src/cpu/x86/vm/sharedRuntime_x86_64.cpp

Fri, 30 Nov 2012 15:23:16 -0800

author
twisti
date
Fri, 30 Nov 2012 15:23:16 -0800
changeset 4318
cd3d6a6b95d9
parent 4251
18fb7da42534
child 4873
e961c11b85fe
permissions
-rw-r--r--

8003240: x86: move MacroAssembler into separate file
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolder.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_x86.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    44 #define __ masm->
    46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
    48 class SimpleRuntimeFrame {
    50   public:
    52   // Most of the runtime stubs have this simple frame layout.
    53   // This class exists to make the layout shared in one place.
    54   // Offsets are for compiler stack slots, which are jints.
    55   enum layout {
    56     // The frame sender code expects that rbp will be in the "natural" place and
    57     // will override any oopMap setting for it. We must therefore force the layout
    58     // so that it agrees with the frame sender code.
    59     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
    60     rbp_off2,
    61     return_off, return_off2,
    62     framesize
    63   };
    64 };
    66 class RegisterSaver {
    67   // Capture info about frame layout.  Layout offsets are in jint
    68   // units because compiler frame slots are jints.
    69 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
    70   enum layout {
    71     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
    72     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
    73     DEF_XMM_OFFS(0),
    74     DEF_XMM_OFFS(1),
    75     DEF_XMM_OFFS(2),
    76     DEF_XMM_OFFS(3),
    77     DEF_XMM_OFFS(4),
    78     DEF_XMM_OFFS(5),
    79     DEF_XMM_OFFS(6),
    80     DEF_XMM_OFFS(7),
    81     DEF_XMM_OFFS(8),
    82     DEF_XMM_OFFS(9),
    83     DEF_XMM_OFFS(10),
    84     DEF_XMM_OFFS(11),
    85     DEF_XMM_OFFS(12),
    86     DEF_XMM_OFFS(13),
    87     DEF_XMM_OFFS(14),
    88     DEF_XMM_OFFS(15),
    89     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
    90     fpu_stateH_end,
    91     r15_off, r15H_off,
    92     r14_off, r14H_off,
    93     r13_off, r13H_off,
    94     r12_off, r12H_off,
    95     r11_off, r11H_off,
    96     r10_off, r10H_off,
    97     r9_off,  r9H_off,
    98     r8_off,  r8H_off,
    99     rdi_off, rdiH_off,
   100     rsi_off, rsiH_off,
   101     ignore_off, ignoreH_off,  // extra copy of rbp
   102     rsp_off, rspH_off,
   103     rbx_off, rbxH_off,
   104     rdx_off, rdxH_off,
   105     rcx_off, rcxH_off,
   106     rax_off, raxH_off,
   107     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
   108     align_off, alignH_off,
   109     flags_off, flagsH_off,
   110     // The frame sender code expects that rbp will be in the "natural" place and
   111     // will override any oopMap setting for it. We must therefore force the layout
   112     // so that it agrees with the frame sender code.
   113     rbp_off, rbpH_off,        // copy of rbp we will restore
   114     return_off, returnH_off,  // slot for return address
   115     reg_save_size             // size in compiler stack slots
   116   };
   118  public:
   119   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
   120   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
   122   // Offsets into the register save area
   123   // Used by deoptimization when it is managing result register
   124   // values on its own
   126   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
   127   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
   128   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
   129   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
   130   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
   132   // During deoptimization only the result registers need to be restored,
   133   // all the other values have already been extracted.
   134   static void restore_result_registers(MacroAssembler* masm);
   135 };
   137 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
   138   int vect_words = 0;
   139 #ifdef COMPILER2
   140   if (save_vectors) {
   141     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
   142     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
   143     // Save upper half of YMM registes
   144     vect_words = 16 * 16 / wordSize;
   145     additional_frame_words += vect_words;
   146   }
   147 #else
   148   assert(!save_vectors, "vectors are generated only by C2");
   149 #endif
   151   // Always make the frame size 16-byte aligned
   152   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
   153                                      reg_save_size*BytesPerInt, 16);
   154   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
   155   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
   156   // The caller will allocate additional_frame_words
   157   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
   158   // CodeBlob frame size is in words.
   159   int frame_size_in_words = frame_size_in_bytes / wordSize;
   160   *total_frame_words = frame_size_in_words;
   162   // Save registers, fpu state, and flags.
   163   // We assume caller has already pushed the return address onto the
   164   // stack, so rsp is 8-byte aligned here.
   165   // We push rpb twice in this sequence because we want the real rbp
   166   // to be under the return like a normal enter.
   168   __ enter();          // rsp becomes 16-byte aligned here
   169   __ push_CPU_state(); // Push a multiple of 16 bytes
   171   if (vect_words > 0) {
   172     assert(vect_words*wordSize == 256, "");
   173     __ subptr(rsp, 256); // Save upper half of YMM registes
   174     __ vextractf128h(Address(rsp,  0),xmm0);
   175     __ vextractf128h(Address(rsp, 16),xmm1);
   176     __ vextractf128h(Address(rsp, 32),xmm2);
   177     __ vextractf128h(Address(rsp, 48),xmm3);
   178     __ vextractf128h(Address(rsp, 64),xmm4);
   179     __ vextractf128h(Address(rsp, 80),xmm5);
   180     __ vextractf128h(Address(rsp, 96),xmm6);
   181     __ vextractf128h(Address(rsp,112),xmm7);
   182     __ vextractf128h(Address(rsp,128),xmm8);
   183     __ vextractf128h(Address(rsp,144),xmm9);
   184     __ vextractf128h(Address(rsp,160),xmm10);
   185     __ vextractf128h(Address(rsp,176),xmm11);
   186     __ vextractf128h(Address(rsp,192),xmm12);
   187     __ vextractf128h(Address(rsp,208),xmm13);
   188     __ vextractf128h(Address(rsp,224),xmm14);
   189     __ vextractf128h(Address(rsp,240),xmm15);
   190   }
   191   if (frame::arg_reg_save_area_bytes != 0) {
   192     // Allocate argument register save area
   193     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   194   }
   196   // Set an oopmap for the call site.  This oopmap will map all
   197   // oop-registers and debug-info registers as callee-saved.  This
   198   // will allow deoptimization at this safepoint to find all possible
   199   // debug-info recordings, as well as let GC find all oops.
   201   OopMapSet *oop_maps = new OopMapSet();
   202   OopMap* map = new OopMap(frame_size_in_slots, 0);
   204 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_slots)
   206   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
   207   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
   208   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
   209   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
   210   // rbp location is known implicitly by the frame sender code, needs no oopmap
   211   // and the location where rbp was saved by is ignored
   212   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
   213   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
   214   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
   215   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
   216   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
   217   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
   218   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
   219   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
   220   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
   221   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
   222   map->set_callee_saved(STACK_OFFSET(xmm0_off ), xmm0->as_VMReg());
   223   map->set_callee_saved(STACK_OFFSET(xmm1_off ), xmm1->as_VMReg());
   224   map->set_callee_saved(STACK_OFFSET(xmm2_off ), xmm2->as_VMReg());
   225   map->set_callee_saved(STACK_OFFSET(xmm3_off ), xmm3->as_VMReg());
   226   map->set_callee_saved(STACK_OFFSET(xmm4_off ), xmm4->as_VMReg());
   227   map->set_callee_saved(STACK_OFFSET(xmm5_off ), xmm5->as_VMReg());
   228   map->set_callee_saved(STACK_OFFSET(xmm6_off ), xmm6->as_VMReg());
   229   map->set_callee_saved(STACK_OFFSET(xmm7_off ), xmm7->as_VMReg());
   230   map->set_callee_saved(STACK_OFFSET(xmm8_off ), xmm8->as_VMReg());
   231   map->set_callee_saved(STACK_OFFSET(xmm9_off ), xmm9->as_VMReg());
   232   map->set_callee_saved(STACK_OFFSET(xmm10_off), xmm10->as_VMReg());
   233   map->set_callee_saved(STACK_OFFSET(xmm11_off), xmm11->as_VMReg());
   234   map->set_callee_saved(STACK_OFFSET(xmm12_off), xmm12->as_VMReg());
   235   map->set_callee_saved(STACK_OFFSET(xmm13_off), xmm13->as_VMReg());
   236   map->set_callee_saved(STACK_OFFSET(xmm14_off), xmm14->as_VMReg());
   237   map->set_callee_saved(STACK_OFFSET(xmm15_off), xmm15->as_VMReg());
   239   // %%% These should all be a waste but we'll keep things as they were for now
   240   if (true) {
   241     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
   242     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
   243     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
   244     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
   245     // rbp location is known implicitly by the frame sender code, needs no oopmap
   246     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
   247     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
   248     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
   249     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
   250     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
   251     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
   252     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
   253     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
   254     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
   255     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
   256     map->set_callee_saved(STACK_OFFSET(xmm0H_off ), xmm0->as_VMReg()->next());
   257     map->set_callee_saved(STACK_OFFSET(xmm1H_off ), xmm1->as_VMReg()->next());
   258     map->set_callee_saved(STACK_OFFSET(xmm2H_off ), xmm2->as_VMReg()->next());
   259     map->set_callee_saved(STACK_OFFSET(xmm3H_off ), xmm3->as_VMReg()->next());
   260     map->set_callee_saved(STACK_OFFSET(xmm4H_off ), xmm4->as_VMReg()->next());
   261     map->set_callee_saved(STACK_OFFSET(xmm5H_off ), xmm5->as_VMReg()->next());
   262     map->set_callee_saved(STACK_OFFSET(xmm6H_off ), xmm6->as_VMReg()->next());
   263     map->set_callee_saved(STACK_OFFSET(xmm7H_off ), xmm7->as_VMReg()->next());
   264     map->set_callee_saved(STACK_OFFSET(xmm8H_off ), xmm8->as_VMReg()->next());
   265     map->set_callee_saved(STACK_OFFSET(xmm9H_off ), xmm9->as_VMReg()->next());
   266     map->set_callee_saved(STACK_OFFSET(xmm10H_off), xmm10->as_VMReg()->next());
   267     map->set_callee_saved(STACK_OFFSET(xmm11H_off), xmm11->as_VMReg()->next());
   268     map->set_callee_saved(STACK_OFFSET(xmm12H_off), xmm12->as_VMReg()->next());
   269     map->set_callee_saved(STACK_OFFSET(xmm13H_off), xmm13->as_VMReg()->next());
   270     map->set_callee_saved(STACK_OFFSET(xmm14H_off), xmm14->as_VMReg()->next());
   271     map->set_callee_saved(STACK_OFFSET(xmm15H_off), xmm15->as_VMReg()->next());
   272   }
   274   return map;
   275 }
   277 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
   278   if (frame::arg_reg_save_area_bytes != 0) {
   279     // Pop arg register save area
   280     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   281   }
   282 #ifdef COMPILER2
   283   if (restore_vectors) {
   284     // Restore upper half of YMM registes.
   285     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
   286     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
   287     __ vinsertf128h(xmm0, Address(rsp,  0));
   288     __ vinsertf128h(xmm1, Address(rsp, 16));
   289     __ vinsertf128h(xmm2, Address(rsp, 32));
   290     __ vinsertf128h(xmm3, Address(rsp, 48));
   291     __ vinsertf128h(xmm4, Address(rsp, 64));
   292     __ vinsertf128h(xmm5, Address(rsp, 80));
   293     __ vinsertf128h(xmm6, Address(rsp, 96));
   294     __ vinsertf128h(xmm7, Address(rsp,112));
   295     __ vinsertf128h(xmm8, Address(rsp,128));
   296     __ vinsertf128h(xmm9, Address(rsp,144));
   297     __ vinsertf128h(xmm10, Address(rsp,160));
   298     __ vinsertf128h(xmm11, Address(rsp,176));
   299     __ vinsertf128h(xmm12, Address(rsp,192));
   300     __ vinsertf128h(xmm13, Address(rsp,208));
   301     __ vinsertf128h(xmm14, Address(rsp,224));
   302     __ vinsertf128h(xmm15, Address(rsp,240));
   303     __ addptr(rsp, 256);
   304   }
   305 #else
   306   assert(!restore_vectors, "vectors are generated only by C2");
   307 #endif
   308   // Recover CPU state
   309   __ pop_CPU_state();
   310   // Get the rbp described implicitly by the calling convention (no oopMap)
   311   __ pop(rbp);
   312 }
   314 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   316   // Just restore result register. Only used by deoptimization. By
   317   // now any callee save register that needs to be restored to a c2
   318   // caller of the deoptee has been extracted into the vframeArray
   319   // and will be stuffed into the c2i adapter we create for later
   320   // restoration so only result registers need to be restored here.
   322   // Restore fp result register
   323   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
   324   // Restore integer result register
   325   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
   326   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
   328   // Pop all of the register save are off the stack except the return address
   329   __ addptr(rsp, return_offset_in_bytes());
   330 }
   332 // Is vector's size (in bytes) bigger than a size saved by default?
   333 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
   334 bool SharedRuntime::is_wide_vector(int size) {
   335   return size > 16;
   336 }
   338 // The java_calling_convention describes stack locations as ideal slots on
   339 // a frame with no abi restrictions. Since we must observe abi restrictions
   340 // (like the placement of the register window) the slots must be biased by
   341 // the following value.
   342 static int reg2offset_in(VMReg r) {
   343   // Account for saved rbp and return address
   344   // This should really be in_preserve_stack_slots
   345   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
   346 }
   348 static int reg2offset_out(VMReg r) {
   349   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   350 }
   352 // ---------------------------------------------------------------------------
   353 // Read the array of BasicTypes from a signature, and compute where the
   354 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   355 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   356 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   357 // as framesizes are fixed.
   358 // VMRegImpl::stack0 refers to the first slot 0(sp).
   359 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   360 // up to RegisterImpl::number_of_registers) are the 64-bit
   361 // integer registers.
   363 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   364 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   365 // units regardless of build. Of course for i486 there is no 64 bit build
   367 // The Java calling convention is a "shifted" version of the C ABI.
   368 // By skipping the first C ABI register we can call non-static jni methods
   369 // with small numbers of arguments without having to shuffle the arguments
   370 // at all. Since we control the java ABI we ought to at least get some
   371 // advantage out of it.
   373 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   374                                            VMRegPair *regs,
   375                                            int total_args_passed,
   376                                            int is_outgoing) {
   378   // Create the mapping between argument positions and
   379   // registers.
   380   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
   381     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
   382   };
   383   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
   384     j_farg0, j_farg1, j_farg2, j_farg3,
   385     j_farg4, j_farg5, j_farg6, j_farg7
   386   };
   389   uint int_args = 0;
   390   uint fp_args = 0;
   391   uint stk_args = 0; // inc by 2 each time
   393   for (int i = 0; i < total_args_passed; i++) {
   394     switch (sig_bt[i]) {
   395     case T_BOOLEAN:
   396     case T_CHAR:
   397     case T_BYTE:
   398     case T_SHORT:
   399     case T_INT:
   400       if (int_args < Argument::n_int_register_parameters_j) {
   401         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   402       } else {
   403         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   404         stk_args += 2;
   405       }
   406       break;
   407     case T_VOID:
   408       // halves of T_LONG or T_DOUBLE
   409       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   410       regs[i].set_bad();
   411       break;
   412     case T_LONG:
   413       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   414       // fall through
   415     case T_OBJECT:
   416     case T_ARRAY:
   417     case T_ADDRESS:
   418       if (int_args < Argument::n_int_register_parameters_j) {
   419         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   420       } else {
   421         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   422         stk_args += 2;
   423       }
   424       break;
   425     case T_FLOAT:
   426       if (fp_args < Argument::n_float_register_parameters_j) {
   427         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   428       } else {
   429         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   430         stk_args += 2;
   431       }
   432       break;
   433     case T_DOUBLE:
   434       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   435       if (fp_args < Argument::n_float_register_parameters_j) {
   436         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   437       } else {
   438         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   439         stk_args += 2;
   440       }
   441       break;
   442     default:
   443       ShouldNotReachHere();
   444       break;
   445     }
   446   }
   448   return round_to(stk_args, 2);
   449 }
   451 // Patch the callers callsite with entry to compiled code if it exists.
