src/share/vm/opto/library_call.cpp

Fri, 08 Jan 2010 11:09:46 +0100

author
twisti
date
Fri, 08 Jan 2010 11:09:46 +0100
changeset 1587
cd37471eaecc
parent 1462
39b01ab7035a
child 1831
d7f654633cfe
permissions
-rw-r--r--

6914206: change way of permission checking for generated MethodHandle adapters
Summary: Put generated MH adapter in InvokeDynamic/MethodHandle classes to be able to indentify them easily in the compiler.
Reviewed-by: kvn, never, jrose

     1 /*
     2  * Copyright 1999-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_library_call.cpp.incl"
    28 class LibraryIntrinsic : public InlineCallGenerator {
    29   // Extend the set of intrinsics known to the runtime:
    30  public:
    31  private:
    32   bool             _is_virtual;
    33   vmIntrinsics::ID _intrinsic_id;
    35  public:
    36   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    37     : InlineCallGenerator(m),
    38       _is_virtual(is_virtual),
    39       _intrinsic_id(id)
    40   {
    41   }
    42   virtual bool is_intrinsic() const { return true; }
    43   virtual bool is_virtual()   const { return _is_virtual; }
    44   virtual JVMState* generate(JVMState* jvms);
    45   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    46 };
    49 // Local helper class for LibraryIntrinsic:
    50 class LibraryCallKit : public GraphKit {
    51  private:
    52   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    54  public:
    55   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    56     : GraphKit(caller),
    57       _intrinsic(intrinsic)
    58   {
    59   }
    61   ciMethod*         caller()    const    { return jvms()->method(); }
    62   int               bci()       const    { return jvms()->bci(); }
    63   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    64   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    65   ciMethod*         callee()    const    { return _intrinsic->method(); }
    66   ciSignature*      signature() const    { return callee()->signature(); }
    67   int               arg_size()  const    { return callee()->arg_size(); }
    69   bool try_to_inline();
    71   // Helper functions to inline natives
    72   void push_result(RegionNode* region, PhiNode* value);
    73   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    74   Node* generate_slow_guard(Node* test, RegionNode* region);
    75   Node* generate_fair_guard(Node* test, RegionNode* region);
    76   Node* generate_negative_guard(Node* index, RegionNode* region,
    77                                 // resulting CastII of index:
    78                                 Node* *pos_index = NULL);
    79   Node* generate_nonpositive_guard(Node* index, bool never_negative,
    80                                    // resulting CastII of index:
    81                                    Node* *pos_index = NULL);
    82   Node* generate_limit_guard(Node* offset, Node* subseq_length,
    83                              Node* array_length,
    84                              RegionNode* region);
    85   Node* generate_current_thread(Node* &tls_output);
    86   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
    87                               bool disjoint_bases, const char* &name);
    88   Node* load_mirror_from_klass(Node* klass);
    89   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
    90                                       int nargs,
    91                                       RegionNode* region, int null_path,
    92                                       int offset);
    93   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
    94                                RegionNode* region, int null_path) {
    95     int offset = java_lang_Class::klass_offset_in_bytes();
    96     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
    97                                          region, null_path,
    98                                          offset);
    99   }
   100   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   101                                      int nargs,
   102                                      RegionNode* region, int null_path) {
   103     int offset = java_lang_Class::array_klass_offset_in_bytes();
   104     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   105                                          region, null_path,
   106                                          offset);
   107   }
   108   Node* generate_access_flags_guard(Node* kls,
   109                                     int modifier_mask, int modifier_bits,
   110                                     RegionNode* region);
   111   Node* generate_interface_guard(Node* kls, RegionNode* region);
   112   Node* generate_array_guard(Node* kls, RegionNode* region) {
   113     return generate_array_guard_common(kls, region, false, false);
   114   }
   115   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   116     return generate_array_guard_common(kls, region, false, true);
   117   }
   118   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   119     return generate_array_guard_common(kls, region, true, false);
   120   }
   121   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   122     return generate_array_guard_common(kls, region, true, true);
   123   }
   124   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   125                                     bool obj_array, bool not_array);
   126   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   127   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   128                                      bool is_virtual = false, bool is_static = false);
   129   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   130     return generate_method_call(method_id, false, true);
   131   }
   132   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   133     return generate_method_call(method_id, true, false);
   134   }
   136   Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
   137   bool inline_string_compareTo();
   138   bool inline_string_indexOf();
   139   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   140   bool inline_string_equals();
   141   Node* pop_math_arg();
   142   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   143   bool inline_math_native(vmIntrinsics::ID id);
   144   bool inline_trig(vmIntrinsics::ID id);
   145   bool inline_trans(vmIntrinsics::ID id);
   146   bool inline_abs(vmIntrinsics::ID id);
   147   bool inline_sqrt(vmIntrinsics::ID id);
   148   bool inline_pow(vmIntrinsics::ID id);
   149   bool inline_exp(vmIntrinsics::ID id);
   150   bool inline_min_max(vmIntrinsics::ID id);
   151   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   152   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   153   int classify_unsafe_addr(Node* &base, Node* &offset);
   154   Node* make_unsafe_address(Node* base, Node* offset);
   155   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   156   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   157   bool inline_unsafe_allocate();
   158   bool inline_unsafe_copyMemory();
   159   bool inline_native_currentThread();
   160   bool inline_native_time_funcs(bool isNano);
   161   bool inline_native_isInterrupted();
   162   bool inline_native_Class_query(vmIntrinsics::ID id);
   163   bool inline_native_subtype_check();
   165   bool inline_native_newArray();
   166   bool inline_native_getLength();
   167   bool inline_array_copyOf(bool is_copyOfRange);
   168   bool inline_array_equals();
   169   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   170   bool inline_native_clone(bool is_virtual);
   171   bool inline_native_Reflection_getCallerClass();
   172   bool inline_native_AtomicLong_get();
   173   bool inline_native_AtomicLong_attemptUpdate();
   174   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   175   // Helper function for inlining native object hash method
   176   bool inline_native_hashcode(bool is_virtual, bool is_static);
   177   bool inline_native_getClass();
   179   // Helper functions for inlining arraycopy
   180   bool inline_arraycopy();
   181   void generate_arraycopy(const TypePtr* adr_type,
   182                           BasicType basic_elem_type,
   183                           Node* src,  Node* src_offset,
   184                           Node* dest, Node* dest_offset,
   185                           Node* copy_length,
   186                           bool disjoint_bases = false,
   187                           bool length_never_negative = false,
   188                           RegionNode* slow_region = NULL);
   189   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   190                                                 RegionNode* slow_region);
   191   void generate_clear_array(const TypePtr* adr_type,
   192                             Node* dest,
   193                             BasicType basic_elem_type,
   194                             Node* slice_off,
   195                             Node* slice_len,
   196                             Node* slice_end);
   197   bool generate_block_arraycopy(const TypePtr* adr_type,
   198                                 BasicType basic_elem_type,
   199                                 AllocateNode* alloc,
   200                                 Node* src,  Node* src_offset,
   201                                 Node* dest, Node* dest_offset,
   202                                 Node* dest_size);
   203   void generate_slow_arraycopy(const TypePtr* adr_type,
   204                                Node* src,  Node* src_offset,
   205                                Node* dest, Node* dest_offset,
   206                                Node* copy_length);
   207   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   208                                      Node* dest_elem_klass,
   209                                      Node* src,  Node* src_offset,
   210                                      Node* dest, Node* dest_offset,
   211                                      Node* copy_length);
   212   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   213                                    Node* src,  Node* src_offset,
   214                                    Node* dest, Node* dest_offset,
   215                                    Node* copy_length);
   216   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   217                                     BasicType basic_elem_type,
   218                                     bool disjoint_bases,
   219                                     Node* src,  Node* src_offset,
   220                                     Node* dest, Node* dest_offset,
   221                                     Node* copy_length);
   222   bool inline_unsafe_CAS(BasicType type);
   223   bool inline_unsafe_ordered_store(BasicType type);
   224   bool inline_fp_conversions(vmIntrinsics::ID id);
   225   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
   226   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
   227   bool inline_bitCount(vmIntrinsics::ID id);
   228   bool inline_reverseBytes(vmIntrinsics::ID id);
   229 };
   232 //---------------------------make_vm_intrinsic----------------------------
   233 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   234   vmIntrinsics::ID id = m->intrinsic_id();
   235   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   237   if (DisableIntrinsic[0] != '\0'
   238       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   239     // disabled by a user request on the command line:
   240     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   241     return NULL;
   242   }
   244   if (!m->is_loaded()) {
   245     // do not attempt to inline unloaded methods
   246     return NULL;
   247   }
   249   // Only a few intrinsics implement a virtual dispatch.
   250   // They are expensive calls which are also frequently overridden.
   251   if (is_virtual) {
   252     switch (id) {
   253     case vmIntrinsics::_hashCode:
   254     case vmIntrinsics::_clone:
   255       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   256       break;
   257     default:
   258       return NULL;
   259     }
   260   }
   262   // -XX:-InlineNatives disables nearly all intrinsics:
   263   if (!InlineNatives) {
   264     switch (id) {
   265     case vmIntrinsics::_indexOf:
   266     case vmIntrinsics::_compareTo:
   267     case vmIntrinsics::_equals:
   268     case vmIntrinsics::_equalsC:
   269       break;  // InlineNatives does not control String.compareTo
   270     default:
   271       return NULL;
   272     }
   273   }
   275   switch (id) {
   276   case vmIntrinsics::_compareTo:
   277     if (!SpecialStringCompareTo)  return NULL;
   278     break;
   279   case vmIntrinsics::_indexOf:
   280     if (!SpecialStringIndexOf)  return NULL;
   281     break;
   282   case vmIntrinsics::_equals:
   283     if (!SpecialStringEquals)  return NULL;
   284     break;
   285   case vmIntrinsics::_equalsC:
   286     if (!SpecialArraysEquals)  return NULL;
   287     break;
   288   case vmIntrinsics::_arraycopy:
   289     if (!InlineArrayCopy)  return NULL;
   290     break;
   291   case vmIntrinsics::_copyMemory:
   292     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   293     if (!InlineArrayCopy)  return NULL;
   294     break;
   295   case vmIntrinsics::_hashCode:
   296     if (!InlineObjectHash)  return NULL;
   297     break;
   298   case vmIntrinsics::_clone:
   299   case vmIntrinsics::_copyOf:
   300   case vmIntrinsics::_copyOfRange:
   301     if (!InlineObjectCopy)  return NULL;
   302     // These also use the arraycopy intrinsic mechanism:
   303     if (!InlineArrayCopy)  return NULL;
   304     break;
   305   case vmIntrinsics::_checkIndex:
   306     // We do not intrinsify this.  The optimizer does fine with it.
   307     return NULL;
   309   case vmIntrinsics::_get_AtomicLong:
   310   case vmIntrinsics::_attemptUpdate:
   311     if (!InlineAtomicLong)  return NULL;
   312     break;
   314   case vmIntrinsics::_getCallerClass:
   315     if (!UseNewReflection)  return NULL;
   316     if (!InlineReflectionGetCallerClass)  return NULL;
   317     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   318     break;
   320   case vmIntrinsics::_bitCount_i:
   321   case vmIntrinsics::_bitCount_l:
   322     if (!UsePopCountInstruction)  return NULL;
   323     break;
   325  default:
   326     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   327     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   328     break;
   329   }
   331   // -XX:-InlineClassNatives disables natives from the Class class.
   332   // The flag applies to all reflective calls, notably Array.newArray
   333   // (visible to Java programmers as Array.newInstance).
   334   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   335       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   336     if (!InlineClassNatives)  return NULL;
   337   }
   339   // -XX:-InlineThreadNatives disables natives from the Thread class.
   340   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   341     if (!InlineThreadNatives)  return NULL;
   342   }
   344   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   345   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   346       m->holder()->name() == ciSymbol::java_lang_Float() ||
   347       m->holder()->name() == ciSymbol::java_lang_Double()) {
   348     if (!InlineMathNatives)  return NULL;
   349   }
   351   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   352   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   353     if (!InlineUnsafeOps)  return NULL;
   354   }
   356   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   357 }
   359 //----------------------register_library_intrinsics-----------------------
   360 // Initialize this file's data structures, for each Compile instance.
   361 void Compile::register_library_intrinsics() {
   362   // Nothing to do here.
   363 }
   365 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   366   LibraryCallKit kit(jvms, this);
   367   Compile* C = kit.C;
   368   int nodes = C->unique();
   369 #ifndef PRODUCT
   370   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   371     char buf[1000];
   372     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   373     tty->print_cr("Intrinsic %s", str);
   374   }
   375 #endif
   376   if (kit.try_to_inline()) {
   377     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   378       tty->print("Inlining intrinsic %s%s at bci:%d in",
   379                  vmIntrinsics::name_at(intrinsic_id()),
   380                  (is_virtual() ? " (virtual)" : ""), kit.bci());
   381       kit.caller()->print_short_name(tty);
   382       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   383     }
   384     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   385     if (C->log()) {
   386       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   387                      vmIntrinsics::name_at(intrinsic_id()),
   388                      (is_virtual() ? " virtual='1'" : ""),
   389                      C->unique() - nodes);
   390     }
   391     return kit.transfer_exceptions_into_jvms();
   392   }
   394   if (PrintIntrinsics) {
   395     tty->print("Did not inline intrinsic %s%s at bci:%d in",
   396                vmIntrinsics::name_at(intrinsic_id()),
   397                (is_virtual() ? " (virtual)" : ""), kit.bci());
   398     kit.caller()->print_short_name(tty);
   399     tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   400   }
   401   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   402   return NULL;
   403 }
   405 bool LibraryCallKit::try_to_inline() {
   406   // Handle symbolic names for otherwise undistinguished boolean switches:
   407   const bool is_store       = true;
   408   const bool is_native_ptr  = true;
   409   const bool is_static      = true;
   411   switch (intrinsic_id()) {
   412   case vmIntrinsics::_hashCode:
   413     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   414   case vmIntrinsics::_identityHashCode:
   415     return inline_native_hashcode(/*!virtual*/ false, is_static);
   416   case vmIntrinsics::_getClass:
   417     return inline_native_getClass();
   419   case vmIntrinsics::_dsin:
   420   case vmIntrinsics::_dcos:
   421   case vmIntrinsics::_dtan:
   422   case vmIntrinsics::_dabs:
   423   case vmIntrinsics::_datan2:
   424   case vmIntrinsics::_dsqrt:
   425   case vmIntrinsics::_dexp:
   426   case vmIntrinsics::_dlog:
   427   case vmIntrinsics::_dlog10:
   428   case vmIntrinsics::_dpow:
   429     return inline_math_native(intrinsic_id());
   431   case vmIntrinsics::_min:
   432   case vmIntrinsics::_max:
   433     return inline_min_max(intrinsic_id());
   435   case vmIntrinsics::_arraycopy:
   436     return inline_arraycopy();
   438   case vmIntrinsics::_compareTo:
   439     return inline_string_compareTo();
   440   case vmIntrinsics::_indexOf:
   441     return inline_string_indexOf();
   442   case vmIntrinsics::_equals:
   443     return inline_string_equals();
   445   case vmIntrinsics::_getObject:
   446     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   447   case vmIntrinsics::_getBoolean:
   448     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   449   case vmIntrinsics::_getByte:
   450     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   451   case vmIntrinsics::_getShort:
   452     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   453   case vmIntrinsics::_getChar:
   454     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   455   case vmIntrinsics::_getInt:
   456     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   457   case vmIntrinsics::_getLong:
   458     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   459   case vmIntrinsics::_getFloat:
   460     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   461   case vmIntrinsics::_getDouble:
   462     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   464   case vmIntrinsics::_putObject:
   465     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   466   case vmIntrinsics::_putBoolean:
   467     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   468   case vmIntrinsics::_putByte:
   469     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   470   case vmIntrinsics::_putShort:
   471     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   472   case vmIntrinsics::_putChar:
   473     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   474   case vmIntrinsics::_putInt:
   475     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   476   case vmIntrinsics::_putLong:
   477     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   478   case vmIntrinsics::_putFloat:
   479     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   480   case vmIntrinsics::_putDouble:
   481     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   483   case vmIntrinsics::_getByte_raw:
   484     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   485   case vmIntrinsics::_getShort_raw:
   486     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   487   case vmIntrinsics::_getChar_raw:
   488     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   489   case vmIntrinsics::_getInt_raw:
   490     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   491   case vmIntrinsics::_getLong_raw:
   492     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   493   case vmIntrinsics::_getFloat_raw:
   494     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   495   case vmIntrinsics::_getDouble_raw:
   496     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   497   case vmIntrinsics::_getAddress_raw:
   498     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   500   case vmIntrinsics::_putByte_raw:
   501     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   502   case vmIntrinsics::_putShort_raw:
   503     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   504   case vmIntrinsics::_putChar_raw:
   505     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   506   case vmIntrinsics::_putInt_raw:
   507     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   508   case vmIntrinsics::_putLong_raw:
   509     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   510   case vmIntrinsics::_putFloat_raw:
   511     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   512   case vmIntrinsics::_putDouble_raw:
   513     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   514   case vmIntrinsics::_putAddress_raw:
   515     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   517   case vmIntrinsics::_getObjectVolatile:
   518     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   519   case vmIntrinsics::_getBooleanVolatile:
   520     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   521   case vmIntrinsics::_getByteVolatile:
   522     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   523   case vmIntrinsics::_getShortVolatile:
   524     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   525   case vmIntrinsics::_getCharVolatile:
   526     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   527   case vmIntrinsics::_getIntVolatile:
   528     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   529   case vmIntrinsics::_getLongVolatile:
   530     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   531   case vmIntrinsics::_getFloatVolatile:
   532     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   533   case vmIntrinsics::_getDoubleVolatile:
   534     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   536   case vmIntrinsics::_putObjectVolatile:
   537     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   538   case vmIntrinsics::_putBooleanVolatile:
   539     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   540   case vmIntrinsics::_putByteVolatile:
   541     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   542   case vmIntrinsics::_putShortVolatile:
   543     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   544   case vmIntrinsics::_putCharVolatile:
   545     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   546   case vmIntrinsics::_putIntVolatile:
   547     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   548   case vmIntrinsics::_putLongVolatile:
   549     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   550   case vmIntrinsics::_putFloatVolatile:
   551     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   552   case vmIntrinsics::_putDoubleVolatile:
   553     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   555   case vmIntrinsics::_prefetchRead:
   556     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   557   case vmIntrinsics::_prefetchWrite:
   558     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   559   case vmIntrinsics::_prefetchReadStatic:
   560     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   561   case vmIntrinsics::_prefetchWriteStatic:
   562     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   564   case vmIntrinsics::_compareAndSwapObject:
   565     return inline_unsafe_CAS(T_OBJECT);
   566   case vmIntrinsics::_compareAndSwapInt:
   567     return inline_unsafe_CAS(T_INT);
   568   case vmIntrinsics::_compareAndSwapLong:
   569     return inline_unsafe_CAS(T_LONG);
   571   case vmIntrinsics::_putOrderedObject:
   572     return inline_unsafe_ordered_store(T_OBJECT);
   573   case vmIntrinsics::_putOrderedInt:
   574     return inline_unsafe_ordered_store(T_INT);
   575   case vmIntrinsics::_putOrderedLong:
   576     return inline_unsafe_ordered_store(T_LONG);
   578   case vmIntrinsics::_currentThread:
   579     return inline_native_currentThread();
   580   case vmIntrinsics::_isInterrupted:
   581     return inline_native_isInterrupted();
   583   case vmIntrinsics::_currentTimeMillis:
   584     return inline_native_time_funcs(false);
   585   case vmIntrinsics::_nanoTime:
   586     return inline_native_time_funcs(true);
   587   case vmIntrinsics::_allocateInstance:
   588     return inline_unsafe_allocate();
   589   case vmIntrinsics::_copyMemory:
   590     return inline_unsafe_copyMemory();
   591   case vmIntrinsics::_newArray:
   592     return inline_native_newArray();
   593   case vmIntrinsics::_getLength:
   594     return inline_native_getLength();
   595   case vmIntrinsics::_copyOf:
   596     return inline_array_copyOf(false);
   597   case vmIntrinsics::_copyOfRange:
   598     return inline_array_copyOf(true);
   599   case vmIntrinsics::_equalsC:
   600     return inline_array_equals();
   601   case vmIntrinsics::_clone:
   602     return inline_native_clone(intrinsic()->is_virtual());
   604   case vmIntrinsics::_isAssignableFrom:
   605     return inline_native_subtype_check();
   607   case vmIntrinsics::_isInstance:
   608   case vmIntrinsics::_getModifiers:
   609   case vmIntrinsics::_isInterface:
   610   case vmIntrinsics::_isArray:
   611   case vmIntrinsics::_isPrimitive:
   612   case vmIntrinsics::_getSuperclass:
   613   case vmIntrinsics::_getComponentType:
   614   case vmIntrinsics::_getClassAccessFlags:
   615     return inline_native_Class_query(intrinsic_id());
   617   case vmIntrinsics::_floatToRawIntBits:
   618   case vmIntrinsics::_floatToIntBits:
   619   case vmIntrinsics::_intBitsToFloat:
   620   case vmIntrinsics::_doubleToRawLongBits:
   621   case vmIntrinsics::_doubleToLongBits:
   622   case vmIntrinsics::_longBitsToDouble:
   623     return inline_fp_conversions(intrinsic_id());
   625   case vmIntrinsics::_numberOfLeadingZeros_i:
   626   case vmIntrinsics::_numberOfLeadingZeros_l:
   627     return inline_numberOfLeadingZeros(intrinsic_id());
   629   case vmIntrinsics::_numberOfTrailingZeros_i:
   630   case vmIntrinsics::_numberOfTrailingZeros_l:
   631     return inline_numberOfTrailingZeros(intrinsic_id());
   633   case vmIntrinsics::_bitCount_i:
   634   case vmIntrinsics::_bitCount_l:
   635     return inline_bitCount(intrinsic_id());
   637   case vmIntrinsics::_reverseBytes_i:
   638   case vmIntrinsics::_reverseBytes_l:
   639     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   641   case vmIntrinsics::_get_AtomicLong:
   642     return inline_native_AtomicLong_get();
   643   case vmIntrinsics::_attemptUpdate:
   644     return inline_native_AtomicLong_attemptUpdate();
   646   case vmIntrinsics::_getCallerClass:
   647     return inline_native_Reflection_getCallerClass();
   649   default:
   650     // If you get here, it may be that someone has added a new intrinsic
   651     // to the list in vmSymbols.hpp without implementing it here.
