to avoid confusing native code with EINTR
  3463   // after sigsuspend.
  3464   int old_errno = errno;
  3466   Thread* thread = Thread::current();
  3467   OSThread* osthread = thread->osthread();
  3468   assert(thread->is_VM_thread(), "Must be VMThread");
  3469   // read current suspend action
  3470   int action = osthread->sr.suspend_action();
  3471   if (action == SR_SUSPEND) {
  3472     suspend_save_context(osthread, siginfo, context);
  3474     // Notify the suspend action is about to be completed. do_suspend()
  3475     // waits until SR_SUSPENDED is set and then returns. We will wait
  3476     // here for a resume signal and that completes the suspend-other
  3477     // action. do_suspend/do_resume is always called as a pair from
  3478     // the same thread - so there are no races
  3480     // notify the caller
  3481     osthread->sr.set_suspended();
  3483     sigset_t suspend_set;  // signals for sigsuspend()
  3485     // get current set of blocked signals and unblock resume signal
  3486     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  3487     sigdelset(&suspend_set, SR_signum);
  3489     // wait here until we are resumed
  3490     do {
  3491       sigsuspend(&suspend_set);
  3492       // ignore all returns until we get a resume signal
  3493     } while (osthread->sr.suspend_action() != SR_CONTINUE);
  3495     resume_clear_context(osthread);
  3497   } else {
  3498     assert(action == SR_CONTINUE, "unexpected sr action");
  3499     // nothing special to do - just leave the handler
  3502   errno = old_errno;
  3506 static int SR_initialize() {
  3507   struct sigaction act;
  3508   char *s;
  3509   /* Get signal number to use for suspend/resume */
  3510   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  3511     int sig = ::strtol(s, 0, 10);
  3512     if (sig > 0 || sig < _NSIG) {
  3513         SR_signum = sig;
  3517   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  3518         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  3520   sigemptyset(&SR_sigset);
  3521   sigaddset(&SR_sigset, SR_signum);
  3523   /* Set up signal handler for suspend/resume */
  3524   act.sa_flags = SA_RESTART|SA_SIGINFO;
  3525   act.sa_handler = (void (*)(int)) SR_handler;
  3527   // SR_signum is blocked by default.
  3528   // 4528190 - We also need to block pthread restart signal (32 on all
  3529   // supported Linux platforms). Note that LinuxThreads need to block
  3530   // this signal for all threads to work properly. So we don't have
  3531   // to use hard-coded signal number when setting up the mask.
  3532   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  3534   if (sigaction(SR_signum, &act, 0) == -1) {
  3535     return -1;
  3538   // Save signal flag
  3539   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  3540   return 0;
  3543 static int SR_finalize() {
  3544   return 0;
  3548 // returns true on success and false on error - really an error is fatal
  3549 // but this seems the normal response to library errors
  3550 static bool do_suspend(OSThread* osthread) {
  3551   // mark as suspended and send signal
  3552   osthread->sr.set_suspend_action(SR_SUSPEND);
  3553   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3554   assert_status(status == 0, status, "pthread_kill");
  3556   // check status and wait until notified of suspension
  3557   if (status == 0) {
  3558     for (int i = 0; !osthread->sr.is_suspended(); i++) {
  3559       os::yield_all(i);
  3561     osthread->sr.set_suspend_action(SR_NONE);
  3562     return true;
  3564   else {
  3565     osthread->sr.set_suspend_action(SR_NONE);
  3566     return false;
  3570 static void do_resume(OSThread* osthread) {
  3571   assert(osthread->sr.is_suspended(), "thread should be suspended");
  3572   osthread->sr.set_suspend_action(SR_CONTINUE);
  3574   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3575   assert_status(status == 0, status, "pthread_kill");
  3576   // check status and wait unit notified of resumption
  3577   if (status == 0) {
  3578     for (int i = 0; osthread->sr.is_suspended(); i++) {
  3579       os::yield_all(i);
  3582   osthread->sr.set_suspend_action(SR_NONE);
  3585 ////////////////////////////////////////////////////////////////////////////////
  3586 // interrupt support
  3588 void os::interrupt(Thread* thread) {
  3589   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3590     "possibility of dangling Thread pointer");
  3592   OSThread* osthread = thread->osthread();
  3594   if (!osthread->interrupted()) {
  3595     osthread->set_interrupted(true);
  3596     // More than one thread can get here with the same value of osthread,
  3597     // resulting in multiple notifications.  We do, however, want the store
  3598     // to interrupted() to be visible to other threads before we execute unpark().
  3599     OrderAccess::fence();
  3600     ParkEvent * const slp = thread->_SleepEvent ;
  3601     if (slp != NULL) slp->unpark() ;
  3604   // For JSR166. Unpark even if interrupt status already was set
  3605   if (thread->is_Java_thread())
  3606     ((JavaThread*)thread)->parker()->unpark();
  3608   ParkEvent * ev = thread->_ParkEvent ;
  3609   if (ev != NULL) ev->unpark() ;
  3613 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3614   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3615     "possibility of dangling Thread pointer");
  3617   OSThread* osthread = thread->osthread();
  3619   bool interrupted = osthread->interrupted();
  3621   if (interrupted && clear_interrupted) {
  3622     osthread->set_interrupted(false);
  3623     // consider thread->_SleepEvent->reset() ... optional optimization
  3626   return interrupted;
  3629 ///////////////////////////////////////////////////////////////////////////////////
  3630 // signal handling (except suspend/resume)
  3632 // This routine may be used by user applications as a "hook" to catch signals.
  3633 // The user-defined signal handler must pass unrecognized signals to this
  3634 // routine, and if it returns true (non-zero), then the signal handler must
  3635 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  3636 // routine will never retun false (zero), but instead will execute a VM panic
  3637 // routine kill the process.
  3638 //
  3639 // If this routine returns false, it is OK to call it again.  This allows
  3640 // the user-defined signal handler to perform checks either before or after
  3641 // the VM performs its own checks.  Naturally, the user code would be making
  3642 // a serious error if it tried to handle an exception (such as a null check
  3643 // or breakpoint) that the VM was generating for its own correct operation.
  3644 //
  3645 // This routine may recognize any of the following kinds of signals:
  3646 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  3647 // It should be consulted by handlers for any of those signals.
  3648 //
  3649 // The caller of this routine must pass in the three arguments supplied
  3650 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  3651 // field of the structure passed to sigaction().  This routine assumes that
  3652 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  3653 //
  3654 // Note that the VM will print warnings if it detects conflicting signal
  3655 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  3656 //
  3657 extern "C" JNIEXPORT int
  3658 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  3659                         void* ucontext, int abort_if_unrecognized);
  3661 void signalHandler(int sig, siginfo_t* info, void* uc) {
  3662   assert(info != NULL && uc != NULL, "it must be old kernel");
  3663   JVM_handle_linux_signal(sig, info, uc, true);
  3667 // This boolean allows users to forward their own non-matching signals
  3668 // to JVM_handle_linux_signal, harmlessly.
  3669 bool os::Linux::signal_handlers_are_installed = false;
  3671 // For signal-chaining
  3672 struct sigaction os::Linux::sigact[MAXSIGNUM];
  3673 unsigned int os::Linux::sigs = 0;
  3674 bool os::Linux::libjsig_is_loaded = false;
  3675 typedef struct sigaction *(*get_signal_t)(int);
  3676 get_signal_t os::Linux::get_signal_action = NULL;
  3678 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  3679   struct sigaction *actp = NULL;
  3681   if (libjsig_is_loaded) {
  3682     // Retrieve the old signal handler from libjsig
  3683     actp = (*get_signal_action)(sig);
  3685   if (actp == NULL) {
  3686     // Retrieve the preinstalled signal handler from jvm
  3687     actp = get_preinstalled_handler(sig);
  3690   return actp;
  3693 static bool call_chained_handler(struct sigaction *actp, int sig,
  3694                                  siginfo_t *siginfo, void *context) {
  3695   // Call the old signal handler
  3696   if (actp->sa_handler == SIG_DFL) {
  3697     // It's more reasonable to let jvm treat it as an unexpected exception
  3698     // instead of taking the default action.