   452 static void patch_callers_callsite(MacroAssembler *masm) {
   453   Label L;
   454   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
   455   __ jcc(Assembler::equal, L);
   457   // Save the current stack pointer
   458   __ mov(r13, rsp);
   459   // Schedule the branch target address early.
   460   // Call into the VM to patch the caller, then jump to compiled callee
   461   // rax isn't live so capture return address while we easily can
   462   __ movptr(rax, Address(rsp, 0));
   464   // align stack so push_CPU_state doesn't fault
   465   __ andptr(rsp, -(StackAlignmentInBytes));
   466   __ push_CPU_state();
   468   // VM needs caller's callsite
   469   // VM needs target method
   470   // This needs to be a long call since we will relocate this adapter to
   471   // the codeBuffer and it may not reach
   473   // Allocate argument register save area
   474   if (frame::arg_reg_save_area_bytes != 0) {
   475     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   476   }
   477   __ mov(c_rarg0, rbx);
   478   __ mov(c_rarg1, rax);
   479   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   481   // De-allocate argument register save area
   482   if (frame::arg_reg_save_area_bytes != 0) {
   483     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   484   }
   486   __ pop_CPU_state();
   487   // restore sp
   488   __ mov(rsp, r13);
   489   __ bind(L);
   490 }
   493 static void gen_c2i_adapter(MacroAssembler *masm,
   494                             int total_args_passed,
   495                             int comp_args_on_stack,
   496                             const BasicType *sig_bt,
   497                             const VMRegPair *regs,
   498                             Label& skip_fixup) {
   499   // Before we get into the guts of the C2I adapter, see if we should be here
   500   // at all.  We've come from compiled code and are attempting to jump to the
   501   // interpreter, which means the caller made a static call to get here
   502   // (vcalls always get a compiled target if there is one).  Check for a
   503   // compiled target.  If there is one, we need to patch the caller's call.
   504   patch_callers_callsite(masm);
   506   __ bind(skip_fixup);
   508   // Since all args are passed on the stack, total_args_passed *
   509   // Interpreter::stackElementSize is the space we need. Plus 1 because
   510   // we also account for the return address location since
   511   // we store it first rather than hold it in rax across all the shuffling
   513   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
   515   // stack is aligned, keep it that way
   516   extraspace = round_to(extraspace, 2*wordSize);
   518   // Get return address
   519   __ pop(rax);
   521   // set senderSP value
   522   __ mov(r13, rsp);
   524   __ subptr(rsp, extraspace);
   526   // Store the return address in the expected location
   527   __ movptr(Address(rsp, 0), rax);
   529   // Now write the args into the outgoing interpreter space
   530   for (int i = 0; i < total_args_passed; i++) {
   531     if (sig_bt[i] == T_VOID) {
   532       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   533       continue;
   534     }
   536     // offset to start parameters
   537     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
   538     int next_off = st_off - Interpreter::stackElementSize;
   540     // Say 4 args:
   541     // i   st_off
   542     // 0   32 T_LONG
   543     // 1   24 T_VOID
   544     // 2   16 T_OBJECT
   545     // 3    8 T_BOOL
   546     // -    0 return address
   547     //
   548     // However to make thing extra confusing. Because we can fit a long/double in
   549     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
   550     // leaves one slot empty and only stores to a single slot. In this case the
   551     // slot that is occupied is the T_VOID slot. See I said it was confusing.
   553     VMReg r_1 = regs[i].first();
   554     VMReg r_2 = regs[i].second();
   555     if (!r_1->is_valid()) {
   556       assert(!r_2->is_valid(), "");
   557       continue;
   558     }
   559     if (r_1->is_stack()) {
   560       // memory to memory use rax
   561       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   562       if (!r_2->is_valid()) {
   563         // sign extend??
   564         __ movl(rax, Address(rsp, ld_off));
   565         __ movptr(Address(rsp, st_off), rax);
   567       } else {
   569         __ movq(rax, Address(rsp, ld_off));
   571         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   572         // T_DOUBLE and T_LONG use two slots in the interpreter
   573         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   574           // ld_off == LSW, ld_off+wordSize == MSW
   575           // st_off == MSW, next_off == LSW
   576           __ movq(Address(rsp, next_off), rax);
   577 #ifdef ASSERT
   578           // Overwrite the unused slot with known junk
   579           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   580           __ movptr(Address(rsp, st_off), rax);
   581 #endif /* ASSERT */
   582         } else {
   583           __ movq(Address(rsp, st_off), rax);
   584         }
   585       }
   586     } else if (r_1->is_Register()) {
   587       Register r = r_1->as_Register();
   588       if (!r_2->is_valid()) {
   589         // must be only an int (or less ) so move only 32bits to slot
   590         // why not sign extend??
   591         __ movl(Address(rsp, st_off), r);
   592       } else {
   593         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   594         // T_DOUBLE and T_LONG use two slots in the interpreter
   595         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   596           // long/double in gpr
   597 #ifdef ASSERT
   598           // Overwrite the unused slot with known junk
   599           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
   600           __ movptr(Address(rsp, st_off), rax);
   601 #endif /* ASSERT */
   602           __ movq(Address(rsp, next_off), r);
   603         } else {
   604           __ movptr(Address(rsp, st_off), r);
   605         }
   606       }
   607     } else {
   608       assert(r_1->is_XMMRegister(), "");
   609       if (!r_2->is_valid()) {
   610         // only a float use just part of the slot
   611         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   612       } else {
   613 #ifdef ASSERT
   614         // Overwrite the unused slot with known junk
   615         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
   616         __ movptr(Address(rsp, st_off), rax);
   617 #endif /* ASSERT */
   618         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
   619       }
   620     }
   621   }
   623   // Schedule the branch target address early.
   624   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
   625   __ jmp(rcx);
   626 }
   628 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
   629                         address code_start, address code_end,
   630                         Label& L_ok) {
   631   Label L_fail;
   632   __ lea(temp_reg, ExternalAddress(code_start));
   633   __ cmpptr(pc_reg, temp_reg);
   634   __ jcc(Assembler::belowEqual, L_fail);
   635   __ lea(temp_reg, ExternalAddress(code_end));
   636   __ cmpptr(pc_reg, temp_reg);
   637   __ jcc(Assembler::below, L_ok);
   638   __ bind(L_fail);
   639 }
   641 static void gen_i2c_adapter(MacroAssembler *masm,
   642                             int total_args_passed,
   643                             int comp_args_on_stack,
   644                             const BasicType *sig_bt,
   645                             const VMRegPair *regs) {
   647   // Note: r13 contains the senderSP on entry. We must preserve it since
   648   // we may do a i2c -> c2i transition if we lose a race where compiled
   649   // code goes non-entrant while we get args ready.
   650   // In addition we use r13 to locate all the interpreter args as
   651   // we must align the stack to 16 bytes on an i2c entry else we
   652   // lose alignment we expect in all compiled code and register
   653   // save code can segv when fxsave instructions find improperly
   654   // aligned stack pointer.
   656   // Adapters can be frameless because they do not require the caller
   657   // to perform additional cleanup work, such as correcting the stack pointer.
   658   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
   659   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
   660   // even if a callee has modified the stack pointer.
   661   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
   662   // routinely repairs its caller's stack pointer (from sender_sp, which is set
   663   // up via the senderSP register).
   664   // In other words, if *either* the caller or callee is interpreted, we can
   665   // get the stack pointer repaired after a call.
   666   // This is why c2i and i2c adapters cannot be indefinitely composed.
   667   // In particular, if a c2i adapter were to somehow call an i2c adapter,
   668   // both caller and callee would be compiled methods, and neither would
   669   // clean up the stack pointer changes performed by the two adapters.
   670   // If this happens, control eventually transfers back to the compiled
   671   // caller, but with an uncorrected stack, causing delayed havoc.
   673   // Pick up the return address
   674   __ movptr(rax, Address(rsp, 0));
   676   if (VerifyAdapterCalls &&
   677       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
   678     // So, let's test for cascading c2i/i2c adapters right now.
   679     //  assert(Interpreter::contains($return_addr) ||
   680     //         StubRoutines::contains($return_addr),
   681     //         "i2c adapter must return to an interpreter frame");
   682     __ block_comment("verify_i2c { ");
   683     Label L_ok;
   684     if (Interpreter::code() != NULL)
   685       range_check(masm, rax, r11,
   686                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
   687                   L_ok);
   688     if (StubRoutines::code1() != NULL)
   689       range_check(masm, rax, r11,
   690                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
   691                   L_ok);
   692     if (StubRoutines::code2() != NULL)
   693       range_check(masm, rax, r11,
   694                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
   695                   L_ok);
   696     const char* msg = "i2c adapter must return to an interpreter frame";
   697     __ block_comment(msg);
   698     __ stop(msg);
   699     __ bind(L_ok);
   700     __ block_comment("} verify_i2ce ");
   701   }
   703   // Must preserve original SP for loading incoming arguments because
   704   // we need to align the outgoing SP for compiled code.
   705   __ movptr(r11, rsp);
   707   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   708   // in registers, we will occasionally have no stack args.
   709   int comp_words_on_stack = 0;
   710   if (comp_args_on_stack) {
   711     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   712     // registers are below.  By subtracting stack0, we either get a negative
   713     // number (all values in registers) or the maximum stack slot accessed.
   715     // Convert 4-byte c2 stack slots to words.
   716     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
   717     // Round up to miminum stack alignment, in wordSize
   718     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   719     __ subptr(rsp, comp_words_on_stack * wordSize);
   720   }
   723   // Ensure compiled code always sees stack at proper alignment
   724   __ andptr(rsp, -16);
   726   // push the return address and misalign the stack that youngest frame always sees
   727   // as far as the placement of the call instruction
   728   __ push(rax);
   730   // Put saved SP in another register
   731   const Register saved_sp = rax;
   732   __ movptr(saved_sp, r11);
   734   // Will jump to the compiled code just as if compiled code was doing it.
   735   // Pre-load the register-jump target early, to schedule it better.
   736   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
   738   // Now generate the shuffle code.  Pick up all register args and move the
   739   // rest through the floating point stack top.
   740   for (int i = 0; i < total_args_passed; i++) {
   741     if (sig_bt[i] == T_VOID) {
   742       // Longs and doubles are passed in native word order, but misaligned
   743       // in the 32-bit build.
   744       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   745       continue;
   746     }
   748     // Pick up 0, 1 or 2 words from SP+offset.
   750     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   751             "scrambled load targets?");
   752     // Load in argument order going down.
   753     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
   754     // Point to interpreter value (vs. tag)
   755     int next_off = ld_off - Interpreter::stackElementSize;
   756     //
   757     //
   758     //
   759     VMReg r_1 = regs[i].first();
   760     VMReg r_2 = regs[i].second();
   761     if (!r_1->is_valid()) {
   762       assert(!r_2->is_valid(), "");
   763       continue;
   764     }
   765     if (r_1->is_stack()) {
   766       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   767       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   769       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
   770       // and if we end up going thru a c2i because of a miss a reasonable value of r13
   771       // will be generated.
   772       if (!r_2->is_valid()) {
   773         // sign extend???
   774         __ movl(r13, Address(saved_sp, ld_off));
   775         __ movptr(Address(rsp, st_off), r13);
   776       } else {
   777         //
   778         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   779         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   780         // So we must adjust where to pick up the data to match the interpreter.
   781         //
   782         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   783         // are accessed as negative so LSW is at LOW address
   785         // ld_off is MSW so get LSW
   786         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   787                            next_off : ld_off;
   788         __ movq(r13, Address(saved_sp, offset));
   789         // st_off is LSW (i.e. reg.first())
   790         __ movq(Address(rsp, st_off), r13);
   791       }
   792     } else if (r_1->is_Register()) {  // Register argument
   793       Register r = r_1->as_Register();
   794       assert(r != rax, "must be different");
   795       if (r_2->is_valid()) {
   796         //
   797         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   798         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   799         // So we must adjust where to pick up the data to match the interpreter.
   801         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   802                            next_off : ld_off;
   804         // this can be a misaligned move
   805         __ movq(r, Address(saved_sp, offset));
   806       } else {
   807         // sign extend and use a full word?
   808         __ movl(r, Address(saved_sp, ld_off));
   809       }
   810     } else {
   811       if (!r_2->is_valid()) {
   812         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   813       } else {
   814         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
   815       }
   816     }
   817   }
   819   // 6243940 We might end up in handle_wrong_method if
   820   // the callee is deoptimized as we race thru here. If that
   821   // happens we don't want to take a safepoint because the
   822   // caller frame will look interpreted and arguments are now
   823   // "compiled" so it is much better to make this transition
   824   // invisible to the stack walking code. Unfortunately if
   825   // we try and find the callee by normal means a safepoint
   826   // is possible. So we stash the desired callee in the thread
   827   // and the vm will find there should this case occur.
   829   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
   831   // put Method* where a c2i would expect should we end up there
   832   // only needed becaus eof c2 resolve stubs return Method* as a result in
   833   // rax
   834   __ mov(rax, rbx);
   835   __ jmp(r11);
   836 }
   838 // ---------------------------------------------------------------
   839 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   840                                                             int total_args_passed,
   841                                                             int comp_args_on_stack,
   842                                                             const BasicType *sig_bt,
   843                                                             const VMRegPair *regs,
   844                                                             AdapterFingerPrint* fingerprint) {
   845   address i2c_entry = __ pc();
   847   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   849   // -------------------------------------------------------------------------
   850   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
   851   // to the interpreter.  The args start out packed in the compiled layout.  They
   852   // need to be unpacked into the interpreter layout.  This will almost always
   853   // require some stack space.  We grow the current (compiled) stack, then repack
   854   // the args.  We  finally end in a jump to the generic interpreter entry point.
   855   // On exit from the interpreter, the interpreter will restore our SP (lest the
   856   // compiled code, which relys solely on SP and not RBP, get sick).
   858   address c2i_unverified_entry = __ pc();
   859   Label skip_fixup;
   860   Label ok;
   862   Register holder = rax;
   863   Register receiver = j_rarg0;
   864   Register temp = rbx;
   866   {
   867     __ load_klass(temp, receiver);
   868     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
   869     __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
   870     __ jcc(Assembler::equal, ok);
   871     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   873     __ bind(ok);
   874     // Method might have been compiled since the call site was patched to
   875     // interpreted if that is the case treat it as a miss so we can get
   876     // the call site corrected.
   877     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
   878     __ jcc(Assembler::equal, skip_fixup);
   879     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   880   }
   882   address c2i_entry = __ pc();
   884   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   886   __ flush();
   887   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
   888 }
   890 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   891                                          VMRegPair *regs,
   892                                          int total_args_passed) {
   893 // We return the amount of VMRegImpl stack slots we need to reserve for all
   894 // the arguments NOT counting out_preserve_stack_slots.
   896 // NOTE: These arrays will have to change when c1 is ported
   897 #ifdef _WIN64
   898     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   899       c_rarg0, c_rarg1, c_rarg2, c_rarg3
   900     };
   901     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   902       c_farg0, c_farg1, c_farg2, c_farg3
   903     };
   904 #else
   905     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   906       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
   907     };
   908     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   909       c_farg0, c_farg1, c_farg2, c_farg3,
   910       c_farg4, c_farg5, c_farg6, c_farg7
   911     };
   912 #endif // _WIN64
   915     uint int_args = 0;
   916     uint fp_args = 0;
   917     uint stk_args = 0; // inc by 2 each time
   919     for (int i = 0; i < total_args_passed; i++) {
   920       switch (sig_bt[i]) {
   921       case T_BOOLEAN:
   922       case T_CHAR:
   923       case T_BYTE:
   924       case T_SHORT:
   925       case T_INT:
   926         if (int_args < Argument::n_int_register_parameters_c) {
   927           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   928 #ifdef _WIN64
   929           fp_args++;
   930           // Allocate slots for callee to stuff register args the stack.