   652 #ifndef PRODUCT
   653     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   654       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   655                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   656     }
   657 #endif
   658     return false;
   659   }
   660 }
   662 //------------------------------push_result------------------------------
   663 // Helper function for finishing intrinsics.
   664 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   665   record_for_igvn(region);
   666   set_control(_gvn.transform(region));
   667   BasicType value_type = value->type()->basic_type();
   668   push_node(value_type, _gvn.transform(value));
   669 }
   671 //------------------------------generate_guard---------------------------
   672 // Helper function for generating guarded fast-slow graph structures.
   673 // The given 'test', if true, guards a slow path.  If the test fails
   674 // then a fast path can be taken.  (We generally hope it fails.)
   675 // In all cases, GraphKit::control() is updated to the fast path.
   676 // The returned value represents the control for the slow path.
   677 // The return value is never 'top'; it is either a valid control
   678 // or NULL if it is obvious that the slow path can never be taken.
   679 // Also, if region and the slow control are not NULL, the slow edge
   680 // is appended to the region.
   681 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   682   if (stopped()) {
   683     // Already short circuited.
   684     return NULL;
   685   }
   687   // Build an if node and its projections.
   688   // If test is true we take the slow path, which we assume is uncommon.
   689   if (_gvn.type(test) == TypeInt::ZERO) {
   690     // The slow branch is never taken.  No need to build this guard.
   691     return NULL;
   692   }
   694   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   696   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   697   if (if_slow == top()) {
   698     // The slow branch is never taken.  No need to build this guard.
   699     return NULL;
   700   }
   702   if (region != NULL)
   703     region->add_req(if_slow);
   705   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   706   set_control(if_fast);
   708   return if_slow;
   709 }
   711 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   712   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   713 }
   714 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   715   return generate_guard(test, region, PROB_FAIR);
   716 }
   718 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   719                                                      Node* *pos_index) {
   720   if (stopped())
   721     return NULL;                // already stopped
   722   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   723     return NULL;                // index is already adequately typed
   724   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   725   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   726   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   727   if (is_neg != NULL && pos_index != NULL) {
   728     // Emulate effect of Parse::adjust_map_after_if.
   729     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
   730     ccast->set_req(0, control());
   731     (*pos_index) = _gvn.transform(ccast);
   732   }
   733   return is_neg;
   734 }
   736 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   737                                                         Node* *pos_index) {
   738   if (stopped())
   739     return NULL;                // already stopped
   740   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   741     return NULL;                // index is already adequately typed
   742   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   743   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   744   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
   745   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   746   if (is_notp != NULL && pos_index != NULL) {
   747     // Emulate effect of Parse::adjust_map_after_if.
   748     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
   749     ccast->set_req(0, control());
   750     (*pos_index) = _gvn.transform(ccast);
   751   }
   752   return is_notp;
   753 }
   755 // Make sure that 'position' is a valid limit index, in [0..length].
   756 // There are two equivalent plans for checking this:
   757 //   A. (offset + copyLength)  unsigned<=  arrayLength
   758 //   B. offset  <=  (arrayLength - copyLength)
   759 // We require that all of the values above, except for the sum and
   760 // difference, are already known to be non-negative.
   761 // Plan A is robust in the face of overflow, if offset and copyLength
   762 // are both hugely positive.
   763 //
   764 // Plan B is less direct and intuitive, but it does not overflow at
   765 // all, since the difference of two non-negatives is always
   766 // representable.  Whenever Java methods must perform the equivalent
   767 // check they generally use Plan B instead of Plan A.
   768 // For the moment we use Plan A.
   769 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   770                                                   Node* subseq_length,
   771                                                   Node* array_length,
   772                                                   RegionNode* region) {
   773   if (stopped())
   774     return NULL;                // already stopped
   775   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   776   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
   777     return NULL;                // common case of whole-array copy
   778   Node* last = subseq_length;
   779   if (!zero_offset)             // last += offset
   780     last = _gvn.transform( new (C, 3) AddINode(last, offset));
   781   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
   782   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   783   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   784   return is_over;
   785 }
   788 //--------------------------generate_current_thread--------------------
   789 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   790   ciKlass*    thread_klass = env()->Thread_klass();
   791   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   792   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
   793   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   794   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   795   tls_output = thread;
   796   return threadObj;
   797 }
   800 //------------------------------make_string_method_node------------------------
   801 // Helper method for String intrinsic finctions.
   802 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
   803   const int value_offset  = java_lang_String::value_offset_in_bytes();
   804   const int count_offset  = java_lang_String::count_offset_in_bytes();
   805   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   807   Node* no_ctrl = NULL;
   809   ciInstanceKlass* klass = env()->String_klass();
   810   const TypeInstPtr* string_type =
   811         TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
   813   const TypeAryPtr* value_type =
   814         TypeAryPtr::make(TypePtr::NotNull,
   815                          TypeAry::make(TypeInt::CHAR,TypeInt::POS),
   816                          ciTypeArrayKlass::make(T_CHAR), true, 0);
   818   // Get start addr of string and substring
   819   Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
   820   Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
   821   Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
   822   Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   823   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
   825   // Pin loads from String::equals() argument since it could be NULL.
   826   Node* str2_ctrl = (opcode == Op_StrEquals) ? control() : no_ctrl;
   827   Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
   828   Node* str2_value   = make_load(str2_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
   829   Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
   830   Node* str2_offset  = make_load(str2_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   831   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
   833   Node* result = NULL;
   834   switch (opcode) {
   835   case Op_StrIndexOf:
   836     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
   837                                        str1_start, cnt1, str2_start, cnt2);
   838     break;
   839   case Op_StrComp:
   840     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
   841                                     str1_start, cnt1, str2_start, cnt2);
   842     break;
   843   case Op_StrEquals:
   844     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
   845                                       str1_start, str2_start, cnt1);
   846     break;
   847   default:
   848     ShouldNotReachHere();
   849     return NULL;
   850   }
   852   // All these intrinsics have checks.
   853   C->set_has_split_ifs(true); // Has chance for split-if optimization
   855   return _gvn.transform(result);
   856 }
   858 //------------------------------inline_string_compareTo------------------------
   859 bool LibraryCallKit::inline_string_compareTo() {
   861   if (!Matcher::has_match_rule(Op_StrComp)) return false;
   863   const int value_offset = java_lang_String::value_offset_in_bytes();
   864   const int count_offset = java_lang_String::count_offset_in_bytes();
   865   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   867   _sp += 2;
   868   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   869   Node *receiver = pop();
   871   // Null check on self without removing any arguments.  The argument
   872   // null check technically happens in the wrong place, which can lead to
   873   // invalid stack traces when string compare is inlined into a method
   874   // which handles NullPointerExceptions.
   875   _sp += 2;
   876   receiver = do_null_check(receiver, T_OBJECT);
   877   argument = do_null_check(argument, T_OBJECT);
   878   _sp -= 2;
   879   if (stopped()) {
   880     return true;
   881   }
   883   ciInstanceKlass* klass = env()->String_klass();
   884   const TypeInstPtr* string_type =
   885     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
   886   Node* no_ctrl = NULL;
   888   // Get counts for string and argument
   889   Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
   890   Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   892   Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
   893   Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   895   Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
   896   push(compare);
   897   return true;
   898 }
   900 //------------------------------inline_string_equals------------------------
   901 bool LibraryCallKit::inline_string_equals() {
   903   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
   905   const int value_offset = java_lang_String::value_offset_in_bytes();
   906   const int count_offset = java_lang_String::count_offset_in_bytes();
   907   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   909   _sp += 2;
   910   Node* argument = pop();  // pop non-receiver first:  it was pushed second
   911   Node* receiver = pop();
   913   // Null check on self without removing any arguments.  The argument
   914   // null check technically happens in the wrong place, which can lead to
   915   // invalid stack traces when string compare is inlined into a method
   916   // which handles NullPointerExceptions.
   917   _sp += 2;
   918   receiver = do_null_check(receiver, T_OBJECT);
   919   //should not do null check for argument for String.equals(), because spec
   920   //allows to specify NULL as argument.
   921   _sp -= 2;
   923   if (stopped()) {
   924     return true;
   925   }
   927   // paths (plus control) merge
   928   RegionNode* region = new (C, 5) RegionNode(5);
   929   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
   931   // does source == target string?
   932   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
   933   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
   935   Node* if_eq = generate_slow_guard(bol, NULL);
   936   if (if_eq != NULL) {
   937     // receiver == argument
   938     phi->init_req(2, intcon(1));
   939     region->init_req(2, if_eq);
   940   }
   942   // get String klass for instanceOf
   943   ciInstanceKlass* klass = env()->String_klass();
   945   if (!stopped()) {
   946     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
   947     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
   948     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
   950     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
   951     //instanceOf == true, fallthrough
   953     if (inst_false != NULL) {
   954       phi->init_req(3, intcon(0));
   955       region->init_req(3, inst_false);
   956     }
   957   }
   959   const TypeInstPtr* string_type =
   960     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
   962   Node* no_ctrl = NULL;
   963   Node* receiver_cnt;
   964   Node* argument_cnt;
   966   if (!stopped()) {
   967     // Get counts for string and argument
   968     Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
   969     receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   971     // Pin load from argument string since it could be NULL.
   972     Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
   973     argument_cnt  = make_load(control(), argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   975     // Check for receiver count != argument count
   976     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
   977     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
   978     Node* if_ne = generate_slow_guard(bol, NULL);
   979     if (if_ne != NULL) {
   980       phi->init_req(4, intcon(0));
   981       region->init_req(4, if_ne);
   982     }
   983   }
   985   // Check for count == 0 is done by mach node StrEquals.
   987   if (!stopped()) {
   988     Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
   989     phi->init_req(1, equals);
   990     region->init_req(1, control());
   991   }
   993   // post merge
   994   set_control(_gvn.transform(region));
   995   record_for_igvn(region);
   997   push(_gvn.transform(phi));
   999   return true;
  1002 //------------------------------inline_array_equals----------------------------
  1003 bool LibraryCallKit::inline_array_equals() {
  1005   if (!Matcher::has_match_rule(Op_AryEq)) return false;
  1007   _sp += 2;
  1008   Node *argument2 = pop();
  1009   Node *argument1 = pop();
  1011   Node* equals =
  1012     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
  1013                                         argument1, argument2) );
  1014   push(equals);
  1015   return true;
  1018 // Java version of String.indexOf(constant string)
  1019 // class StringDecl {
  1020 //   StringDecl(char[] ca) {
  1021 //     offset = 0;
  1022 //     count = ca.length;
  1023 //     value = ca;
  1024 //   }
  1025 //   int offset;
  1026 //   int count;
  1027 //   char[] value;
  1028 // }
  1029 //
  1030 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1031 //                             int targetOffset, int cache_i, int md2) {
  1032 //   int cache = cache_i;
  1033 //   int sourceOffset = string_object.offset;
  1034 //   int sourceCount = string_object.count;
  1035 //   int targetCount = target_object.length;
  1036 //
  1037 //   int targetCountLess1 = targetCount - 1;
  1038 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1039 //
  1040 //   char[] source = string_object.value;
  1041 //   char[] target = target_object;
  1042 //   int lastChar = target[targetCountLess1];
  1043 //
  1044 //  outer_loop:
  1045 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1046 //     int src = source[i + targetCountLess1];
  1047 //     if (src == lastChar) {
  1048 //       // With random strings and a 4-character alphabet,
  1049 //       // reverse matching at this point sets up 0.8% fewer
  1050 //       // frames, but (paradoxically) makes 0.3% more probes.
  1051 //       // Since those probes are nearer the lastChar probe,
  1052 //       // there is may be a net D$ win with reverse matching.
  1053 //       // But, reversing loop inhibits unroll of inner loop
  1054 //       // for unknown reason.  So, does running outer loop from
  1055 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1056 //       for (int j = 0; j < targetCountLess1; j++) {
  1057 //         if (target[targetOffset + j] != source[i+j]) {
  1058 //           if ((cache & (1 << source[i+j])) == 0) {
  1059 //             if (md2 < j+1) {
  1060 //               i += j+1;
  1061 //               continue outer_loop;
  1062 //             }
  1063 //           }
  1064 //           i += md2;
  1065 //           continue outer_loop;
  1066 //         }
  1067 //       }
  1068 //       return i - sourceOffset;
  1069 //     }
  1070 //     if ((cache & (1 << src)) == 0) {
  1071 //       i += targetCountLess1;
  1072 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1073 //     i++;
  1074 //   }
  1075 //   return -1;
  1076 // }
  1078 //------------------------------string_indexOf------------------------
  1079 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1080                                      jint cache_i, jint md2_i) {
  1082   Node* no_ctrl  = NULL;
  1083   float likely   = PROB_LIKELY(0.9);
  1084   float unlikely = PROB_UNLIKELY(0.9);
  1086   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1087   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1088   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1090   ciInstanceKlass* klass = env()->String_klass();
  1091   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
  1092   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
  1094   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
  1095   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
  1096   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
  1097   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1098   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
  1099   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
  1101   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
  1102   jint target_length = target_array->length();
  1103   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1104   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1106   IdealKit kit(gvn(), control(), merged_memory(), false, true);
  1107 #define __ kit.
  1108   Node* zero             = __ ConI(0);
  1109   Node* one              = __ ConI(1);
  1110   Node* cache            = __ ConI(cache_i);
  1111   Node* md2              = __ ConI(md2_i);
  1112   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1113   Node* targetCount      = __ ConI(target_length);
  1114   Node* targetCountLess1 = __ ConI(target_length - 1);
  1115   Node* targetOffset     = __ ConI(targetOffset_i);
  1116   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1118   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1119   Node* outer_loop = __ make_label(2 /* goto */);
  1120   Node* return_    = __ make_label(1);
  1122   __ set(rtn,__ ConI(-1));
  1123   __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
  1124        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1125        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1126        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1127        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1128          __ loop(j, zero, BoolTest::lt, targetCountLess1); {
  1129               Node* tpj = __ AddI(targetOffset, __ value(j));
  1130               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1131               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1132               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1133               __ if_then(targ, BoolTest::ne, src2); {
  1134                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1135                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1136                     __ increment(i, __ AddI(__ value(j), one));
  1137                     __ goto_(outer_loop);
  1138                   } __ end_if(); __ dead(j);
  1139                 }__ end_if(); __ dead(j);
  1140                 __ increment(i, md2);
  1141                 __ goto_(outer_loop);
  1142               }__ end_if();
  1143               __ increment(j, one);
  1144          }__ end_loop(); __ dead(j);
  1145          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1146          __ goto_(return_);
  1147        }__ end_if();
  1148        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1149          __ increment(i, targetCountLess1);
  1150        }__ end_if();
  1151        __ increment(i, one);
  1152        __ bind(outer_loop);
  1153   }__ end_loop(); __ dead(i);
  1154   __ bind(return_);
  1156   // Final sync IdealKit and GraphKit.
  1157   sync_kit(kit);
  1158   Node* result = __ value(rtn);
  1159 #undef __
  1160   C->set_has_loops(true);
  1161   return result;
  1164 //------------------------------inline_string_indexOf------------------------
  1165 bool LibraryCallKit::inline_string_indexOf() {
  1167   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1168   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1169   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1171   _sp += 2;
  1172   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1173   Node *receiver = pop();
  1175   Node* result;
  1176   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1177       UseSSE42Intrinsics) {
  1178     // Generate SSE4.2 version of indexOf
  1179     // We currently only have match rules that use SSE4.2
  1181     // Null check on self without removing any arguments.  The argument
  1182     // null check technically happens in the wrong place, which can lead to
  1183     // invalid stack traces when string compare is inlined into a method
  1184     // which handles NullPointerExceptions.
  1185     _sp += 2;
  1186     receiver = do_null_check(receiver, T_OBJECT);
  1187     argument = do_null_check(argument, T_OBJECT);
  1188     _sp -= 2;
  1190     if (stopped()) {
  1191       return true;
  1194     // Make the merge point
  1195     RegionNode* result_rgn = new (C, 3) RegionNode(3);
  1196     Node*       result_phi = new (C, 3) PhiNode(result_rgn, TypeInt::INT);
  1197     Node* no_ctrl  = NULL;
  1199     ciInstanceKlass* klass = env()->String_klass();
  1200     const TypeInstPtr* string_type =
  1201       TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
  1203     // Get counts for string and substr
  1204     Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
  1205     Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1207     Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
  1208     Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1210     // Check for substr count > string count
  1211     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
  1212     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
  1213     Node* if_gt = generate_slow_guard(bol, NULL);
  1214     if (if_gt != NULL) {
  1215       result_phi->init_req(2, intcon(-1));
  1216       result_rgn->init_req(2, if_gt);
  1219     if (!stopped()) {
  1220       result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
  1221       result_phi->init_req(1, result);
  1222       result_rgn->init_req(1, control());
  1224     set_control(_gvn.transform(result_rgn));
  1225     record_for_igvn(result_rgn);
  1226     result = _gvn.transform(result_phi);
  1228   } else { //Use LibraryCallKit::string_indexOf
  1229     // don't intrinsify is argument isn't a constant string.
  1230     if (!argument->is_Con()) {
  1231      return false;
  1233     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
  1234     if (str_type == NULL) {
  1235       return false;
  1237     ciInstanceKlass* klass = env()->String_klass();
  1238     ciObject* str_const = str_type->const_oop();
  1239     if (str_const == NULL || str_const->klass() != klass) {
  1240       return false;
  1242     ciInstance* str = str_const->as_instance();
  1243     assert(str != NULL, "must be instance");
  1245     ciObject* v = str->field_value_by_offset(value_offset).as_object();
  1246     int       o = str->field_value_by_offset(offset_offset).as_int();
  1247     int       c = str->field_value_by_offset(count_offset).as_int();
  1248     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1250     // constant strings have no offset and count == length which
  1251     // simplifies the resulting code somewhat so lets optimize for that.
  1252     if (o != 0 || c != pat->length()) {
  1253      return false;
  1256     // Null check on self without removing any arguments.  The argument
  1257     // null check technically happens in the wrong place, which can lead to
  1258     // invalid stack traces when string compare is inlined into a method
  1259     // which handles NullPointerExceptions.
  1260     _sp += 2;
  1261     receiver = do_null_check(receiver, T_OBJECT);
  1262     // No null check on the argument is needed since it's a constant String oop.
  1263     _sp -= 2;
  1264     if (stopped()) {
  1265      return true;
  1268     // The null string as a pattern always returns 0 (match at beginning of string)
  1269     if (c == 0) {
  1270       push(intcon(0));
  1271       return true;
  1274     // Generate default indexOf
  1275     jchar lastChar = pat->char_at(o + (c - 1));
  1276     int cache = 0;
  1277     int i;
  1278     for (i = 0; i < c - 1; i++) {
  1279       assert(i < pat->length(), "out of range");
  1280       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1283     int md2 = c;
  1284     for (i = 0; i < c - 1; i++) {
  1285       assert(i < pat->length(), "out of range");
  1286       if (pat->char_at(o + i) == lastChar) {
  1287         md2 = (c - 1) - i;
  1291     result = string_indexOf(receiver, pat, o, cache, md2);
  1294   push(result);
  1295   return true;
  1298 //--------------------------pop_math_arg--------------------------------
  1299 // Pop a double argument to a math function from the stack
  1300 // rounding it if necessary.