  3699     return false;
  3700   } else if (actp->sa_handler != SIG_IGN) {
  3701     if ((actp->sa_flags & SA_NODEFER) == 0) {
  3702       // automaticlly block the signal
  3703       sigaddset(&(actp->sa_mask), sig);
  3706     sa_handler_t hand;
  3707     sa_sigaction_t sa;
  3708     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  3709     // retrieve the chained handler
  3710     if (siginfo_flag_set) {
  3711       sa = actp->sa_sigaction;
  3712     } else {
  3713       hand = actp->sa_handler;
  3716     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  3717       actp->sa_handler = SIG_DFL;
  3720     // try to honor the signal mask
  3721     sigset_t oset;
  3722     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  3724     // call into the chained handler
  3725     if (siginfo_flag_set) {
  3726       (*sa)(sig, siginfo, context);
  3727     } else {
  3728       (*hand)(sig);
  3731     // restore the signal mask
  3732     pthread_sigmask(SIG_SETMASK, &oset, 0);
  3734   // Tell jvm's signal handler the signal is taken care of.
  3735   return true;
  3738 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  3739   bool chained = false;
  3740   // signal-chaining
  3741   if (UseSignalChaining) {
  3742     struct sigaction *actp = get_chained_signal_action(sig);
  3743     if (actp != NULL) {
  3744       chained = call_chained_handler(actp, sig, siginfo, context);
  3747   return chained;
  3750 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  3751   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  3752     return &sigact[sig];
  3754   return NULL;
  3757 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  3758   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3759   sigact[sig] = oldAct;
  3760   sigs |= (unsigned int)1 << sig;
  3763 // for diagnostic
  3764 int os::Linux::sigflags[MAXSIGNUM];
  3766 int os::Linux::get_our_sigflags(int sig) {
  3767   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3768   return sigflags[sig];
  3771 void os::Linux::set_our_sigflags(int sig, int flags) {
  3772   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3773   sigflags[sig] = flags;
  3776 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  3777   // Check for overwrite.
  3778   struct sigaction oldAct;
  3779   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  3781   void* oldhand = oldAct.sa_sigaction
  3782                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  3783                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  3784   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  3785       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  3786       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  3787     if (AllowUserSignalHandlers || !set_installed) {
  3788       // Do not overwrite; user takes responsibility to forward to us.
  3789       return;
  3790     } else if (UseSignalChaining) {
  3791       // save the old handler in jvm
  3792       save_preinstalled_handler(sig, oldAct);
  3793       // libjsig also interposes the sigaction() call below and saves the
  3794       // old sigaction on it own.
  3795     } else {
  3796       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  3797                     "%#lx for signal %d.", (long)oldhand, sig));
  3801   struct sigaction sigAct;
  3802   sigfillset(&(sigAct.sa_mask));
  3803   sigAct.sa_handler = SIG_DFL;
  3804   if (!set_installed) {
  3805     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3806   } else {
  3807     sigAct.sa_sigaction = signalHandler;
  3808     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3810   // Save flags, which are set by ours
  3811   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3812   sigflags[sig] = sigAct.sa_flags;
  3814   int ret = sigaction(sig, &sigAct, &oldAct);
  3815   assert(ret == 0, "check");
  3817   void* oldhand2  = oldAct.sa_sigaction
  3818                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  3819                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  3820   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  3823 // install signal handlers for signals that HotSpot needs to
  3824 // handle in order to support Java-level exception handling.
  3826 void os::Linux::install_signal_handlers() {
  3827   if (!signal_handlers_are_installed) {
  3828     signal_handlers_are_installed = true;
  3830     // signal-chaining
  3831     typedef void (*signal_setting_t)();
  3832     signal_setting_t begin_signal_setting = NULL;
  3833     signal_setting_t end_signal_setting = NULL;
  3834     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3835                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  3836     if (begin_signal_setting != NULL) {
  3837       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3838                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  3839       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  3840                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  3841       libjsig_is_loaded = true;
  3842       assert(UseSignalChaining, "should enable signal-chaining");
  3844     if (libjsig_is_loaded) {
  3845       // Tell libjsig jvm is setting signal handlers
  3846       (*begin_signal_setting)();
  3849     set_signal_handler(SIGSEGV, true);
  3850     set_signal_handler(SIGPIPE, true);
  3851     set_signal_handler(SIGBUS, true);
  3852     set_signal_handler(SIGILL, true);
  3853     set_signal_handler(SIGFPE, true);
  3854     set_signal_handler(SIGXFSZ, true);
  3856     if (libjsig_is_loaded) {
  3857       // Tell libjsig jvm finishes setting signal handlers
  3858       (*end_signal_setting)();
  3861     // We don't activate signal checker if libjsig is in place, we trust ourselves
  3862     // and if UserSignalHandler is installed all bets are off.
  3863     // Log that signal checking is off only if -verbose:jni is specified.
  3864     if (CheckJNICalls) {
  3865       if (libjsig_is_loaded) {
  3866         if (PrintJNIResolving) {
  3867           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  3869         check_signals = false;
  3871       if (AllowUserSignalHandlers) {
  3872         if (PrintJNIResolving) {
  3873           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  3875         check_signals = false;
  3881 // This is the fastest way to get thread cpu time on Linux.
  3882 // Returns cpu time (user+sys) for any thread, not only for current.
  3883 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  3884 // It might work on 2.6.10+ with a special kernel/glibc patch.
  3885 // For reference, please, see IEEE Std 1003.1-2004:
  3886 //   http://www.unix.org/single_unix_specification
  3888 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  3889   struct timespec tp;
  3890   int rc = os::Linux::clock_gettime(clockid, &tp);
  3891   assert(rc == 0, "clock_gettime is expected to return 0 code");
  3893   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  3896 /////
  3897 // glibc on Linux platform uses non-documented flag
  3898 // to indicate, that some special sort of signal
  3899 // trampoline is used.
  3900 // We will never set this flag, and we should
  3901 // ignore this flag in our diagnostic
  3902 #ifdef SIGNIFICANT_SIGNAL_MASK
  3903 #undef SIGNIFICANT_SIGNAL_MASK
  3904 #endif
  3905 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  3907 static const char* get_signal_handler_name(address handler,
  3908                                            char* buf, int buflen) {
  3909   int offset;
  3910   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  3911   if (found) {
  3912     // skip directory names
  3913     const char *p1, *p2;
  3914     p1 = buf;
  3915     size_t len = strlen(os::file_separator());
  3916     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  3917     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  3918   } else {
  3919     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  3921   return buf;
  3924 static void print_signal_handler(outputStream* st, int sig,
  3925                                  char* buf, size_t buflen) {
  3926   struct sigaction sa;
  3928   sigaction(sig, NULL, &sa);
  3930   // See comment for SIGNIFICANT_SIGNAL_MASK define
  3931   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3933   st->print("%s: ", os::exception_name(sig, buf, buflen));
  3935   address handler = (sa.sa_flags & SA_SIGINFO)
  3936     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  3937     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  3939   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  3940     st->print("SIG_DFL");
  3941   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  3942     st->print("SIG_IGN");
  3943   } else {
  3944     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  3947   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  3949   address rh = VMError::get_resetted_sighandler(sig);
  3950   // May be, handler was resetted by VMError?