   931           stk_args += 2;
   932 #endif
   933         } else {
   934           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   935           stk_args += 2;
   936         }
   937         break;
   938       case T_LONG:
   939         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   940         // fall through
   941       case T_OBJECT:
   942       case T_ARRAY:
   943       case T_ADDRESS:
   944       case T_METADATA:
   945         if (int_args < Argument::n_int_register_parameters_c) {
   946           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   947 #ifdef _WIN64
   948           fp_args++;
   949           stk_args += 2;
   950 #endif
   951         } else {
   952           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   953           stk_args += 2;
   954         }
   955         break;
   956       case T_FLOAT:
   957         if (fp_args < Argument::n_float_register_parameters_c) {
   958           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   959 #ifdef _WIN64
   960           int_args++;
   961           // Allocate slots for callee to stuff register args the stack.
   962           stk_args += 2;
   963 #endif
   964         } else {
   965           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   966           stk_args += 2;
   967         }
   968         break;
   969       case T_DOUBLE:
   970         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   971         if (fp_args < Argument::n_float_register_parameters_c) {
   972           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   973 #ifdef _WIN64
   974           int_args++;
   975           // Allocate slots for callee to stuff register args the stack.
   976           stk_args += 2;
   977 #endif
   978         } else {
   979           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   980           stk_args += 2;
   981         }
   982         break;
   983       case T_VOID: // Halves of longs and doubles
   984         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   985         regs[i].set_bad();
   986         break;
   987       default:
   988         ShouldNotReachHere();
   989         break;
   990       }
   991     }
   992 #ifdef _WIN64
   993   // windows abi requires that we always allocate enough stack space
   994   // for 4 64bit registers to be stored down.
   995   if (stk_args < 8) {
   996     stk_args = 8;
   997   }
   998 #endif // _WIN64
  1000   return stk_args;
  1003 // On 64 bit we will store integer like items to the stack as
  1004 // 64 bits items (sparc abi) even though java would only store
  1005 // 32bits for a parameter. On 32bit it will simply be 32 bits
  1006 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  1007 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1008   if (src.first()->is_stack()) {
  1009     if (dst.first()->is_stack()) {
  1010       // stack to stack
  1011       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
  1012       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1013     } else {
  1014       // stack to reg
  1015       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
  1017   } else if (dst.first()->is_stack()) {
  1018     // reg to stack
  1019     // Do we really have to sign extend???
  1020     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
  1021     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1022   } else {
  1023     // Do we really have to sign extend???
  1024     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
  1025     if (dst.first() != src.first()) {
  1026       __ movq(dst.first()->as_Register(), src.first()->as_Register());
  1031 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1032   if (src.first()->is_stack()) {
  1033     if (dst.first()->is_stack()) {
  1034       // stack to stack
  1035       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1036       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1037     } else {
  1038       // stack to reg
  1039       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
  1041   } else if (dst.first()->is_stack()) {
  1042     // reg to stack
  1043     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1044   } else {
  1045     if (dst.first() != src.first()) {
  1046       __ movq(dst.first()->as_Register(), src.first()->as_Register());
  1051 // An oop arg. Must pass a handle not the oop itself
  1052 static void object_move(MacroAssembler* masm,
  1053                         OopMap* map,
  1054                         int oop_handle_offset,
  1055                         int framesize_in_slots,
  1056                         VMRegPair src,
  1057                         VMRegPair dst,
  1058                         bool is_receiver,
  1059                         int* receiver_offset) {
  1061   // must pass a handle. First figure out the location we use as a handle
  1063   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
  1065   // See if oop is NULL if it is we need no handle
  1067   if (src.first()->is_stack()) {
  1069     // Oop is already on the stack as an argument
  1070     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1071     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1072     if (is_receiver) {
  1073       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1076     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
  1077     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
  1078     // conditionally move a NULL
  1079     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
  1080   } else {
  1082     // Oop is in an a register we must store it to the space we reserve
  1083     // on the stack for oop_handles and pass a handle if oop is non-NULL
  1085     const Register rOop = src.first()->as_Register();
  1086     int oop_slot;
  1087     if (rOop == j_rarg0)
  1088       oop_slot = 0;
  1089     else if (rOop == j_rarg1)
  1090       oop_slot = 1;
  1091     else if (rOop == j_rarg2)
  1092       oop_slot = 2;
  1093     else if (rOop == j_rarg3)
  1094       oop_slot = 3;
  1095     else if (rOop == j_rarg4)
  1096       oop_slot = 4;
  1097     else {
  1098       assert(rOop == j_rarg5, "wrong register");
  1099       oop_slot = 5;
  1102     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
  1103     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1105     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1106     // Store oop in handle area, may be NULL
  1107     __ movptr(Address(rsp, offset), rOop);
  1108     if (is_receiver) {
  1109       *receiver_offset = offset;
  1112     __ cmpptr(rOop, (int32_t)NULL_WORD);
  1113     __ lea(rHandle, Address(rsp, offset));
  1114     // conditionally move a NULL from the handle area where it was just stored
  1115     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
  1118   // If arg is on the stack then place it otherwise it is already in correct reg.
  1119   if (dst.first()->is_stack()) {
  1120     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1124 // A float arg may have to do float reg int reg conversion
  1125 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1126   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1128   // The calling conventions assures us that each VMregpair is either
  1129   // all really one physical register or adjacent stack slots.
  1130   // This greatly simplifies the cases here compared to sparc.
  1132   if (src.first()->is_stack()) {
  1133     if (dst.first()->is_stack()) {
  1134       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
  1135       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1136     } else {
  1137       // stack to reg
  1138       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1139       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
  1141   } else if (dst.first()->is_stack()) {
  1142     // reg to stack
  1143     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1144     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1145   } else {
  1146     // reg to reg
  1147     // In theory these overlap but the ordering is such that this is likely a nop
  1148     if ( src.first() != dst.first()) {
  1149       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
  1154 // A long move
  1155 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1157   // The calling conventions assures us that each VMregpair is either
  1158   // all really one physical register or adjacent stack slots.
  1159   // This greatly simplifies the cases here compared to sparc.
  1161   if (src.is_single_phys_reg() ) {
  1162     if (dst.is_single_phys_reg()) {
  1163       if (dst.first() != src.first()) {
  1164         __ mov(dst.first()->as_Register(), src.first()->as_Register());
  1166     } else {
  1167       assert(dst.is_single_reg(), "not a stack pair");
  1168       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1170   } else if (dst.is_single_phys_reg()) {
  1171     assert(src.is_single_reg(),  "not a stack pair");
  1172     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
  1173   } else {
  1174     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1175     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1176     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1180 // A double move
  1181 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1183   // The calling conventions assures us that each VMregpair is either
  1184   // all really one physical register or adjacent stack slots.
  1185   // This greatly simplifies the cases here compared to sparc.
  1187   if (src.is_single_phys_reg() ) {
  1188     if (dst.is_single_phys_reg()) {
  1189       // In theory these overlap but the ordering is such that this is likely a nop
  1190       if ( src.first() != dst.first()) {
  1191         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
  1193     } else {
  1194       assert(dst.is_single_reg(), "not a stack pair");
  1195       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1197   } else if (dst.is_single_phys_reg()) {
  1198     assert(src.is_single_reg(),  "not a stack pair");
  1199     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
  1200   } else {
  1201     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1202     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1203     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1208 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1209   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1210   // which by this time is free to use
  1211   switch (ret_type) {
  1212   case T_FLOAT:
  1213     __ movflt(Address(rbp, -wordSize), xmm0);
  1214     break;
  1215   case T_DOUBLE:
  1216     __ movdbl(Address(rbp, -wordSize), xmm0);
  1217     break;
  1218   case T_VOID:  break;
  1219   default: {
  1220     __ movptr(Address(rbp, -wordSize), rax);
  1225 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1226   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1227   // which by this time is free to use
  1228   switch (ret_type) {
  1229   case T_FLOAT:
  1230     __ movflt(xmm0, Address(rbp, -wordSize));
  1231     break;
  1232   case T_DOUBLE:
  1233     __ movdbl(xmm0, Address(rbp, -wordSize));
  1234     break;
  1235   case T_VOID:  break;
  1236   default: {
  1237     __ movptr(rax, Address(rbp, -wordSize));
  1242 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1243     for ( int i = first_arg ; i < arg_count ; i++ ) {
  1244       if (args[i].first()->is_Register()) {
  1245         __ push(args[i].first()->as_Register());
  1246       } else if (args[i].first()->is_XMMRegister()) {
  1247         __ subptr(rsp, 2*wordSize);
  1248         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
  1253 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1254     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
  1255       if (args[i].first()->is_Register()) {
  1256         __ pop(args[i].first()->as_Register());
  1257       } else if (args[i].first()->is_XMMRegister()) {
  1258         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
  1259         __ addptr(rsp, 2*wordSize);
  1265 static void save_or_restore_arguments(MacroAssembler* masm,
  1266                                       const int stack_slots,
  1267                                       const int total_in_args,
  1268                                       const int arg_save_area,
  1269                                       OopMap* map,
  1270                                       VMRegPair* in_regs,
  1271                                       BasicType* in_sig_bt) {
  1272   // if map is non-NULL then the code should store the values,
  1273   // otherwise it should load them.
  1274   int slot = arg_save_area;
  1275   // Save down double word first
  1276   for ( int i = 0; i < total_in_args; i++) {
  1277     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
  1278       int offset = slot * VMRegImpl::stack_slot_size;
  1279       slot += VMRegImpl::slots_per_word;
  1280       assert(slot <= stack_slots, "overflow");
  1281       if (map != NULL) {
  1282         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1283       } else {
  1284         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1287     if (in_regs[i].first()->is_Register() &&
  1288         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
  1289       int offset = slot * VMRegImpl::stack_slot_size;
  1290       if (map != NULL) {
  1291         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
  1292         if (in_sig_bt[i] == T_ARRAY) {
  1293           map->set_oop(VMRegImpl::stack2reg(slot));;
  1295       } else {
  1296         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
  1298       slot += VMRegImpl::slots_per_word;
  1301   // Save or restore single word registers
  1302   for ( int i = 0; i < total_in_args; i++) {
  1303     if (in_regs[i].first()->is_Register()) {
  1304       int offset = slot * VMRegImpl::stack_slot_size;
  1305       slot++;
  1306       assert(slot <= stack_slots, "overflow");
  1308       // Value is in an input register pass we must flush it to the stack
  1309       const Register reg = in_regs[i].first()->as_Register();
  1310       switch (in_sig_bt[i]) {
  1311         case T_BOOLEAN:
  1312         case T_CHAR:
  1313         case T_BYTE:
  1314         case T_SHORT:
  1315         case T_INT:
  1316           if (map != NULL) {
  1317             __ movl(Address(rsp, offset), reg);
  1318           } else {
  1319             __ movl(reg, Address(rsp, offset));
  1321           break;
  1322         case T_ARRAY:
  1323         case T_LONG:
  1324           // handled above
  1325           break;
  1326         case T_OBJECT:
  1327         default: ShouldNotReachHere();
  1329     } else if (in_regs[i].first()->is_XMMRegister()) {
  1330       if (in_sig_bt[i] == T_FLOAT) {
  1331         int offset = slot * VMRegImpl::stack_slot_size;
  1332         slot++;
  1333         assert(slot <= stack_slots, "overflow");
  1334         if (map != NULL) {
  1335           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1336         } else {
  1337           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1340     } else if (in_regs[i].first()->is_stack()) {
  1341       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1342         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1343         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1350 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
  1351 // keeps a new JNI critical region from starting until a GC has been
  1352 // forced.  Save down any oops in registers and describe them in an
  1353 // OopMap.
  1354 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1355                                                int stack_slots,
  1356                                                int total_c_args,
  1357                                                int total_in_args,
  1358                                                int arg_save_area,
  1359                                                OopMapSet* oop_maps,
  1360                                                VMRegPair* in_regs,
  1361                                                BasicType* in_sig_bt) {
  1362   __ block_comment("check GC_locker::needs_gc");
  1363   Label cont;
  1364   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
  1365   __ jcc(Assembler::equal, cont);
  1367   // Save down any incoming oops and call into the runtime to halt for a GC
  1369   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1370   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1371                             arg_save_area, map, in_regs, in_sig_bt);
  1373   address the_pc = __ pc();
  1374   oop_maps->add_gc_map( __ offset(), map);
  1375   __ set_last_Java_frame(rsp, noreg, the_pc);
  1377   __ block_comment("block_for_jni_critical");
  1378   __ movptr(c_rarg0, r15_thread);
  1379   __ mov(r12, rsp); // remember sp
  1380   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1381   __ andptr(rsp, -16); // align stack as required by ABI
  1382   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
  1383   __ mov(rsp, r12); // restore sp
  1384   __ reinit_heapbase();
  1386   __ reset_last_Java_frame(false, true);
  1388   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1389                             arg_save_area, NULL, in_regs, in_sig_bt);
  1391   __ bind(cont);
  1392 #ifdef ASSERT
  1393   if (StressCriticalJNINatives) {
  1394     // Stress register saving
  1395     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1396     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1397                               arg_save_area, map, in_regs, in_sig_bt);
  1398     // Destroy argument registers
  1399     for (int i = 0; i < total_in_args - 1; i++) {
  1400       if (in_regs[i].first()->is_Register()) {
  1401         const Register reg = in_regs[i].first()->as_Register();
  1402         __ xorptr(reg, reg);
  1403       } else if (in_regs[i].first()->is_XMMRegister()) {
  1404         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
  1405       } else if (in_regs[i].first()->is_FloatRegister()) {
  1406         ShouldNotReachHere();
  1407       } else if (in_regs[i].first()->is_stack()) {
  1408         // Nothing to do
  1409       } else {
  1410         ShouldNotReachHere();
  1412       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
  1413         i++;
  1417     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1418                               arg_save_area, NULL, in_regs, in_sig_bt);
  1420 #endif
  1423 // Unpack an array argument into a pointer to the body and the length
  1424 // if the array is non-null, otherwise pass 0 for both.
  1425 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  1426   Register tmp_reg = rax;
  1427   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
  1428          "possible collision");
  1429   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
  1430          "possible collision");
  1432   // Pass the length, ptr pair
  1433   Label is_null, done;
  1434   VMRegPair tmp;
  1435   tmp.set_ptr(tmp_reg->as_VMReg());
  1436   if (reg.first()->is_stack()) {
  1437     // Load the arg up from the stack
  1438     move_ptr(masm, reg, tmp);
  1439     reg = tmp;
  1441   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
  1442   __ jccb(Assembler::equal, is_null);
  1443   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1444   move_ptr(masm, tmp, body_arg);
  1445   // load the length relative to the body.
  1446   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
  1447                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1448   move32_64(masm, tmp, length_arg);
  1449   __ jmpb(done);
  1450   __ bind(is_null);
  1451   // Pass zeros
  1452   __ xorptr(tmp_reg, tmp_reg);
  1453   move_ptr(masm, tmp, body_arg);
  1454   move32_64(masm, tmp, length_arg);
  1455   __ bind(done);
  1459 // Different signatures may require very different orders for the move
  1460 // to avoid clobbering other arguments.  There's no simple way to
  1461 // order them safely.  Compute a safe order for issuing stores and
  1462 // break any cycles in those stores.  This code is fairly general but
  1463 // it's not necessary on the other platforms so we keep it in the
  1464 // platform dependent code instead of moving it into a shared file.
  1465 // (See bugs 7013347 & 7145024.)
  1466 // Note that this code is specific to LP64.
  1467 class ComputeMoveOrder: public StackObj {
  1468   class MoveOperation: public ResourceObj {
  1469     friend class ComputeMoveOrder;
  1470    private:
  1471     VMRegPair        _src;
  1472     VMRegPair        _dst;
  1473     int              _src_index;
  1474     int              _dst_index;
  1475     bool             _processed;
  1476     MoveOperation*  _next;
  1477     MoveOperation*  _prev;
  1479     static int get_id(VMRegPair r) {
  1480       return r.first()->value();
  1483    public:
  1484     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
  1485       _src(src)
  1486     , _src_index(src_index)
  1487     , _dst(dst)
  1488     , _dst_index(dst_index)
  1489     , _next(NULL)
  1490     , _prev(NULL)
  1491     , _processed(false) {
  1494     VMRegPair src() const              { return _src; }
  1495     int src_id() const                 { return get_id(src()); }
  1496     int src_index() const              { return _src_index; }
  1497     VMRegPair dst() const              { return _dst; }
  1498     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
  1499     int dst_index() const              { return _dst_index; }
  1500     int dst_id() const                 { return get_id(dst()); }
  1501     MoveOperation* next() const       { return _next; }
  1502     MoveOperation* prev() const       { return _prev; }
  1503     void set_processed()               { _processed = true; }
  1504     bool is_processed() const          { return _processed; }
  1506     // insert
  1507     void break_cycle(VMRegPair temp_register) {
  1508       // create a new store following the last store
  1509       // to move from the temp_register to the original
  1510       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
  1512       // break the cycle of links and insert new_store at the end
  1513       // break the reverse link.