  1301 Node * LibraryCallKit::pop_math_arg() {
  1302   Node *arg = pop_pair();
  1303   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1304     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  1305   return arg;
  1308 //------------------------------inline_trig----------------------------------
  1309 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1310 // argument reduction which will turn into a fast/slow diamond.
  1311 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1312   _sp += arg_size();            // restore stack pointer
  1313   Node* arg = pop_math_arg();
  1314   Node* trig = NULL;
  1316   switch (id) {
  1317   case vmIntrinsics::_dsin:
  1318     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
  1319     break;
  1320   case vmIntrinsics::_dcos:
  1321     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
  1322     break;
  1323   case vmIntrinsics::_dtan:
  1324     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
  1325     break;
  1326   default:
  1327     assert(false, "bad intrinsic was passed in");
  1328     return false;
  1331   // Rounding required?  Check for argument reduction!
  1332   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1334     static const double     pi_4 =  0.7853981633974483;
  1335     static const double neg_pi_4 = -0.7853981633974483;
  1336     // pi/2 in 80-bit extended precision
  1337     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1338     // -pi/2 in 80-bit extended precision
  1339     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1340     // Cutoff value for using this argument reduction technique
  1341     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1342     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1344     // Pseudocode for sin:
  1345     // if (x <= Math.PI / 4.0) {
  1346     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1347     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1348     // } else {
  1349     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1350     // }
  1351     // return StrictMath.sin(x);
  1353     // Pseudocode for cos:
  1354     // if (x <= Math.PI / 4.0) {
  1355     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1356     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1357     // } else {
  1358     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1359     // }
  1360     // return StrictMath.cos(x);
  1362     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1363     // requires a special machine instruction to load it.  Instead we'll try
  1364     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1365     // probably do the math inside the SIN encoding.
  1367     // Make the merge point
  1368     RegionNode *r = new (C, 3) RegionNode(3);
  1369     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
  1371     // Flatten arg so we need only 1 test
  1372     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
  1373     // Node for PI/4 constant
  1374     Node *pi4 = makecon(TypeD::make(pi_4));
  1375     // Check PI/4 : abs(arg)
  1376     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
  1377     // Check: If PI/4 < abs(arg) then go slow
  1378     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
  1379     // Branch either way
  1380     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1381     set_control(opt_iff(r,iff));
  1383     // Set fast path result
  1384     phi->init_req(2,trig);
  1386     // Slow path - non-blocking leaf call
  1387     Node* call = NULL;
  1388     switch (id) {
  1389     case vmIntrinsics::_dsin:
  1390       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1391                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1392                                "Sin", NULL, arg, top());
  1393       break;
  1394     case vmIntrinsics::_dcos:
  1395       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1396                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1397                                "Cos", NULL, arg, top());
  1398       break;
  1399     case vmIntrinsics::_dtan:
  1400       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1401                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1402                                "Tan", NULL, arg, top());
  1403       break;
  1405     assert(control()->in(0) == call, "");
  1406     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
  1407     r->init_req(1,control());
  1408     phi->init_req(1,slow_result);
  1410     // Post-merge
  1411     set_control(_gvn.transform(r));
  1412     record_for_igvn(r);
  1413     trig = _gvn.transform(phi);
  1415     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1417   // Push result back on JVM stack
  1418   push_pair(trig);
  1419   return true;
  1422 //------------------------------inline_sqrt-------------------------------------
  1423 // Inline square root instruction, if possible.
  1424 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1425   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1426   _sp += arg_size();        // restore stack pointer
  1427   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  1428   return true;
  1431 //------------------------------inline_abs-------------------------------------
  1432 // Inline absolute value instruction, if possible.
  1433 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1434   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1435   _sp += arg_size();        // restore stack pointer
  1436   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  1437   return true;
  1440 //------------------------------inline_exp-------------------------------------
  1441 // Inline exp instructions, if possible.  The Intel hardware only misses
  1442 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1443 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1444   assert(id == vmIntrinsics::_dexp, "Not exp");
  1446   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1447   // every again.  NaN results requires StrictMath.exp handling.
  1448   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1450   // Do not intrinsify on older platforms which lack cmove.
  1451   if (ConditionalMoveLimit == 0)  return false;
  1453   _sp += arg_size();        // restore stack pointer
  1454   Node *x = pop_math_arg();
  1455   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
  1457   //-------------------
  1458   //result=(result.isNaN())? StrictMath::exp():result;
  1459   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1460   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1461   // Build the boolean node
  1462   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1464   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1465     // End the current control-flow path
  1466     push_pair(x);
  1467     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
  1468     // to handle.  Recompile without intrinsifying Math.exp
  1469     uncommon_trap(Deoptimization::Reason_intrinsic,
  1470                   Deoptimization::Action_make_not_entrant);
  1473   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1475   push_pair(result);
  1477   return true;
  1480 //------------------------------inline_pow-------------------------------------
  1481 // Inline power instructions, if possible.
  1482 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1483   assert(id == vmIntrinsics::_dpow, "Not pow");
  1485   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1486   // every again.  NaN results requires StrictMath.pow handling.
  1487   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1489   // Do not intrinsify on older platforms which lack cmove.
  1490   if (ConditionalMoveLimit == 0)  return false;
  1492   // Pseudocode for pow
  1493   // if (x <= 0.0) {
  1494   //   if ((double)((int)y)==y) { // if y is int
  1495   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
  1496   //   } else {
  1497   //     result = NaN;
  1498   //   }
  1499   // } else {
  1500   //   result = DPow(x,y);
  1501   // }
  1502   // if (result != result)?  {
  1503   //   uncommon_trap();
  1504   // }
  1505   // return result;
  1507   _sp += arg_size();        // restore stack pointer
  1508   Node* y = pop_math_arg();
  1509   Node* x = pop_math_arg();
  1511   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1513   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
  1514   // inside of something) then skip the fancy tests and just check for
  1515   // NaN result.
  1516   Node *result = NULL;
  1517   if( jvms()->depth() >= 1 ) {
  1518     result = fast_result;
  1519   } else {
  1521     // Set the merge point for If node with condition of (x <= 0.0)
  1522     // There are four possible paths to region node and phi node
  1523     RegionNode *r = new (C, 4) RegionNode(4);
  1524     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
  1526     // Build the first if node: if (x <= 0.0)
  1527     // Node for 0 constant
  1528     Node *zeronode = makecon(TypeD::ZERO);
  1529     // Check x:0
  1530     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
  1531     // Check: If (x<=0) then go complex path
  1532     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
  1533     // Branch either way
  1534     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1535     Node *opt_test = _gvn.transform(if1);
  1536     //assert( opt_test->is_If(), "Expect an IfNode");
  1537     IfNode *opt_if1 = (IfNode*)opt_test;
  1538     // Fast path taken; set region slot 3
  1539     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
  1540     r->init_req(3,fast_taken); // Capture fast-control
  1542     // Fast path not-taken, i.e. slow path
  1543     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
  1545     // Set fast path result
  1546     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
  1547     phi->init_req(3, fast_result);
  1549     // Complex path
  1550     // Build the second if node (if y is int)
  1551     // Node for (int)y
  1552     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
  1553     // Node for (double)((int) y)
  1554     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
  1555     // Check (double)((int) y) : y
  1556     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
  1557     // Check if (y isn't int) then go to slow path
  1559     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
  1560     // Branch either way
  1561     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1562     Node *slow_path = opt_iff(r,if2); // Set region path 2
  1564     // Calculate DPow(abs(x), y)*(1 & (int)y)
  1565     // Node for constant 1
  1566     Node *conone = intcon(1);
  1567     // 1& (int)y
  1568     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
  1569     // zero node
  1570     Node *conzero = intcon(0);
  1571     // Check (1&(int)y)==0?
  1572     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
  1573     // Check if (1&(int)y)!=0?, if so the result is negative
  1574     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
  1575     // abs(x)
  1576     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
  1577     // abs(x)^y
  1578     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
  1579     // -abs(x)^y
  1580     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
  1581     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1582     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1583     // Set complex path fast result
  1584     phi->init_req(2, signresult);
  1586     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1587     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1588     r->init_req(1,slow_path);
  1589     phi->init_req(1,slow_result);
  1591     // Post merge
  1592     set_control(_gvn.transform(r));
  1593     record_for_igvn(r);
  1594     result=_gvn.transform(phi);
  1597   //-------------------
  1598   //result=(result.isNaN())? uncommon_trap():result;
  1599   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1600   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1601   // Build the boolean node
  1602   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1604   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1605     // End the current control-flow path
  1606     push_pair(x);
  1607     push_pair(y);
  1608     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
  1609     // to handle.  Recompile without intrinsifying Math.pow.
  1610     uncommon_trap(Deoptimization::Reason_intrinsic,
  1611                   Deoptimization::Action_make_not_entrant);
  1614   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1616   push_pair(result);
  1618   return true;
  1621 //------------------------------inline_trans-------------------------------------
  1622 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1623 // these right, no funny corner cases missed.
  1624 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1625   _sp += arg_size();        // restore stack pointer
  1626   Node* arg = pop_math_arg();
  1627   Node* trans = NULL;
  1629   switch (id) {
  1630   case vmIntrinsics::_dlog:
  1631     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
  1632     break;
  1633   case vmIntrinsics::_dlog10:
  1634     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
  1635     break;
  1636   default:
  1637     assert(false, "bad intrinsic was passed in");
  1638     return false;
  1641   // Push result back on JVM stack
  1642   push_pair(trans);
  1643   return true;
  1646 //------------------------------runtime_math-----------------------------
  1647 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1648   Node* a = NULL;
  1649   Node* b = NULL;
  1651   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1652          "must be (DD)D or (D)D type");
  1654   // Inputs
  1655   _sp += arg_size();        // restore stack pointer
  1656   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1657     b = pop_math_arg();
  1659   a = pop_math_arg();
  1661   const TypePtr* no_memory_effects = NULL;
  1662   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1663                                  no_memory_effects,
  1664                                  a, top(), b, b ? top() : NULL);
  1665   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
  1666 #ifdef ASSERT
  1667   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  1668   assert(value_top == top(), "second value must be top");
  1669 #endif
  1671   push_pair(value);
  1672   return true;
  1675 //------------------------------inline_math_native-----------------------------
  1676 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1677   switch (id) {
  1678     // These intrinsics are not properly supported on all hardware
  1679   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1680     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1681   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1682     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1683   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1684     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1686   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1687     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1688   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1689     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1691     // These intrinsics are supported on all hardware
  1692   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1693   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1695     // These intrinsics don't work on X86.  The ad implementation doesn't
  1696     // handle NaN's properly.  Instead of returning infinity, the ad
  1697     // implementation returns a NaN on overflow. See bug: 6304089
  1698     // Once the ad implementations are fixed, change the code below
  1699     // to match the intrinsics above
  1701   case vmIntrinsics::_dexp:  return
  1702     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1703   case vmIntrinsics::_dpow:  return
  1704     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1706    // These intrinsics are not yet correctly implemented
  1707   case vmIntrinsics::_datan2:
  1708     return false;
  1710   default:
  1711     ShouldNotReachHere();
  1712     return false;
  1716 static bool is_simple_name(Node* n) {
  1717   return (n->req() == 1         // constant
  1718           || (n->is_Type() && n->as_Type()->type()->singleton())
  1719           || n->is_Proj()       // parameter or return value
  1720           || n->is_Phi()        // local of some sort
  1721           );
  1724 //----------------------------inline_min_max-----------------------------------
  1725 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1726   push(generate_min_max(id, argument(0), argument(1)));
  1728   return true;
  1731 Node*
  1732 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1733   // These are the candidate return value:
  1734   Node* xvalue = x0;
  1735   Node* yvalue = y0;
  1737   if (xvalue == yvalue) {
  1738     return xvalue;
  1741   bool want_max = (id == vmIntrinsics::_max);
  1743   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1744   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1745   if (txvalue == NULL || tyvalue == NULL)  return top();
  1746   // This is not really necessary, but it is consistent with a
  1747   // hypothetical MaxINode::Value method:
  1748   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1750   // %%% This folding logic should (ideally) be in a different place.
  1751   // Some should be inside IfNode, and there to be a more reliable
  1752   // transformation of ?: style patterns into cmoves.  We also want
  1753   // more powerful optimizations around cmove and min/max.
  1755   // Try to find a dominating comparison of these guys.
  1756   // It can simplify the index computation for Arrays.copyOf
  1757   // and similar uses of System.arraycopy.
  1758   // First, compute the normalized version of CmpI(x, y).
  1759   int   cmp_op = Op_CmpI;
  1760   Node* xkey = xvalue;
  1761   Node* ykey = yvalue;
  1762   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  1763   if (ideal_cmpxy->is_Cmp()) {
  1764     // E.g., if we have CmpI(length - offset, count),
  1765     // it might idealize to CmpI(length, count + offset)
  1766     cmp_op = ideal_cmpxy->Opcode();
  1767     xkey = ideal_cmpxy->in(1);
  1768     ykey = ideal_cmpxy->in(2);
  1771   // Start by locating any relevant comparisons.
  1772   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1773   Node* cmpxy = NULL;
  1774   Node* cmpyx = NULL;
  1775   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1776     Node* cmp = start_from->fast_out(k);
  1777     if (cmp->outcnt() > 0 &&            // must have prior uses
  1778         cmp->in(0) == NULL &&           // must be context-independent
  1779         cmp->Opcode() == cmp_op) {      // right kind of compare
  1780       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1781       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1785   const int NCMPS = 2;
  1786   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1787   int cmpn;
  1788   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1789     if (cmps[cmpn] != NULL)  break;     // find a result
  1791   if (cmpn < NCMPS) {
  1792     // Look for a dominating test that tells us the min and max.
  1793     int depth = 0;                // Limit search depth for speed
  1794     Node* dom = control();
  1795     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1796       if (++depth >= 100)  break;
  1797       Node* ifproj = dom;
  1798       if (!ifproj->is_Proj())  continue;
  1799       Node* iff = ifproj->in(0);
  1800       if (!iff->is_If())  continue;
  1801       Node* bol = iff->in(1);
  1802       if (!bol->is_Bool())  continue;
  1803       Node* cmp = bol->in(1);
  1804       if (cmp == NULL)  continue;
  1805       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1806         if (cmps[cmpn] == cmp)  break;
  1807       if (cmpn == NCMPS)  continue;
  1808       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1809       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1810       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1811       // At this point, we know that 'x btest y' is true.
  1812       switch (btest) {
  1813       case BoolTest::eq:
  1814         // They are proven equal, so we can collapse the min/max.
  1815         // Either value is the answer.  Choose the simpler.
  1816         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1817           return yvalue;
  1818         return xvalue;
  1819       case BoolTest::lt:          // x < y
  1820       case BoolTest::le:          // x <= y
  1821         return (want_max ? yvalue : xvalue);
  1822       case BoolTest::gt:          // x > y
  1823       case BoolTest::ge:          // x >= y
  1824         return (want_max ? xvalue : yvalue);
  1829   // We failed to find a dominating test.
  1830   // Let's pick a test that might GVN with prior tests.
  1831   Node*          best_bol   = NULL;
  1832   BoolTest::mask best_btest = BoolTest::illegal;
  1833   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1834     Node* cmp = cmps[cmpn];
  1835     if (cmp == NULL)  continue;
  1836     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1837       Node* bol = cmp->fast_out(j);
  1838       if (!bol->is_Bool())  continue;
  1839       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1840       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1841       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1842       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1843         best_bol   = bol->as_Bool();
  1844         best_btest = btest;
  1849   Node* answer_if_true  = NULL;
  1850   Node* answer_if_false = NULL;
  1851   switch (best_btest) {
  1852   default:
  1853     if (cmpxy == NULL)
  1854       cmpxy = ideal_cmpxy;
  1855     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
  1856     // and fall through:
  1857   case BoolTest::lt:          // x < y
  1858   case BoolTest::le:          // x <= y
  1859     answer_if_true  = (want_max ? yvalue : xvalue);
  1860     answer_if_false = (want_max ? xvalue : yvalue);
  1861     break;
  1862   case BoolTest::gt:          // x > y
  1863   case BoolTest::ge:          // x >= y
  1864     answer_if_true  = (want_max ? xvalue : yvalue);
  1865     answer_if_false = (want_max ? yvalue : xvalue);
  1866     break;
  1869   jint hi, lo;
  1870   if (want_max) {
  1871     // We can sharpen the minimum.
  1872     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  1873     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  1874   } else {
  1875     // We can sharpen the maximum.
  1876     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  1877     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  1880   // Use a flow-free graph structure, to avoid creating excess control edges
  1881   // which could hinder other optimizations.
  1882   // Since Math.min/max is often used with arraycopy, we want
  1883   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  1884   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  1885                                answer_if_false, answer_if_true,
  1886                                TypeInt::make(lo, hi, widen));
  1888   return _gvn.transform(cmov);
  1890   /*
  1891   // This is not as desirable as it may seem, since Min and Max
  1892   // nodes do not have a full set of optimizations.
  1893   // And they would interfere, anyway, with 'if' optimizations
  1894   // and with CMoveI canonical forms.
  1895   switch (id) {
  1896   case vmIntrinsics::_min:
  1897     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  1898   case vmIntrinsics::_max:
  1899     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  1900   default:
  1901     ShouldNotReachHere();
  1903   */
  1906 inline int
  1907 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  1908   const TypePtr* base_type = TypePtr::NULL_PTR;
  1909   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  1910   if (base_type == NULL) {
  1911     // Unknown type.
  1912     return Type::AnyPtr;
  1913   } else if (base_type == TypePtr::NULL_PTR) {
  1914     // Since this is a NULL+long form, we have to switch to a rawptr.
  1915     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
  1916     offset = MakeConX(0);
  1917     return Type::RawPtr;
  1918   } else if (base_type->base() == Type::RawPtr) {
  1919     return Type::RawPtr;
  1920   } else if (base_type->isa_oopptr()) {
  1921     // Base is never null => always a heap address.
  1922     if (base_type->ptr() == TypePtr::NotNull) {
  1923       return Type::OopPtr;
  1925     // Offset is small => always a heap address.
  1926     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  1927     if (offset_type != NULL &&
  1928         base_type->offset() == 0 &&     // (should always be?)
  1929         offset_type->_lo >= 0 &&
  1930         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  1931       return Type::OopPtr;
  1933     // Otherwise, it might either be oop+off or NULL+addr.
  1934     return Type::AnyPtr;
  1935   } else {
  1936     // No information:
  1937     return Type::AnyPtr;
  1941 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  1942   int kind = classify_unsafe_addr(base, offset);
  1943   if (kind == Type::RawPtr) {
  1944     return basic_plus_adr(top(), base, offset);
  1945   } else {
  1946     return basic_plus_adr(base, offset);
  1950 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
  1951 // inline int Integer.numberOfLeadingZeros(int)
  1952 // inline int Long.numberOfLeadingZeros(long)
  1953 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
  1954   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
  1955   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
  1956   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
  1957   _sp += arg_size();  // restore stack pointer
  1958   switch (id) {
  1959   case vmIntrinsics::_numberOfLeadingZeros_i:
  1960     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
  1961     break;
  1962   case vmIntrinsics::_numberOfLeadingZeros_l:
  1963     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
  1964     break;
  1965   default:
  1966     ShouldNotReachHere();
  1968   return true;
  1971 //-------------------inline_numberOfTrailingZeros_int/long----------------------
  1972 // inline int Integer.numberOfTrailingZeros(int)
  1973 // inline int Long.numberOfTrailingZeros(long)
  1974 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
  1975   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
  1976   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
  1977   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
  1978   _sp += arg_size();  // restore stack pointer
  1979   switch (id) {
  1980   case vmIntrinsics::_numberOfTrailingZeros_i:
  1981     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
  1982     break;
  1983   case vmIntrinsics::_numberOfTrailingZeros_l:
  1984     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
  1985     break;
  1986   default:
  1987     ShouldNotReachHere();
  1989   return true;
  1992 //----------------------------inline_bitCount_int/long-----------------------
  1993 // inline int Integer.bitCount(int)
  1994 // inline int Long.bitCount(long)
  1995 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
  1996   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
  1997   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
  1998   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
  1999   _sp += arg_size();  // restore stack pointer
  2000   switch (id) {
  2001   case vmIntrinsics::_bitCount_i:
  2002     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
  2003     break;
  2004   case vmIntrinsics::_bitCount_l:
  2005     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
  2006     break;
  2007   default:
  2008     ShouldNotReachHere();
  2010   return true;
  2013 //----------------------------inline_reverseBytes_int/long-------------------
  2014 // inline Integer.reverseBytes(int)
  2015 // inline Long.reverseBytes(long)
  2016 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  2017   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes");
  2018   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
  2019   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
  2020   _sp += arg_size();        // restore stack pointer
  2021   switch (id) {
  2022   case vmIntrinsics::_reverseBytes_i:
  2023     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
  2024     break;
  2025   case vmIntrinsics::_reverseBytes_l:
  2026     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
  2027     break;
  2028   default:
  2031   return true;
  2034 //----------------------------inline_unsafe_access----------------------------
  2036 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2038 // Interpret Unsafe.fieldOffset cookies correctly:
  2039 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2041 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2042   if (callee()->is_static())  return false;  // caller must have the capability!