  3951   if(rh != NULL) {
  3952     handler = rh;
  3953     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  3956   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  3958   // Check: is it our handler?
  3959   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  3960      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  3961     // It is our signal handler
  3962     // check for flags, reset system-used one!
  3963     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  3964       st->print(
  3965                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  3966                 os::Linux::get_our_sigflags(sig));
  3969   st->cr();
  3973 #define DO_SIGNAL_CHECK(sig) \
  3974   if (!sigismember(&check_signal_done, sig)) \
  3975     os::Linux::check_signal_handler(sig)
  3977 // This method is a periodic task to check for misbehaving JNI applications
  3978 // under CheckJNI, we can add any periodic checks here
  3980 void os::run_periodic_checks() {
  3982   if (check_signals == false) return;
  3984   // SEGV and BUS if overridden could potentially prevent
  3985   // generation of hs*.log in the event of a crash, debugging
  3986   // such a case can be very challenging, so we absolutely
  3987   // check the following for a good measure:
  3988   DO_SIGNAL_CHECK(SIGSEGV);
  3989   DO_SIGNAL_CHECK(SIGILL);
  3990   DO_SIGNAL_CHECK(SIGFPE);
  3991   DO_SIGNAL_CHECK(SIGBUS);
  3992   DO_SIGNAL_CHECK(SIGPIPE);
  3993   DO_SIGNAL_CHECK(SIGXFSZ);
  3996   // ReduceSignalUsage allows the user to override these handlers
  3997   // see comments at the very top and jvm_solaris.h
  3998   if (!ReduceSignalUsage) {
  3999     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4000     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4001     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4002     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4005   DO_SIGNAL_CHECK(SR_signum);
  4006   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4009 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4011 static os_sigaction_t os_sigaction = NULL;
  4013 void os::Linux::check_signal_handler(int sig) {
  4014   char buf[O_BUFLEN];
  4015   address jvmHandler = NULL;
  4018   struct sigaction act;
  4019   if (os_sigaction == NULL) {
  4020     // only trust the default sigaction, in case it has been interposed
  4021     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4022     if (os_sigaction == NULL) return;
  4025   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4028   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4030   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4031     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4032     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4035   switch(sig) {
  4036   case SIGSEGV:
  4037   case SIGBUS:
  4038   case SIGFPE:
  4039   case SIGPIPE:
  4040   case SIGILL:
  4041   case SIGXFSZ:
  4042     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4043     break;
  4045   case SHUTDOWN1_SIGNAL:
  4046   case SHUTDOWN2_SIGNAL:
  4047   case SHUTDOWN3_SIGNAL:
  4048   case BREAK_SIGNAL:
  4049     jvmHandler = (address)user_handler();
  4050     break;
  4052   case INTERRUPT_SIGNAL:
  4053     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4054     break;
  4056   default:
  4057     if (sig == SR_signum) {
  4058       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4059     } else {
  4060       return;
  4062     break;
  4065   if (thisHandler != jvmHandler) {
  4066     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4067     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4068     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4069     // No need to check this sig any longer
  4070     sigaddset(&check_signal_done, sig);
  4071   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4072     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4073     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4074     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4075     // No need to check this sig any longer
  4076     sigaddset(&check_signal_done, sig);
  4079   // Dump all the signal
  4080   if (sigismember(&check_signal_done, sig)) {
  4081     print_signal_handlers(tty, buf, O_BUFLEN);
  4085 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4087 extern bool signal_name(int signo, char* buf, size_t len);
  4089 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4090   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4091     // signal
  4092     if (!signal_name(exception_code, buf, size)) {
  4093       jio_snprintf(buf, size, "SIG%d", exception_code);
  4095     return buf;
  4096   } else {
  4097     return NULL;
  4101 // this is called _before_ the most of global arguments have been parsed
  4102 void os::init(void) {
  4103   char dummy;   /* used to get a guess on initial stack address */
  4104 //  first_hrtime = gethrtime();
  4106   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4107   // is different than the pid of the java launcher thread.
  4108   // So, on Linux, the launcher thread pid is passed to the VM
  4109   // via the sun.java.launcher.pid property.
  4110   // Use this property instead of getpid() if it was correctly passed.
  4111   // See bug 6351349.
  4112   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4114   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4116   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4118   init_random(1234567);
  4120   ThreadCritical::initialize();
  4122   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4123   if (Linux::page_size() == -1) {
  4124     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4125                   strerror(errno)));
  4127   init_page_sizes((size_t) Linux::page_size());
  4129   Linux::initialize_system_info();
  4131   // main_thread points to the aboriginal thread
  4132   Linux::_main_thread = pthread_self();
  4134   Linux::clock_init();
  4135   initial_time_count = os::elapsed_counter();
  4136   pthread_mutex_init(&dl_mutex, NULL);
  4139 // To install functions for atexit system call
  4140 extern "C" {
  4141   static void perfMemory_exit_helper() {
  4142     perfMemory_exit();
  4146 // this is called _after_ the global arguments have been parsed
  4147 jint os::init_2(void)
  4149   Linux::fast_thread_clock_init();
  4151   // Allocate a single page and mark it as readable for safepoint polling
  4152   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4153   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4155   os::set_polling_page( polling_page );
  4157 #ifndef PRODUCT
  4158   if(Verbose && PrintMiscellaneous)
  4159     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4160 #endif
  4162   if (!UseMembar) {
  4163     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4164     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  4165     os::set_memory_serialize_page( mem_serialize_page );
  4167 #ifndef PRODUCT
  4168     if(Verbose && PrintMiscellaneous)
  4169       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4170 #endif
  4173   os::large_page_init();
  4175   // initialize suspend/resume support - must do this before signal_sets_init()
  4176   if (SR_initialize() != 0) {
  4177     perror("SR_initialize failed");
  4178     return JNI_ERR;
  4181   Linux::signal_sets_init();
  4182   Linux::install_signal_handlers();
  4184   // Check minimum allowable stack size for thread creation and to initialize
  4185   // the java system classes, including StackOverflowError - depends on page
  4186   // size.  Add a page for compiler2 recursion in main thread.
  4187   // Add in 2*BytesPerWord times page size to account for VM stack during
  4188   // class initialization depending on 32 or 64 bit VM.
  4189   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4190             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  4191                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
  4193   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4194   if (threadStackSizeInBytes != 0 &&
  4195       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4196         tty->print_cr("\nThe stack size specified is too small, "
  4197                       "Specify at least %dk",
  4198                       os::Linux::min_stack_allowed/ K);
  4199         return JNI_ERR;
  4202   // Make the stack size a multiple of the page size so that
  4203   // the yellow/red zones can be guarded.
  4204   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4205         vm_page_size()));
  4207   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4209   Linux::libpthread_init();
  4210   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4211      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4212           Linux::glibc_version(), Linux::libpthread_version(),
  4213           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4216   if (UseNUMA) {
  4217     if (!Linux::libnuma_init()) {
  4218       UseNUMA = false;
  4219     } else {
  4220       if ((Linux::numa_max_node() < 1)) {
  4221         // There's only one node(they start from 0), disable NUMA.
  4222         UseNUMA = false;
  4225     // With SHM large pages we cannot uncommit a page, so there's not way
  4226     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4227     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
  4228     // disable adaptive resizing.