  1514       MoveOperation* p = prev();
  1515       assert(p->next() == this, "must be");
  1516       _prev = NULL;
  1517       p->_next = new_store;
  1518       new_store->_prev = p;
  1520       // change the original store to save it's value in the temp.
  1521       set_dst(-1, temp_register);
  1524     void link(GrowableArray<MoveOperation*>& killer) {
  1525       // link this store in front the store that it depends on
  1526       MoveOperation* n = killer.at_grow(src_id(), NULL);
  1527       if (n != NULL) {
  1528         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
  1529         _next = n;
  1530         n->_prev = this;
  1533   };
  1535  private:
  1536   GrowableArray<MoveOperation*> edges;
  1538  public:
  1539   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
  1540                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
  1541     // Move operations where the dest is the stack can all be
  1542     // scheduled first since they can't interfere with the other moves.
  1543     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
  1544       if (in_sig_bt[i] == T_ARRAY) {
  1545         c_arg--;
  1546         if (out_regs[c_arg].first()->is_stack() &&
  1547             out_regs[c_arg + 1].first()->is_stack()) {
  1548           arg_order.push(i);
  1549           arg_order.push(c_arg);
  1550         } else {
  1551           if (out_regs[c_arg].first()->is_stack() ||
  1552               in_regs[i].first() == out_regs[c_arg].first()) {
  1553             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
  1554           } else {
  1555             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
  1558       } else if (in_sig_bt[i] == T_VOID) {
  1559         arg_order.push(i);
  1560         arg_order.push(c_arg);
  1561       } else {
  1562         if (out_regs[c_arg].first()->is_stack() ||
  1563             in_regs[i].first() == out_regs[c_arg].first()) {
  1564           arg_order.push(i);
  1565           arg_order.push(c_arg);
  1566         } else {
  1567           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
  1571     // Break any cycles in the register moves and emit the in the
  1572     // proper order.
  1573     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
  1574     for (int i = 0; i < stores->length(); i++) {
  1575       arg_order.push(stores->at(i)->src_index());
  1576       arg_order.push(stores->at(i)->dst_index());
  1580   // Collected all the move operations
  1581   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
  1582     if (src.first() == dst.first()) return;
  1583     edges.append(new MoveOperation(src_index, src, dst_index, dst));
  1586   // Walk the edges breaking cycles between moves.  The result list
  1587   // can be walked in order to produce the proper set of loads
  1588   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
  1589     // Record which moves kill which values
  1590     GrowableArray<MoveOperation*> killer;
  1591     for (int i = 0; i < edges.length(); i++) {
  1592       MoveOperation* s = edges.at(i);
  1593       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
  1594       killer.at_put_grow(s->dst_id(), s, NULL);
  1596     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
  1597            "make sure temp isn't in the registers that are killed");
  1599     // create links between loads and stores
  1600     for (int i = 0; i < edges.length(); i++) {
  1601       edges.at(i)->link(killer);
  1604     // at this point, all the move operations are chained together
  1605     // in a doubly linked list.  Processing it backwards finds
  1606     // the beginning of the chain, forwards finds the end.  If there's
  1607     // a cycle it can be broken at any point,  so pick an edge and walk
  1608     // backward until the list ends or we end where we started.
  1609     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
  1610     for (int e = 0; e < edges.length(); e++) {
  1611       MoveOperation* s = edges.at(e);
  1612       if (!s->is_processed()) {
  1613         MoveOperation* start = s;
  1614         // search for the beginning of the chain or cycle
  1615         while (start->prev() != NULL && start->prev() != s) {
  1616           start = start->prev();
  1618         if (start->prev() == s) {
  1619           start->break_cycle(temp_register);
  1621         // walk the chain forward inserting to store list
  1622         while (start != NULL) {
  1623           stores->append(start);
  1624           start->set_processed();
  1625           start = start->next();
  1629     return stores;
  1631 };
  1633 static void verify_oop_args(MacroAssembler* masm,
  1634                             methodHandle method,
  1635                             const BasicType* sig_bt,
  1636                             const VMRegPair* regs) {
  1637   Register temp_reg = rbx;  // not part of any compiled calling seq
  1638   if (VerifyOops) {
  1639     for (int i = 0; i < method->size_of_parameters(); i++) {
  1640       if (sig_bt[i] == T_OBJECT ||
  1641           sig_bt[i] == T_ARRAY) {
  1642         VMReg r = regs[i].first();
  1643         assert(r->is_valid(), "bad oop arg");
  1644         if (r->is_stack()) {
  1645           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1646           __ verify_oop(temp_reg);
  1647         } else {
  1648           __ verify_oop(r->as_Register());
  1655 static void gen_special_dispatch(MacroAssembler* masm,
  1656                                  methodHandle method,
  1657                                  const BasicType* sig_bt,
  1658                                  const VMRegPair* regs) {
  1659   verify_oop_args(masm, method, sig_bt, regs);
  1660   vmIntrinsics::ID iid = method->intrinsic_id();
  1662   // Now write the args into the outgoing interpreter space
  1663   bool     has_receiver   = false;
  1664   Register receiver_reg   = noreg;
  1665   int      member_arg_pos = -1;
  1666   Register member_reg     = noreg;
  1667   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
  1668   if (ref_kind != 0) {
  1669     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
  1670     member_reg = rbx;  // known to be free at this point
  1671     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  1672   } else if (iid == vmIntrinsics::_invokeBasic) {
  1673     has_receiver = true;
  1674   } else {
  1675     fatal(err_msg_res("unexpected intrinsic id %d", iid));
  1678   if (member_reg != noreg) {
  1679     // Load the member_arg into register, if necessary.
  1680     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
  1681     VMReg r = regs[member_arg_pos].first();
  1682     if (r->is_stack()) {
  1683       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1684     } else {
  1685       // no data motion is needed
  1686       member_reg = r->as_Register();
  1690   if (has_receiver) {
  1691     // Make sure the receiver is loaded into a register.
  1692     assert(method->size_of_parameters() > 0, "oob");
  1693     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  1694     VMReg r = regs[0].first();
  1695     assert(r->is_valid(), "bad receiver arg");
  1696     if (r->is_stack()) {
  1697       // Porting note:  This assumes that compiled calling conventions always
  1698       // pass the receiver oop in a register.  If this is not true on some
  1699       // platform, pick a temp and load the receiver from stack.
  1700       fatal("receiver always in a register");
  1701       receiver_reg = j_rarg0;  // known to be free at this point
  1702       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1703     } else {
  1704       // no data motion is needed
  1705       receiver_reg = r->as_Register();
  1709   // Figure out which address we are really jumping to:
  1710   MethodHandles::generate_method_handle_dispatch(masm, iid,
  1711                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  1714 // ---------------------------------------------------------------------------
  1715 // Generate a native wrapper for a given method.  The method takes arguments
  1716 // in the Java compiled code convention, marshals them to the native
  1717 // convention (handlizes oops, etc), transitions to native, makes the call,
  1718 // returns to java state (possibly blocking), unhandlizes any result and
  1719 // returns.
  1720 //
  1721 // Critical native functions are a shorthand for the use of
  1722 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1723 // functions.  The wrapper is expected to unpack the arguments before
  1724 // passing them to the callee and perform checks before and after the
  1725 // native call to ensure that they GC_locker
  1726 // lock_critical/unlock_critical semantics are followed.  Some other
  1727 // parts of JNI setup are skipped like the tear down of the JNI handle
  1728 // block and the check for pending exceptions it's impossible for them
  1729 // to be thrown.
  1730 //
  1731 // They are roughly structured like this:
  1732 //    if (GC_locker::needs_gc())
  1733 //      SharedRuntime::block_for_jni_critical();
  1734 //    tranistion to thread_in_native
  1735 //    unpack arrray arguments and call native entry point
  1736 //    check for safepoint in progress
  1737 //    check if any thread suspend flags are set
  1738 //      call into JVM and possible unlock the JNI critical
  1739 //      if a GC was suppressed while in the critical native.
  1740 //    transition back to thread_in_Java
  1741 //    return to caller
  1742 //
  1743 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1744                                                 methodHandle method,
  1745                                                 int compile_id,
  1746                                                 BasicType* in_sig_bt,
  1747                                                 VMRegPair* in_regs,
  1748                                                 BasicType ret_type) {
  1749   if (method->is_method_handle_intrinsic()) {
  1750     vmIntrinsics::ID iid = method->intrinsic_id();
  1751     intptr_t start = (intptr_t)__ pc();
  1752     int vep_offset = ((intptr_t)__ pc()) - start;
  1753     gen_special_dispatch(masm,
  1754                          method,
  1755                          in_sig_bt,
  1756                          in_regs);
  1757     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  1758     __ flush();
  1759     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  1760     return nmethod::new_native_nmethod(method,
  1761                                        compile_id,
  1762                                        masm->code(),
  1763                                        vep_offset,
  1764                                        frame_complete,
  1765                                        stack_slots / VMRegImpl::slots_per_word,
  1766                                        in_ByteSize(-1),
  1767                                        in_ByteSize(-1),
  1768                                        (OopMapSet*)NULL);
  1770   bool is_critical_native = true;
  1771   address native_func = method->critical_native_function();
  1772   if (native_func == NULL) {
  1773     native_func = method->native_function();
  1774     is_critical_native = false;
  1776   assert(native_func != NULL, "must have function");
  1778   // An OopMap for lock (and class if static)
  1779   OopMapSet *oop_maps = new OopMapSet();
  1780   intptr_t start = (intptr_t)__ pc();
  1782   // We have received a description of where all the java arg are located
  1783   // on entry to the wrapper. We need to convert these args to where
  1784   // the jni function will expect them. To figure out where they go
  1785   // we convert the java signature to a C signature by inserting
  1786   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1788   const int total_in_args = method->size_of_parameters();
  1789   int total_c_args = total_in_args;
  1790   if (!is_critical_native) {
  1791     total_c_args += 1;
  1792     if (method->is_static()) {
  1793       total_c_args++;
  1795   } else {
  1796     for (int i = 0; i < total_in_args; i++) {
  1797       if (in_sig_bt[i] == T_ARRAY) {
  1798         total_c_args++;
  1803   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1804   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  1805   BasicType* in_elem_bt = NULL;
  1807   int argc = 0;
  1808   if (!is_critical_native) {
  1809     out_sig_bt[argc++] = T_ADDRESS;
  1810     if (method->is_static()) {
  1811       out_sig_bt[argc++] = T_OBJECT;
  1814     for (int i = 0; i < total_in_args ; i++ ) {
  1815       out_sig_bt[argc++] = in_sig_bt[i];
  1817   } else {
  1818     Thread* THREAD = Thread::current();
  1819     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
  1820     SignatureStream ss(method->signature());
  1821     for (int i = 0; i < total_in_args ; i++ ) {
  1822       if (in_sig_bt[i] == T_ARRAY) {
  1823         // Arrays are passed as int, elem* pair
  1824         out_sig_bt[argc++] = T_INT;
  1825         out_sig_bt[argc++] = T_ADDRESS;
  1826         Symbol* atype = ss.as_symbol(CHECK_NULL);
  1827         const char* at = atype->as_C_string();
  1828         if (strlen(at) == 2) {
  1829           assert(at[0] == '[', "must be");
  1830           switch (at[1]) {
  1831             case 'B': in_elem_bt[i]  = T_BYTE; break;
  1832             case 'C': in_elem_bt[i]  = T_CHAR; break;
  1833             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
  1834             case 'F': in_elem_bt[i]  = T_FLOAT; break;
  1835             case 'I': in_elem_bt[i]  = T_INT; break;
  1836             case 'J': in_elem_bt[i]  = T_LONG; break;
  1837             case 'S': in_elem_bt[i]  = T_SHORT; break;
  1838             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
  1839             default: ShouldNotReachHere();
  1842       } else {
  1843         out_sig_bt[argc++] = in_sig_bt[i];
  1844         in_elem_bt[i] = T_VOID;
  1846       if (in_sig_bt[i] != T_VOID) {
  1847         assert(in_sig_bt[i] == ss.type(), "must match");
  1848         ss.next();
  1853   // Now figure out where the args must be stored and how much stack space
  1854   // they require.
  1855   int out_arg_slots;
  1856   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1858   // Compute framesize for the wrapper.  We need to handlize all oops in
  1859   // incoming registers
  1861   // Calculate the total number of stack slots we will need.
  1863   // First count the abi requirement plus all of the outgoing args
  1864   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1866   // Now the space for the inbound oop handle area
  1867   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
  1868   if (is_critical_native) {
  1869     // Critical natives may have to call out so they need a save area
  1870     // for register arguments.
  1871     int double_slots = 0;
  1872     int single_slots = 0;
  1873     for ( int i = 0; i < total_in_args; i++) {
  1874       if (in_regs[i].first()->is_Register()) {
  1875         const Register reg = in_regs[i].first()->as_Register();
  1876         switch (in_sig_bt[i]) {
  1877           case T_BOOLEAN:
  1878           case T_BYTE:
  1879           case T_SHORT:
  1880           case T_CHAR:
  1881           case T_INT:  single_slots++; break;
  1882           case T_ARRAY:  // specific to LP64 (7145024)
  1883           case T_LONG: double_slots++; break;
  1884           default:  ShouldNotReachHere();
  1886       } else if (in_regs[i].first()->is_XMMRegister()) {
  1887         switch (in_sig_bt[i]) {
  1888           case T_FLOAT:  single_slots++; break;
  1889           case T_DOUBLE: double_slots++; break;
  1890           default:  ShouldNotReachHere();
  1892       } else if (in_regs[i].first()->is_FloatRegister()) {
  1893         ShouldNotReachHere();
  1896     total_save_slots = double_slots * 2 + single_slots;
  1897     // align the save area
  1898     if (double_slots != 0) {
  1899       stack_slots = round_to(stack_slots, 2);
  1903   int oop_handle_offset = stack_slots;
  1904   stack_slots += total_save_slots;
  1906   // Now any space we need for handlizing a klass if static method
  1908   int klass_slot_offset = 0;
  1909   int klass_offset = -1;
  1910   int lock_slot_offset = 0;
  1911   bool is_static = false;
  1913   if (method->is_static()) {
  1914     klass_slot_offset = stack_slots;
  1915     stack_slots += VMRegImpl::slots_per_word;
  1916     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1917     is_static = true;
  1920   // Plus a lock if needed
  1922   if (method->is_synchronized()) {
  1923     lock_slot_offset = stack_slots;
  1924     stack_slots += VMRegImpl::slots_per_word;
  1927   // Now a place (+2) to save return values or temp during shuffling
  1928   // + 4 for return address (which we own) and saved rbp
  1929   stack_slots += 6;
  1931   // Ok The space we have allocated will look like:
  1932   //
  1933   //
  1934   // FP-> |                     |
  1935   //      |---------------------|
  1936   //      | 2 slots for moves   |
  1937   //      |---------------------|
  1938   //      | lock box (if sync)  |
  1939   //      |---------------------| <- lock_slot_offset
  1940   //      | klass (if static)   |
  1941   //      |---------------------| <- klass_slot_offset
  1942   //      | oopHandle area      |
  1943   //      |---------------------| <- oop_handle_offset (6 java arg registers)
  1944   //      | outbound memory     |
  1945   //      | based arguments     |
  1946   //      |                     |
  1947   //      |---------------------|
  1948   //      |                     |
  1949   // SP-> | out_preserved_slots |
  1950   //
  1951   //
  1954   // Now compute actual number of stack words we need rounding to make
  1955   // stack properly aligned.