  2044 #ifndef PRODUCT
  2046     ResourceMark rm;
  2047     // Check the signatures.
  2048     ciSignature* sig = signature();
  2049 #ifdef ASSERT
  2050     if (!is_store) {
  2051       // Object getObject(Object base, int/long offset), etc.
  2052       BasicType rtype = sig->return_type()->basic_type();
  2053       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2054           rtype = T_ADDRESS;  // it is really a C void*
  2055       assert(rtype == type, "getter must return the expected value");
  2056       if (!is_native_ptr) {
  2057         assert(sig->count() == 2, "oop getter has 2 arguments");
  2058         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2059         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2060       } else {
  2061         assert(sig->count() == 1, "native getter has 1 argument");
  2062         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2064     } else {
  2065       // void putObject(Object base, int/long offset, Object x), etc.
  2066       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2067       if (!is_native_ptr) {
  2068         assert(sig->count() == 3, "oop putter has 3 arguments");
  2069         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2070         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2071       } else {
  2072         assert(sig->count() == 2, "native putter has 2 arguments");
  2073         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2075       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2076       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2077         vtype = T_ADDRESS;  // it is really a C void*
  2078       assert(vtype == type, "putter must accept the expected value");
  2080 #endif // ASSERT
  2082 #endif //PRODUCT
  2084   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2086   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  2088   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  2089   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  2091   debug_only(int saved_sp = _sp);
  2092   _sp += nargs;
  2094   Node* val;
  2095   debug_only(val = (Node*)(uintptr_t)-1);
  2098   if (is_store) {
  2099     // Get the value being stored.  (Pop it first; it was pushed last.)
  2100     switch (type) {
  2101     case T_DOUBLE:
  2102     case T_LONG:
  2103     case T_ADDRESS:
  2104       val = pop_pair();
  2105       break;
  2106     default:
  2107       val = pop();
  2111   // Build address expression.  See the code in inline_unsafe_prefetch.
  2112   Node *adr;
  2113   Node *heap_base_oop = top();
  2114   if (!is_native_ptr) {
  2115     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2116     Node* offset = pop_pair();
  2117     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2118     Node* base   = pop();
  2119     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2120     // to be plain byte offsets, which are also the same as those accepted
  2121     // by oopDesc::field_base.
  2122     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2123            "fieldOffset must be byte-scaled");
  2124     // 32-bit machines ignore the high half!
  2125     offset = ConvL2X(offset);
  2126     adr = make_unsafe_address(base, offset);
  2127     heap_base_oop = base;
  2128   } else {
  2129     Node* ptr = pop_pair();
  2130     // Adjust Java long to machine word:
  2131     ptr = ConvL2X(ptr);
  2132     adr = make_unsafe_address(NULL, ptr);
  2135   // Pop receiver last:  it was pushed first.
  2136   Node *receiver = pop();
  2138   assert(saved_sp == _sp, "must have correct argument count");
  2140   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2142   // First guess at the value type.
  2143   const Type *value_type = Type::get_const_basic_type(type);
  2145   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2146   // there was not enough information to nail it down.
  2147   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2148   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2150   // We will need memory barriers unless we can determine a unique
  2151   // alias category for this reference.  (Note:  If for some reason
  2152   // the barriers get omitted and the unsafe reference begins to "pollute"
  2153   // the alias analysis of the rest of the graph, either Compile::can_alias
  2154   // or Compile::must_alias will throw a diagnostic assert.)
  2155   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2157   if (!is_store && type == T_OBJECT) {
  2158     // Attempt to infer a sharper value type from the offset and base type.
  2159     ciKlass* sharpened_klass = NULL;
  2161     // See if it is an instance field, with an object type.
  2162     if (alias_type->field() != NULL) {
  2163       assert(!is_native_ptr, "native pointer op cannot use a java address");
  2164       if (alias_type->field()->type()->is_klass()) {
  2165         sharpened_klass = alias_type->field()->type()->as_klass();
  2169     // See if it is a narrow oop array.
  2170     if (adr_type->isa_aryptr()) {
  2171       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2172         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2173         if (elem_type != NULL) {
  2174           sharpened_klass = elem_type->klass();
  2179     if (sharpened_klass != NULL) {
  2180       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2182       // Sharpen the value type.
  2183       value_type = tjp;
  2185 #ifndef PRODUCT
  2186       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2187         tty->print("  from base type:  ");   adr_type->dump();
  2188         tty->print("  sharpened value: "); value_type->dump();
  2190 #endif
  2194   // Null check on self without removing any arguments.  The argument
  2195   // null check technically happens in the wrong place, which can lead to
  2196   // invalid stack traces when the primitive is inlined into a method
  2197   // which handles NullPointerExceptions.
  2198   _sp += nargs;
  2199   do_null_check(receiver, T_OBJECT);
  2200   _sp -= nargs;
  2201   if (stopped()) {
  2202     return true;
  2204   // Heap pointers get a null-check from the interpreter,
  2205   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2206   // and it is not possible to fully distinguish unintended nulls
  2207   // from intended ones in this API.
  2209   if (is_volatile) {
  2210     // We need to emit leading and trailing CPU membars (see below) in
  2211     // addition to memory membars when is_volatile. This is a little
  2212     // too strong, but avoids the need to insert per-alias-type
  2213     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2214     // we cannot do effectively here because we probably only have a
  2215     // rough approximation of type.
  2216     need_mem_bar = true;
  2217     // For Stores, place a memory ordering barrier now.
  2218     if (is_store)
  2219       insert_mem_bar(Op_MemBarRelease);
  2222   // Memory barrier to prevent normal and 'unsafe' accesses from
  2223   // bypassing each other.  Happens after null checks, so the
  2224   // exception paths do not take memory state from the memory barrier,
  2225   // so there's no problems making a strong assert about mixing users
  2226   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2227   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2228   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2230   if (!is_store) {
  2231     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2232     // load value and push onto stack
  2233     switch (type) {
  2234     case T_BOOLEAN:
  2235     case T_CHAR:
  2236     case T_BYTE:
  2237     case T_SHORT:
  2238     case T_INT:
  2239     case T_FLOAT:
  2240     case T_OBJECT:
  2241       push( p );
  2242       break;
  2243     case T_ADDRESS:
  2244       // Cast to an int type.
  2245       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
  2246       p = ConvX2L(p);
  2247       push_pair(p);
  2248       break;
  2249     case T_DOUBLE:
  2250     case T_LONG:
  2251       push_pair( p );
  2252       break;
  2253     default: ShouldNotReachHere();
  2255   } else {
  2256     // place effect of store into memory
  2257     switch (type) {
  2258     case T_DOUBLE:
  2259       val = dstore_rounding(val);
  2260       break;
  2261     case T_ADDRESS:
  2262       // Repackage the long as a pointer.
  2263       val = ConvL2X(val);
  2264       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
  2265       break;
  2268     if (type != T_OBJECT ) {
  2269       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2270     } else {
  2271       // Possibly an oop being stored to Java heap or native memory
  2272       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2273         // oop to Java heap.
  2274         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2275       } else {
  2276         // We can't tell at compile time if we are storing in the Java heap or outside
  2277         // of it. So we need to emit code to conditionally do the proper type of
  2278         // store.
  2280         IdealKit ideal(gvn(), control(),  merged_memory());
  2281 #define __ ideal.
  2282         // QQQ who knows what probability is here??
  2283         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2284           // Sync IdealKit and graphKit.
  2285           set_all_memory( __ merged_memory());
  2286           set_control(__ ctrl());
  2287           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2288           // Update IdealKit memory.
  2289           __ set_all_memory(merged_memory());
  2290           __ set_ctrl(control());
  2291         } __ else_(); {
  2292           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2293         } __ end_if();
  2294         // Final sync IdealKit and GraphKit.
  2295         sync_kit(ideal);
  2296 #undef __
  2301   if (is_volatile) {
  2302     if (!is_store)
  2303       insert_mem_bar(Op_MemBarAcquire);
  2304     else
  2305       insert_mem_bar(Op_MemBarVolatile);
  2308   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2310   return true;
  2313 //----------------------------inline_unsafe_prefetch----------------------------
  2315 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2316 #ifndef PRODUCT
  2318     ResourceMark rm;
  2319     // Check the signatures.
  2320     ciSignature* sig = signature();
  2321 #ifdef ASSERT
  2322     // Object getObject(Object base, int/long offset), etc.
  2323     BasicType rtype = sig->return_type()->basic_type();
  2324     if (!is_native_ptr) {
  2325       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2326       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2327       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2328     } else {
  2329       assert(sig->count() == 1, "native prefetch has 1 argument");
  2330       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2332 #endif // ASSERT
  2334 #endif // !PRODUCT
  2336   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2338   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2339   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2341   debug_only(int saved_sp = _sp);
  2342   _sp += nargs;
  2344   // Build address expression.  See the code in inline_unsafe_access.
  2345   Node *adr;
  2346   if (!is_native_ptr) {
  2347     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2348     Node* offset = pop_pair();
  2349     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2350     Node* base   = pop();
  2351     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2352     // to be plain byte offsets, which are also the same as those accepted
  2353     // by oopDesc::field_base.
  2354     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2355            "fieldOffset must be byte-scaled");
  2356     // 32-bit machines ignore the high half!
  2357     offset = ConvL2X(offset);
  2358     adr = make_unsafe_address(base, offset);
  2359   } else {
  2360     Node* ptr = pop_pair();
  2361     // Adjust Java long to machine word:
  2362     ptr = ConvL2X(ptr);
  2363     adr = make_unsafe_address(NULL, ptr);
  2366   if (is_static) {
  2367     assert(saved_sp == _sp, "must have correct argument count");
  2368   } else {
  2369     // Pop receiver last:  it was pushed first.
  2370     Node *receiver = pop();
  2371     assert(saved_sp == _sp, "must have correct argument count");
  2373     // Null check on self without removing any arguments.  The argument
  2374     // null check technically happens in the wrong place, which can lead to
  2375     // invalid stack traces when the primitive is inlined into a method
  2376     // which handles NullPointerExceptions.
  2377     _sp += nargs;
  2378     do_null_check(receiver, T_OBJECT);
  2379     _sp -= nargs;
  2380     if (stopped()) {
  2381       return true;
  2385   // Generate the read or write prefetch
  2386   Node *prefetch;
  2387   if (is_store) {
  2388     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  2389   } else {
  2390     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  2392   prefetch->init_req(0, control());
  2393   set_i_o(_gvn.transform(prefetch));
  2395   return true;
  2398 //----------------------------inline_unsafe_CAS----------------------------
  2400 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  2401   // This basic scheme here is the same as inline_unsafe_access, but
  2402   // differs in enough details that combining them would make the code
  2403   // overly confusing.  (This is a true fact! I originally combined
  2404   // them, but even I was confused by it!) As much code/comments as
  2405   // possible are retained from inline_unsafe_access though to make
  2406   // the correspondences clearer. - dl
  2408   if (callee()->is_static())  return false;  // caller must have the capability!
  2410 #ifndef PRODUCT
  2412     ResourceMark rm;
  2413     // Check the signatures.
  2414     ciSignature* sig = signature();
  2415 #ifdef ASSERT
  2416     BasicType rtype = sig->return_type()->basic_type();
  2417     assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2418     assert(sig->count() == 4, "CAS has 4 arguments");
  2419     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2420     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2421 #endif // ASSERT
  2423 #endif //PRODUCT
  2425   // number of stack slots per value argument (1 or 2)
  2426   int type_words = type2size[type];
  2428   // Cannot inline wide CAS on machines that don't support it natively
  2429   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
  2430     return false;
  2432   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2434   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  2435   int nargs = 1 + 1 + 2  + type_words + type_words;
  2437   // pop arguments: newval, oldval, offset, base, and receiver
  2438   debug_only(int saved_sp = _sp);
  2439   _sp += nargs;
  2440   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2441   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  2442   Node *offset   = pop_pair();
  2443   Node *base     = pop();
  2444   Node *receiver = pop();
  2445   assert(saved_sp == _sp, "must have correct argument count");
  2447   //  Null check receiver.
  2448   _sp += nargs;
  2449   do_null_check(receiver, T_OBJECT);
  2450   _sp -= nargs;
  2451   if (stopped()) {
  2452     return true;
  2455   // Build field offset expression.
  2456   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2457   // to be plain byte offsets, which are also the same as those accepted
  2458   // by oopDesc::field_base.
  2459   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2460   // 32-bit machines ignore the high half of long offsets
  2461   offset = ConvL2X(offset);
  2462   Node* adr = make_unsafe_address(base, offset);
  2463   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2465   // (Unlike inline_unsafe_access, there seems no point in trying
  2466   // to refine types. Just use the coarse types here.
  2467   const Type *value_type = Type::get_const_basic_type(type);
  2468   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2469   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2470   int alias_idx = C->get_alias_index(adr_type);
  2472   // Memory-model-wise, a CAS acts like a little synchronized block,
  2473   // so needs barriers on each side.  These don't translate into
  2474   // actual barriers on most machines, but we still need rest of
  2475   // compiler to respect ordering.
  2477   insert_mem_bar(Op_MemBarRelease);
  2478   insert_mem_bar(Op_MemBarCPUOrder);
  2480   // 4984716: MemBars must be inserted before this
  2481   //          memory node in order to avoid a false
  2482   //          dependency which will confuse the scheduler.
  2483   Node *mem = memory(alias_idx);
  2485   // For now, we handle only those cases that actually exist: ints,
  2486   // longs, and Object. Adding others should be straightforward.
  2487   Node* cas;
  2488   switch(type) {
  2489   case T_INT:
  2490     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2491     break;
  2492   case T_LONG:
  2493     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2494     break;
  2495   case T_OBJECT:
  2496      // reference stores need a store barrier.
  2497     // (They don't if CAS fails, but it isn't worth checking.)
  2498     pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
  2499 #ifdef _LP64
  2500     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2501       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2502       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2503       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
  2504                                                           newval_enc, oldval_enc));
  2505     } else
  2506 #endif
  2508       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2510     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
  2511     break;
  2512   default:
  2513     ShouldNotReachHere();
  2514     break;
  2517   // SCMemProjNodes represent the memory state of CAS. Their main
  2518   // role is to prevent CAS nodes from being optimized away when their
  2519   // results aren't used.
  2520   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  2521   set_memory(proj, alias_idx);
  2523   // Add the trailing membar surrounding the access
  2524   insert_mem_bar(Op_MemBarCPUOrder);
  2525   insert_mem_bar(Op_MemBarAcquire);
  2527   push(cas);
  2528   return true;
  2531 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2532   // This is another variant of inline_unsafe_access, differing in
  2533   // that it always issues store-store ("release") barrier and ensures
  2534   // store-atomicity (which only matters for "long").
  2536   if (callee()->is_static())  return false;  // caller must have the capability!
  2538 #ifndef PRODUCT
  2540     ResourceMark rm;
  2541     // Check the signatures.
  2542     ciSignature* sig = signature();
  2543 #ifdef ASSERT
  2544     BasicType rtype = sig->return_type()->basic_type();
  2545     assert(rtype == T_VOID, "must return void");
  2546     assert(sig->count() == 3, "has 3 arguments");
  2547     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2548     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2549 #endif // ASSERT
  2551 #endif //PRODUCT
  2553   // number of stack slots per value argument (1 or 2)
  2554   int type_words = type2size[type];
  2556   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2558   // Argument words:  "this" plus oop plus offset plus value;
  2559   int nargs = 1 + 1 + 2 + type_words;
  2561   // pop arguments: val, offset, base, and receiver
  2562   debug_only(int saved_sp = _sp);
  2563   _sp += nargs;
  2564   Node* val      = (type_words == 1) ? pop() : pop_pair();
  2565   Node *offset   = pop_pair();
  2566   Node *base     = pop();
  2567   Node *receiver = pop();
  2568   assert(saved_sp == _sp, "must have correct argument count");
  2570   //  Null check receiver.
  2571   _sp += nargs;
  2572   do_null_check(receiver, T_OBJECT);
  2573   _sp -= nargs;
  2574   if (stopped()) {
  2575     return true;
  2578   // Build field offset expression.
  2579   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2580   // 32-bit machines ignore the high half of long offsets
  2581   offset = ConvL2X(offset);
  2582   Node* adr = make_unsafe_address(base, offset);
  2583   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2584   const Type *value_type = Type::get_const_basic_type(type);
  2585   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2587   insert_mem_bar(Op_MemBarRelease);
  2588   insert_mem_bar(Op_MemBarCPUOrder);
  2589   // Ensure that the store is atomic for longs:
  2590   bool require_atomic_access = true;
  2591   Node* store;
  2592   if (type == T_OBJECT) // reference stores need a store barrier.
  2593     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2594   else {
  2595     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2597   insert_mem_bar(Op_MemBarCPUOrder);
  2598   return true;
  2601 bool LibraryCallKit::inline_unsafe_allocate() {
  2602   if (callee()->is_static())  return false;  // caller must have the capability!
  2603   int nargs = 1 + 1;
  2604   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  2605   null_check_receiver(callee());  // check then ignore argument(0)
  2606   _sp += nargs;  // set original stack for use by uncommon_trap
  2607   Node* cls = do_null_check(argument(1), T_OBJECT);
  2608   _sp -= nargs;
  2609   if (stopped())  return true;
  2611   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2612   _sp += nargs;  // set original stack for use by uncommon_trap
  2613   kls = do_null_check(kls, T_OBJECT);
  2614   _sp -= nargs;
  2615   if (stopped())  return true;  // argument was like int.class
  2617   // Note:  The argument might still be an illegal value like
  2618   // Serializable.class or Object[].class.   The runtime will handle it.
  2619   // But we must make an explicit check for initialization.
  2620   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
  2621   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
  2622   Node* bits = intcon(instanceKlass::fully_initialized);
  2623   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  2624   // The 'test' is non-zero if we need to take a slow path.
  2626   Node* obj = new_instance(kls, test);
  2627   push(obj);
  2629   return true;
  2632 //------------------------inline_native_time_funcs--------------
  2633 // inline code for System.currentTimeMillis() and System.nanoTime()
  2634 // these have the same type and signature
  2635 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
  2636   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
  2637                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
  2638   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
  2639   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
  2640   const TypePtr* no_memory_effects = NULL;
  2641   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2642   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
  2643 #ifdef ASSERT
  2644   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  2645   assert(value_top == top(), "second value must be top");
  2646 #endif
  2647   push_pair(value);
  2648   return true;
  2651 //------------------------inline_native_currentThread------------------
  2652 bool LibraryCallKit::inline_native_currentThread() {
  2653   Node* junk = NULL;
  2654   push(generate_current_thread(junk));
  2655   return true;
  2658 //------------------------inline_native_isInterrupted------------------
  2659 bool LibraryCallKit::inline_native_isInterrupted() {
  2660   const int nargs = 1+1;  // receiver + boolean
  2661   assert(nargs == arg_size(), "sanity");
  2662   // Add a fast path to t.isInterrupted(clear_int):
  2663   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2664   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2665   // So, in the common case that the interrupt bit is false,
  2666   // we avoid making a call into the VM.  Even if the interrupt bit
  2667   // is true, if the clear_int argument is false, we avoid the VM call.
  2668   // However, if the receiver is not currentThread, we must call the VM,
  2669   // because there must be some locking done around the operation.
  2671   // We only go to the fast case code if we pass two guards.
  2672   // Paths which do not pass are accumulated in the slow_region.
  2673   RegionNode* slow_region = new (C, 1) RegionNode(1);
  2674   record_for_igvn(slow_region);
  2675   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  2676   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  2677   enum { no_int_result_path   = 1,
  2678          no_clear_result_path = 2,
  2679          slow_result_path     = 3
  2680   };
  2682   // (a) Receiving thread must be the current thread.
  2683   Node* rec_thr = argument(0);
  2684   Node* tls_ptr = NULL;
  2685   Node* cur_thr = generate_current_thread(tls_ptr);
  2686   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  2687   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
  2689   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  2690   if (!known_current_thread)
  2691     generate_slow_guard(bol_thr, slow_region);
  2693   // (b) Interrupt bit on TLS must be false.
  2694   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2695   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2696   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  2697   // Set the control input on the field _interrupted read to prevent it floating up.