  4229     if (UseNUMA && UseLargePages && UseSHM) {
  4230       if (!FLAG_IS_DEFAULT(UseNUMA)) {
  4231         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
  4232           UseLargePages = false;
  4233         } else {
  4234           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
  4235           UseAdaptiveSizePolicy = false;
  4236           UseAdaptiveNUMAChunkSizing = false;
  4238       } else {
  4239         UseNUMA = false;
  4242     if (!UseNUMA && ForceNUMA) {
  4243       UseNUMA = true;
  4247   if (MaxFDLimit) {
  4248     // set the number of file descriptors to max. print out error
  4249     // if getrlimit/setrlimit fails but continue regardless.
  4250     struct rlimit nbr_files;
  4251     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4252     if (status != 0) {
  4253       if (PrintMiscellaneous && (Verbose || WizardMode))
  4254         perror("os::init_2 getrlimit failed");
  4255     } else {
  4256       nbr_files.rlim_cur = nbr_files.rlim_max;
  4257       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4258       if (status != 0) {
  4259         if (PrintMiscellaneous && (Verbose || WizardMode))
  4260           perror("os::init_2 setrlimit failed");
  4265   // Initialize lock used to serialize thread creation (see os::create_thread)
  4266   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4268   // at-exit methods are called in the reverse order of their registration.
  4269   // atexit functions are called on return from main or as a result of a
  4270   // call to exit(3C). There can be only 32 of these functions registered
  4271   // and atexit() does not set errno.
  4273   if (PerfAllowAtExitRegistration) {
  4274     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4275     // atexit functions can be delayed until process exit time, which
  4276     // can be problematic for embedded VM situations. Embedded VMs should
  4277     // call DestroyJavaVM() to assure that VM resources are released.
  4279     // note: perfMemory_exit_helper atexit function may be removed in
  4280     // the future if the appropriate cleanup code can be added to the
  4281     // VM_Exit VMOperation's doit method.
  4282     if (atexit(perfMemory_exit_helper) != 0) {
  4283       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  4287   // initialize thread priority policy
  4288   prio_init();
  4290   return JNI_OK;
  4293 // this is called at the end of vm_initialization
  4294 void os::init_3(void)
  4296 #ifdef JAVASE_EMBEDDED
  4297   // Start the MemNotifyThread
  4298   if (LowMemoryProtection) {
  4299     MemNotifyThread::start();
  4301   return;
  4302 #endif
  4305 // Mark the polling page as unreadable
  4306 void os::make_polling_page_unreadable(void) {
  4307   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  4308     fatal("Could not disable polling page");
  4309 };
  4311 // Mark the polling page as readable
  4312 void os::make_polling_page_readable(void) {
  4313   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  4314     fatal("Could not enable polling page");
  4316 };
  4318 int os::active_processor_count() {
  4319   // Linux doesn't yet have a (official) notion of processor sets,
  4320   // so just return the number of online processors.
  4321   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  4322   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  4323   return online_cpus;
  4326 void os::set_native_thread_name(const char *name) {
  4327   // Not yet implemented.
  4328   return;
  4331 bool os::distribute_processes(uint length, uint* distribution) {
  4332   // Not yet implemented.
  4333   return false;
  4336 bool os::bind_to_processor(uint processor_id) {
  4337   // Not yet implemented.
  4338   return false;
  4341 ///
  4343 // Suspends the target using the signal mechanism and then grabs the PC before
  4344 // resuming the target. Used by the flat-profiler only
  4345 ExtendedPC os::get_thread_pc(Thread* thread) {
  4346   // Make sure that it is called by the watcher for the VMThread
  4347   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  4348   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4350   ExtendedPC epc;
  4352   OSThread* osthread = thread->osthread();
  4353   if (do_suspend(osthread)) {
  4354     if (osthread->ucontext() != NULL) {
  4355       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
  4356     } else {
  4357       // NULL context is unexpected, double-check this is the VMThread
  4358       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4360     do_resume(osthread);
  4362   // failure means pthread_kill failed for some reason - arguably this is
  4363   // a fatal problem, but such problems are ignored elsewhere
  4365   return epc;
  4368 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  4370    if (is_NPTL()) {
  4371       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  4372    } else {
  4373 #ifndef IA64
  4374       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  4375       // word back to default 64bit precision if condvar is signaled. Java
  4376       // wants 53bit precision.  Save and restore current value.
  4377       int fpu = get_fpu_control_word();
  4378 #endif // IA64
  4379       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  4380 #ifndef IA64
  4381       set_fpu_control_word(fpu);
  4382 #endif // IA64
  4383       return status;
  4387 ////////////////////////////////////////////////////////////////////////////////
  4388 // debug support
  4390 static address same_page(address x, address y) {
  4391   int page_bits = -os::vm_page_size();
  4392   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  4393     return x;
  4394   else if (x > y)
  4395     return (address)(intptr_t(y) | ~page_bits) + 1;
  4396   else
  4397     return (address)(intptr_t(y) & page_bits);
  4400 bool os::find(address addr, outputStream* st) {
  4401   Dl_info dlinfo;
  4402   memset(&dlinfo, 0, sizeof(dlinfo));
  4403   if (dladdr(addr, &dlinfo)) {
  4404     st->print(PTR_FORMAT ": ", addr);
  4405     if (dlinfo.dli_sname != NULL) {
  4406       st->print("%s+%#x", dlinfo.dli_sname,
  4407                  addr - (intptr_t)dlinfo.dli_saddr);
  4408     } else if (dlinfo.dli_fname) {
  4409       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  4410     } else {
  4411       st->print("<absolute address>");
  4413     if (dlinfo.dli_fname) {
  4414       st->print(" in %s", dlinfo.dli_fname);
  4416     if (dlinfo.dli_fbase) {
  4417       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  4419     st->cr();
  4421     if (Verbose) {
  4422       // decode some bytes around the PC
  4423       address begin = same_page(addr-40, addr);
  4424       address end   = same_page(addr+40, addr);
  4425       address       lowest = (address) dlinfo.dli_sname;
  4426       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  4427       if (begin < lowest)  begin = lowest;
  4428       Dl_info dlinfo2;
  4429       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  4430           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  4431         end = (address) dlinfo2.dli_saddr;
  4432       Disassembler::decode(begin, end, st);
  4434     return true;
  4436   return false;
  4439 ////////////////////////////////////////////////////////////////////////////////
  4440 // misc
  4442 // This does not do anything on Linux. This is basically a hook for being
  4443 // able to use structured exception handling (thread-local exception filters)
  4444 // on, e.g., Win32.
  4445 void
  4446 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  4447                          JavaCallArguments* args, Thread* thread) {
  4448   f(value, method, args, thread);
  4451 void os::print_statistics() {
  4454 int os::message_box(const char* title, const char* message) {
  4455   int i;
  4456   fdStream err(defaultStream::error_fd());
  4457   for (i = 0; i < 78; i++) err.print_raw("=");
  4458   err.cr();
  4459   err.print_raw_cr(title);
  4460   for (i = 0; i < 78; i++) err.print_raw("-");
  4461   err.cr();
  4462   err.print_raw_cr(message);
  4463   for (i = 0; i < 78; i++) err.print_raw("=");
  4464   err.cr();
  4466   char buf[16];
  4467   // Prevent process from exiting upon "read error" without consuming all CPU
  4468   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4470   return buf[0] == 'y' || buf[0] == 'Y';
  4473 int os::stat(const char *path, struct stat *sbuf) {
  4474   char pathbuf[MAX_PATH];
  4475   if (strlen(path) > MAX_PATH - 1) {
  4476     errno = ENAMETOOLONG;
  4477     return -1;
  4479   os::native_path(strcpy(pathbuf, path));
  4480   return ::stat(pathbuf, sbuf);
  4483 bool os::check_heap(bool force) {
  4484   return true;
  4487 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  4488   return ::vsnprintf(buf, count, format, args);
  4491 // Is a (classpath) directory empty?