  1956   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
  1958   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1960   // First thing make an ic check to see if we should even be here
  1962   // We are free to use all registers as temps without saving them and
  1963   // restoring them except rbp. rbp is the only callee save register
  1964   // as far as the interpreter and the compiler(s) are concerned.
  1967   const Register ic_reg = rax;
  1968   const Register receiver = j_rarg0;
  1970   Label hit;
  1971   Label exception_pending;
  1973   assert_different_registers(ic_reg, receiver, rscratch1);
  1974   __ verify_oop(receiver);
  1975   __ load_klass(rscratch1, receiver);
  1976   __ cmpq(ic_reg, rscratch1);
  1977   __ jcc(Assembler::equal, hit);
  1979   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1981   // Verified entry point must be aligned
  1982   __ align(8);
  1984   __ bind(hit);
  1986   int vep_offset = ((intptr_t)__ pc()) - start;
  1988   // The instruction at the verified entry point must be 5 bytes or longer
  1989   // because it can be patched on the fly by make_non_entrant. The stack bang
  1990   // instruction fits that requirement.
  1992   // Generate stack overflow check
  1994   if (UseStackBanging) {
  1995     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  1996   } else {
  1997     // need a 5 byte instruction to allow MT safe patching to non-entrant
  1998     __ fat_nop();
  2001   // Generate a new frame for the wrapper.
  2002   __ enter();
  2003   // -2 because return address is already present and so is saved rbp
  2004   __ subptr(rsp, stack_size - 2*wordSize);
  2006   // Frame is now completed as far as size and linkage.
  2007   int frame_complete = ((intptr_t)__ pc()) - start;
  2009 #ifdef ASSERT
  2011       Label L;
  2012       __ mov(rax, rsp);
  2013       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
  2014       __ cmpptr(rax, rsp);
  2015       __ jcc(Assembler::equal, L);
  2016       __ stop("improperly aligned stack");
  2017       __ bind(L);
  2019 #endif /* ASSERT */
  2022   // We use r14 as the oop handle for the receiver/klass
  2023   // It is callee save so it survives the call to native
  2025   const Register oop_handle_reg = r14;
  2027   if (is_critical_native) {
  2028     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
  2029                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  2032   //
  2033   // We immediately shuffle the arguments so that any vm call we have to
  2034   // make from here on out (sync slow path, jvmti, etc.) we will have
  2035   // captured the oops from our caller and have a valid oopMap for
  2036   // them.
  2038   // -----------------
  2039   // The Grand Shuffle
  2041   // The Java calling convention is either equal (linux) or denser (win64) than the
  2042   // c calling convention. However the because of the jni_env argument the c calling
  2043   // convention always has at least one more (and two for static) arguments than Java.
  2044   // Therefore if we move the args from java -> c backwards then we will never have
  2045   // a register->register conflict and we don't have to build a dependency graph
  2046   // and figure out how to break any cycles.
  2047   //
  2049   // Record esp-based slot for receiver on stack for non-static methods
  2050   int receiver_offset = -1;
  2052   // This is a trick. We double the stack slots so we can claim
  2053   // the oops in the caller's frame. Since we are sure to have
  2054   // more args than the caller doubling is enough to make
  2055   // sure we can capture all the incoming oop args from the
  2056   // caller.
  2057   //
  2058   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  2060   // Mark location of rbp (someday)
  2061   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
  2063   // Use eax, ebx as temporaries during any memory-memory moves we have to do
  2064   // All inbound args are referenced based on rbp and all outbound args via rsp.
  2067 #ifdef ASSERT
  2068   bool reg_destroyed[RegisterImpl::number_of_registers];
  2069   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
  2070   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2071     reg_destroyed[r] = false;
  2073   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
  2074     freg_destroyed[f] = false;
  2077 #endif /* ASSERT */
  2079   // This may iterate in two different directions depending on the
  2080   // kind of native it is.  The reason is that for regular JNI natives
  2081   // the incoming and outgoing registers are offset upwards and for
  2082   // critical natives they are offset down.
  2083   GrowableArray<int> arg_order(2 * total_in_args);
  2084   VMRegPair tmp_vmreg;
  2085   tmp_vmreg.set1(rbx->as_VMReg());
  2087   if (!is_critical_native) {
  2088     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
  2089       arg_order.push(i);
  2090       arg_order.push(c_arg);
  2092   } else {
  2093     // Compute a valid move order, using tmp_vmreg to break any cycles
  2094     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
  2097   int temploc = -1;
  2098   for (int ai = 0; ai < arg_order.length(); ai += 2) {
  2099     int i = arg_order.at(ai);
  2100     int c_arg = arg_order.at(ai + 1);
  2101     __ block_comment(err_msg("move %d -> %d", i, c_arg));
  2102     if (c_arg == -1) {
  2103       assert(is_critical_native, "should only be required for critical natives");
  2104       // This arg needs to be moved to a temporary
  2105       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
  2106       in_regs[i] = tmp_vmreg;
  2107       temploc = i;
  2108       continue;
  2109     } else if (i == -1) {
  2110       assert(is_critical_native, "should only be required for critical natives");
  2111       // Read from the temporary location
  2112       assert(temploc != -1, "must be valid");
  2113       i = temploc;
  2114       temploc = -1;
  2116 #ifdef ASSERT
  2117     if (in_regs[i].first()->is_Register()) {
  2118       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
  2119     } else if (in_regs[i].first()->is_XMMRegister()) {
  2120       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
  2122     if (out_regs[c_arg].first()->is_Register()) {
  2123       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2124     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
  2125       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
  2127 #endif /* ASSERT */
  2128     switch (in_sig_bt[i]) {
  2129       case T_ARRAY:
  2130         if (is_critical_native) {
  2131           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
  2132           c_arg++;
  2133 #ifdef ASSERT
  2134           if (out_regs[c_arg].first()->is_Register()) {
  2135             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2136           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
  2137             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
  2139 #endif
  2140           break;
  2142       case T_OBJECT:
  2143         assert(!is_critical_native, "no oop arguments");
  2144         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  2145                     ((i == 0) && (!is_static)),
  2146                     &receiver_offset);
  2147         break;
  2148       case T_VOID:
  2149         break;
  2151       case T_FLOAT:
  2152         float_move(masm, in_regs[i], out_regs[c_arg]);
  2153           break;
  2155       case T_DOUBLE:
  2156         assert( i + 1 < total_in_args &&
  2157                 in_sig_bt[i + 1] == T_VOID &&
  2158                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2159         double_move(masm, in_regs[i], out_regs[c_arg]);
  2160         break;
  2162       case T_LONG :
  2163         long_move(masm, in_regs[i], out_regs[c_arg]);
  2164         break;
  2166       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2168       default:
  2169         move32_64(masm, in_regs[i], out_regs[c_arg]);
  2173   // point c_arg at the first arg that is already loaded in case we
  2174   // need to spill before we call out
  2175   int c_arg = total_c_args - total_in_args;
  2177   // Pre-load a static method's oop into r14.  Used both by locking code and
  2178   // the normal JNI call code.
  2179   if (method->is_static() && !is_critical_native) {
  2181     //  load oop into a register
  2182     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
  2184     // Now handlize the static class mirror it's known not-null.
  2185     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  2186     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2188     // Now get the handle
  2189     __ lea(oop_handle_reg, Address(rsp, klass_offset));
  2190     // store the klass handle as second argument
  2191     __ movptr(c_rarg1, oop_handle_reg);
  2192     // and protect the arg if we must spill
  2193     c_arg--;
  2196   // Change state to native (we save the return address in the thread, since it might not
  2197   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  2198   // points into the right code segment. It does not have to be the correct return pc.
  2199   // We use the same pc/oopMap repeatedly when we call out
  2201   intptr_t the_pc = (intptr_t) __ pc();
  2202   oop_maps->add_gc_map(the_pc - start, map);
  2204   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
  2207   // We have all of the arguments setup at this point. We must not touch any register
  2208   // argument registers at this point (what if we save/restore them there are no oop?
  2211     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  2212     // protect the args we've loaded
  2213     save_args(masm, total_c_args, c_arg, out_regs);
  2214     __ mov_metadata(c_rarg1, method());
  2215     __ call_VM_leaf(
  2216       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2217       r15_thread, c_rarg1);
  2218     restore_args(masm, total_c_args, c_arg, out_regs);
  2221   // RedefineClasses() tracing support for obsolete method entry
  2222   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2223     // protect the args we've loaded
  2224     save_args(masm, total_c_args, c_arg, out_regs);
  2225     __ mov_metadata(c_rarg1, method());
  2226     __ call_VM_leaf(
  2227       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2228       r15_thread, c_rarg1);
  2229     restore_args(masm, total_c_args, c_arg, out_regs);
  2232   // Lock a synchronized method
  2234   // Register definitions used by locking and unlocking
  2236   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
  2237   const Register obj_reg  = rbx;  // Will contain the oop
  2238   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
  2239   const Register old_hdr  = r13;  // value of old header at unlock time
  2241   Label slow_path_lock;
  2242   Label lock_done;
  2244   if (method->is_synchronized()) {
  2245     assert(!is_critical_native, "unhandled");
  2248     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  2250     // Get the handle (the 2nd argument)
  2251     __ mov(oop_handle_reg, c_rarg1);
  2253     // Get address of the box
  2255     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  2257     // Load the oop from the handle
  2258     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  2260     if (UseBiasedLocking) {
  2261       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
  2264     // Load immediate 1 into swap_reg %rax
  2265     __ movl(swap_reg, 1);
  2267     // Load (object->mark() | 1) into swap_reg %rax
  2268     __ orptr(swap_reg, Address(obj_reg, 0));
  2270     // Save (object->mark() | 1) into BasicLock's displaced header
  2271     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  2273     if (os::is_MP()) {
  2274       __ lock();
  2277     // src -> dest iff dest == rax else rax <- dest
  2278     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  2279     __ jcc(Assembler::equal, lock_done);
  2281     // Hmm should this move to the slow path code area???
  2283     // Test if the oopMark is an obvious stack pointer, i.e.,
  2284     //  1) (mark & 3) == 0, and
  2285     //  2) rsp <= mark < mark + os::pagesize()
  2286     // These 3 tests can be done by evaluating the following
  2287     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  2288     // assuming both stack pointer and pagesize have their
  2289     // least significant 2 bits clear.
  2290     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
  2292     __ subptr(swap_reg, rsp);
  2293     __ andptr(swap_reg, 3 - os::vm_page_size());
  2295     // Save the test result, for recursive case, the result is zero
  2296     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  2297     __ jcc(Assembler::notEqual, slow_path_lock);
  2299     // Slow path will re-enter here
  2301     __ bind(lock_done);
  2305   // Finally just about ready to make the JNI call
  2308   // get JNIEnv* which is first argument to native
  2309   if (!is_critical_native) {
  2310     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
  2313   // Now set thread in native
  2314   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
  2316   __ call(RuntimeAddress(native_func));
  2318     // Either restore the MXCSR register after returning from the JNI Call
  2319     // or verify that it wasn't changed.
  2320     if (RestoreMXCSROnJNICalls) {
  2321       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
  2324     else if (CheckJNICalls ) {
  2325       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
  2329   // Unpack native results.
  2330   switch (ret_type) {
  2331   case T_BOOLEAN: __ c2bool(rax);            break;
  2332   case T_CHAR   : __ movzwl(rax, rax);      break;
  2333   case T_BYTE   : __ sign_extend_byte (rax); break;
  2334   case T_SHORT  : __ sign_extend_short(rax); break;
  2335   case T_INT    : /* nothing to do */        break;
  2336   case T_DOUBLE :
  2337   case T_FLOAT  :
  2338     // Result is in xmm0 we'll save as needed
  2339     break;
  2340   case T_ARRAY:                 // Really a handle
  2341   case T_OBJECT:                // Really a handle
  2342       break; // can't de-handlize until after safepoint check
  2343   case T_VOID: break;
  2344   case T_LONG: break;
  2345   default       : ShouldNotReachHere();
  2348   // Switch thread to "native transition" state before reading the synchronization state.
  2349   // This additional state is necessary because reading and testing the synchronization
  2350   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2351   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2352   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2353   //     Thread A is resumed to finish this native method, but doesn't block here since it
  2354   //     didn't see any synchronization is progress, and escapes.
  2355   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  2357   if(os::is_MP()) {
  2358     if (UseMembar) {
  2359       // Force this write out before the read below
  2360       __ membar(Assembler::Membar_mask_bits(
  2361            Assembler::LoadLoad | Assembler::LoadStore |
  2362            Assembler::StoreLoad | Assembler::StoreStore));
  2363     } else {
  2364       // Write serialization page so VM thread can do a pseudo remote membar.
  2365       // We use the current thread pointer to calculate a thread specific
  2366       // offset to write to within the page. This minimizes bus traffic
  2367       // due to cache line collision.
  2368       __ serialize_memory(r15_thread, rcx);
  2372   Label after_transition;
  2374   // check for safepoint operation in progress and/or pending suspend requests
  2376     Label Continue;
  2378     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  2379              SafepointSynchronize::_not_synchronized);
  2381     Label L;
  2382     __ jcc(Assembler::notEqual, L);
  2383     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  2384     __ jcc(Assembler::equal, Continue);
  2385     __ bind(L);
  2387     // Don't use call_VM as it will see a possible pending exception and forward it
  2388     // and never return here preventing us from clearing _last_native_pc down below.
  2389     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  2390     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  2391     // by hand.
  2392     //
  2393     save_native_result(masm, ret_type, stack_slots);
  2394     __ mov(c_rarg0, r15_thread);
  2395     __ mov(r12, rsp); // remember sp
  2396     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  2397     __ andptr(rsp, -16); // align stack as required by ABI
  2398     if (!is_critical_native) {
  2399       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  2400     } else {
  2401       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
  2403     __ mov(rsp, r12); // restore sp
  2404     __ reinit_heapbase();
  2405     // Restore any method result value
  2406     restore_native_result(masm, ret_type, stack_slots);
  2408     if (is_critical_native) {
  2409       // The call above performed the transition to thread_in_Java so
  2410       // skip the transition logic below.
  2411       __ jmpb(after_transition);
  2414     __ bind(Continue);
  2417   // change thread state
  2418   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  2419   __ bind(after_transition);
  2421   Label reguard;
  2422   Label reguard_done;
  2423   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  2424   __ jcc(Assembler::equal, reguard);
  2425   __ bind(reguard_done);
  2427   // native result if any is live
  2429   // Unlock
  2430   Label unlock_done;
  2431   Label slow_path_unlock;
  2432   if (method->is_synchronized()) {
  2434     // Get locked oop from the handle we passed to jni
  2435     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  2437     Label done;
  2439     if (UseBiasedLocking) {
  2440       __ biased_locking_exit(obj_reg, old_hdr, done);
  2443     // Simple recursive lock?
  2445     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
  2446     __ jcc(Assembler::equal, done);
  2448     // Must save rax if if it is live now because cmpxchg must use it
  2449     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2450       save_native_result(masm, ret_type, stack_slots);
  2454     // get address of the stack lock
  2455     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  2456     //  get old displaced header
  2457     __ movptr(old_hdr, Address(rax, 0));
  2459     // Atomic swap old header if oop still contains the stack lock
  2460     if (os::is_MP()) {
  2461       __ lock();
  2463     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
  2464     __ jcc(Assembler::notEqual, slow_path_unlock);
  2466     // slow path re-enters here
  2467     __ bind(unlock_done);
  2468     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2469       restore_native_result(masm, ret_type, stack_slots);
  2472     __ bind(done);
  2476     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  2477     save_native_result(masm, ret_type, stack_slots);
  2478     __ mov_metadata(c_rarg1, method());
  2479     __ call_VM_leaf(
  2480          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2481          r15_thread, c_rarg1);
  2482     restore_native_result(masm, ret_type, stack_slots);
  2485   __ reset_last_Java_frame(false, true);
  2487   // Unpack oop result
  2488   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2489       Label L;
  2490       __ testptr(rax, rax);
  2491       __ jcc(Assembler::zero, L);
  2492       __ movptr(rax, Address(rax, 0));
  2493       __ bind(L);
  2494       __ verify_oop(rax);
  2497   if (!is_critical_native) {
  2498     // reset handle block
  2499     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
  2500     __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  2503   // pop our frame
  2505   __ leave();
  2507   if (!is_critical_native) {
  2508     // Any exception pending?