  2698   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  2699   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  2700   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
  2702   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2704   // First fast path:  if (!TLS._interrupted) return false;
  2705   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  2706   result_rgn->init_req(no_int_result_path, false_bit);
  2707   result_val->init_req(no_int_result_path, intcon(0));
  2709   // drop through to next case
  2710   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
  2712   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  2713   Node* clr_arg = argument(1);
  2714   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  2715   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  2716   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  2718   // Second fast path:  ... else if (!clear_int) return true;
  2719   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  2720   result_rgn->init_req(no_clear_result_path, false_arg);
  2721   result_val->init_req(no_clear_result_path, intcon(1));
  2723   // drop through to next case
  2724   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
  2726   // (d) Otherwise, go to the slow path.
  2727   slow_region->add_req(control());
  2728   set_control( _gvn.transform(slow_region) );
  2730   if (stopped()) {
  2731     // There is no slow path.
  2732     result_rgn->init_req(slow_result_path, top());
  2733     result_val->init_req(slow_result_path, top());
  2734   } else {
  2735     // non-virtual because it is a private non-static
  2736     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  2738     Node* slow_val = set_results_for_java_call(slow_call);
  2739     // this->control() comes from set_results_for_java_call
  2741     // If we know that the result of the slow call will be true, tell the optimizer!
  2742     if (known_current_thread)  slow_val = intcon(1);
  2744     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  2745     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  2746     // These two phis are pre-filled with copies of of the fast IO and Memory
  2747     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  2748     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  2750     result_rgn->init_req(slow_result_path, control());
  2751     io_phi    ->init_req(slow_result_path, i_o());
  2752     mem_phi   ->init_req(slow_result_path, reset_memory());
  2753     result_val->init_req(slow_result_path, slow_val);
  2755     set_all_memory( _gvn.transform(mem_phi) );
  2756     set_i_o(        _gvn.transform(io_phi) );
  2759   push_result(result_rgn, result_val);
  2760   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2762   return true;
  2765 //---------------------------load_mirror_from_klass----------------------------
  2766 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  2767 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  2768   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
  2769   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  2772 //-----------------------load_klass_from_mirror_common-------------------------
  2773 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  2774 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  2775 // and branch to the given path on the region.
  2776 // If never_see_null, take an uncommon trap on null, so we can optimistically
  2777 // compile for the non-null case.
  2778 // If the region is NULL, force never_see_null = true.
  2779 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  2780                                                     bool never_see_null,
  2781                                                     int nargs,
  2782                                                     RegionNode* region,
  2783                                                     int null_path,
  2784                                                     int offset) {
  2785   if (region == NULL)  never_see_null = true;
  2786   Node* p = basic_plus_adr(mirror, offset);
  2787   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2788   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  2789   _sp += nargs; // any deopt will start just before call to enclosing method
  2790   Node* null_ctl = top();
  2791   kls = null_check_oop(kls, &null_ctl, never_see_null);
  2792   if (region != NULL) {
  2793     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  2794     region->init_req(null_path, null_ctl);
  2795   } else {
  2796     assert(null_ctl == top(), "no loose ends");
  2798   _sp -= nargs;
  2799   return kls;
  2802 //--------------------(inline_native_Class_query helpers)---------------------
  2803 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  2804 // Fall through if (mods & mask) == bits, take the guard otherwise.
  2805 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  2806   // Branch around if the given klass has the given modifier bit set.
  2807   // Like generate_guard, adds a new path onto the region.
  2808   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2809   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  2810   Node* mask = intcon(modifier_mask);
  2811   Node* bits = intcon(modifier_bits);
  2812   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  2813   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  2814   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  2815   return generate_fair_guard(bol, region);
  2817 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  2818   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  2821 //-------------------------inline_native_Class_query-------------------
  2822 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  2823   int nargs = 1+0;  // just the Class mirror, in most cases
  2824   const Type* return_type = TypeInt::BOOL;
  2825   Node* prim_return_value = top();  // what happens if it's a primitive class?
  2826   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2827   bool expect_prim = false;     // most of these guys expect to work on refs
  2829   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  2831   switch (id) {
  2832   case vmIntrinsics::_isInstance:
  2833     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  2834     // nothing is an instance of a primitive type
  2835     prim_return_value = intcon(0);
  2836     break;
  2837   case vmIntrinsics::_getModifiers:
  2838     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2839     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  2840     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  2841     break;
  2842   case vmIntrinsics::_isInterface:
  2843     prim_return_value = intcon(0);
  2844     break;
  2845   case vmIntrinsics::_isArray:
  2846     prim_return_value = intcon(0);
  2847     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  2848     break;
  2849   case vmIntrinsics::_isPrimitive:
  2850     prim_return_value = intcon(1);
  2851     expect_prim = true;  // obviously
  2852     break;
  2853   case vmIntrinsics::_getSuperclass:
  2854     prim_return_value = null();
  2855     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2856     break;
  2857   case vmIntrinsics::_getComponentType:
  2858     prim_return_value = null();
  2859     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2860     break;
  2861   case vmIntrinsics::_getClassAccessFlags:
  2862     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2863     return_type = TypeInt::INT;  // not bool!  6297094
  2864     break;
  2865   default:
  2866     ShouldNotReachHere();
  2869   Node* mirror =                      argument(0);
  2870   Node* obj    = (nargs <= 1)? top(): argument(1);
  2872   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  2873   if (mirror_con == NULL)  return false;  // cannot happen?
  2875 #ifndef PRODUCT
  2876   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2877     ciType* k = mirror_con->java_mirror_type();
  2878     if (k) {
  2879       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  2880       k->print_name();
  2881       tty->cr();
  2884 #endif
  2886   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  2887   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2888   record_for_igvn(region);
  2889   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
  2891   // The mirror will never be null of Reflection.getClassAccessFlags, however
  2892   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  2893   // if it is. See bug 4774291.
  2895   // For Reflection.getClassAccessFlags(), the null check occurs in
  2896   // the wrong place; see inline_unsafe_access(), above, for a similar
  2897   // situation.
  2898   _sp += nargs;  // set original stack for use by uncommon_trap
  2899   mirror = do_null_check(mirror, T_OBJECT);
  2900   _sp -= nargs;
  2901   // If mirror or obj is dead, only null-path is taken.
  2902   if (stopped())  return true;
  2904   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  2906   // Now load the mirror's klass metaobject, and null-check it.
  2907   // Side-effects region with the control path if the klass is null.
  2908   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  2909                                      region, _prim_path);
  2910   // If kls is null, we have a primitive mirror.
  2911   phi->init_req(_prim_path, prim_return_value);
  2912   if (stopped()) { push_result(region, phi); return true; }
  2914   Node* p;  // handy temp
  2915   Node* null_ctl;
  2917   // Now that we have the non-null klass, we can perform the real query.
  2918   // For constant classes, the query will constant-fold in LoadNode::Value.
  2919   Node* query_value = top();
  2920   switch (id) {
  2921   case vmIntrinsics::_isInstance:
  2922     // nothing is an instance of a primitive type
  2923     query_value = gen_instanceof(obj, kls);
  2924     break;
  2926   case vmIntrinsics::_getModifiers:
  2927     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
  2928     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  2929     break;
  2931   case vmIntrinsics::_isInterface:
  2932     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2933     if (generate_interface_guard(kls, region) != NULL)
  2934       // A guard was added.  If the guard is taken, it was an interface.
  2935       phi->add_req(intcon(1));
  2936     // If we fall through, it's a plain class.
  2937     query_value = intcon(0);
  2938     break;
  2940   case vmIntrinsics::_isArray:
  2941     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  2942     if (generate_array_guard(kls, region) != NULL)
  2943       // A guard was added.  If the guard is taken, it was an array.
  2944       phi->add_req(intcon(1));
  2945     // If we fall through, it's a plain class.
  2946     query_value = intcon(0);
  2947     break;
  2949   case vmIntrinsics::_isPrimitive:
  2950     query_value = intcon(0); // "normal" path produces false
  2951     break;
  2953   case vmIntrinsics::_getSuperclass:
  2954     // The rules here are somewhat unfortunate, but we can still do better
  2955     // with random logic than with a JNI call.
  2956     // Interfaces store null or Object as _super, but must report null.
  2957     // Arrays store an intermediate super as _super, but must report Object.
  2958     // Other types can report the actual _super.
  2959     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2960     if (generate_interface_guard(kls, region) != NULL)
  2961       // A guard was added.  If the guard is taken, it was an interface.
  2962       phi->add_req(null());
  2963     if (generate_array_guard(kls, region) != NULL)
  2964       // A guard was added.  If the guard is taken, it was an array.
  2965       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  2966     // If we fall through, it's a plain class.  Get its _super.
  2967     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
  2968     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  2969     null_ctl = top();
  2970     kls = null_check_oop(kls, &null_ctl);
  2971     if (null_ctl != top()) {
  2972       // If the guard is taken, Object.superClass is null (both klass and mirror).
  2973       region->add_req(null_ctl);
  2974       phi   ->add_req(null());
  2976     if (!stopped()) {
  2977       query_value = load_mirror_from_klass(kls);
  2979     break;
  2981   case vmIntrinsics::_getComponentType:
  2982     if (generate_array_guard(kls, region) != NULL) {
  2983       // Be sure to pin the oop load to the guard edge just created:
  2984       Node* is_array_ctrl = region->in(region->req()-1);
  2985       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
  2986       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  2987       phi->add_req(cmo);
  2989     query_value = null();  // non-array case is null
  2990     break;
  2992   case vmIntrinsics::_getClassAccessFlags:
  2993     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2994     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  2995     break;
  2997   default:
  2998     ShouldNotReachHere();
  3001   // Fall-through is the normal case of a query to a real class.
  3002   phi->init_req(1, query_value);
  3003   region->init_req(1, control());
  3005   push_result(region, phi);
  3006   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3008   return true;
  3011 //--------------------------inline_native_subtype_check------------------------
  3012 // This intrinsic takes the JNI calls out of the heart of
  3013 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3014 bool LibraryCallKit::inline_native_subtype_check() {
  3015   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  3017   // Pull both arguments off the stack.
  3018   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3019   args[0] = argument(0);
  3020   args[1] = argument(1);
  3021   Node* klasses[2];             // corresponding Klasses: superk, subk
  3022   klasses[0] = klasses[1] = top();
  3024   enum {
  3025     // A full decision tree on {superc is prim, subc is prim}:
  3026     _prim_0_path = 1,           // {P,N} => false
  3027                                 // {P,P} & superc!=subc => false
  3028     _prim_same_path,            // {P,P} & superc==subc => true
  3029     _prim_1_path,               // {N,P} => false
  3030     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3031     _both_ref_path,             // {N,N} & subtype check loses => false
  3032     PATH_LIMIT
  3033   };
  3035   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3036   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  3037   record_for_igvn(region);
  3039   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3040   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3041   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3043   // First null-check both mirrors and load each mirror's klass metaobject.
  3044   int which_arg;
  3045   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3046     Node* arg = args[which_arg];
  3047     _sp += nargs;  // set original stack for use by uncommon_trap
  3048     arg = do_null_check(arg, T_OBJECT);
  3049     _sp -= nargs;
  3050     if (stopped())  break;
  3051     args[which_arg] = _gvn.transform(arg);
  3053     Node* p = basic_plus_adr(arg, class_klass_offset);
  3054     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3055     klasses[which_arg] = _gvn.transform(kls);
  3058   // Having loaded both klasses, test each for null.
  3059   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3060   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3061     Node* kls = klasses[which_arg];
  3062     Node* null_ctl = top();
  3063     _sp += nargs;  // set original stack for use by uncommon_trap
  3064     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3065     _sp -= nargs;
  3066     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3067     region->init_req(prim_path, null_ctl);
  3068     if (stopped())  break;
  3069     klasses[which_arg] = kls;
  3072   if (!stopped()) {
  3073     // now we have two reference types, in klasses[0..1]
  3074     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3075     Node* superk = klasses[0];  // the receiver
  3076     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3077     // now we have a successful reference subtype check
  3078     region->set_req(_ref_subtype_path, control());
  3081   // If both operands are primitive (both klasses null), then
  3082   // we must return true when they are identical primitives.
  3083   // It is convenient to test this after the first null klass check.
  3084   set_control(region->in(_prim_0_path)); // go back to first null check
  3085   if (!stopped()) {
  3086     // Since superc is primitive, make a guard for the superc==subc case.
  3087     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
  3088     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
  3089     generate_guard(bol_eq, region, PROB_FAIR);
  3090     if (region->req() == PATH_LIMIT+1) {
  3091       // A guard was added.  If the added guard is taken, superc==subc.
  3092       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3093       region->del_req(PATH_LIMIT);
  3095     region->set_req(_prim_0_path, control()); // Not equal after all.
  3098   // these are the only paths that produce 'true':
  3099   phi->set_req(_prim_same_path,   intcon(1));
  3100   phi->set_req(_ref_subtype_path, intcon(1));
  3102   // pull together the cases:
  3103   assert(region->req() == PATH_LIMIT, "sane region");
  3104   for (uint i = 1; i < region->req(); i++) {
  3105     Node* ctl = region->in(i);
  3106     if (ctl == NULL || ctl == top()) {
  3107       region->set_req(i, top());
  3108       phi   ->set_req(i, top());
  3109     } else if (phi->in(i) == NULL) {
  3110       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3114   set_control(_gvn.transform(region));
  3115   push(_gvn.transform(phi));
  3117   return true;
  3120 //---------------------generate_array_guard_common------------------------
  3121 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3122                                                   bool obj_array, bool not_array) {
  3123   // If obj_array/non_array==false/false:
  3124   // Branch around if the given klass is in fact an array (either obj or prim).
  3125   // If obj_array/non_array==false/true:
  3126   // Branch around if the given klass is not an array klass of any kind.
  3127   // If obj_array/non_array==true/true:
  3128   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3129   // If obj_array/non_array==true/false:
  3130   // Branch around if the kls is an oop array (Object[] or subtype)
  3131   //
  3132   // Like generate_guard, adds a new path onto the region.
  3133   jint  layout_con = 0;
  3134   Node* layout_val = get_layout_helper(kls, layout_con);
  3135   if (layout_val == NULL) {
  3136     bool query = (obj_array
  3137                   ? Klass::layout_helper_is_objArray(layout_con)
  3138                   : Klass::layout_helper_is_javaArray(layout_con));
  3139     if (query == not_array) {
  3140       return NULL;                       // never a branch
  3141     } else {                             // always a branch
  3142       Node* always_branch = control();
  3143       if (region != NULL)
  3144         region->add_req(always_branch);
  3145       set_control(top());
  3146       return always_branch;
  3149   // Now test the correct condition.
  3150   jint  nval = (obj_array
  3151                 ? ((jint)Klass::_lh_array_tag_type_value
  3152                    <<    Klass::_lh_array_tag_shift)
  3153                 : Klass::_lh_neutral_value);
  3154   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  3155   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3156   // invert the test if we are looking for a non-array
  3157   if (not_array)  btest = BoolTest(btest).negate();
  3158   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  3159   return generate_fair_guard(bol, region);
  3163 //-----------------------inline_native_newArray--------------------------
  3164 bool LibraryCallKit::inline_native_newArray() {
  3165   int nargs = 2;
  3166   Node* mirror    = argument(0);
  3167   Node* count_val = argument(1);
  3169   _sp += nargs;  // set original stack for use by uncommon_trap
  3170   mirror = do_null_check(mirror, T_OBJECT);
  3171   _sp -= nargs;
  3172   // If mirror or obj is dead, only null-path is taken.
  3173   if (stopped())  return true;
  3175   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3176   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3177   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3178                                                       TypeInstPtr::NOTNULL);
  3179   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3180   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3181                                                       TypePtr::BOTTOM);
  3183   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3184   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3185                                                   nargs,
  3186                                                   result_reg, _slow_path);
  3187   Node* normal_ctl   = control();
  3188   Node* no_array_ctl = result_reg->in(_slow_path);
  3190   // Generate code for the slow case.  We make a call to newArray().
  3191   set_control(no_array_ctl);
  3192   if (!stopped()) {
  3193     // Either the input type is void.class, or else the
  3194     // array klass has not yet been cached.  Either the
  3195     // ensuing call will throw an exception, or else it
  3196     // will cache the array klass for next time.
  3197     PreserveJVMState pjvms(this);
  3198     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3199     Node* slow_result = set_results_for_java_call(slow_call);
  3200     // this->control() comes from set_results_for_java_call
  3201     result_reg->set_req(_slow_path, control());
  3202     result_val->set_req(_slow_path, slow_result);
  3203     result_io ->set_req(_slow_path, i_o());
  3204     result_mem->set_req(_slow_path, reset_memory());
  3207   set_control(normal_ctl);
  3208   if (!stopped()) {
  3209     // Normal case:  The array type has been cached in the java.lang.Class.
  3210     // The following call works fine even if the array type is polymorphic.
  3211     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3212     Node* obj = new_array(klass_node, count_val, nargs);
  3213     result_reg->init_req(_normal_path, control());
  3214     result_val->init_req(_normal_path, obj);
  3215     result_io ->init_req(_normal_path, i_o());
  3216     result_mem->init_req(_normal_path, reset_memory());
  3219   // Return the combined state.
  3220   set_i_o(        _gvn.transform(result_io)  );
  3221   set_all_memory( _gvn.transform(result_mem) );
  3222   push_result(result_reg, result_val);
  3223   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3225   return true;
  3228 //----------------------inline_native_getLength--------------------------
  3229 bool LibraryCallKit::inline_native_getLength() {
  3230   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3232   int nargs = 1;
  3233   Node* array = argument(0);
  3235   _sp += nargs;  // set original stack for use by uncommon_trap
  3236   array = do_null_check(array, T_OBJECT);
  3237   _sp -= nargs;
  3239   // If array is dead, only null-path is taken.
  3240   if (stopped())  return true;
  3242   // Deoptimize if it is a non-array.
  3243   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3245   if (non_array != NULL) {
  3246     PreserveJVMState pjvms(this);
  3247     set_control(non_array);
  3248     _sp += nargs;  // push the arguments back on the stack
  3249     uncommon_trap(Deoptimization::Reason_intrinsic,
  3250                   Deoptimization::Action_maybe_recompile);
  3253   // If control is dead, only non-array-path is taken.
  3254   if (stopped())  return true;
  3256   // The works fine even if the array type is polymorphic.
  3257   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3258   push( load_array_length(array) );
  3260   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3262   return true;
  3265 //------------------------inline_array_copyOf----------------------------
  3266 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3267   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3269   // Restore the stack and pop off the arguments.
  3270   int nargs = 3 + (is_copyOfRange? 1: 0);
  3271   Node* original          = argument(0);
  3272   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3273   Node* end               = is_copyOfRange? argument(2): argument(1);
  3274   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3276   Node* newcopy;
  3278   //set the original stack and the reexecute bit for the interpreter to reexecute
  3279   //the bytecode that invokes Arrays.copyOf if deoptimization happens
  3280   { PreserveReexecuteState preexecs(this);
  3281     _sp += nargs;
  3282     jvms()->set_should_reexecute(true);
  3284     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  3285     original          = do_null_check(original, T_OBJECT);
  3287     // Check if a null path was taken unconditionally.
  3288     if (stopped())  return true;
  3290     Node* orig_length = load_array_length(original);
  3292     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
  3293                                               NULL, 0);
  3294     klass_node = do_null_check(klass_node, T_OBJECT);
  3296     RegionNode* bailout = new (C, 1) RegionNode(1);
  3297     record_for_igvn(bailout);
  3299     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3300     // Bail out if that is so.
  3301     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3302     if (not_objArray != NULL) {
  3303       // Improve the klass node's type from the new optimistic assumption:
  3304       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3305       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3306       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
  3307       cast->init_req(0, control());
  3308       klass_node = _gvn.transform(cast);
  3311     // Bail out if either start or end is negative.
  3312     generate_negative_guard(start, bailout, &start);
  3313     generate_negative_guard(end,   bailout, &end);
  3315     Node* length = end;
  3316     if (_gvn.type(start) != TypeInt::ZERO) {
  3317       length = _gvn.transform( new (C, 3) SubINode(end, start) );
  3320     // Bail out if length is negative.
  3321     // ...Not needed, since the new_array will throw the right exception.
  3322     //generate_negative_guard(length, bailout, &length);
  3324     if (bailout->req() > 1) {
  3325       PreserveJVMState pjvms(this);
  3326       set_control( _gvn.transform(bailout) );
  3327       uncommon_trap(Deoptimization::Reason_intrinsic,
  3328                     Deoptimization::Action_maybe_recompile);
  3331     if (!stopped()) {
  3333       // How many elements will we copy from the original?
  3334       // The answer is MinI(orig_length - start, length).