  4492 bool os::dir_is_empty(const char* path) {
  4493   DIR *dir = NULL;
  4494   struct dirent *ptr;
  4496   dir = opendir(path);
  4497   if (dir == NULL) return true;
  4499   /* Scan the directory */
  4500   bool result = true;
  4501   char buf[sizeof(struct dirent) + MAX_PATH];
  4502   while (result && (ptr = ::readdir(dir)) != NULL) {
  4503     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  4504       result = false;
  4507   closedir(dir);
  4508   return result;
  4511 // This code originates from JDK's sysOpen and open64_w
  4512 // from src/solaris/hpi/src/system_md.c
  4514 #ifndef O_DELETE
  4515 #define O_DELETE 0x10000
  4516 #endif
  4518 // Open a file. Unlink the file immediately after open returns
  4519 // if the specified oflag has the O_DELETE flag set.
  4520 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  4522 int os::open(const char *path, int oflag, int mode) {
  4524   if (strlen(path) > MAX_PATH - 1) {
  4525     errno = ENAMETOOLONG;
  4526     return -1;
  4528   int fd;
  4529   int o_delete = (oflag & O_DELETE);
  4530   oflag = oflag & ~O_DELETE;
  4532   fd = ::open64(path, oflag, mode);
  4533   if (fd == -1) return -1;
  4535   //If the open succeeded, the file might still be a directory
  4537     struct stat64 buf64;
  4538     int ret = ::fstat64(fd, &buf64);
  4539     int st_mode = buf64.st_mode;
  4541     if (ret != -1) {
  4542       if ((st_mode & S_IFMT) == S_IFDIR) {
  4543         errno = EISDIR;
  4544         ::close(fd);
  4545         return -1;
  4547     } else {
  4548       ::close(fd);
  4549       return -1;
  4553     /*
  4554      * All file descriptors that are opened in the JVM and not
  4555      * specifically destined for a subprocess should have the
  4556      * close-on-exec flag set.  If we don't set it, then careless 3rd
  4557      * party native code might fork and exec without closing all
  4558      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  4559      * UNIXProcess.c), and this in turn might:
  4561      * - cause end-of-file to fail to be detected on some file
  4562      *   descriptors, resulting in mysterious hangs, or
  4564      * - might cause an fopen in the subprocess to fail on a system
  4565      *   suffering from bug 1085341.
  4567      * (Yes, the default setting of the close-on-exec flag is a Unix
  4568      * design flaw)
  4570      * See:
  4571      * 1085341: 32-bit stdio routines should support file descriptors >255
  4572      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  4573      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  4574      */
  4575 #ifdef FD_CLOEXEC
  4577         int flags = ::fcntl(fd, F_GETFD);
  4578         if (flags != -1)
  4579             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  4581 #endif
  4583   if (o_delete != 0) {
  4584     ::unlink(path);
  4586   return fd;
  4590 // create binary file, rewriting existing file if required
  4591 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4592   int oflags = O_WRONLY | O_CREAT;
  4593   if (!rewrite_existing) {
  4594     oflags |= O_EXCL;
  4596   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  4599 // return current position of file pointer
  4600 jlong os::current_file_offset(int fd) {
  4601   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  4604 // move file pointer to the specified offset
  4605 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4606   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  4609 // This code originates from JDK's sysAvailable
  4610 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  4612 int os::available(int fd, jlong *bytes) {
  4613   jlong cur, end;
  4614   int mode;
  4615   struct stat64 buf64;
  4617   if (::fstat64(fd, &buf64) >= 0) {
  4618     mode = buf64.st_mode;
  4619     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  4620       /*
  4621       * XXX: is the following call interruptible? If so, this might
  4622       * need to go through the INTERRUPT_IO() wrapper as for other
  4623       * blocking, interruptible calls in this file.
  4624       */
  4625       int n;
  4626       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  4627         *bytes = n;
  4628         return 1;
  4632   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  4633     return 0;
  4634   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  4635     return 0;
  4636   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  4637     return 0;
  4639   *bytes = end - cur;
  4640   return 1;
  4643 int os::socket_available(int fd, jint *pbytes) {
  4644   // Linux doc says EINTR not returned, unlike Solaris
  4645   int ret = ::ioctl(fd, FIONREAD, pbytes);
  4647   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  4648   // is expected to return 0 on failure and 1 on success to the jdk.
  4649   return (ret < 0) ? 0 : 1;
  4652 // Map a block of memory.
  4653 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  4654                      char *addr, size_t bytes, bool read_only,
  4655                      bool allow_exec) {
  4656   int prot;
  4657   int flags = MAP_PRIVATE;
  4659   if (read_only) {
  4660     prot = PROT_READ;
  4661   } else {
  4662     prot = PROT_READ | PROT_WRITE;
  4665   if (allow_exec) {
  4666     prot |= PROT_EXEC;
  4669   if (addr != NULL) {
  4670     flags |= MAP_FIXED;
  4673   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  4674                                      fd, file_offset);
  4675   if (mapped_address == MAP_FAILED) {
  4676     return NULL;
  4678   return mapped_address;
  4682 // Remap a block of memory.
  4683 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  4684                        char *addr, size_t bytes, bool read_only,
  4685                        bool allow_exec) {
  4686   // same as map_memory() on this OS
  4687   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4688                         allow_exec);
  4692 // Unmap a block of memory.
  4693 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  4694   return munmap(addr, bytes) == 0;
  4697 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  4699 static clockid_t thread_cpu_clockid(Thread* thread) {
  4700   pthread_t tid = thread->osthread()->pthread_id();
  4701   clockid_t clockid;
  4703   // Get thread clockid
  4704   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  4705   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  4706   return clockid;
  4709 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4710 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4711 // of a thread.
  4712 //
  4713 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4714 // the fast estimate available on the platform.
  4716 jlong os::current_thread_cpu_time() {
  4717   if (os::Linux::supports_fast_thread_cpu_time()) {
  4718     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4719   } else {
  4720     // return user + sys since the cost is the same
  4721     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  4725 jlong os::thread_cpu_time(Thread* thread) {
  4726   // consistent with what current_thread_cpu_time() returns
  4727   if (os::Linux::supports_fast_thread_cpu_time()) {
  4728     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4729   } else {
  4730     return slow_thread_cpu_time(thread, true /* user + sys */);
  4734 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4735   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4736     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4737   } else {
  4738     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4742 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4743   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4744     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4745   } else {
  4746     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  4750 //
  4751 //  -1 on error.
  4752 //
  4754 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4755   static bool proc_pid_cpu_avail = true;
  4756   static bool proc_task_unchecked = true;
  4757   static const char *proc_stat_path = "/proc/%d/stat";
  4758   pid_t  tid = thread->osthread()->thread_id();
  4759   int i;
  4760   char *s;
  4761   char stat[2048];
  4762   int statlen;
  4763   char proc_name[64];
  4764   int count;
  4765   long sys_time, user_time;
  4766   char string[64];
  4767   char cdummy;
  4768   int idummy;
  4769   long ldummy;
  4770   FILE *fp;
  4772   // We first try accessing /proc/<pid>/cpu since this is faster to
  4773   // process.  If this file is not present (linux kernels 2.5 and above)
  4774   // then we open /proc/<pid>/stat.