  2509     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2510     __ jcc(Assembler::notEqual, exception_pending);
  2513   // Return
  2515   __ ret(0);
  2517   // Unexpected paths are out of line and go here
  2519   if (!is_critical_native) {
  2520     // forward the exception
  2521     __ bind(exception_pending);
  2523     // and forward the exception
  2524     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2527   // Slow path locking & unlocking
  2528   if (method->is_synchronized()) {
  2530     // BEGIN Slow path lock
  2531     __ bind(slow_path_lock);
  2533     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  2534     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  2536     // protect the args we've loaded
  2537     save_args(masm, total_c_args, c_arg, out_regs);
  2539     __ mov(c_rarg0, obj_reg);
  2540     __ mov(c_rarg1, lock_reg);
  2541     __ mov(c_rarg2, r15_thread);
  2543     // Not a leaf but we have last_Java_frame setup as we want
  2544     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
  2545     restore_args(masm, total_c_args, c_arg, out_regs);
  2547 #ifdef ASSERT
  2548     { Label L;
  2549     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2550     __ jcc(Assembler::equal, L);
  2551     __ stop("no pending exception allowed on exit from monitorenter");
  2552     __ bind(L);
  2554 #endif
  2555     __ jmp(lock_done);
  2557     // END Slow path lock
  2559     // BEGIN Slow path unlock
  2560     __ bind(slow_path_unlock);
  2562     // If we haven't already saved the native result we must save it now as xmm registers
  2563     // are still exposed.
  2565     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2566       save_native_result(masm, ret_type, stack_slots);
  2569     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  2571     __ mov(c_rarg0, obj_reg);
  2572     __ mov(r12, rsp); // remember sp
  2573     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  2574     __ andptr(rsp, -16); // align stack as required by ABI
  2576     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  2577     // NOTE that obj_reg == rbx currently
  2578     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
  2579     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2581     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  2582     __ mov(rsp, r12); // restore sp
  2583     __ reinit_heapbase();
  2584 #ifdef ASSERT
  2586       Label L;
  2587       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  2588       __ jcc(Assembler::equal, L);
  2589       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  2590       __ bind(L);
  2592 #endif /* ASSERT */
  2594     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
  2596     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2597       restore_native_result(masm, ret_type, stack_slots);
  2599     __ jmp(unlock_done);
  2601     // END Slow path unlock
  2603   } // synchronized
  2605   // SLOW PATH Reguard the stack if needed
  2607   __ bind(reguard);
  2608   save_native_result(masm, ret_type, stack_slots);
  2609   __ mov(r12, rsp); // remember sp
  2610   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  2611   __ andptr(rsp, -16); // align stack as required by ABI
  2612   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  2613   __ mov(rsp, r12); // restore sp
  2614   __ reinit_heapbase();
  2615   restore_native_result(masm, ret_type, stack_slots);
  2616   // and continue
  2617   __ jmp(reguard_done);
  2621   __ flush();
  2623   nmethod *nm = nmethod::new_native_nmethod(method,
  2624                                             compile_id,
  2625                                             masm->code(),
  2626                                             vep_offset,
  2627                                             frame_complete,
  2628                                             stack_slots / VMRegImpl::slots_per_word,
  2629                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2630                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  2631                                             oop_maps);
  2633   if (is_critical_native) {
  2634     nm->set_lazy_critical_native(true);
  2637   return nm;
  2641 #ifdef HAVE_DTRACE_H
  2642 // ---------------------------------------------------------------------------
  2643 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2644 // in the Java compiled code convention, marshals them to the native
  2645 // abi and then leaves nops at the position you would expect to call a native
  2646 // function. When the probe is enabled the nops are replaced with a trap
  2647 // instruction that dtrace inserts and the trace will cause a notification
  2648 // to dtrace.
  2649 //
  2650 // The probes are only able to take primitive types and java/lang/String as
  2651 // arguments.  No other java types are allowed. Strings are converted to utf8
  2652 // strings so that from dtrace point of view java strings are converted to C
  2653 // strings. There is an arbitrary fixed limit on the total space that a method
  2654 // can use for converting the strings. (256 chars per string in the signature).
  2655 // So any java string larger then this is truncated.
  2657 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  2658 static bool offsets_initialized = false;
  2661 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
  2662                                                 methodHandle method) {
  2665   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2666   // be single threaded in this method.
  2667   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2669   if (!offsets_initialized) {
  2670     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
  2671     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
  2672     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
  2673     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
  2674     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
  2675     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
  2677     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
  2678     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
  2679     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
  2680     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
  2681     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
  2682     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
  2683     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
  2684     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
  2686     offsets_initialized = true;
  2688   // Fill in the signature array, for the calling-convention call.
  2689   int total_args_passed = method->size_of_parameters();
  2691   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2692   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2694   // The signature we are going to use for the trap that dtrace will see
  2695   // java/lang/String is converted. We drop "this" and any other object
  2696   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2697   // is converted to a two-slot long, which is why we double the allocation).
  2698   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2699   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2701   int i=0;
  2702   int total_strings = 0;
  2703   int first_arg_to_pass = 0;
  2704   int total_c_args = 0;
  2706   // Skip the receiver as dtrace doesn't want to see it
  2707   if( !method->is_static() ) {
  2708     in_sig_bt[i++] = T_OBJECT;
  2709     first_arg_to_pass = 1;
  2712   // We need to convert the java args to where a native (non-jni) function
  2713   // would expect them. To figure out where they go we convert the java
  2714   // signature to a C signature.
  2716   SignatureStream ss(method->signature());
  2717   for ( ; !ss.at_return_type(); ss.next()) {
  2718     BasicType bt = ss.type();
  2719     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2720     out_sig_bt[total_c_args++] = bt;
  2721     if( bt == T_OBJECT) {
  2722       Symbol* s = ss.as_symbol_or_null();   // symbol is created
  2723       if (s == vmSymbols::java_lang_String()) {
  2724         total_strings++;
  2725         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2726       } else if (s == vmSymbols::java_lang_Boolean() ||
  2727                  s == vmSymbols::java_lang_Character() ||
  2728                  s == vmSymbols::java_lang_Byte() ||
  2729                  s == vmSymbols::java_lang_Short() ||
  2730                  s == vmSymbols::java_lang_Integer() ||
  2731                  s == vmSymbols::java_lang_Float()) {
  2732         out_sig_bt[total_c_args-1] = T_INT;
  2733       } else if (s == vmSymbols::java_lang_Long() ||
  2734                  s == vmSymbols::java_lang_Double()) {
  2735         out_sig_bt[total_c_args-1] = T_LONG;
  2736         out_sig_bt[total_c_args++] = T_VOID;
  2738     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2739       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2740       // We convert double to long
  2741       out_sig_bt[total_c_args-1] = T_LONG;
  2742       out_sig_bt[total_c_args++] = T_VOID;
  2743     } else if ( bt == T_FLOAT) {
  2744       // We convert float to int
  2745       out_sig_bt[total_c_args-1] = T_INT;
  2749   assert(i==total_args_passed, "validly parsed signature");
  2751   // Now get the compiled-Java layout as input arguments
  2752   int comp_args_on_stack;
  2753   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2754       in_sig_bt, in_regs, total_args_passed, false);
  2756   // Now figure out where the args must be stored and how much stack space
  2757   // they require (neglecting out_preserve_stack_slots but space for storing
  2758   // the 1st six register arguments). It's weird see int_stk_helper.
  2760   int out_arg_slots;
  2761   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2763   // Calculate the total number of stack slots we will need.
  2765   // First count the abi requirement plus all of the outgoing args
  2766   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2768   // Now space for the string(s) we must convert
  2769   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  2770   for (i = 0; i < total_strings ; i++) {
  2771     string_locs[i] = stack_slots;
  2772     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  2775   // Plus the temps we might need to juggle register args
  2776   // regs take two slots each
  2777   stack_slots += (Argument::n_int_register_parameters_c +
  2778                   Argument::n_float_register_parameters_c) * 2;
  2781   // + 4 for return address (which we own) and saved rbp,
  2783   stack_slots += 4;
  2785   // Ok The space we have allocated will look like:
  2786   //
  2787   //
  2788   // FP-> |                     |
  2789   //      |---------------------|
  2790   //      | string[n]           |
  2791   //      |---------------------| <- string_locs[n]
  2792   //      | string[n-1]         |
  2793   //      |---------------------| <- string_locs[n-1]
  2794   //      | ...                 |
  2795   //      | ...                 |
  2796   //      |---------------------| <- string_locs[1]
  2797   //      | string[0]           |
  2798   //      |---------------------| <- string_locs[0]
  2799   //      | outbound memory     |
  2800   //      | based arguments     |
  2801   //      |                     |
  2802   //      |---------------------|
  2803   //      |                     |
  2804   // SP-> | out_preserved_slots |
  2805   //
  2806   //
  2808   // Now compute actual number of stack words we need rounding to make
  2809   // stack properly aligned.
  2810   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2812   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2814   intptr_t start = (intptr_t)__ pc();
  2816   // First thing make an ic check to see if we should even be here
  2818   // We are free to use all registers as temps without saving them and
  2819   // restoring them except rbp. rbp, is the only callee save register
  2820   // as far as the interpreter and the compiler(s) are concerned.
  2822   const Register ic_reg = rax;
  2823   const Register receiver = rcx;
  2824   Label hit;
  2825   Label exception_pending;
  2828   __ verify_oop(receiver);
  2829   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2830   __ jcc(Assembler::equal, hit);
  2832   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2834   // verified entry must be aligned for code patching.
  2835   // and the first 5 bytes must be in the same cache line
  2836   // if we align at 8 then we will be sure 5 bytes are in the same line
  2837   __ align(8);
  2839   __ bind(hit);
  2841   int vep_offset = ((intptr_t)__ pc()) - start;
  2844   // The instruction at the verified entry point must be 5 bytes or longer
  2845   // because it can be patched on the fly by make_non_entrant. The stack bang
  2846   // instruction fits that requirement.
  2848   // Generate stack overflow check
  2850   if (UseStackBanging) {
  2851     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2852       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2853     } else {
  2854       __ movl(rax, stack_size);
  2855       __ bang_stack_size(rax, rbx);
  2857   } else {
  2858     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2859     __ fat_nop();
  2862   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
  2863          "valid size for make_non_entrant");
  2865   // Generate a new frame for the wrapper.
  2866   __ enter();
  2868   // -4 because return address is already present and so is saved rbp,
  2869   if (stack_size - 2*wordSize != 0) {
  2870     __ subq(rsp, stack_size - 2*wordSize);
  2873   // Frame is now completed as far a size and linkage.
  2875   int frame_complete = ((intptr_t)__ pc()) - start;
  2877   int c_arg, j_arg;
  2879   // State of input register args
  2881   bool  live[ConcreteRegisterImpl::number_of_registers];
  2883   live[j_rarg0->as_VMReg()->value()] = false;
  2884   live[j_rarg1->as_VMReg()->value()] = false;
  2885   live[j_rarg2->as_VMReg()->value()] = false;
  2886   live[j_rarg3->as_VMReg()->value()] = false;
  2887   live[j_rarg4->as_VMReg()->value()] = false;
  2888   live[j_rarg5->as_VMReg()->value()] = false;
  2890   live[j_farg0->as_VMReg()->value()] = false;
  2891   live[j_farg1->as_VMReg()->value()] = false;
  2892   live[j_farg2->as_VMReg()->value()] = false;
  2893   live[j_farg3->as_VMReg()->value()] = false;
  2894   live[j_farg4->as_VMReg()->value()] = false;
  2895   live[j_farg5->as_VMReg()->value()] = false;
  2896   live[j_farg6->as_VMReg()->value()] = false;
  2897   live[j_farg7->as_VMReg()->value()] = false;
  2900   bool rax_is_zero = false;
  2902   // All args (except strings) destined for the stack are moved first
  2903   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2904        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2905     VMRegPair src = in_regs[j_arg];
  2906     VMRegPair dst = out_regs[c_arg];
  2908     // Get the real reg value or a dummy (rsp)
  2910     int src_reg = src.first()->is_reg() ?
  2911                   src.first()->value() :
  2912                   rsp->as_VMReg()->value();
  2914     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2915                     (in_sig_bt[j_arg] == T_OBJECT &&
  2916                      out_sig_bt[c_arg] != T_INT &&
  2917                      out_sig_bt[c_arg] != T_ADDRESS &&
  2918                      out_sig_bt[c_arg] != T_LONG);
  2920     live[src_reg] = !useless;
  2922     if (dst.first()->is_stack()) {
  2924       // Even though a string arg in a register is still live after this loop
  2925       // after the string conversion loop (next) it will be dead so we take
  2926       // advantage of that now for simpler code to manage live.
  2928       live[src_reg] = false;
  2929       switch (in_sig_bt[j_arg]) {
  2931         case T_ARRAY:
  2932         case T_OBJECT:
  2934             Address stack_dst(rsp, reg2offset_out(dst.first()));
  2936             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2937               // need to unbox a one-word value
  2938               Register in_reg = rax;
  2939               if ( src.first()->is_reg() ) {
  2940                 in_reg = src.first()->as_Register();
  2941               } else {
  2942                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  2943                 rax_is_zero = false;
  2945               Label skipUnbox;
  2946               __ movptr(Address(rsp, reg2offset_out(dst.first())),
  2947                         (int32_t)NULL_WORD);
  2948               __ testq(in_reg, in_reg);
  2949               __ jcc(Assembler::zero, skipUnbox);
  2951               BasicType bt = out_sig_bt[c_arg];
  2952               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2953               Address src1(in_reg, box_offset);
  2954               if ( bt == T_LONG ) {
  2955                 __ movq(in_reg,  src1);
  2956                 __ movq(stack_dst, in_reg);
  2957                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2958                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2959               } else {
  2960                 __ movl(in_reg,  src1);
  2961                 __ movl(stack_dst, in_reg);
  2964               __ bind(skipUnbox);
  2965             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  2966               // Convert the arg to NULL
  2967               if (!rax_is_zero) {
  2968                 __ xorq(rax, rax);
  2969                 rax_is_zero = true;
  2971               __ movq(stack_dst, rax);
  2974           break;
  2976         case T_VOID:
  2977           break;
  2979         case T_FLOAT:
  2980           // This does the right thing since we know it is destined for the
  2981           // stack
  2982           float_move(masm, src, dst);
  2983           break;
  2985         case T_DOUBLE:
  2986           // This does the right thing since we know it is destined for the
  2987           // stack
  2988           double_move(masm, src, dst);
  2989           break;
  2991         case T_LONG :
  2992           long_move(masm, src, dst);
  2993           break;
  2995         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2997         default:
  2998           move32_64(masm, src, dst);
  3004   // If we have any strings we must store any register based arg to the stack
  3005   // This includes any still live xmm registers too.
  3007   int sid = 0;
  3009   if (total_strings > 0 ) {
  3010     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  3011          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  3012       VMRegPair src = in_regs[j_arg];
  3013       VMRegPair dst = out_regs[c_arg];
  3015       if (src.first()->is_reg()) {
  3016         Address src_tmp(rbp, fp_offset[src.first()->value()]);
  3018         // string oops were left untouched by the previous loop even if the
  3019         // eventual (converted) arg is destined for the stack so park them
  3020         // away now (except for first)
  3022         if (out_sig_bt[c_arg] == T_ADDRESS) {
  3023           Address utf8_addr = Address(
  3024               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  3025           if (sid != 1) {
  3026             // The first string arg won't be killed until after the utf8
  3027             // conversion
  3028             __ movq(utf8_addr, src.first()->as_Register());
  3030         } else if (dst.first()->is_reg()) {
  3031           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
  3033             // Convert the xmm register to an int and store it in the reserved
  3034             // location for the eventual c register arg
  3035             XMMRegister f = src.first()->as_XMMRegister();
  3036             if (in_sig_bt[j_arg] == T_FLOAT) {
  3037               __ movflt(src_tmp, f);
  3038             } else {
  3039               __ movdbl(src_tmp, f);
  3041           } else {
  3042             // If the arg is an oop type we don't support don't bother to store
  3043             // it remember string was handled above.