  3335       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
  3336       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3338       const bool raw_mem_only = true;
  3339       newcopy = new_array(klass_node, length, 0, raw_mem_only);
  3341       // Generate a direct call to the right arraycopy function(s).
  3342       // We know the copy is disjoint but we might not know if the
  3343       // oop stores need checking.
  3344       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3345       // This will fail a store-check if x contains any non-nulls.
  3346       bool disjoint_bases = true;
  3347       bool length_never_negative = true;
  3348       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3349                          original, start, newcopy, intcon(0), moved,
  3350                          disjoint_bases, length_never_negative);
  3352   } //original reexecute and sp are set back here
  3354   if(!stopped()) {
  3355     push(newcopy);
  3358   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3360   return true;
  3364 //----------------------generate_virtual_guard---------------------------
  3365 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3366 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3367                                              RegionNode* slow_region) {
  3368   ciMethod* method = callee();
  3369   int vtable_index = method->vtable_index();
  3370   // Get the methodOop out of the appropriate vtable entry.
  3371   int entry_offset  = (instanceKlass::vtable_start_offset() +
  3372                      vtable_index*vtableEntry::size()) * wordSize +
  3373                      vtableEntry::method_offset_in_bytes();
  3374   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3375   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
  3377   // Compare the target method with the expected method (e.g., Object.hashCode).
  3378   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
  3380   Node* native_call = makecon(native_call_addr);
  3381   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  3382   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
  3384   return generate_slow_guard(test_native, slow_region);
  3387 //-----------------------generate_method_call----------------------------
  3388 // Use generate_method_call to make a slow-call to the real
  3389 // method if the fast path fails.  An alternative would be to
  3390 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3391 // This only works for expanding the current library call,
  3392 // not another intrinsic.  (E.g., don't use this for making an
  3393 // arraycopy call inside of the copyOf intrinsic.)
  3394 CallJavaNode*
  3395 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3396   // When compiling the intrinsic method itself, do not use this technique.
  3397   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3399   ciMethod* method = callee();
  3400   // ensure the JVMS we have will be correct for this call
  3401   guarantee(method_id == method->intrinsic_id(), "must match");
  3403   const TypeFunc* tf = TypeFunc::make(method);
  3404   int tfdc = tf->domain()->cnt();
  3405   CallJavaNode* slow_call;
  3406   if (is_static) {
  3407     assert(!is_virtual, "");
  3408     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3409                                 SharedRuntime::get_resolve_static_call_stub(),
  3410                                 method, bci());
  3411   } else if (is_virtual) {
  3412     null_check_receiver(method);
  3413     int vtable_index = methodOopDesc::invalid_vtable_index;
  3414     if (UseInlineCaches) {
  3415       // Suppress the vtable call
  3416     } else {
  3417       // hashCode and clone are not a miranda methods,
  3418       // so the vtable index is fixed.
  3419       // No need to use the linkResolver to get it.
  3420        vtable_index = method->vtable_index();
  3422     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
  3423                                 SharedRuntime::get_resolve_virtual_call_stub(),
  3424                                 method, vtable_index, bci());
  3425   } else {  // neither virtual nor static:  opt_virtual
  3426     null_check_receiver(method);
  3427     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3428                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3429                                 method, bci());
  3430     slow_call->set_optimized_virtual(true);
  3432   set_arguments_for_java_call(slow_call);
  3433   set_edges_for_java_call(slow_call);
  3434   return slow_call;
  3438 //------------------------------inline_native_hashcode--------------------
  3439 // Build special case code for calls to hashCode on an object.
  3440 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3441   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3442   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3444   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3446   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3447   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3448                                                       TypeInt::INT);
  3449   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3450   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3451                                                       TypePtr::BOTTOM);
  3452   Node* obj = NULL;
  3453   if (!is_static) {
  3454     // Check for hashing null object
  3455     obj = null_check_receiver(callee());
  3456     if (stopped())  return true;        // unconditionally null
  3457     result_reg->init_req(_null_path, top());
  3458     result_val->init_req(_null_path, top());
  3459   } else {
  3460     // Do a null check, and return zero if null.
  3461     // System.identityHashCode(null) == 0
  3462     obj = argument(0);
  3463     Node* null_ctl = top();
  3464     obj = null_check_oop(obj, &null_ctl);
  3465     result_reg->init_req(_null_path, null_ctl);
  3466     result_val->init_req(_null_path, _gvn.intcon(0));
  3469   // Unconditionally null?  Then return right away.
  3470   if (stopped()) {
  3471     set_control( result_reg->in(_null_path) );
  3472     if (!stopped())
  3473       push(      result_val ->in(_null_path) );
  3474     return true;
  3477   // After null check, get the object's klass.
  3478   Node* obj_klass = load_object_klass(obj);
  3480   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3481   // For each case we generate slightly different code.
  3483   // We only go to the fast case code if we pass a number of guards.  The
  3484   // paths which do not pass are accumulated in the slow_region.
  3485   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3486   record_for_igvn(slow_region);
  3488   // If this is a virtual call, we generate a funny guard.  We pull out
  3489   // the vtable entry corresponding to hashCode() from the target object.
  3490   // If the target method which we are calling happens to be the native
  3491   // Object hashCode() method, we pass the guard.  We do not need this
  3492   // guard for non-virtual calls -- the caller is known to be the native
  3493   // Object hashCode().
  3494   if (is_virtual) {
  3495     generate_virtual_guard(obj_klass, slow_region);
  3498   // Get the header out of the object, use LoadMarkNode when available
  3499   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3500   Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
  3501   header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
  3503   // Test the header to see if it is unlocked.
  3504   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3505   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  3506   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3507   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  3508   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
  3510   generate_slow_guard(test_unlocked, slow_region);
  3512   // Get the hash value and check to see that it has been properly assigned.
  3513   // We depend on hash_mask being at most 32 bits and avoid the use of
  3514   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3515   // vm: see markOop.hpp.
  3516   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3517   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3518   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  3519   // This hack lets the hash bits live anywhere in the mark object now, as long
  3520   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3521   // Java spec says that HashCode is an int so there's no point in capturing
  3522   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3523   hshifted_header      = ConvX2I(hshifted_header);
  3524   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
  3526   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3527   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  3528   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
  3530   generate_slow_guard(test_assigned, slow_region);
  3532   Node* init_mem = reset_memory();
  3533   // fill in the rest of the null path:
  3534   result_io ->init_req(_null_path, i_o());
  3535   result_mem->init_req(_null_path, init_mem);
  3537   result_val->init_req(_fast_path, hash_val);
  3538   result_reg->init_req(_fast_path, control());
  3539   result_io ->init_req(_fast_path, i_o());
  3540   result_mem->init_req(_fast_path, init_mem);
  3542   // Generate code for the slow case.  We make a call to hashCode().
  3543   set_control(_gvn.transform(slow_region));
  3544   if (!stopped()) {
  3545     // No need for PreserveJVMState, because we're using up the present state.
  3546     set_all_memory(init_mem);
  3547     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  3548     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  3549     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3550     Node* slow_result = set_results_for_java_call(slow_call);
  3551     // this->control() comes from set_results_for_java_call
  3552     result_reg->init_req(_slow_path, control());
  3553     result_val->init_req(_slow_path, slow_result);
  3554     result_io  ->set_req(_slow_path, i_o());
  3555     result_mem ->set_req(_slow_path, reset_memory());
  3558   // Return the combined state.
  3559   set_i_o(        _gvn.transform(result_io)  );
  3560   set_all_memory( _gvn.transform(result_mem) );
  3561   push_result(result_reg, result_val);
  3563   return true;
  3566 //---------------------------inline_native_getClass----------------------------
  3567 // Build special case code for calls to getClass on an object.
  3568 bool LibraryCallKit::inline_native_getClass() {
  3569   Node* obj = null_check_receiver(callee());
  3570   if (stopped())  return true;
  3571   push( load_mirror_from_klass(load_object_klass(obj)) );
  3572   return true;
  3575 //-----------------inline_native_Reflection_getCallerClass---------------------
  3576 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3577 //
  3578 // NOTE that this code must perform the same logic as
  3579 // vframeStream::security_get_caller_frame in that it must skip
  3580 // Method.invoke() and auxiliary frames.
  3585 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3586   ciMethod*       method = callee();
  3588 #ifndef PRODUCT
  3589   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3590     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3592 #endif
  3594   debug_only(int saved_sp = _sp);
  3596   // Argument words:  (int depth)
  3597   int nargs = 1;
  3599   _sp += nargs;
  3600   Node* caller_depth_node = pop();
  3602   assert(saved_sp == _sp, "must have correct argument count");
  3604   // The depth value must be a constant in order for the runtime call
  3605   // to be eliminated.
  3606   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3607   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3608 #ifndef PRODUCT
  3609     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3610       tty->print_cr("  Bailing out because caller depth was not a constant");
  3612 #endif
  3613     return false;
  3615   // Note that the JVM state at this point does not include the
  3616   // getCallerClass() frame which we are trying to inline. The
  3617   // semantics of getCallerClass(), however, are that the "first"
  3618   // frame is the getCallerClass() frame, so we subtract one from the
  3619   // requested depth before continuing. We don't inline requests of
  3620   // getCallerClass(0).
  3621   int caller_depth = caller_depth_type->get_con() - 1;
  3622   if (caller_depth < 0) {
  3623 #ifndef PRODUCT
  3624     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3625       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3627 #endif
  3628     return false;
  3631   if (!jvms()->has_method()) {
  3632 #ifndef PRODUCT
  3633     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3634       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3636 #endif
  3637     return false;
  3639   int _depth = jvms()->depth();  // cache call chain depth
  3641   // Walk back up the JVM state to find the caller at the required
  3642   // depth. NOTE that this code must perform the same logic as
  3643   // vframeStream::security_get_caller_frame in that it must skip
  3644   // Method.invoke() and auxiliary frames. Note also that depth is
  3645   // 1-based (1 is the bottom of the inlining).
  3646   int inlining_depth = _depth;
  3647   JVMState* caller_jvms = NULL;
  3649   if (inlining_depth > 0) {
  3650     caller_jvms = jvms();
  3651     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3652     do {
  3653       // The following if-tests should be performed in this order
  3654       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3655         // Skip a Method.invoke() or auxiliary frame
  3656       } else if (caller_depth > 0) {
  3657         // Skip real frame
  3658         --caller_depth;
  3659       } else {
  3660         // We're done: reached desired caller after skipping.
  3661         break;
  3663       caller_jvms = caller_jvms->caller();
  3664       --inlining_depth;
  3665     } while (inlining_depth > 0);
  3668   if (inlining_depth == 0) {
  3669 #ifndef PRODUCT
  3670     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3671       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  3672       tty->print_cr("  JVM state at this point:");
  3673       for (int i = _depth; i >= 1; i--) {
  3674         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3677 #endif
  3678     return false; // Reached end of inlining
  3681   // Acquire method holder as java.lang.Class
  3682   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  3683   ciInstance*      caller_mirror = caller_klass->java_mirror();
  3684   // Push this as a constant
  3685   push(makecon(TypeInstPtr::make(caller_mirror)));
  3686 #ifndef PRODUCT
  3687   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3688     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  3689     tty->print_cr("  JVM state at this point:");
  3690     for (int i = _depth; i >= 1; i--) {
  3691       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3694 #endif
  3695   return true;
  3698 // Helper routine for above
  3699 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  3700   ciMethod* method = jvms->method();
  3702   // Is this the Method.invoke method itself?
  3703   if (method->intrinsic_id() == vmIntrinsics::_invoke)
  3704     return true;
  3706   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  3707   ciKlass* k = method->holder();
  3708   if (k->is_instance_klass()) {
  3709     ciInstanceKlass* ik = k->as_instance_klass();
  3710     for (; ik != NULL; ik = ik->super()) {
  3711       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  3712           ik == env()->find_system_klass(ik->name())) {
  3713         return true;
  3717   else if (method->is_method_handle_adapter()) {
  3718     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
  3719     return true;
  3722   return false;
  3725 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
  3726                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
  3727                                      // computing it since there is no lookup field by name function in the
  3728                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
  3729                                      // Using a static variable here is safe even if we have multiple compilation
  3730                                      // threads because the offset is constant.  At worst the same offset will be
  3731                                      // computed and  stored multiple
  3733 bool LibraryCallKit::inline_native_AtomicLong_get() {
  3734   // Restore the stack and pop off the argument
  3735   _sp+=1;
  3736   Node *obj = pop();
  3738   // get the offset of the "value" field. Since the CI interfaces
  3739   // does not provide a way to look up a field by name, we scan the bytecodes
  3740   // to get the field index.  We expect the first 2 instructions of the method
  3741   // to be:
  3742   //    0 aload_0
  3743   //    1 getfield "value"
  3744   ciMethod* method = callee();
  3745   if (value_field_offset == -1)
  3747     ciField* value_field;
  3748     ciBytecodeStream iter(method);
  3749     Bytecodes::Code bc = iter.next();
  3751     if ((bc != Bytecodes::_aload_0) &&
  3752               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
  3753       return false;
  3754     bc = iter.next();
  3755     if (bc != Bytecodes::_getfield)
  3756       return false;
  3757     bool ignore;
  3758     value_field = iter.get_field(ignore);
  3759     value_field_offset = value_field->offset_in_bytes();
  3762   // Null check without removing any arguments.
  3763   _sp++;
  3764   obj = do_null_check(obj, T_OBJECT);
  3765   _sp--;
  3766   // Check for locking null object
  3767   if (stopped()) return true;
  3769   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3770   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3771   int alias_idx = C->get_alias_index(adr_type);
  3773   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
  3775   push_pair(result);
  3777   return true;
  3780 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
  3781   // Restore the stack and pop off the arguments
  3782   _sp+=5;
  3783   Node *newVal = pop_pair();
  3784   Node *oldVal = pop_pair();
  3785   Node *obj = pop();
  3787   // we need the offset of the "value" field which was computed when
  3788   // inlining the get() method.  Give up if we don't have it.
  3789   if (value_field_offset == -1)
  3790     return false;
  3792   // Null check without removing any arguments.
  3793   _sp+=5;
  3794   obj = do_null_check(obj, T_OBJECT);
  3795   _sp-=5;
  3796   // Check for locking null object
  3797   if (stopped()) return true;
  3799   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3800   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3801   int alias_idx = C->get_alias_index(adr_type);
  3803   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
  3804   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  3805   set_memory(store_proj, alias_idx);
  3806   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
  3808   Node *result;
  3809   // CMove node is not used to be able fold a possible check code
  3810   // after attemptUpdate() call. This code could be transformed
  3811   // into CMove node by loop optimizations.
  3813     RegionNode *r = new (C, 3) RegionNode(3);
  3814     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
  3816     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
  3817     Node *iftrue = opt_iff(r, iff);
  3818     r->init_req(1, iftrue);
  3819     result->init_req(1, intcon(1));
  3820     result->init_req(2, intcon(0));
  3822     set_control(_gvn.transform(r));
  3823     record_for_igvn(r);
  3825     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3828   push(_gvn.transform(result));
  3829   return true;
  3832 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  3833   // restore the arguments
  3834   _sp += arg_size();
  3836   switch (id) {
  3837   case vmIntrinsics::_floatToRawIntBits:
  3838     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
  3839     break;
  3841   case vmIntrinsics::_intBitsToFloat:
  3842     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
  3843     break;
  3845   case vmIntrinsics::_doubleToRawLongBits:
  3846     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
  3847     break;
  3849   case vmIntrinsics::_longBitsToDouble:
  3850     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
  3851     break;
  3853   case vmIntrinsics::_doubleToLongBits: {
  3854     Node* value = pop_pair();
  3856     // two paths (plus control) merge in a wood
  3857     RegionNode *r = new (C, 3) RegionNode(3);
  3858     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  3860     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
  3861     // Build the boolean node
  3862     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3864     // Branch either way.
  3865     // NaN case is less traveled, which makes all the difference.
  3866     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3867     Node *opt_isnan = _gvn.transform(ifisnan);
  3868     assert( opt_isnan->is_If(), "Expect an IfNode");
  3869     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3870     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3872     set_control(iftrue);
  3874     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  3875     Node *slow_result = longcon(nan_bits); // return NaN
  3876     phi->init_req(1, _gvn.transform( slow_result ));
  3877     r->init_req(1, iftrue);
  3879     // Else fall through
  3880     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3881     set_control(iffalse);
  3883     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
  3884     r->init_req(2, iffalse);
  3886     // Post merge
  3887     set_control(_gvn.transform(r));
  3888     record_for_igvn(r);
  3890     Node* result = _gvn.transform(phi);
  3891     assert(result->bottom_type()->isa_long(), "must be");
  3892     push_pair(result);
  3894     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3896     break;
  3899   case vmIntrinsics::_floatToIntBits: {
  3900     Node* value = pop();
  3902     // two paths (plus control) merge in a wood
  3903     RegionNode *r = new (C, 3) RegionNode(3);
  3904     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
  3906     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
  3907     // Build the boolean node
  3908     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3910     // Branch either way.
  3911     // NaN case is less traveled, which makes all the difference.
  3912     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3913     Node *opt_isnan = _gvn.transform(ifisnan);
  3914     assert( opt_isnan->is_If(), "Expect an IfNode");
  3915     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3916     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3918     set_control(iftrue);
  3920     static const jint nan_bits = 0x7fc00000;
  3921     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  3922     phi->init_req(1, _gvn.transform( slow_result ));
  3923     r->init_req(1, iftrue);
  3925     // Else fall through
  3926     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3927     set_control(iffalse);
  3929     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
  3930     r->init_req(2, iffalse);
  3932     // Post merge
  3933     set_control(_gvn.transform(r));
  3934     record_for_igvn(r);
  3936     Node* result = _gvn.transform(phi);
  3937     assert(result->bottom_type()->isa_int(), "must be");
  3938     push(result);
  3940     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3942     break;
  3945   default:
  3946     ShouldNotReachHere();
  3949   return true;
  3952 #ifdef _LP64
  3953 #define XTOP ,top() /*additional argument*/
  3954 #else  //_LP64
  3955 #define XTOP        /*no additional argument*/
  3956 #endif //_LP64
  3958 //----------------------inline_unsafe_copyMemory-------------------------
  3959 bool LibraryCallKit::inline_unsafe_copyMemory() {
  3960   if (callee()->is_static())  return false;  // caller must have the capability!
  3961   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  3962   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  3963   null_check_receiver(callee());  // check then ignore argument(0)
  3964   if (stopped())  return true;
  3966   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3968   Node* src_ptr = argument(1);
  3969   Node* src_off = ConvL2X(argument(2));
  3970   assert(argument(3)->is_top(), "2nd half of long");
  3971   Node* dst_ptr = argument(4);
  3972   Node* dst_off = ConvL2X(argument(5));
  3973   assert(argument(6)->is_top(), "2nd half of long");
  3974   Node* size    = ConvL2X(argument(7));
  3975   assert(argument(8)->is_top(), "2nd half of long");
  3977   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  3978          "fieldOffset must be byte-scaled");
  3980   Node* src = make_unsafe_address(src_ptr, src_off);
  3981   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  3983   // Conservatively insert a memory barrier on all memory slices.
  3984   // Do not let writes of the copy source or destination float below the copy.
  3985   insert_mem_bar(Op_MemBarCPUOrder);
  3987   // Call it.  Note that the length argument is not scaled.
  3988   make_runtime_call(RC_LEAF|RC_NO_FP,
  3989                     OptoRuntime::fast_arraycopy_Type(),
  3990                     StubRoutines::unsafe_arraycopy(),
  3991                     "unsafe_arraycopy",
  3992                     TypeRawPtr::BOTTOM,
  3993                     src, dst, size XTOP);
  3995   // Do not let reads of the copy destination float above the copy.
  3996   insert_mem_bar(Op_MemBarCPUOrder);
  3998   return true;
  4001 //------------------------clone_coping-----------------------------------
  4002 // Helper function for inline_native_clone.
  4003 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4004   assert(obj_size != NULL, "");
  4005   Node* raw_obj = alloc_obj->in(1);
  4006   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4008   if (ReduceBulkZeroing) {
  4009     // We will be completely responsible for initializing this object -
  4010     // mark Initialize node as complete.
  4011     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4012     // The object was just allocated - there should be no any stores!
  4013     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4016   // Copy the fastest available way.
  4017   // TODO: generate fields copies for small objects instead.
  4018   Node* src  = obj;
  4019   Node* dest = alloc_obj;
  4020   Node* size = _gvn.transform(obj_size);
  4022   // Exclude the header but include array length to copy by 8 bytes words.
  4023   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4024   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4025                             instanceOopDesc::base_offset_in_bytes();
  4026   // base_off:
  4027   // 8  - 32-bit VM
  4028   // 12 - 64-bit VM, compressed oops
  4029   // 16 - 64-bit VM, normal oops
  4030   if (base_off % BytesPerLong != 0) {
  4031     assert(UseCompressedOops, "");
  4032     if (is_array) {
  4033       // Exclude length to copy by 8 bytes words.