  4775   if ( proc_pid_cpu_avail ) {
  4776     sprintf(proc_name, "/proc/%d/cpu", tid);
  4777     fp =  fopen(proc_name, "r");
  4778     if ( fp != NULL ) {
  4779       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
  4780       fclose(fp);
  4781       if ( count != 3 ) return -1;
  4783       if (user_sys_cpu_time) {
  4784         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4785       } else {
  4786         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4789     else proc_pid_cpu_avail = false;
  4792   // The /proc/<tid>/stat aggregates per-process usage on
  4793   // new Linux kernels 2.6+ where NPTL is supported.
  4794   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  4795   // See bug 6328462.
  4796   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
  4797   // and possibly in some other cases, so we check its availability.
  4798   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  4799     // This is executed only once
  4800     proc_task_unchecked = false;
  4801     fp = fopen("/proc/self/task", "r");
  4802     if (fp != NULL) {
  4803       proc_stat_path = "/proc/self/task/%d/stat";
  4804       fclose(fp);
  4808   sprintf(proc_name, proc_stat_path, tid);
  4809   fp = fopen(proc_name, "r");
  4810   if ( fp == NULL ) return -1;
  4811   statlen = fread(stat, 1, 2047, fp);
  4812   stat[statlen] = '\0';
  4813   fclose(fp);
  4815   // Skip pid and the command string. Note that we could be dealing with
  4816   // weird command names, e.g. user could decide to rename java launcher
  4817   // to "java 1.4.2 :)", then the stat file would look like
  4818   //                1234 (java 1.4.2 :)) R ... ...
  4819   // We don't really need to know the command string, just find the last
  4820   // occurrence of ")" and then start parsing from there. See bug 4726580.
  4821   s = strrchr(stat, ')');
  4822   i = 0;
  4823   if (s == NULL ) return -1;
  4825   // Skip blank chars
  4826   do s++; while (isspace(*s));
  4828   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  4829                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  4830                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  4831                  &user_time, &sys_time);
  4832   if ( count != 13 ) return -1;
  4833   if (user_sys_cpu_time) {
  4834     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4835   } else {
  4836     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4840 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4841   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4842   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4843   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4844   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4847 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4848   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4849   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4850   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4851   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4854 bool os::is_thread_cpu_time_supported() {
  4855   return true;
  4858 // System loadavg support.  Returns -1 if load average cannot be obtained.
  4859 // Linux doesn't yet have a (official) notion of processor sets,
  4860 // so just return the system wide load average.
  4861 int os::loadavg(double loadavg[], int nelem) {
  4862   return ::getloadavg(loadavg, nelem);
  4865 void os::pause() {
  4866   char filename[MAX_PATH];
  4867   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4868     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4869   } else {
  4870     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4873   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4874   if (fd != -1) {
  4875     struct stat buf;
  4876     ::close(fd);
  4877     while (::stat(filename, &buf) == 0) {
  4878       (void)::poll(NULL, 0, 100);
  4880   } else {
  4881     jio_fprintf(stderr,
  4882       "Could not open pause file '%s', continuing immediately.\n", filename);
  4887 // Refer to the comments in os_solaris.cpp park-unpark.
  4888 //
  4889 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  4890 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  4891 // For specifics regarding the bug see GLIBC BUGID 261237 :
  4892 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  4893 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  4894 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  4895 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  4896 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  4897 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  4898 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  4899 // of libpthread avoids the problem, but isn't practical.
  4900 //
  4901 // Possible remedies:
  4902 //
  4903 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  4904 //      This is palliative and probabilistic, however.  If the thread is preempted
  4905 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  4906 //      than the minimum period may have passed, and the abstime may be stale (in the
  4907 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  4908 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  4909 //
  4910 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  4911 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  4912 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  4913 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  4914 //      thread.
  4915 //
  4916 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  4917 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  4918 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  4919 //      This also works well.  In fact it avoids kernel-level scalability impediments
  4920 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  4921 //      timers in a graceful fashion.
  4922 //
  4923 // 4.   When the abstime value is in the past it appears that control returns
  4924 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  4925 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  4926 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  4927 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  4928 //      It may be possible to avoid reinitialization by checking the return
  4929 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  4930 //      condvar we must establish the invariant that cond_signal() is only called
  4931 //      within critical sections protected by the adjunct mutex.  This prevents
  4932 //      cond_signal() from "seeing" a condvar that's in the midst of being
  4933 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  4934 //      desirable signal-after-unlock optimization that avoids futile context switching.
  4935 //
  4936 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  4937 //      structure when a condvar is used or initialized.  cond_destroy()  would
  4938 //      release the helper structure.  Our reinitialize-after-timedwait fix
  4939 //      put excessive stress on malloc/free and locks protecting the c-heap.
  4940 //
  4941 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  4942 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  4943 // and only enabling the work-around for vulnerable environments.
  4945 // utility to compute the abstime argument to timedwait:
  4946 // millis is the relative timeout time
  4947 // abstime will be the absolute timeout time
  4948 // TODO: replace compute_abstime() with unpackTime()
  4950 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  4951   if (millis < 0)  millis = 0;
  4952   struct timeval now;
  4953   int status = gettimeofday(&now, NULL);
  4954   assert(status == 0, "gettimeofday");
  4955   jlong seconds = millis / 1000;
  4956   millis %= 1000;
  4957   if (seconds > 50000000) { // see man cond_timedwait(3T)
  4958     seconds = 50000000;
  4960   abstime->tv_sec = now.tv_sec  + seconds;
  4961   long       usec = now.tv_usec + millis * 1000;
  4962   if (usec >= 1000000) {
  4963     abstime->tv_sec += 1;
  4964     usec -= 1000000;
  4966   abstime->tv_nsec = usec * 1000;
  4967   return abstime;
  4971 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  4972 // Conceptually TryPark() should be equivalent to park(0).
  4974 int os::PlatformEvent::TryPark() {
  4975   for (;;) {
  4976     const int v = _Event ;
  4977     guarantee ((v == 0) || (v == 1), "invariant") ;
  4978     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  4982 void os::PlatformEvent::park() {       // AKA "down()"
  4983   // Invariant: Only the thread associated with the Event/PlatformEvent
  4984   // may call park().
  4985   // TODO: assert that _Assoc != NULL or _Assoc == Self
  4986   int v ;
  4987   for (;;) {
  4988       v = _Event ;
  4989       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4991   guarantee (v >= 0, "invariant") ;
  4992   if (v == 0) {
  4993      // Do this the hard way by blocking ...
  4994      int status = pthread_mutex_lock(_mutex);
  4995      assert_status(status == 0, status, "mutex_lock");
  4996      guarantee (_nParked == 0, "invariant") ;
  4997      ++ _nParked ;
  4998      while (_Event < 0) {
  4999         status = pthread_cond_wait(_cond, _mutex);
  5000         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5001         // Treat this the same as if the wait was interrupted
  5002         if (status == ETIME) { status = EINTR; }
  5003         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5005      -- _nParked ;
  5007     // In theory we could move the ST of 0 into _Event past the unlock(),
  5008     // but then we'd need a MEMBAR after the ST.
  5009     _Event = 0 ;
  5010      status = pthread_mutex_unlock(_mutex);
  5011      assert_status(status == 0, status, "mutex_unlock");
  5013   guarantee (_Event >= 0, "invariant") ;
  5016 int os::PlatformEvent::park(jlong millis) {
  5017   guarantee (_nParked == 0, "invariant") ;
  5019   int v ;
  5020   for (;;) {
  5021       v = _Event ;
  5022       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5024   guarantee (v >= 0, "invariant") ;
  5025   if (v != 0) return OS_OK ;
  5027   // We do this the hard way, by blocking the thread.