  3044             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  3045                             (in_sig_bt[j_arg] == T_OBJECT &&
  3046                              out_sig_bt[c_arg] != T_INT &&
  3047                              out_sig_bt[c_arg] != T_LONG);
  3049             if (!useless) {
  3050               __ movq(src_tmp, src.first()->as_Register());
  3055       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  3056         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3057         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  3061     // Now that the volatile registers are safe, convert all the strings
  3062     sid = 0;
  3064     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  3065          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  3066       if (out_sig_bt[c_arg] == T_ADDRESS) {
  3067         // It's a string
  3068         Address utf8_addr = Address(
  3069             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  3070         // The first string we find might still be in the original java arg
  3071         // register
  3073         VMReg src = in_regs[j_arg].first();
  3075         // We will need to eventually save the final argument to the trap
  3076         // in the von-volatile location dedicated to src. This is the offset
  3077         // from fp we will use.
  3078         int src_off = src->is_reg() ?
  3079             fp_offset[src->value()] : reg2offset_in(src);
  3081         // This is where the argument will eventually reside
  3082         VMRegPair dst = out_regs[c_arg];
  3084         if (src->is_reg()) {
  3085           if (sid == 1) {
  3086             __ movq(c_rarg0, src->as_Register());
  3087           } else {
  3088             __ movq(c_rarg0, utf8_addr);
  3090         } else {
  3091           // arg is still in the original location
  3092           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
  3094         Label done, convert;
  3096         // see if the oop is NULL
  3097         __ testq(c_rarg0, c_rarg0);
  3098         __ jcc(Assembler::notEqual, convert);
  3100         if (dst.first()->is_reg()) {
  3101           // Save the ptr to utf string in the origina src loc or the tmp
  3102           // dedicated to it
  3103           __ movq(Address(rbp, src_off), c_rarg0);
  3104         } else {
  3105           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
  3107         __ jmp(done);
  3109         __ bind(convert);
  3111         __ lea(c_rarg1, utf8_addr);
  3112         if (dst.first()->is_reg()) {
  3113           __ movq(Address(rbp, src_off), c_rarg1);
  3114         } else {
  3115           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
  3117         // And do the conversion
  3118         __ call(RuntimeAddress(
  3119                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
  3121         __ bind(done);
  3123       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  3124         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3125         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  3128     // The get_utf call killed all the c_arg registers
  3129     live[c_rarg0->as_VMReg()->value()] = false;
  3130     live[c_rarg1->as_VMReg()->value()] = false;
  3131     live[c_rarg2->as_VMReg()->value()] = false;
  3132     live[c_rarg3->as_VMReg()->value()] = false;
  3133     live[c_rarg4->as_VMReg()->value()] = false;
  3134     live[c_rarg5->as_VMReg()->value()] = false;
  3136     live[c_farg0->as_VMReg()->value()] = false;
  3137     live[c_farg1->as_VMReg()->value()] = false;
  3138     live[c_farg2->as_VMReg()->value()] = false;
  3139     live[c_farg3->as_VMReg()->value()] = false;
  3140     live[c_farg4->as_VMReg()->value()] = false;
  3141     live[c_farg5->as_VMReg()->value()] = false;
  3142     live[c_farg6->as_VMReg()->value()] = false;
  3143     live[c_farg7->as_VMReg()->value()] = false;
  3146   // Now we can finally move the register args to their desired locations
  3148   rax_is_zero = false;
  3150   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  3151        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  3153     VMRegPair src = in_regs[j_arg];
  3154     VMRegPair dst = out_regs[c_arg];
  3156     // Only need to look for args destined for the interger registers (since we
  3157     // convert float/double args to look like int/long outbound)
  3158     if (dst.first()->is_reg()) {
  3159       Register r =  dst.first()->as_Register();
  3161       // Check if the java arg is unsupported and thereofre useless
  3162       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  3163                       (in_sig_bt[j_arg] == T_OBJECT &&
  3164                        out_sig_bt[c_arg] != T_INT &&
  3165                        out_sig_bt[c_arg] != T_ADDRESS &&
  3166                        out_sig_bt[c_arg] != T_LONG);
  3169       // If we're going to kill an existing arg save it first
  3170       if (live[dst.first()->value()]) {
  3171         // you can't kill yourself
  3172         if (src.first() != dst.first()) {
  3173           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
  3176       if (src.first()->is_reg()) {
  3177         if (live[src.first()->value()] ) {
  3178           if (in_sig_bt[j_arg] == T_FLOAT) {
  3179             __ movdl(r, src.first()->as_XMMRegister());
  3180           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
  3181             __ movdq(r, src.first()->as_XMMRegister());
  3182           } else if (r != src.first()->as_Register()) {
  3183             if (!useless) {
  3184               __ movq(r, src.first()->as_Register());
  3187         } else {
  3188           // If the arg is an oop type we don't support don't bother to store
  3189           // it
  3190           if (!useless) {
  3191             if (in_sig_bt[j_arg] == T_DOUBLE ||
  3192                 in_sig_bt[j_arg] == T_LONG  ||
  3193                 in_sig_bt[j_arg] == T_OBJECT ) {
  3194               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
  3195             } else {
  3196               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
  3200         live[src.first()->value()] = false;
  3201       } else if (!useless) {
  3202         // full sized move even for int should be ok
  3203         __ movq(r, Address(rbp, reg2offset_in(src.first())));
  3206       // At this point r has the original java arg in the final location
  3207       // (assuming it wasn't useless). If the java arg was an oop
  3208       // we have a bit more to do
  3210       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
  3211         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  3212           // need to unbox a one-word value
  3213           Label skip;
  3214           __ testq(r, r);
  3215           __ jcc(Assembler::equal, skip);
  3216           BasicType bt = out_sig_bt[c_arg];
  3217           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  3218           Address src1(r, box_offset);
  3219           if ( bt == T_LONG ) {
  3220             __ movq(r, src1);
  3221           } else {
  3222             __ movl(r, src1);
  3224           __ bind(skip);
  3226         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  3227           // Convert the arg to NULL
  3228           __ xorq(r, r);
  3232       // dst can longer be holding an input value
  3233       live[dst.first()->value()] = false;
  3235     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  3236       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3237       ++c_arg; // skip over T_VOID to keep the loop indices in sync
  3242   // Ok now we are done. Need to place the nop that dtrace wants in order to
  3243   // patch in the trap
  3244   int patch_offset = ((intptr_t)__ pc()) - start;
  3246   __ nop();
  3249   // Return
  3251   __ leave();
  3252   __ ret(0);
  3254   __ flush();
  3256   nmethod *nm = nmethod::new_dtrace_nmethod(
  3257       method, masm->code(), vep_offset, patch_offset, frame_complete,
  3258       stack_slots / VMRegImpl::slots_per_word);
  3259   return nm;
  3263 #endif // HAVE_DTRACE_H
  3265 // this function returns the adjust size (in number of words) to a c2i adapter
  3266 // activation for use during deoptimization
  3267 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  3268   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  3272 uint SharedRuntime::out_preserve_stack_slots() {
  3273   return 0;
  3276 //------------------------------generate_deopt_blob----------------------------
  3277 void SharedRuntime::generate_deopt_blob() {
  3278   // Allocate space for the code
  3279   ResourceMark rm;
  3280   // Setup code generation tools
  3281   CodeBuffer buffer("deopt_blob", 2048, 1024);
  3282   MacroAssembler* masm = new MacroAssembler(&buffer);
  3283   int frame_size_in_words;
  3284   OopMap* map = NULL;
  3285   OopMapSet *oop_maps = new OopMapSet();
  3287   // -------------
  3288   // This code enters when returning to a de-optimized nmethod.  A return
  3289   // address has been pushed on the the stack, and return values are in
  3290   // registers.
  3291   // If we are doing a normal deopt then we were called from the patched
  3292   // nmethod from the point we returned to the nmethod. So the return
  3293   // address on the stack is wrong by NativeCall::instruction_size
  3294   // We will adjust the value so it looks like we have the original return
  3295   // address on the stack (like when we eagerly deoptimized).
  3296   // In the case of an exception pending when deoptimizing, we enter
  3297   // with a return address on the stack that points after the call we patched
  3298   // into the exception handler. We have the following register state from,
  3299   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
  3300   //    rax: exception oop
  3301   //    rbx: exception handler
  3302   //    rdx: throwing pc
  3303   // So in this case we simply jam rdx into the useless return address and
  3304   // the stack looks just like we want.
  3305   //
  3306   // At this point we need to de-opt.  We save the argument return
  3307   // registers.  We call the first C routine, fetch_unroll_info().  This
  3308   // routine captures the return values and returns a structure which
  3309   // describes the current frame size and the sizes of all replacement frames.
  3310   // The current frame is compiled code and may contain many inlined
  3311   // functions, each with their own JVM state.  We pop the current frame, then
  3312   // push all the new frames.  Then we call the C routine unpack_frames() to
  3313   // populate these frames.  Finally unpack_frames() returns us the new target
  3314   // address.  Notice that callee-save registers are BLOWN here; they have
  3315   // already been captured in the vframeArray at the time the return PC was
  3316   // patched.
  3317   address start = __ pc();
  3318   Label cont;
  3320   // Prolog for non exception case!
  3322   // Save everything in sight.
  3323   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3325   // Normal deoptimization.  Save exec mode for unpack_frames.
  3326   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
  3327   __ jmp(cont);
  3329   int reexecute_offset = __ pc() - start;
  3331   // Reexecute case
  3332   // return address is the pc describes what bci to do re-execute at
  3334   // No need to update map as each call to save_live_registers will produce identical oopmap
  3335   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3337   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
  3338   __ jmp(cont);
  3340   int exception_offset = __ pc() - start;
  3342   // Prolog for exception case
  3344   // all registers are dead at this entry point, except for rax, and
  3345   // rdx which contain the exception oop and exception pc
  3346   // respectively.  Set them in TLS and fall thru to the
  3347   // unpack_with_exception_in_tls entry point.
  3349   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  3350   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
  3352   int exception_in_tls_offset = __ pc() - start;
  3354   // new implementation because exception oop is now passed in JavaThread
  3356   // Prolog for exception case
  3357   // All registers must be preserved because they might be used by LinearScan
  3358   // Exceptiop oop and throwing PC are passed in JavaThread
  3359   // tos: stack at point of call to method that threw the exception (i.e. only
  3360   // args are on the stack, no return address)
  3362   // make room on stack for the return address
  3363   // It will be patched later with the throwing pc. The correct value is not
  3364   // available now because loading it from memory would destroy registers.
  3365   __ push(0);
  3367   // Save everything in sight.
  3368   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3370   // Now it is safe to overwrite any register
  3372   // Deopt during an exception.  Save exec mode for unpack_frames.
  3373   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
  3375   // load throwing pc from JavaThread and patch it as the return address
  3376   // of the current frame. Then clear the field in JavaThread
  3378   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  3379   __ movptr(Address(rbp, wordSize), rdx);
  3380   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  3382 #ifdef ASSERT
  3383   // verify that there is really an exception oop in JavaThread
  3384   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  3385   __ verify_oop(rax);
  3387   // verify that there is no pending exception
  3388   Label no_pending_exception;
  3389   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  3390   __ testptr(rax, rax);
  3391   __ jcc(Assembler::zero, no_pending_exception);
  3392   __ stop("must not have pending exception here");
  3393   __ bind(no_pending_exception);
  3394 #endif
  3396   __ bind(cont);
  3398   // Call C code.  Need thread and this frame, but NOT official VM entry
  3399   // crud.  We cannot block on this call, no GC can happen.
  3400   //
  3401   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
  3403   // fetch_unroll_info needs to call last_java_frame().
  3405   __ set_last_Java_frame(noreg, noreg, NULL);
  3406 #ifdef ASSERT
  3407   { Label L;
  3408     __ cmpptr(Address(r15_thread,
  3409                     JavaThread::last_Java_fp_offset()),
  3410             (int32_t)0);
  3411     __ jcc(Assembler::equal, L);
  3412     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
  3413     __ bind(L);
  3415 #endif // ASSERT
  3416   __ mov(c_rarg0, r15_thread);
  3417   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  3419   // Need to have an oopmap that tells fetch_unroll_info where to
  3420   // find any register it might need.
  3421   oop_maps->add_gc_map(__ pc() - start, map);
  3423   __ reset_last_Java_frame(false, false);
  3425   // Load UnrollBlock* into rdi
  3426   __ mov(rdi, rax);
  3428    Label noException;
  3429   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
  3430   __ jcc(Assembler::notEqual, noException);
  3431   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  3432   // QQQ this is useless it was NULL above
  3433   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  3434   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
  3435   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  3437   __ verify_oop(rax);
  3439   // Overwrite the result registers with the exception results.
  3440   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3441   // I think this is useless
  3442   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
  3444   __ bind(noException);
  3446   // Only register save data is on the stack.
  3447   // Now restore the result registers.  Everything else is either dead
  3448   // or captured in the vframeArray.
  3449   RegisterSaver::restore_result_registers(masm);
  3451   // All of the register save area has been popped of the stack. Only the
  3452   // return address remains.
  3454   // Pop all the frames we must move/replace.
  3455   //
  3456   // Frame picture (youngest to oldest)
  3457   // 1: self-frame (no frame link)
  3458   // 2: deopting frame  (no frame link)
  3459   // 3: caller of deopting frame (could be compiled/interpreted).
  3460   //
  3461   // Note: by leaving the return address of self-frame on the stack
  3462   // and using the size of frame 2 to adjust the stack
  3463   // when we are done the return to frame 3 will still be on the stack.
  3465   // Pop deoptimized frame
  3466   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  3467   __ addptr(rsp, rcx);
  3469   // rsp should be pointing at the return address to the caller (3)
  3471   // Stack bang to make sure there's enough room for these interpreter frames.
  3472   if (UseStackBanging) {
  3473     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3474     __ bang_stack_size(rbx, rcx);
  3477   // Load address of array of frame pcs into rcx
  3478   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3480   // Trash the old pc
  3481   __ addptr(rsp, wordSize);
  3483   // Load address of array of frame sizes into rsi
  3484   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  3486   // Load counter into rdx
  3487   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  3489   // Pick up the initial fp we should save
  3490   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3492   // Now adjust the caller's stack to make up for the extra locals
  3493   // but record the original sp so that we can save it in the skeletal interpreter
  3494   // frame and the stack walking of interpreter_sender will get the unextended sp
  3495   // value and not the "real" sp value.
  3497   const Register sender_sp = r8;
  3499   __ mov(sender_sp, rsp);
  3500   __ movl(rbx, Address(rdi,
  3501                        Deoptimization::UnrollBlock::
  3502                        caller_adjustment_offset_in_bytes()));
  3503   __ subptr(rsp, rbx);
  3505   // Push interpreter frames in a loop
  3506   Label loop;
  3507   __ bind(loop);
  3508   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  3509 #ifdef CC_INTERP
  3510   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  3511 #ifdef ASSERT
  3512   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  3513   __ push(0xDEADDEAD);
  3514 #else /* ASSERT */
  3515   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  3516 #endif /* ASSERT */
  3517 #else
  3518   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
  3519 #endif // CC_INTERP
  3520   __ pushptr(Address(rcx, 0));          // Save return address
  3521   __ enter();                           // Save old & set new ebp
  3522   __ subptr(rsp, rbx);                  // Prolog
  3523 #ifdef CC_INTERP
  3524   __ movptr(Address(rbp,
  3525                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3526             sender_sp); // Make it walkable
  3527 #else /* CC_INTERP */
  3528   // This value is corrected by layout_activation_impl
  3529   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  3530   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
  3531 #endif /* CC_INTERP */
  3532   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
  3533   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  3534   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  3535   __ decrementl(rdx);                   // Decrement counter
  3536   __ jcc(Assembler::notZero, loop);
  3537   __ pushptr(Address(rcx, 0));          // Save final return address
  3539   // Re-push self-frame
  3540   __ enter();                           // Save old & set new ebp
  3542   // Allocate a full sized register save area.
  3543   // Return address and rbp are in place, so we allocate two less words.