  4034       base_off += sizeof(int);
  4035     } else {
  4036       // Include klass to copy by 8 bytes words.
  4037       base_off = instanceOopDesc::klass_offset_in_bytes();
  4039     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4041   src  = basic_plus_adr(src,  base_off);
  4042   dest = basic_plus_adr(dest, base_off);
  4044   // Compute the length also, if needed:
  4045   Node* countx = size;
  4046   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  4047   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4049   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4050   bool disjoint_bases = true;
  4051   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4052                                src, NULL, dest, NULL, countx);
  4054   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4055   if (card_mark) {
  4056     assert(!is_array, "");
  4057     // Put in store barrier for any and all oops we are sticking
  4058     // into this object.  (We could avoid this if we could prove
  4059     // that the object type contains no oop fields at all.)
  4060     Node* no_particular_value = NULL;
  4061     Node* no_particular_field = NULL;
  4062     int raw_adr_idx = Compile::AliasIdxRaw;
  4063     post_barrier(control(),
  4064                  memory(raw_adr_type),
  4065                  alloc_obj,
  4066                  no_particular_field,
  4067                  raw_adr_idx,
  4068                  no_particular_value,
  4069                  T_OBJECT,
  4070                  false);
  4073   // Do not let reads from the cloned object float above the arraycopy.
  4074   insert_mem_bar(Op_MemBarCPUOrder);
  4077 //------------------------inline_native_clone----------------------------
  4078 // Here are the simple edge cases:
  4079 //  null receiver => normal trap
  4080 //  virtual and clone was overridden => slow path to out-of-line clone
  4081 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4082 //
  4083 // The general case has two steps, allocation and copying.
  4084 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4085 //
  4086 // Copying also has two cases, oop arrays and everything else.
  4087 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4088 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4089 //
  4090 // These steps fold up nicely if and when the cloned object's klass
  4091 // can be sharply typed as an object array, a type array, or an instance.
  4092 //
  4093 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4094   int nargs = 1;
  4095   PhiNode* result_val;
  4097   //set the original stack and the reexecute bit for the interpreter to reexecute
  4098   //the bytecode that invokes Object.clone if deoptimization happens
  4099   { PreserveReexecuteState preexecs(this);
  4100     jvms()->set_should_reexecute(true);
  4102     //null_check_receiver will adjust _sp (push and pop)
  4103     Node* obj = null_check_receiver(callee());
  4104     if (stopped())  return true;
  4106     _sp += nargs;
  4108     Node* obj_klass = load_object_klass(obj);
  4109     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4110     const TypeOopPtr*   toop   = ((tklass != NULL)
  4111                                 ? tklass->as_instance_type()
  4112                                 : TypeInstPtr::NOTNULL);
  4114     // Conservatively insert a memory barrier on all memory slices.
  4115     // Do not let writes into the original float below the clone.
  4116     insert_mem_bar(Op_MemBarCPUOrder);
  4118     // paths into result_reg:
  4119     enum {
  4120       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4121       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4122       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4123       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4124       PATH_LIMIT
  4125     };
  4126     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4127     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
  4128                                                         TypeInstPtr::NOTNULL);
  4129     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  4130     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  4131                                                         TypePtr::BOTTOM);
  4132     record_for_igvn(result_reg);
  4134     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4135     int raw_adr_idx = Compile::AliasIdxRaw;
  4136     const bool raw_mem_only = true;
  4139     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4140     if (array_ctl != NULL) {
  4141       // It's an array.
  4142       PreserveJVMState pjvms(this);
  4143       set_control(array_ctl);
  4144       Node* obj_length = load_array_length(obj);
  4145       Node* obj_size  = NULL;
  4146       Node* alloc_obj = new_array(obj_klass, obj_length, 0,
  4147                                   raw_mem_only, &obj_size);
  4149       if (!use_ReduceInitialCardMarks()) {
  4150         // If it is an oop array, it requires very special treatment,
  4151         // because card marking is required on each card of the array.
  4152         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4153         if (is_obja != NULL) {
  4154           PreserveJVMState pjvms2(this);
  4155           set_control(is_obja);
  4156           // Generate a direct call to the right arraycopy function(s).
  4157           bool disjoint_bases = true;
  4158           bool length_never_negative = true;
  4159           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4160                              obj, intcon(0), alloc_obj, intcon(0),
  4161                              obj_length,
  4162                              disjoint_bases, length_never_negative);
  4163           result_reg->init_req(_objArray_path, control());
  4164           result_val->init_req(_objArray_path, alloc_obj);
  4165           result_i_o ->set_req(_objArray_path, i_o());
  4166           result_mem ->set_req(_objArray_path, reset_memory());
  4169       // Otherwise, there are no card marks to worry about.
  4170       // (We can dispense with card marks if we know the allocation
  4171       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4172       //  causes the non-eden paths to take compensating steps to
  4173       //  simulate a fresh allocation, so that no further
  4174       //  card marks are required in compiled code to initialize
  4175       //  the object.)
  4177       if (!stopped()) {
  4178         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4180         // Present the results of the copy.
  4181         result_reg->init_req(_array_path, control());
  4182         result_val->init_req(_array_path, alloc_obj);
  4183         result_i_o ->set_req(_array_path, i_o());
  4184         result_mem ->set_req(_array_path, reset_memory());
  4188     // We only go to the instance fast case code if we pass a number of guards.
  4189     // The paths which do not pass are accumulated in the slow_region.
  4190     RegionNode* slow_region = new (C, 1) RegionNode(1);
  4191     record_for_igvn(slow_region);
  4192     if (!stopped()) {
  4193       // It's an instance (we did array above).  Make the slow-path tests.
  4194       // If this is a virtual call, we generate a funny guard.  We grab
  4195       // the vtable entry corresponding to clone() from the target object.
  4196       // If the target method which we are calling happens to be the
  4197       // Object clone() method, we pass the guard.  We do not need this
  4198       // guard for non-virtual calls; the caller is known to be the native
  4199       // Object clone().
  4200       if (is_virtual) {
  4201         generate_virtual_guard(obj_klass, slow_region);
  4204       // The object must be cloneable and must not have a finalizer.
  4205       // Both of these conditions may be checked in a single test.
  4206       // We could optimize the cloneable test further, but we don't care.
  4207       generate_access_flags_guard(obj_klass,
  4208                                   // Test both conditions:
  4209                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4210                                   // Must be cloneable but not finalizer:
  4211                                   JVM_ACC_IS_CLONEABLE,
  4212                                   slow_region);
  4215     if (!stopped()) {
  4216       // It's an instance, and it passed the slow-path tests.
  4217       PreserveJVMState pjvms(this);
  4218       Node* obj_size  = NULL;
  4219       Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
  4221       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4223       // Present the results of the slow call.
  4224       result_reg->init_req(_instance_path, control());
  4225       result_val->init_req(_instance_path, alloc_obj);
  4226       result_i_o ->set_req(_instance_path, i_o());
  4227       result_mem ->set_req(_instance_path, reset_memory());
  4230     // Generate code for the slow case.  We make a call to clone().
  4231     set_control(_gvn.transform(slow_region));
  4232     if (!stopped()) {
  4233       PreserveJVMState pjvms(this);
  4234       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4235       Node* slow_result = set_results_for_java_call(slow_call);
  4236       // this->control() comes from set_results_for_java_call
  4237       result_reg->init_req(_slow_path, control());
  4238       result_val->init_req(_slow_path, slow_result);
  4239       result_i_o ->set_req(_slow_path, i_o());
  4240       result_mem ->set_req(_slow_path, reset_memory());
  4243     // Return the combined state.
  4244     set_control(    _gvn.transform(result_reg) );
  4245     set_i_o(        _gvn.transform(result_i_o) );
  4246     set_all_memory( _gvn.transform(result_mem) );
  4247   } //original reexecute and sp are set back here
  4249   push(_gvn.transform(result_val));
  4251   return true;
  4255 // constants for computing the copy function
  4256 enum {
  4257   COPYFUNC_UNALIGNED = 0,
  4258   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
  4259   COPYFUNC_CONJOINT = 0,
  4260   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
  4261 };
  4263 // Note:  The condition "disjoint" applies also for overlapping copies
  4264 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
  4265 static address
  4266 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
  4267   int selector =
  4268     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
  4269     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
  4271 #define RETURN_STUB(xxx_arraycopy) { \
  4272   name = #xxx_arraycopy; \
  4273   return StubRoutines::xxx_arraycopy(); }
  4275   switch (t) {
  4276   case T_BYTE:
  4277   case T_BOOLEAN:
  4278     switch (selector) {
  4279     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
  4280     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
  4281     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
  4282     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
  4284   case T_CHAR:
  4285   case T_SHORT:
  4286     switch (selector) {
  4287     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
  4288     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
  4289     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
  4290     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
  4292   case T_INT:
  4293   case T_FLOAT:
  4294     switch (selector) {
  4295     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
  4296     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
  4297     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
  4298     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
  4300   case T_DOUBLE:
  4301   case T_LONG:
  4302     switch (selector) {
  4303     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
  4304     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
  4305     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
  4306     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
  4308   case T_ARRAY:
  4309   case T_OBJECT:
  4310     switch (selector) {
  4311     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
  4312     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
  4313     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
  4314     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
  4316   default:
  4317     ShouldNotReachHere();
  4318     return NULL;
  4321 #undef RETURN_STUB
  4324 //------------------------------basictype2arraycopy----------------------------
  4325 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4326                                             Node* src_offset,
  4327                                             Node* dest_offset,
  4328                                             bool disjoint_bases,
  4329                                             const char* &name) {
  4330   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4331   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4333   bool aligned = false;
  4334   bool disjoint = disjoint_bases;
  4336   // if the offsets are the same, we can treat the memory regions as
  4337   // disjoint, because either the memory regions are in different arrays,
  4338   // or they are identical (which we can treat as disjoint.)  We can also
  4339   // treat a copy with a destination index  less that the source index
  4340   // as disjoint since a low->high copy will work correctly in this case.
  4341   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4342       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4343     // both indices are constants
  4344     int s_offs = src_offset_inttype->get_con();
  4345     int d_offs = dest_offset_inttype->get_con();
  4346     int element_size = type2aelembytes(t);
  4347     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4348               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4349     if (s_offs >= d_offs)  disjoint = true;
  4350   } else if (src_offset == dest_offset && src_offset != NULL) {
  4351     // This can occur if the offsets are identical non-constants.
  4352     disjoint = true;
  4355   return select_arraycopy_function(t, aligned, disjoint, name);
  4359 //------------------------------inline_arraycopy-----------------------
  4360 bool LibraryCallKit::inline_arraycopy() {
  4361   // Restore the stack and pop off the arguments.
  4362   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4363   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4365   Node *src         = argument(0);
  4366   Node *src_offset  = argument(1);
  4367   Node *dest        = argument(2);
  4368   Node *dest_offset = argument(3);
  4369   Node *length      = argument(4);
  4371   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4372   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4373   // is.  The checks we choose to mandate at compile time are:
  4374   //
  4375   // (1) src and dest are arrays.
  4376   const Type* src_type = src->Value(&_gvn);
  4377   const Type* dest_type = dest->Value(&_gvn);
  4378   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4379   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4380   if (top_src  == NULL || top_src->klass()  == NULL ||
  4381       top_dest == NULL || top_dest->klass() == NULL) {
  4382     // Conservatively insert a memory barrier on all memory slices.
  4383     // Do not let writes into the source float below the arraycopy.
  4384     insert_mem_bar(Op_MemBarCPUOrder);
  4386     // Call StubRoutines::generic_arraycopy stub.
  4387     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4388                        src, src_offset, dest, dest_offset, length);
  4390     // Do not let reads from the destination float above the arraycopy.
  4391     // Since we cannot type the arrays, we don't know which slices
  4392     // might be affected.  We could restrict this barrier only to those
  4393     // memory slices which pertain to array elements--but don't bother.
  4394     if (!InsertMemBarAfterArraycopy)
  4395       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4396       insert_mem_bar(Op_MemBarCPUOrder);
  4397     return true;
  4400   // (2) src and dest arrays must have elements of the same BasicType
  4401   // Figure out the size and type of the elements we will be copying.
  4402   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4403   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4404   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4405   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4407   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4408     // The component types are not the same or are not recognized.  Punt.
  4409     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4410     generate_slow_arraycopy(TypePtr::BOTTOM,
  4411                             src, src_offset, dest, dest_offset, length);
  4412     return true;
  4415   //---------------------------------------------------------------------------
  4416   // We will make a fast path for this call to arraycopy.
  4418   // We have the following tests left to perform:
  4419   //
  4420   // (3) src and dest must not be null.
  4421   // (4) src_offset must not be negative.
  4422   // (5) dest_offset must not be negative.
  4423   // (6) length must not be negative.
  4424   // (7) src_offset + length must not exceed length of src.
  4425   // (8) dest_offset + length must not exceed length of dest.
  4426   // (9) each element of an oop array must be assignable
  4428   RegionNode* slow_region = new (C, 1) RegionNode(1);
  4429   record_for_igvn(slow_region);
  4431   // (3) operands must not be null
  4432   // We currently perform our null checks with the do_null_check routine.
  4433   // This means that the null exceptions will be reported in the caller
  4434   // rather than (correctly) reported inside of the native arraycopy call.
  4435   // This should be corrected, given time.  We do our null check with the
  4436   // stack pointer restored.
  4437   _sp += nargs;
  4438   src  = do_null_check(src,  T_ARRAY);
  4439   dest = do_null_check(dest, T_ARRAY);
  4440   _sp -= nargs;
  4442   // (4) src_offset must not be negative.
  4443   generate_negative_guard(src_offset, slow_region);
  4445   // (5) dest_offset must not be negative.
  4446   generate_negative_guard(dest_offset, slow_region);
  4448   // (6) length must not be negative (moved to generate_arraycopy()).
  4449   // generate_negative_guard(length, slow_region);
  4451   // (7) src_offset + length must not exceed length of src.
  4452   generate_limit_guard(src_offset, length,
  4453                        load_array_length(src),
  4454                        slow_region);
  4456   // (8) dest_offset + length must not exceed length of dest.
  4457   generate_limit_guard(dest_offset, length,
  4458                        load_array_length(dest),
  4459                        slow_region);
  4461   // (9) each element of an oop array must be assignable
  4462   // The generate_arraycopy subroutine checks this.
  4464   // This is where the memory effects are placed:
  4465   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4466   generate_arraycopy(adr_type, dest_elem,
  4467                      src, src_offset, dest, dest_offset, length,
  4468                      false, false, slow_region);
  4470   return true;
  4473 //-----------------------------generate_arraycopy----------------------
  4474 // Generate an optimized call to arraycopy.
  4475 // Caller must guard against non-arrays.
  4476 // Caller must determine a common array basic-type for both arrays.
  4477 // Caller must validate offsets against array bounds.
  4478 // The slow_region has already collected guard failure paths
  4479 // (such as out of bounds length or non-conformable array types).
  4480 // The generated code has this shape, in general:
  4481 //
  4482 //     if (length == 0)  return   // via zero_path
  4483 //     slowval = -1
  4484 //     if (types unknown) {
  4485 //       slowval = call generic copy loop
  4486 //       if (slowval == 0)  return  // via checked_path
  4487 //     } else if (indexes in bounds) {
  4488 //       if ((is object array) && !(array type check)) {
  4489 //         slowval = call checked copy loop
  4490 //         if (slowval == 0)  return  // via checked_path
  4491 //       } else {
  4492 //         call bulk copy loop
  4493 //         return  // via fast_path
  4494 //       }
  4495 //     }
  4496 //     // adjust params for remaining work:
  4497 //     if (slowval != -1) {
  4498 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4499 //     }
  4500 //   slow_region:
  4501 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4502 //     return  // via slow_call_path
  4503 //
  4504 // This routine is used from several intrinsics:  System.arraycopy,
  4505 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4506 //
  4507 void
  4508 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4509                                    BasicType basic_elem_type,
  4510                                    Node* src,  Node* src_offset,
  4511                                    Node* dest, Node* dest_offset,
  4512                                    Node* copy_length,
  4513                                    bool disjoint_bases,
  4514                                    bool length_never_negative,
  4515                                    RegionNode* slow_region) {
  4517   if (slow_region == NULL) {
  4518     slow_region = new(C,1) RegionNode(1);
  4519     record_for_igvn(slow_region);
  4522   Node* original_dest      = dest;
  4523   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4524   bool  must_clear_dest    = false;
  4526   // See if this is the initialization of a newly-allocated array.
  4527   // If so, we will take responsibility here for initializing it to zero.
  4528   // (Note:  Because tightly_coupled_allocation performs checks on the
  4529   // out-edges of the dest, we need to avoid making derived pointers
  4530   // from it until we have checked its uses.)
  4531   if (ReduceBulkZeroing
  4532       && !ZeroTLAB              // pointless if already zeroed
  4533       && basic_elem_type != T_CONFLICT // avoid corner case
  4534       && !_gvn.eqv_uncast(src, dest)
  4535       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4536           != NULL)
  4537       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4538       && alloc->maybe_set_complete(&_gvn)) {
  4539     // "You break it, you buy it."
  4540     InitializeNode* init = alloc->initialization();
  4541     assert(init->is_complete(), "we just did this");
  4542     assert(dest->is_CheckCastPP(), "sanity");
  4543     assert(dest->in(0)->in(0) == init, "dest pinned");
  4544     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4545     // From this point on, every exit path is responsible for
  4546     // initializing any non-copied parts of the object to zero.
  4547     must_clear_dest = true;
  4548   } else {
  4549     // No zeroing elimination here.
  4550     alloc             = NULL;
  4551     //original_dest   = dest;
  4552     //must_clear_dest = false;
  4555   // Results are placed here:
  4556   enum { fast_path        = 1,  // normal void-returning assembly stub
  4557          checked_path     = 2,  // special assembly stub with cleanup
  4558          slow_call_path   = 3,  // something went wrong; call the VM
  4559          zero_path        = 4,  // bypass when length of copy is zero
  4560          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4561          PATH_LIMIT       = 6
  4562   };
  4563   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4564   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  4565   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  4566   record_for_igvn(result_region);
  4567   _gvn.set_type_bottom(result_i_o);
  4568   _gvn.set_type_bottom(result_memory);
  4569   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4571   // The slow_control path:
  4572   Node* slow_control;
  4573   Node* slow_i_o = i_o();
  4574   Node* slow_mem = memory(adr_type);
  4575   debug_only(slow_control = (Node*) badAddress);
  4577   // Checked control path:
  4578   Node* checked_control = top();
  4579   Node* checked_mem     = NULL;
  4580   Node* checked_i_o     = NULL;
  4581   Node* checked_value   = NULL;
  4583   if (basic_elem_type == T_CONFLICT) {
  4584     assert(!must_clear_dest, "");
  4585     Node* cv = generate_generic_arraycopy(adr_type,
  4586                                           src, src_offset, dest, dest_offset,
  4587                                           copy_length);
  4588     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4589     checked_control = control();
  4590     checked_i_o     = i_o();
  4591     checked_mem     = memory(adr_type);
  4592     checked_value   = cv;
  4593     set_control(top());         // no fast path
  4596   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4597   if (not_pos != NULL) {
  4598     PreserveJVMState pjvms(this);
  4599     set_control(not_pos);
  4601     // (6) length must not be negative.
  4602     if (!length_never_negative) {
  4603       generate_negative_guard(copy_length, slow_region);
  4606     // copy_length is 0.
  4607     if (!stopped() && must_clear_dest) {
  4608       Node* dest_length = alloc->in(AllocateNode::ALength);
  4609       if (_gvn.eqv_uncast(copy_length, dest_length)
  4610           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4611         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4612       } else {
  4613         // Clear the whole thing since there are no source elements to copy.
  4614         generate_clear_array(adr_type, dest, basic_elem_type,
  4615                              intcon(0), NULL,
  4616                              alloc->in(AllocateNode::AllocSize));
  4617         // Use a secondary InitializeNode as raw memory barrier.
  4618         // Currently it is needed only on this path since other
  4619         // paths have stub or runtime calls as raw memory barriers.
  4620         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4621                                                        Compile::AliasIdxRaw,
  4622                                                        top())->as_Initialize();
  4623         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4627     // Present the results of the fast call.
  4628     result_region->init_req(zero_path, control());
  4629     result_i_o   ->init_req(zero_path, i_o());
  4630     result_memory->init_req(zero_path, memory(adr_type));
  4633   if (!stopped() && must_clear_dest) {
  4634     // We have to initialize the *uncopied* part of the array to zero.
  4635     // The copy destination is the slice dest[off..off+len].  The other slices
  4636     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4637     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4638     Node* dest_length = alloc->in(AllocateNode::ALength);
  4639     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
  4640                                                           copy_length) );
  4642     // If there is a head section that needs zeroing, do it now.