  5028   // Consider enforcing a minimum timeout value.
  5029   struct timespec abst;
  5030   compute_abstime(&abst, millis);
  5032   int ret = OS_TIMEOUT;
  5033   int status = pthread_mutex_lock(_mutex);
  5034   assert_status(status == 0, status, "mutex_lock");
  5035   guarantee (_nParked == 0, "invariant") ;
  5036   ++_nParked ;
  5038   // Object.wait(timo) will return because of
  5039   // (a) notification
  5040   // (b) timeout
  5041   // (c) thread.interrupt
  5042   //
  5043   // Thread.interrupt and object.notify{All} both call Event::set.
  5044   // That is, we treat thread.interrupt as a special case of notification.
  5045   // The underlying Solaris implementation, cond_timedwait, admits
  5046   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5047   // JVM from making those visible to Java code.  As such, we must
  5048   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5049   //
  5050   // TODO: properly differentiate simultaneous notify+interrupt.
  5051   // In that case, we should propagate the notify to another waiter.
  5053   while (_Event < 0) {
  5054     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5055     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5056       pthread_cond_destroy (_cond);
  5057       pthread_cond_init (_cond, NULL) ;
  5059     assert_status(status == 0 || status == EINTR ||
  5060                   status == ETIME || status == ETIMEDOUT,
  5061                   status, "cond_timedwait");
  5062     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5063     if (status == ETIME || status == ETIMEDOUT) break ;
  5064     // We consume and ignore EINTR and spurious wakeups.
  5066   --_nParked ;
  5067   if (_Event >= 0) {
  5068      ret = OS_OK;
  5070   _Event = 0 ;
  5071   status = pthread_mutex_unlock(_mutex);
  5072   assert_status(status == 0, status, "mutex_unlock");
  5073   assert (_nParked == 0, "invariant") ;
  5074   return ret;
  5077 void os::PlatformEvent::unpark() {
  5078   int v, AnyWaiters ;
  5079   for (;;) {
  5080       v = _Event ;
  5081       if (v > 0) {
  5082          // The LD of _Event could have reordered or be satisfied
  5083          // by a read-aside from this processor's write buffer.
  5084          // To avoid problems execute a barrier and then
  5085          // ratify the value.
  5086          OrderAccess::fence() ;
  5087          if (_Event == v) return ;
  5088          continue ;
  5090       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  5092   if (v < 0) {
  5093      // Wait for the thread associated with the event to vacate
  5094      int status = pthread_mutex_lock(_mutex);
  5095      assert_status(status == 0, status, "mutex_lock");
  5096      AnyWaiters = _nParked ;
  5097      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  5098      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5099         AnyWaiters = 0 ;
  5100         pthread_cond_signal (_cond);
  5102      status = pthread_mutex_unlock(_mutex);
  5103      assert_status(status == 0, status, "mutex_unlock");
  5104      if (AnyWaiters != 0) {
  5105         status = pthread_cond_signal(_cond);
  5106         assert_status(status == 0, status, "cond_signal");
  5110   // Note that we signal() _after dropping the lock for "immortal" Events.
  5111   // This is safe and avoids a common class of  futile wakeups.  In rare
  5112   // circumstances this can cause a thread to return prematurely from
  5113   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5114   // simply re-test the condition and re-park itself.
  5118 // JSR166
  5119 // -------------------------------------------------------
  5121 /*
  5122  * The solaris and linux implementations of park/unpark are fairly
  5123  * conservative for now, but can be improved. They currently use a
  5124  * mutex/condvar pair, plus a a count.
  5125  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5126  * sets count to 1 and signals condvar.  Only one thread ever waits
  5127  * on the condvar. Contention seen when trying to park implies that someone
  5128  * is unparking you, so don't wait. And spurious returns are fine, so there
  5129  * is no need to track notifications.
  5130  */
  5132 #define MAX_SECS 100000000
  5133 /*
  5134  * This code is common to linux and solaris and will be moved to a
  5135  * common place in dolphin.
  5137  * The passed in time value is either a relative time in nanoseconds
  5138  * or an absolute time in milliseconds. Either way it has to be unpacked
  5139  * into suitable seconds and nanoseconds components and stored in the
  5140  * given timespec structure.
  5141  * Given time is a 64-bit value and the time_t used in the timespec is only
  5142  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5143  * overflow if times way in the future are given. Further on Solaris versions
  5144  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5145  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5146  * As it will be 28 years before "now + 100000000" will overflow we can
  5147  * ignore overflow and just impose a hard-limit on seconds using the value
  5148  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5149  * years from "now".
  5150  */
  5152 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5153   assert (time > 0, "convertTime");
  5155   struct timeval now;
  5156   int status = gettimeofday(&now, NULL);
  5157   assert(status == 0, "gettimeofday");
  5159   time_t max_secs = now.tv_sec + MAX_SECS;
  5161   if (isAbsolute) {
  5162     jlong secs = time / 1000;
  5163     if (secs > max_secs) {
  5164       absTime->tv_sec = max_secs;
  5166     else {
  5167       absTime->tv_sec = secs;
  5169     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5171   else {
  5172     jlong secs = time / NANOSECS_PER_SEC;
  5173     if (secs >= MAX_SECS) {
  5174       absTime->tv_sec = max_secs;
  5175       absTime->tv_nsec = 0;
  5177     else {
  5178       absTime->tv_sec = now.tv_sec + secs;
  5179       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5180       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5181         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5182         ++absTime->tv_sec; // note: this must be <= max_secs
  5186   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5187   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5188   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5189   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5192 void Parker::park(bool isAbsolute, jlong time) {
  5193   // Optional fast-path check:
  5194   // Return immediately if a permit is available.
  5195   if (_counter > 0) {
  5196       _counter = 0 ;
  5197       OrderAccess::fence();
  5198       return ;
  5201   Thread* thread = Thread::current();
  5202   assert(thread->is_Java_thread(), "Must be JavaThread");
  5203   JavaThread *jt = (JavaThread *)thread;
  5205   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5206   // Check interrupt before trying to wait
  5207   if (Thread::is_interrupted(thread, false)) {
  5208     return;
  5211   // Next, demultiplex/decode time arguments
  5212   timespec absTime;
  5213   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5214     return;
  5216   if (time > 0) {
  5217     unpackTime(&absTime, isAbsolute, time);
  5221   // Enter safepoint region
  5222   // Beware of deadlocks such as 6317397.
  5223   // The per-thread Parker:: mutex is a classic leaf-lock.
  5224   // In particular a thread must never block on the Threads_lock while
  5225   // holding the Parker:: mutex.  If safepoints are pending both the
  5226   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5227   ThreadBlockInVM tbivm(jt);
  5229   // Don't wait if cannot get lock since interference arises from
  5230   // unblocking.  Also. check interrupt before trying wait
  5231   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  5232     return;
  5235   int status ;
  5236   if (_counter > 0)  { // no wait needed
  5237     _counter = 0;
  5238     status = pthread_mutex_unlock(_mutex);
  5239     assert (status == 0, "invariant") ;
  5240     OrderAccess::fence();
  5241     return;
  5244 #ifdef ASSERT
  5245   // Don't catch signals while blocked; let the running threads have the signals.
  5246   // (This allows a debugger to break into the running thread.)