  3544   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
  3546   // Restore frame locals after moving the frame
  3547   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
  3548   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3550   // Call C code.  Need thread but NOT official VM entry
  3551   // crud.  We cannot block on this call, no GC can happen.  Call should
  3552   // restore return values to their stack-slots with the new SP.
  3553   //
  3554   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
  3556   // Use rbp because the frames look interpreted now
  3557   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
  3558   // Don't need the precise return PC here, just precise enough to point into this code blob.
  3559   address the_pc = __ pc();
  3560   __ set_last_Java_frame(noreg, rbp, the_pc);
  3562   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
  3563   __ mov(c_rarg0, r15_thread);
  3564   __ movl(c_rarg1, r14); // second arg: exec_mode
  3565   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3566   // Revert SP alignment after call since we're going to do some SP relative addressing below
  3567   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
  3569   // Set an oopmap for the call site
  3570   // Use the same PC we used for the last java frame
  3571   oop_maps->add_gc_map(the_pc - start,
  3572                        new OopMap( frame_size_in_words, 0 ));
  3574   // Clear fp AND pc
  3575   __ reset_last_Java_frame(true, true);
  3577   // Collect return values
  3578   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
  3579   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
  3580   // I think this is useless (throwing pc?)
  3581   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
  3583   // Pop self-frame.
  3584   __ leave();                           // Epilog
  3586   // Jump to interpreter
  3587   __ ret(0);
  3589   // Make sure all code is generated
  3590   masm->flush();
  3592   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  3593   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3596 #ifdef COMPILER2
  3597 //------------------------------generate_uncommon_trap_blob--------------------
  3598 void SharedRuntime::generate_uncommon_trap_blob() {
  3599   // Allocate space for the code
  3600   ResourceMark rm;
  3601   // Setup code generation tools
  3602   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
  3603   MacroAssembler* masm = new MacroAssembler(&buffer);
  3605   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  3607   address start = __ pc();
  3609   // Push self-frame.  We get here with a return address on the
  3610   // stack, so rsp is 8-byte aligned until we allocate our frame.
  3611   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
  3613   // No callee saved registers. rbp is assumed implicitly saved
  3614   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  3616   // compiler left unloaded_class_index in j_rarg0 move to where the
  3617   // runtime expects it.
  3618   __ movl(c_rarg1, j_rarg0);
  3620   __ set_last_Java_frame(noreg, noreg, NULL);
  3622   // Call C code.  Need thread but NOT official VM entry
  3623   // crud.  We cannot block on this call, no GC can happen.  Call should
  3624   // capture callee-saved registers as well as return values.
  3625   // Thread is in rdi already.
  3626   //
  3627   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
  3629   __ mov(c_rarg0, r15_thread);
  3630   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  3632   // Set an oopmap for the call site
  3633   OopMapSet* oop_maps = new OopMapSet();
  3634   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
  3636   // location of rbp is known implicitly by the frame sender code
  3638   oop_maps->add_gc_map(__ pc() - start, map);
  3640   __ reset_last_Java_frame(false, false);
  3642   // Load UnrollBlock* into rdi
  3643   __ mov(rdi, rax);
  3645   // Pop all the frames we must move/replace.
  3646   //
  3647   // Frame picture (youngest to oldest)
  3648   // 1: self-frame (no frame link)
  3649   // 2: deopting frame  (no frame link)
  3650   // 3: caller of deopting frame (could be compiled/interpreted).
  3652   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
  3653   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
  3655   // Pop deoptimized frame (int)
  3656   __ movl(rcx, Address(rdi,
  3657                        Deoptimization::UnrollBlock::
  3658                        size_of_deoptimized_frame_offset_in_bytes()));
  3659   __ addptr(rsp, rcx);
  3661   // rsp should be pointing at the return address to the caller (3)
  3663   // Stack bang to make sure there's enough room for these interpreter frames.
  3664   if (UseStackBanging) {
  3665     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3666     __ bang_stack_size(rbx, rcx);
  3669   // Load address of array of frame pcs into rcx (address*)
  3670   __ movptr(rcx,
  3671             Address(rdi,
  3672                     Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3674   // Trash the return pc
  3675   __ addptr(rsp, wordSize);
  3677   // Load address of array of frame sizes into rsi (intptr_t*)
  3678   __ movptr(rsi, Address(rdi,
  3679                          Deoptimization::UnrollBlock::
  3680                          frame_sizes_offset_in_bytes()));
  3682   // Counter
  3683   __ movl(rdx, Address(rdi,
  3684                        Deoptimization::UnrollBlock::
  3685                        number_of_frames_offset_in_bytes())); // (int)
  3687   // Pick up the initial fp we should save
  3688   __ movptr(rbp,
  3689             Address(rdi,
  3690                     Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3692   // Now adjust the caller's stack to make up for the extra locals but
  3693   // record the original sp so that we can save it in the skeletal
  3694   // interpreter frame and the stack walking of interpreter_sender
  3695   // will get the unextended sp value and not the "real" sp value.
  3697   const Register sender_sp = r8;
  3699   __ mov(sender_sp, rsp);
  3700   __ movl(rbx, Address(rdi,
  3701                        Deoptimization::UnrollBlock::
  3702                        caller_adjustment_offset_in_bytes())); // (int)
  3703   __ subptr(rsp, rbx);
  3705   // Push interpreter frames in a loop
  3706   Label loop;
  3707   __ bind(loop);
  3708   __ movptr(rbx, Address(rsi, 0)); // Load frame size
  3709   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
  3710   __ pushptr(Address(rcx, 0));     // Save return address
  3711   __ enter();                      // Save old & set new rbp
  3712   __ subptr(rsp, rbx);             // Prolog
  3713 #ifdef CC_INTERP
  3714   __ movptr(Address(rbp,
  3715                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3716             sender_sp); // Make it walkable
  3717 #else // CC_INTERP
  3718   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
  3719             sender_sp);            // Make it walkable
  3720   // This value is corrected by layout_activation_impl
  3721   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  3722 #endif // CC_INTERP
  3723   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
  3724   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
  3725   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
  3726   __ decrementl(rdx);              // Decrement counter
  3727   __ jcc(Assembler::notZero, loop);
  3728   __ pushptr(Address(rcx, 0));     // Save final return address
  3730   // Re-push self-frame
  3731   __ enter();                 // Save old & set new rbp
  3732   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
  3733                               // Prolog
  3735   // Use rbp because the frames look interpreted now
  3736   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
  3737   // Don't need the precise return PC here, just precise enough to point into this code blob.
  3738   address the_pc = __ pc();
  3739   __ set_last_Java_frame(noreg, rbp, the_pc);
  3741   // Call C code.  Need thread but NOT official VM entry
  3742   // crud.  We cannot block on this call, no GC can happen.  Call should
  3743   // restore return values to their stack-slots with the new SP.
  3744   // Thread is in rdi already.
  3745   //
  3746   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
  3748   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
  3749   __ mov(c_rarg0, r15_thread);
  3750   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
  3751   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3753   // Set an oopmap for the call site
  3754   // Use the same PC we used for the last java frame
  3755   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  3757   // Clear fp AND pc
  3758   __ reset_last_Java_frame(true, true);
  3760   // Pop self-frame.
  3761   __ leave();                 // Epilog
  3763   // Jump to interpreter
  3764   __ ret(0);
  3766   // Make sure all code is generated
  3767   masm->flush();
  3769   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
  3770                                                  SimpleRuntimeFrame::framesize >> 1);
  3772 #endif // COMPILER2
  3775 //------------------------------generate_handler_blob------
  3776 //
  3777 // Generate a special Compile2Runtime blob that saves all registers,
  3778 // and setup oopmap.
  3779 //
  3780 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
  3781   assert(StubRoutines::forward_exception_entry() != NULL,
  3782          "must be generated before");
  3784   ResourceMark rm;
  3785   OopMapSet *oop_maps = new OopMapSet();
  3786   OopMap* map;
  3788   // Allocate space for the code.  Setup code generation tools.
  3789   CodeBuffer buffer("handler_blob", 2048, 1024);
  3790   MacroAssembler* masm = new MacroAssembler(&buffer);
  3792   address start   = __ pc();
  3793   address call_pc = NULL;
  3794   int frame_size_in_words;
  3795   bool cause_return = (poll_type == POLL_AT_RETURN);
  3796   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
  3798   // Make room for return address (or push it again)
  3799   if (!cause_return) {
  3800     __ push(rbx);
  3803   // Save registers, fpu state, and flags
  3804   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
  3806   // The following is basically a call_VM.  However, we need the precise
  3807   // address of the call in order to generate an oopmap. Hence, we do all the
  3808   // work outselves.
  3810   __ set_last_Java_frame(noreg, noreg, NULL);
  3812   // The return address must always be correct so that frame constructor never
  3813   // sees an invalid pc.
  3815   if (!cause_return) {
  3816     // overwrite the dummy value we pushed on entry
  3817     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
  3818     __ movptr(Address(rbp, wordSize), c_rarg0);
  3821   // Do the call
  3822   __ mov(c_rarg0, r15_thread);
  3823   __ call(RuntimeAddress(call_ptr));
  3825   // Set an oopmap for the call site.  This oopmap will map all
  3826   // oop-registers and debug-info registers as callee-saved.  This
  3827   // will allow deoptimization at this safepoint to find all possible
  3828   // debug-info recordings, as well as let GC find all oops.
  3830   oop_maps->add_gc_map( __ pc() - start, map);
  3832   Label noException;
  3834   __ reset_last_Java_frame(false, false);
  3836   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3837   __ jcc(Assembler::equal, noException);
  3839   // Exception pending
  3841   RegisterSaver::restore_live_registers(masm, save_vectors);
  3843   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3845   // No exception case
  3846   __ bind(noException);
  3848   // Normal exit, restore registers and exit.
  3849   RegisterSaver::restore_live_registers(masm, save_vectors);
  3851   __ ret(0);
  3853   // Make sure all code is generated
  3854   masm->flush();
  3856   // Fill-out other meta info
  3857   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  3860 //
  3861 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3862 //
  3863 // Generate a stub that calls into vm to find out the proper destination
  3864 // of a java call. All the argument registers are live at this point
  3865 // but since this is generic code we don't know what they are and the caller
  3866 // must do any gc of the args.
  3867 //
  3868 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3869   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3871   // allocate space for the code
  3872   ResourceMark rm;
  3874   CodeBuffer buffer(name, 1000, 512);
  3875   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3877   int frame_size_in_words;
  3879   OopMapSet *oop_maps = new OopMapSet();
  3880   OopMap* map = NULL;
  3882   int start = __ offset();
  3884   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3886   int frame_complete = __ offset();
  3888   __ set_last_Java_frame(noreg, noreg, NULL);
  3890   __ mov(c_rarg0, r15_thread);
  3892   __ call(RuntimeAddress(destination));
  3895   // Set an oopmap for the call site.
  3896   // We need this not only for callee-saved registers, but also for volatile
  3897   // registers that the compiler might be keeping live across a safepoint.
  3899   oop_maps->add_gc_map( __ offset() - start, map);
  3901   // rax contains the address we are going to jump to assuming no exception got installed
  3903   // clear last_Java_sp
  3904   __ reset_last_Java_frame(false, false);
  3905   // check for pending exceptions
  3906   Label pending;
  3907   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3908   __ jcc(Assembler::notEqual, pending);
  3910   // get the returned Method*
  3911   __ get_vm_result_2(rbx, r15_thread);
  3912   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
  3914   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3916   RegisterSaver::restore_live_registers(masm);
  3918   // We are back the the original state on entry and ready to go.
  3920   __ jmp(rax);
  3922   // Pending exception after the safepoint
  3924   __ bind(pending);
  3926   RegisterSaver::restore_live_registers(masm);
  3928   // exception pending => remove activation and forward to exception handler
  3930   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
  3932   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  3933   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3935   // -------------
  3936   // make sure all code is generated
  3937   masm->flush();
  3939   // return the  blob
  3940   // frame_size_words or bytes??
  3941   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
  3945 #ifdef COMPILER2
  3946 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
  3947 //
  3948 //------------------------------generate_exception_blob---------------------------
  3949 // creates exception blob at the end
  3950 // Using exception blob, this code is jumped from a compiled method.
  3951 // (see emit_exception_handler in x86_64.ad file)
  3952 //
  3953 // Given an exception pc at a call we call into the runtime for the
  3954 // handler in this method. This handler might merely restore state
  3955 // (i.e. callee save registers) unwind the frame and jump to the
  3956 // exception handler for the nmethod if there is no Java level handler
  3957 // for the nmethod.
  3958 //
  3959 // This code is entered with a jmp.
  3960 //
  3961 // Arguments:
  3962 //   rax: exception oop
  3963 //   rdx: exception pc
  3964 //
  3965 // Results:
  3966 //   rax: exception oop
  3967 //   rdx: exception pc in caller or ???
  3968 //   destination: exception handler of caller
  3969 //
  3970 // Note: the exception pc MUST be at a call (precise debug information)
  3971 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
  3972 //
  3974 void OptoRuntime::generate_exception_blob() {
  3975   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
  3976   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
  3977   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
  3979   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  3981   // Allocate space for the code
  3982   ResourceMark rm;
  3983   // Setup code generation tools
  3984   CodeBuffer buffer("exception_blob", 2048, 1024);
  3985   MacroAssembler* masm = new MacroAssembler(&buffer);
  3988   address start = __ pc();
  3990   // Exception pc is 'return address' for stack walker
  3991   __ push(rdx);
  3992   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
  3994   // Save callee-saved registers.  See x86_64.ad.
  3996   // rbp is an implicitly saved callee saved register (i.e. the calling
  3997   // convention will save restore it in prolog/epilog) Other than that
  3998   // there are no callee save registers now that adapter frames are gone.
  4000   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  4002   // Store exception in Thread object. We cannot pass any arguments to the
  4003   // handle_exception call, since we do not want to make any assumption
  4004   // about the size of the frame where the exception happened in.
  4005   // c_rarg0 is either rdi (Linux) or rcx (Windows).
  4006   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
  4007   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  4009   // This call does all the hard work.  It checks if an exception handler
  4010   // exists in the method.
  4011   // If so, it returns the handler address.
  4012   // If not, it prepares for stack-unwinding, restoring the callee-save
  4013   // registers of the frame being removed.
  4014   //
  4015   // address OptoRuntime::handle_exception_C(JavaThread* thread)
  4017   // At a method handle call, the stack may not be properly aligned
  4018   // when returning with an exception.
  4019   address the_pc = __ pc();
  4020   __ set_last_Java_frame(noreg, noreg, the_pc);
  4021   __ mov(c_rarg0, r15_thread);
  4022   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
  4023   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
  4025   // Set an oopmap for the call site.  This oopmap will only be used if we
  4026   // are unwinding the stack.  Hence, all locations will be dead.
  4027   // Callee-saved registers will be the same as the frame above (i.e.,
  4028   // handle_exception_stub), since they were restored when we got the
  4029   // exception.
  4031   OopMapSet* oop_maps = new OopMapSet();
  4033   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  4035   __ reset_last_Java_frame(false, true);
  4037   // Restore callee-saved registers
  4039   // rbp is an implicitly saved callee saved register (i.e. the calling
  4040   // convention will save restore it in prolog/epilog) Other than that
  4041   // there are no callee save registers no that adapter frames are gone.
  4043   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
  4045   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
  4046   __ pop(rdx);                  // No need for exception pc anymore
  4048   // rax: exception handler
  4050   // Restore SP from BP if the exception PC is a MethodHandle call site.
  4051   __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
  4052   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
  4054   // We have a handler in rax (could be deopt blob).
  4055   __ mov(r8, rax);
  4057   // Get the exception oop
  4058   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  4059   // Get the exception pc in case we are deoptimized
  4060   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  4061 #ifdef ASSERT
  4062   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
  4063   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
  4064 #endif
  4065   // Clear the exception oop so GC no longer processes it as a root.
  4066   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
  4068   // rax: exception oop
  4069   // r8:  exception handler
  4070   // rdx: exception pc
  4071   // Jump to handler
  4073   __ jmp(r8);
  4075   // Make sure all code is generated
  4076   masm->flush();
  4078   // Set exception blob
  4079   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
  4081 #endif // COMPILER2

mercurial