  4643     if (find_int_con(dest_offset, -1) != 0) {
  4644       generate_clear_array(adr_type, dest, basic_elem_type,
  4645                            intcon(0), dest_offset,
  4646                            NULL);
  4649     // Next, perform a dynamic check on the tail length.
  4650     // It is often zero, and we can win big if we prove this.
  4651     // There are two wins:  Avoid generating the ClearArray
  4652     // with its attendant messy index arithmetic, and upgrade
  4653     // the copy to a more hardware-friendly word size of 64 bits.
  4654     Node* tail_ctl = NULL;
  4655     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
  4656       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
  4657       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
  4658       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4659       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4662     // At this point, let's assume there is no tail.
  4663     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4664       // There is no tail.  Try an upgrade to a 64-bit copy.
  4665       bool didit = false;
  4666       { PreserveJVMState pjvms(this);
  4667         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4668                                          src, src_offset, dest, dest_offset,
  4669                                          dest_size);
  4670         if (didit) {
  4671           // Present the results of the block-copying fast call.
  4672           result_region->init_req(bcopy_path, control());
  4673           result_i_o   ->init_req(bcopy_path, i_o());
  4674           result_memory->init_req(bcopy_path, memory(adr_type));
  4677       if (didit)
  4678         set_control(top());     // no regular fast path
  4681     // Clear the tail, if any.
  4682     if (tail_ctl != NULL) {
  4683       Node* notail_ctl = stopped() ? NULL : control();
  4684       set_control(tail_ctl);
  4685       if (notail_ctl == NULL) {
  4686         generate_clear_array(adr_type, dest, basic_elem_type,
  4687                              dest_tail, NULL,
  4688                              dest_size);
  4689       } else {
  4690         // Make a local merge.
  4691         Node* done_ctl = new(C,3) RegionNode(3);
  4692         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4693         done_ctl->init_req(1, notail_ctl);
  4694         done_mem->init_req(1, memory(adr_type));
  4695         generate_clear_array(adr_type, dest, basic_elem_type,
  4696                              dest_tail, NULL,
  4697                              dest_size);
  4698         done_ctl->init_req(2, control());
  4699         done_mem->init_req(2, memory(adr_type));
  4700         set_control( _gvn.transform(done_ctl) );
  4701         set_memory(  _gvn.transform(done_mem), adr_type );
  4706   BasicType copy_type = basic_elem_type;
  4707   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4708   if (!stopped() && copy_type == T_OBJECT) {
  4709     // If src and dest have compatible element types, we can copy bits.
  4710     // Types S[] and D[] are compatible if D is a supertype of S.
  4711     //
  4712     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4713     // which performs a fast optimistic per-oop check, and backs off
  4714     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4715     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4717     // Get the klassOop for both src and dest
  4718     Node* src_klass  = load_object_klass(src);
  4719     Node* dest_klass = load_object_klass(dest);
  4721     // Generate the subtype check.
  4722     // This might fold up statically, or then again it might not.
  4723     //
  4724     // Non-static example:  Copying List<String>.elements to a new String[].
  4725     // The backing store for a List<String> is always an Object[],
  4726     // but its elements are always type String, if the generic types
  4727     // are correct at the source level.
  4728     //
  4729     // Test S[] against D[], not S against D, because (probably)
  4730     // the secondary supertype cache is less busy for S[] than S.
  4731     // This usually only matters when D is an interface.
  4732     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4733     // Plug failing path into checked_oop_disjoint_arraycopy
  4734     if (not_subtype_ctrl != top()) {
  4735       PreserveJVMState pjvms(this);
  4736       set_control(not_subtype_ctrl);
  4737       // (At this point we can assume disjoint_bases, since types differ.)
  4738       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
  4739       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4740       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4741       Node* dest_elem_klass = _gvn.transform(n1);
  4742       Node* cv = generate_checkcast_arraycopy(adr_type,
  4743                                               dest_elem_klass,
  4744                                               src, src_offset, dest, dest_offset,
  4745                                               copy_length);
  4746       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4747       checked_control = control();
  4748       checked_i_o     = i_o();
  4749       checked_mem     = memory(adr_type);
  4750       checked_value   = cv;
  4752     // At this point we know we do not need type checks on oop stores.
  4754     // Let's see if we need card marks:
  4755     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4756       // If we do not need card marks, copy using the jint or jlong stub.
  4757       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4758       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4759              "sizes agree");
  4763   if (!stopped()) {
  4764     // Generate the fast path, if possible.
  4765     PreserveJVMState pjvms(this);
  4766     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4767                                  src, src_offset, dest, dest_offset,
  4768                                  ConvI2X(copy_length));
  4770     // Present the results of the fast call.
  4771     result_region->init_req(fast_path, control());
  4772     result_i_o   ->init_req(fast_path, i_o());
  4773     result_memory->init_req(fast_path, memory(adr_type));
  4776   // Here are all the slow paths up to this point, in one bundle:
  4777   slow_control = top();
  4778   if (slow_region != NULL)
  4779     slow_control = _gvn.transform(slow_region);
  4780   debug_only(slow_region = (RegionNode*)badAddress);
  4782   set_control(checked_control);
  4783   if (!stopped()) {
  4784     // Clean up after the checked call.
  4785     // The returned value is either 0 or -1^K,
  4786     // where K = number of partially transferred array elements.
  4787     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
  4788     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  4789     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4791     // If it is 0, we are done, so transfer to the end.
  4792     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
  4793     result_region->init_req(checked_path, checks_done);
  4794     result_i_o   ->init_req(checked_path, checked_i_o);
  4795     result_memory->init_req(checked_path, checked_mem);
  4797     // If it is not zero, merge into the slow call.
  4798     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
  4799     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
  4800     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
  4801     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4802     record_for_igvn(slow_reg2);
  4803     slow_reg2  ->init_req(1, slow_control);
  4804     slow_i_o2  ->init_req(1, slow_i_o);
  4805     slow_mem2  ->init_req(1, slow_mem);
  4806     slow_reg2  ->init_req(2, control());
  4807     slow_i_o2  ->init_req(2, checked_i_o);
  4808     slow_mem2  ->init_req(2, checked_mem);
  4810     slow_control = _gvn.transform(slow_reg2);
  4811     slow_i_o     = _gvn.transform(slow_i_o2);
  4812     slow_mem     = _gvn.transform(slow_mem2);
  4814     if (alloc != NULL) {
  4815       // We'll restart from the very beginning, after zeroing the whole thing.
  4816       // This can cause double writes, but that's OK since dest is brand new.
  4817       // So we ignore the low 31 bits of the value returned from the stub.
  4818     } else {
  4819       // We must continue the copy exactly where it failed, or else
  4820       // another thread might see the wrong number of writes to dest.
  4821       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
  4822       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
  4823       slow_offset->init_req(1, intcon(0));
  4824       slow_offset->init_req(2, checked_offset);
  4825       slow_offset  = _gvn.transform(slow_offset);
  4827       // Adjust the arguments by the conditionally incoming offset.
  4828       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
  4829       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
  4830       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
  4832       // Tweak the node variables to adjust the code produced below:
  4833       src_offset  = src_off_plus;
  4834       dest_offset = dest_off_plus;
  4835       copy_length = length_minus;
  4839   set_control(slow_control);
  4840   if (!stopped()) {
  4841     // Generate the slow path, if needed.
  4842     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  4844     set_memory(slow_mem, adr_type);
  4845     set_i_o(slow_i_o);
  4847     if (must_clear_dest) {
  4848       generate_clear_array(adr_type, dest, basic_elem_type,
  4849                            intcon(0), NULL,
  4850                            alloc->in(AllocateNode::AllocSize));
  4853     generate_slow_arraycopy(adr_type,
  4854                             src, src_offset, dest, dest_offset,
  4855                             copy_length);
  4857     result_region->init_req(slow_call_path, control());
  4858     result_i_o   ->init_req(slow_call_path, i_o());
  4859     result_memory->init_req(slow_call_path, memory(adr_type));
  4862   // Remove unused edges.
  4863   for (uint i = 1; i < result_region->req(); i++) {
  4864     if (result_region->in(i) == NULL)
  4865       result_region->init_req(i, top());
  4868   // Finished; return the combined state.
  4869   set_control( _gvn.transform(result_region) );
  4870   set_i_o(     _gvn.transform(result_i_o)    );
  4871   set_memory(  _gvn.transform(result_memory), adr_type );
  4873   // The memory edges above are precise in order to model effects around
  4874   // array copies accurately to allow value numbering of field loads around
  4875   // arraycopy.  Such field loads, both before and after, are common in Java
  4876   // collections and similar classes involving header/array data structures.
  4877   //
  4878   // But with low number of register or when some registers are used or killed
  4879   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  4880   // The next memory barrier is added to avoid it. If the arraycopy can be
  4881   // optimized away (which it can, sometimes) then we can manually remove
  4882   // the membar also.
  4883   //
  4884   // Do not let reads from the cloned object float above the arraycopy.
  4885   if (InsertMemBarAfterArraycopy || alloc != NULL)
  4886     insert_mem_bar(Op_MemBarCPUOrder);
  4890 // Helper function which determines if an arraycopy immediately follows
  4891 // an allocation, with no intervening tests or other escapes for the object.
  4892 AllocateArrayNode*
  4893 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  4894                                            RegionNode* slow_region) {
  4895   if (stopped())             return NULL;  // no fast path
  4896   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  4898   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  4899   if (alloc == NULL)  return NULL;
  4901   Node* rawmem = memory(Compile::AliasIdxRaw);
  4902   // Is the allocation's memory state untouched?
  4903   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  4904     // Bail out if there have been raw-memory effects since the allocation.
  4905     // (Example:  There might have been a call or safepoint.)
  4906     return NULL;
  4908   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  4909   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  4910     return NULL;
  4913   // There must be no unexpected observers of this allocation.
  4914   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  4915     Node* obs = ptr->fast_out(i);
  4916     if (obs != this->map()) {
  4917       return NULL;
  4921   // This arraycopy must unconditionally follow the allocation of the ptr.
  4922   Node* alloc_ctl = ptr->in(0);
  4923   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  4925   Node* ctl = control();
  4926   while (ctl != alloc_ctl) {
  4927     // There may be guards which feed into the slow_region.
  4928     // Any other control flow means that we might not get a chance
  4929     // to finish initializing the allocated object.
  4930     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  4931       IfNode* iff = ctl->in(0)->as_If();
  4932       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  4933       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  4934       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  4935         ctl = iff->in(0);       // This test feeds the known slow_region.
  4936         continue;
  4938       // One more try:  Various low-level checks bottom out in
  4939       // uncommon traps.  If the debug-info of the trap omits
  4940       // any reference to the allocation, as we've already
  4941       // observed, then there can be no objection to the trap.
  4942       bool found_trap = false;
  4943       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  4944         Node* obs = not_ctl->fast_out(j);
  4945         if (obs->in(0) == not_ctl && obs->is_Call() &&
  4946             (obs->as_Call()->entry_point() ==
  4947              SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
  4948           found_trap = true; break;
  4951       if (found_trap) {
  4952         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  4953         continue;
  4956     return NULL;
  4959   // If we get this far, we have an allocation which immediately
  4960   // precedes the arraycopy, and we can take over zeroing the new object.
  4961   // The arraycopy will finish the initialization, and provide
  4962   // a new control state to which we will anchor the destination pointer.
  4964   return alloc;
  4967 // Helper for initialization of arrays, creating a ClearArray.
  4968 // It writes zero bits in [start..end), within the body of an array object.
  4969 // The memory effects are all chained onto the 'adr_type' alias category.
  4970 //
  4971 // Since the object is otherwise uninitialized, we are free
  4972 // to put a little "slop" around the edges of the cleared area,
  4973 // as long as it does not go back into the array's header,
  4974 // or beyond the array end within the heap.
  4975 //
  4976 // The lower edge can be rounded down to the nearest jint and the
  4977 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  4978 //
  4979 // Arguments:
  4980 //   adr_type           memory slice where writes are generated
  4981 //   dest               oop of the destination array
  4982 //   basic_elem_type    element type of the destination
  4983 //   slice_idx          array index of first element to store
  4984 //   slice_len          number of elements to store (or NULL)
  4985 //   dest_size          total size in bytes of the array object
  4986 //
  4987 // Exactly one of slice_len or dest_size must be non-NULL.
  4988 // If dest_size is non-NULL, zeroing extends to the end of the object.
  4989 // If slice_len is non-NULL, the slice_idx value must be a constant.
  4990 void
  4991 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  4992                                      Node* dest,
  4993                                      BasicType basic_elem_type,
  4994                                      Node* slice_idx,
  4995                                      Node* slice_len,
  4996                                      Node* dest_size) {
  4997   // one or the other but not both of slice_len and dest_size:
  4998   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  4999   if (slice_len == NULL)  slice_len = top();
  5000   if (dest_size == NULL)  dest_size = top();
  5002   // operate on this memory slice:
  5003   Node* mem = memory(adr_type); // memory slice to operate on
  5005   // scaling and rounding of indexes:
  5006   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5007   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5008   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5009   int bump_bit  = (-1 << scale) & BytesPerInt;
  5011   // determine constant starts and ends
  5012   const intptr_t BIG_NEG = -128;
  5013   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5014   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5015   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5016   if (slice_len_con == 0) {
  5017     return;                     // nothing to do here
  5019   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5020   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5021   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5022     assert(end_con < 0, "not two cons");
  5023     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5024                        BytesPerLong);
  5027   if (start_con >= 0 && end_con >= 0) {
  5028     // Constant start and end.  Simple.
  5029     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5030                                        start_con, end_con, &_gvn);
  5031   } else if (start_con >= 0 && dest_size != top()) {
  5032     // Constant start, pre-rounded end after the tail of the array.
  5033     Node* end = dest_size;
  5034     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5035                                        start_con, end, &_gvn);
  5036   } else if (start_con >= 0 && slice_len != top()) {
  5037     // Constant start, non-constant end.  End needs rounding up.
  5038     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5039     intptr_t end_base  = abase + (slice_idx_con << scale);
  5040     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5041     Node*    end       = ConvI2X(slice_len);
  5042     if (scale != 0)
  5043       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
  5044     end_base += end_round;
  5045     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
  5046     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
  5047     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5048                                        start_con, end, &_gvn);
  5049   } else if (start_con < 0 && dest_size != top()) {
  5050     // Non-constant start, pre-rounded end after the tail of the array.
  5051     // This is almost certainly a "round-to-end" operation.
  5052     Node* start = slice_idx;
  5053     start = ConvI2X(start);
  5054     if (scale != 0)
  5055       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
  5056     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
  5057     if ((bump_bit | clear_low) != 0) {
  5058       int to_clear = (bump_bit | clear_low);
  5059       // Align up mod 8, then store a jint zero unconditionally
  5060       // just before the mod-8 boundary.
  5061       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5062           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5063         bump_bit = 0;
  5064         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5065       } else {
  5066         // Bump 'start' up to (or past) the next jint boundary:
  5067         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
  5068         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5070       // Round bumped 'start' down to jlong boundary in body of array.
  5071       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
  5072       if (bump_bit != 0) {
  5073         // Store a zero to the immediately preceding jint:
  5074         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
  5075         Node* p1 = basic_plus_adr(dest, x1);
  5076         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5077         mem = _gvn.transform(mem);
  5080     Node* end = dest_size; // pre-rounded
  5081     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5082                                        start, end, &_gvn);
  5083   } else {
  5084     // Non-constant start, unrounded non-constant end.
  5085     // (Nobody zeroes a random midsection of an array using this routine.)
  5086     ShouldNotReachHere();       // fix caller
  5089   // Done.
  5090   set_memory(mem, adr_type);
  5094 bool
  5095 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5096                                          BasicType basic_elem_type,
  5097                                          AllocateNode* alloc,
  5098                                          Node* src,  Node* src_offset,
  5099                                          Node* dest, Node* dest_offset,
  5100                                          Node* dest_size) {
  5101   // See if there is an advantage from block transfer.
  5102   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5103   if (scale >= LogBytesPerLong)
  5104     return false;               // it is already a block transfer
  5106   // Look at the alignment of the starting offsets.
  5107   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5108   const intptr_t BIG_NEG = -128;
  5109   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5111   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
  5112   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
  5113   if (src_off < 0 || dest_off < 0)
  5114     // At present, we can only understand constants.
  5115     return false;
  5117   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5118     // Non-aligned; too bad.
  5119     // One more chance:  Pick off an initial 32-bit word.
  5120     // This is a common case, since abase can be odd mod 8.
  5121     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5122         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5123       Node* sptr = basic_plus_adr(src,  src_off);
  5124       Node* dptr = basic_plus_adr(dest, dest_off);
  5125       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5126       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5127       src_off += BytesPerInt;
  5128       dest_off += BytesPerInt;
  5129     } else {
  5130       return false;
  5133   assert(src_off % BytesPerLong == 0, "");
  5134   assert(dest_off % BytesPerLong == 0, "");
  5136   // Do this copy by giant steps.
  5137   Node* sptr  = basic_plus_adr(src,  src_off);
  5138   Node* dptr  = basic_plus_adr(dest, dest_off);
  5139   Node* countx = dest_size;
  5140   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  5141   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5143   bool disjoint_bases = true;   // since alloc != NULL
  5144   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5145                                sptr, NULL, dptr, NULL, countx);
  5147   return true;
  5151 // Helper function; generates code for the slow case.
  5152 // We make a call to a runtime method which emulates the native method,
  5153 // but without the native wrapper overhead.
  5154 void
  5155 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5156                                         Node* src,  Node* src_offset,
  5157                                         Node* dest, Node* dest_offset,
  5158                                         Node* copy_length) {
  5159   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5160                                  OptoRuntime::slow_arraycopy_Type(),
  5161                                  OptoRuntime::slow_arraycopy_Java(),
  5162                                  "slow_arraycopy", adr_type,
  5163                                  src, src_offset, dest, dest_offset,
  5164                                  copy_length);
  5166   // Handle exceptions thrown by this fellow:
  5167   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5170 // Helper function; generates code for cases requiring runtime checks.
  5171 Node*
  5172 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5173                                              Node* dest_elem_klass,
  5174                                              Node* src,  Node* src_offset,
  5175                                              Node* dest, Node* dest_offset,
  5176                                              Node* copy_length) {
  5177   if (stopped())  return NULL;
  5179   address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  5180   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5181     return NULL;
  5184   // Pick out the parameters required to perform a store-check
  5185   // for the target array.  This is an optimistic check.  It will
  5186   // look in each non-null element's class, at the desired klass's
  5187   // super_check_offset, for the desired klass.
  5188   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
  5189   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5190   Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
  5191   Node* check_offset = _gvn.transform(n3);
  5192   Node* check_value  = dest_elem_klass;
  5194   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5195   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5197   // (We know the arrays are never conjoint, because their types differ.)
  5198   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5199                                  OptoRuntime::checkcast_arraycopy_Type(),
  5200                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5201                                  // five arguments, of which two are
  5202                                  // intptr_t (jlong in LP64)
  5203                                  src_start, dest_start,
  5204                                  copy_length XTOP,
  5205                                  check_offset XTOP,
  5206                                  check_value);
  5208   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5212 // Helper function; generates code for cases requiring runtime checks.
  5213 Node*
  5214 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5215                                            Node* src,  Node* src_offset,
  5216                                            Node* dest, Node* dest_offset,
  5217                                            Node* copy_length) {
  5218   if (stopped())  return NULL;
  5220   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5221   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5222     return NULL;
  5225   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5226                     OptoRuntime::generic_arraycopy_Type(),
  5227                     copyfunc_addr, "generic_arraycopy", adr_type,
  5228                     src, src_offset, dest, dest_offset, copy_length);
  5230   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5233 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5234 void
  5235 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5236                                              BasicType basic_elem_type,
  5237                                              bool disjoint_bases,
  5238                                              Node* src,  Node* src_offset,
  5239                                              Node* dest, Node* dest_offset,
  5240                                              Node* copy_length) {
  5241   if (stopped())  return;               // nothing to do
  5243   Node* src_start  = src;
  5244   Node* dest_start = dest;
  5245   if (src_offset != NULL || dest_offset != NULL) {
  5246     assert(src_offset != NULL && dest_offset != NULL, "");
  5247     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5248     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5251   // Figure out which arraycopy runtime method to call.
  5252   const char* copyfunc_name = "arraycopy";
  5253   address     copyfunc_addr =
  5254       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5255                           disjoint_bases, copyfunc_name);
  5257   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5258   make_runtime_call(RC_LEAF|RC_NO_FP,
  5259                     OptoRuntime::fast_arraycopy_Type(),
  5260                     copyfunc_addr, copyfunc_name, adr_type,
  5261                     src_start, dest_start, copy_length XTOP);

mercurial