  5247   sigset_t oldsigs;
  5248   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  5249   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  5250 #endif
  5252   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5253   jt->set_suspend_equivalent();
  5254   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  5256   if (time == 0) {
  5257     status = pthread_cond_wait (_cond, _mutex) ;
  5258   } else {
  5259     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  5260     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5261       pthread_cond_destroy (_cond) ;
  5262       pthread_cond_init    (_cond, NULL);
  5265   assert_status(status == 0 || status == EINTR ||
  5266                 status == ETIME || status == ETIMEDOUT,
  5267                 status, "cond_timedwait");
  5269 #ifdef ASSERT
  5270   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  5271 #endif
  5273   _counter = 0 ;
  5274   status = pthread_mutex_unlock(_mutex) ;
  5275   assert_status(status == 0, status, "invariant") ;
  5276   // If externally suspended while waiting, re-suspend
  5277   if (jt->handle_special_suspend_equivalent_condition()) {
  5278     jt->java_suspend_self();
  5281   OrderAccess::fence();
  5284 void Parker::unpark() {
  5285   int s, status ;
  5286   status = pthread_mutex_lock(_mutex);
  5287   assert (status == 0, "invariant") ;
  5288   s = _counter;
  5289   _counter = 1;
  5290   if (s < 1) {
  5291      if (WorkAroundNPTLTimedWaitHang) {
  5292         status = pthread_cond_signal (_cond) ;
  5293         assert (status == 0, "invariant") ;
  5294         status = pthread_mutex_unlock(_mutex);
  5295         assert (status == 0, "invariant") ;
  5296      } else {
  5297         status = pthread_mutex_unlock(_mutex);
  5298         assert (status == 0, "invariant") ;
  5299         status = pthread_cond_signal (_cond) ;
  5300         assert (status == 0, "invariant") ;
  5302   } else {
  5303     pthread_mutex_unlock(_mutex);
  5304     assert (status == 0, "invariant") ;
  5309 extern char** environ;
  5311 #ifndef __NR_fork
  5312 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  5313 #endif
  5315 #ifndef __NR_execve
  5316 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  5317 #endif
  5319 // Run the specified command in a separate process. Return its exit value,
  5320 // or -1 on failure (e.g. can't fork a new process).
  5321 // Unlike system(), this function can be called from signal handler. It
  5322 // doesn't block SIGINT et al.
  5323 int os::fork_and_exec(char* cmd) {
  5324   const char * argv[4] = {"sh", "-c", cmd, NULL};
  5326   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  5327   // pthread_atfork handlers and reset pthread library. All we need is a
  5328   // separate process to execve. Make a direct syscall to fork process.
  5329   // On IA64 there's no fork syscall, we have to use fork() and hope for
  5330   // the best...
  5331   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  5332               IA64_ONLY(fork();)
  5334   if (pid < 0) {
  5335     // fork failed
  5336     return -1;
  5338   } else if (pid == 0) {
  5339     // child process
  5341     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  5342     // first to kill every thread on the thread list. Because this list is
  5343     // not reset by fork() (see notes above), execve() will instead kill
  5344     // every thread in the parent process. We know this is the only thread
  5345     // in the new process, so make a system call directly.
  5346     // IA64 should use normal execve() from glibc to match the glibc fork()
  5347     // above.
  5348     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  5349     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  5351     // execve failed
  5352     _exit(-1);
  5354   } else  {
  5355     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  5356     // care about the actual exit code, for now.
  5358     int status;
  5360     // Wait for the child process to exit.  This returns immediately if
  5361     // the child has already exited. */
  5362     while (waitpid(pid, &status, 0) < 0) {
  5363         switch (errno) {
  5364         case ECHILD: return 0;
  5365         case EINTR: break;
  5366         default: return -1;
  5370     if (WIFEXITED(status)) {
  5371        // The child exited normally; get its exit code.
  5372        return WEXITSTATUS(status);
  5373     } else if (WIFSIGNALED(status)) {
  5374        // The child exited because of a signal
  5375        // The best value to return is 0x80 + signal number,
  5376        // because that is what all Unix shells do, and because
  5377        // it allows callers to distinguish between process exit and
  5378        // process death by signal.
  5379        return 0x80 + WTERMSIG(status);
  5380     } else {
  5381        // Unknown exit code; pass it through
  5382        return status;
  5387 // is_headless_jre()
  5388 //
  5389 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  5390 // in order to report if we are running in a headless jre
  5391 //
  5392 // Since JDK8 xawt/libmawt.so was moved into the same directory
  5393 // as libawt.so, and renamed libawt_xawt.so
  5394 //
  5395 bool os::is_headless_jre() {
  5396     struct stat statbuf;
  5397     char buf[MAXPATHLEN];
  5398     char libmawtpath[MAXPATHLEN];
  5399     const char *xawtstr  = "/xawt/libmawt.so";
  5400     const char *new_xawtstr = "/libawt_xawt.so";
  5401     char *p;
  5403     // Get path to libjvm.so
  5404     os::jvm_path(buf, sizeof(buf));
  5406     // Get rid of libjvm.so
  5407     p = strrchr(buf, '/');
  5408     if (p == NULL) return false;
  5409     else *p = '\0';
  5411     // Get rid of client or server
  5412     p = strrchr(buf, '/');
  5413     if (p == NULL) return false;
  5414     else *p = '\0';
  5416     // check xawt/libmawt.so
  5417     strcpy(libmawtpath, buf);
  5418     strcat(libmawtpath, xawtstr);
  5419     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5421     // check libawt_xawt.so
  5422     strcpy(libmawtpath, buf);
  5423     strcat(libmawtpath, new_xawtstr);
  5424     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5426     return true;
  5429 // Get the default path to the core file
  5430 // Returns the length of the string
  5431 int os::get_core_path(char* buffer, size_t bufferSize) {
  5432   const char* p = get_current_directory(buffer, bufferSize);
  5434   if (p == NULL) {
  5435     assert(p != NULL, "failed to get current directory");
  5436     return 0;
  5439   return strlen(buffer);
  5442 #ifdef JAVASE_EMBEDDED
  5443 //
  5444 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
  5445 //
  5446 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
  5448 // ctor
  5449 //
  5450 MemNotifyThread::MemNotifyThread(int fd): Thread() {
  5451   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
  5452   _fd = fd;
  5454   if (os::create_thread(this, os::os_thread)) {
  5455     _memnotify_thread = this;
  5456     os::set_priority(this, NearMaxPriority);
  5457     os::start_thread(this);
  5461 // Where all the work gets done
  5462 //
  5463 void MemNotifyThread::run() {
  5464   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
  5466   // Set up the select arguments
  5467   fd_set rfds;
  5468   if (_fd != -1) {
  5469     FD_ZERO(&rfds);
  5470     FD_SET(_fd, &rfds);
  5473   // Now wait for the mem_notify device to wake up
  5474   while (1) {
  5475     // Wait for the mem_notify device to signal us..
  5476     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
  5477     if (rc == -1) {
  5478       perror("select!\n");
  5479       break;
  5480     } else if (rc) {
  5481       //ssize_t free_before = os::available_memory();
  5482       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
  5484       // The kernel is telling us there is not much memory left...
  5485       // try to do something about that
  5487       // If we are not already in a GC, try one.
  5488       if (!Universe::heap()->is_gc_active()) {
  5489         Universe::heap()->collect(GCCause::_allocation_failure);
  5491         //ssize_t free_after = os::available_memory();
  5492         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
  5493         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
  5495       // We might want to do something like the following if we find the GC's are not helping...
  5496       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
  5501 //
  5502 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
  5503 //
  5504 void MemNotifyThread::start() {
  5505   int    fd;
  5506   fd = open ("/dev/mem_notify", O_RDONLY, 0);
  5507   if (fd < 0) {
  5508       return;
  5511   if (memnotify_thread() == NULL) {
  5512     new MemNotifyThread(fd);
  5515 #endif // JAVASE_EMBEDDED

mercurial